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ABSTRACT

We introduce definitions of computable PAC learning for binary
classification over computable metric spaces. We provide sufficient
conditions on a hypothesis class to ensure than an empirical risk
minimizer (ERM) is computable, and bound the strong Weihrauch
degree of an ERM under more general conditions. We also give a
presentation of a hypothesis class that does not admit any proper
computable PAC learner with computable sample function, despite
the underlying class being PAC learnable.
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1 INTRODUCTION

The modern statistical learning theory framework for the study
of uniform learnability is the synthesis of two theories. On the
one hand, Vapnik—Chervonenkis (VC) theory [19] is a statistical the-
ory that provides a rate of convergence for a uniform law of large
numbers for estimates of the form % . |{i <n : f(X;) # Yi}l,
where (X;, Y;) are i.i.d. samples from an unknown probability mea-
sure over X X Y and f: X — Y is a function from a class H of
measurable functions. The rate of convergence is a function of the
complexity of the class H, measured using the concept of VC dimen-
sion. On the other hand, efficient Probably Approximately Correct
(PAC) learnability [18] is a computational theory that defines the
efficient learnability of a function class 7 in terms of the existence
of a learner, given by an algorithm having polynomial runtime, that
takes an ii.d. sample S = ((X;, Y;)) ;< from an unknown probabil-
ity measure y as input and returns a function h € H whose error
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Pr(h(X) # Y) for (X,Y) ~ u can be bounded with high probability
over the choice of S. The analogous notion of PAC learnability [5],
where the learner is merely required to be measurable in an ap-
propriate sense, rather than efficiently computable, has also been
widely studied.

The synthesis of these two theories culminates with the so-called
fundamental theorem of machine learning [5], which establishes,
under certain broadly-applicable measurability conditions, that a
class of functions is PAC learnable if and only if its VC dimension is
finite. This theory provides a justification for the foundational learn-
ing paradigm of empirical risk minimization and has become the
basis for studying many other learning paradigms and non-uniform
theories of learnability. Note, however, that in this framework the
learner is only required to be a measurable function, and in partic-
ular need not be computable.

Insofar as the goal of studying uniform learning is to determine
when a problem admits supervised learning by some program given
access to training examples, it is important to investigate the sub-
class of learners that are in some sense computable, a natural object
of study intermediate between learners that are efficiently com-
putable and those that are merely measurable. In this direction,
Agarwal et al. [3] proposed a notion of computable learner for com-
putably represented hypothesis classes H on discrete spaces. They
principally consider binary classification in the case where # is a
computably enumerable set of computable functions on a countable
domain, e.g., X = N.

However, many natural problems considered in classical PAC
learning theory have continuous domains, such as R". In the present
paper, we consider notions of computable learners and hypothesis
classes, without restricting to the discrete setting, e.g., where X is
an arbitrary computable metric space. We do so using the frame-
work of computable analysis [21], and establish upper and lower
bounds on the computability of several standard classes of learners
in our setting.

We now describe the structure of the paper. Next, in Section 1.1,
we describe several other approaches to computability in learn-
ing theory, including [3], and their relation to our work. We then
in Section 3 provide the relevant preliminaries from computabil-
ity theory (including computable metric spaces and Weihrauch
reducibility) and from classical PAC learning theory. In Section 4
we develop the basic concepts of computable learning theory in
our setting, including notions of computability for learners, presen-
tations of hypothesis classes, and sample functions. In Section 5,
for any computably presented hypothesis class, we establish an
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upper bound on the strong Weihrauch degree of an empirical risk
minimization (ERM) learner and its parallelization, and we provide
sufficient conditions for an ERM learner to be computable. Finally,
in Section 6 we prove matching lower bounds, via the construction
of a (computable presentation of a) hypothesis class that is PAC
learnable but which has no computable proper PAC learner that
admits a computable sample function.

1.1 Related work

Computability of PAC learners has also been studied by Agarwal
et al. [3], who consider the setting of discrete features and count-
able hypothesis classes. They provide several positive and negative
results on the computability of both proper and improper learners
for various notions of computably presented hypothesis classes,
in both the realizable and agnostic cases. Our results, when we
restrict our setting to discrete spaces, correspond most closely to
their results for so-called recursively enumerably representable (RER)
hypothesis classes. In particular, our Theorem 5.3 can be viewed as
a generalization of [3, Theorem 10].

The related notion of strong computable learning is introduced
and studied by Sterkenburg [17], likewise in the case of discrete
features and countable hypothesis classes. Strong computable learn-
ers are defined by the existence of a computable sample function,
a condition first studied in an earlier version [1] of the present
paper. Furthermore, [17] considers the arithmetical complexity of
learnability alongside its set-theoretic undecidability.

Computability of non-uniform learning, which we do not con-
sider in this paper, has been studied in the discrete setting by Solove-
ichik [16], as well as in [3].

In the present paper (and [3]) when considering a function with
finite codomain (as arises for both learners and presentations of
hypothesis classes), the notion of computable function is such that
for each input, the output is always eventually given. It is also
reasonable to consider settings in which there is a particular value
signaling non-halting, which the computable function may never
identify. This approach is explored by Crook et al. [10], where non-
halting of a learner’s output is signaled by the value L. A related
approach is considered by Calvert [9], who studies PAC learning for
concepts that are H(l) classes on 21, which can be thought of as equiv-
alent to working with computable functions from 2 to Sierpinski
space S (i.e., the space {L, T} with open sets {0,{T},{L, T}}),
where the inverse image of T is the 1'[(1) class in question.

The computability of PAC learnability has also been studied by
Wehner [20] and Schaefer [14], who characterize the arithmetical
complexity of deciding finiteness of the VC dimension for various
families of hypothesis classes.

Another interaction between learning theory and computability
is in the setting of “learning in the limit” [12], sometimes called
TxtEx learning. One recent result by Beros [4] in this framework
establishes the Zg-completeness of this learning problem for certain
computably enumerable hypothesis classes.

2 SUMMARY OF MAIN RESULTS

The field of supervised learning concerns the task of predicting labels
from features given a sample of labeled features S = ((xi,y;)) i<
and famously underscores successes in such settings as image
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recognition and spam detection. Given a universe X of features and
Y of labels, a learner can be formalized as a function
A (X X Y)<? x X — Y sending a sample S and feature x to
its predicted label A(S, x).

The success of a learner A is formulated with respect to a
particular hypothesis class H € Y and a family D of probability
measures over X X Y, by means of the PAC learning paradigm. In
particular, A is said to be a PAC learner for H with respect to D if
there exists a sample function m: (0,1)?> — N so that, when trained
on samples of size at least m(e, §), with probability at least (1 — §)
over the choice of sample, A attains error no more than € worse
than any hypotheses in H, when the true underlying distribution
lies in D. The case in which D consists of all measures over X x Y
is referred to as learning in the agnostic case, and the case in which
D is restricted to those measures for which some h € H attains
an error of 0 is referred to as learning in the realizable case (with
respect to H).

In the setting of binary classification, i.e., Y = {0,1}, the
existence of a PAC learner for a class H (with respect to any family
D of measures) is determined by the VC dimension of H, a com-
binatorial measure of its complexity. The so-called fundamental
theorem of machine learning establishes that, under tame measura-
bility conditions, there exists a PAC learner for H with respect to D
if and only if its VC dimension is finite. Furthermore, it establishes
that in this case, every learner A that is an empirical risk minimizer
(ERM), i.e., for which A(S, - ) minimizes empirical error over H for
every sample S, is indeed a PAC learner for H and any D.

Crucially, the classical fundamental theorem permits learners to
be arbitrary Borel measurable functions, which need not be com-
putable. In order to more faithfully capture the setting of machine
learning, we consider the computability of learners. In this paper,
we investigate to what extent results in classical learning theory
have computable analogues; when computable analogues need not
exist, we quantify how badly noncomputable they can be.

To this end, we study binary classification over domains X which
are arbitrary computable metric spaces and define a computable
learner to be a learner that is computable as a map of computable
metric spaces. In order to study which classes can be learned by
computable learners, we consider the case where elements of H
are identified by indices bearing some structure. Namely, given an
index space 7, we say that amap $: 7 x X — Y is a presentation
of the underlying hypothesis class

SﬁT = range (i eI — 9, ))

Such a presentation is said to be computable when 7 is a computable
metric space and $ is computable as a map of computable metric
spaces. We also study the notion of a proper learner for 9, ie., a
map A: (X X Y)<“ — I, which is said to induce the learner A
given by

A((xi, yi)ien)» x) = S(W((xir yi)ie[n)) x)-

A proper learner is computable when it is computable as a map of
computable metric spaces.

We now present our primary results, expressed using the
language of represented spaces and strong Weihrauch reducibility
(see Section 3.1 for details).
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First, we show that hypothesis classes equipped with computable
presentations always admit an ERM that is computable in the real-
izable case.

COROLLARY 2.1 (OF THEOREM 5.3). If $: I X X — Y isa
computable presentation, then there is an ERM for $' that is
computable in the realizable case.

Observe that this result holds even when the hypothesis class
%' has infinite VC dimension (and hence is not PAC learnable). For
classes of finite VC dimension, every ERM learner is a PAC learner
(see Theorem 3.23). Hence when $7 has finite VC dimension, the
ERM produced by Corollary 2.1 is a PAC learner.

For learning $ in the agnostic case, we characterize the worst-
case noncomputability of ERM learners by bounding the strong
Weihrauch degree of a particular ERM learner as a function of the
index set 7. We make use of the limit map limy, which essentially
sends the Cauchy sequences in a computable metric space X to
their limits.

COROLLARY 2.2 (OF THEOREM 5.1). If 9: I x X — Y isa
computable presentation, then there exists an ERM learner for $7
in the agnostic case that is strongly Weihrauch reducible tolim r.

Likewise, when S5T has finite VC dimension, this result shows
that we can always find a PAC learner with the stated upper bound.

The parallelization of a function can be thought of as simultane-
ously evaluating countably many instances of the original function.
As such, it is often the more appropriate object of study when
considering the strong Weihrauch reducibility of functions, such
as learners, whose range is finite (as opposed to settings where
infinitely many bits are required to describe the output).

When considering the parallelization of a learner as in Corol-
lary 2.2, the upper bound may increase from lim 7 to limyus but no
further.

COROLLARY 2.3 (OF COROLLARY 5.2). If $: T X X — Y isa
computable presentation, then there is an ERM for $' whose
parallelization is strongly Weihrauch reducible to limyp.

By a classical result, ERM learners for hypothesis classes of finite
VC dimension are furthermore guaranteed to admit computable
sample functions (see Theorem 3.24). As such, Corollary 2.3 im-
plies that when $T has finite VC dimension, we can always find a
PAC learner A with sample function m for which the pair (g, m) is
strongly Weihrauch reducible to limypr, written (A: m) <gw limyp,
where A denotes the parallelization of A.

We are able to show that the corresponding bound for proper
learners is tight.

COROLLARY 2.4 (OF THEOREM 6.1). There is a computable presen-
tation $ such that for every proper learner A that induces a PAC
learner for $* and every sample function m for the induced learner,
limye <gw (‘IAI, m).

When considering the computability of an algorithm that
requests samples (of a given size) and outputs hypotheses with
a desired error and failure probability, one must consider the com-
putability of not just a learner, but also of an accompanying sample
function. Even though ERMs for classes of finite VC dimension
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admit computable sample functions, this is not the case in general.
We exhibit a computable PAC learner A that does not admit any
computable sample function.

COROLLARY 2.5 (OF THEOREM 4.12). There exists a computable
PAC learner A for a hypothesis class H and collection of measures D
such that any sample function m for A is noncomputable.

Corollary 2.5 provides a concrete example of how one must
take into account the computability of sample functions as well as
learners, when studying the hardness of learning problems.

3 PRELIMINARIES

This section provides a brief treatment of the computability theory
and classical learning theory that form the starting point of our
study.

We begin by recalling several pieces of notation. For a set I, we
write (sj);es to denote an I-indexed sequence. For n € N, write
[n] to denote the set {0,1,...,n— 1}. We write f[y to denote the
restriction of a function f: X — Y to a subdomain U C X.

For a topological space X, we write X < for the space [ [ ;e X
of finite sequences of points in X, endowed with its natural topology
as the coproduct of product spaces. An extended metric space is
a set X equipped with a distance function d: X X X — R U {co}
satisfying the usual metric axioms (where co + r = oo for any
r € RU {oo}). (Note that as a special case, any metric space is also
an extended metric space.)

3.1 Computable metric spaces and Weihrauch
reducibility

We next describe certain key notions of computability and
computable analysis, including the notions of computable met-
ric spaces and computable functions between them. (In this paper,
points in computable metric spaces will be allowed to have distance
00.) For more details and several equivalent formulations of the
basic notions, see, e.g., [7, Section 4]. We then describe the notion
of Weihrauch reducibility; for more details, see [6].

Recall that a partial function f from N to N is said to be
computable if there is some Turing machine that halts on input
n (encoded in binary) precisely when f is defined on n, and in
this case produces (a binary encoding of) f(n) as output. We fix a
standard encoding of Turing machines and write {e} to denote the
partial function that the program encoded by e € N represents. We
write {e}(n) | to mean that the partial function {e} is defined on
n, i.e., that the program encoded by e halts on input n, and write
{e}(n) T otherwise.

In this paper, it will be convenient to take oracles to be elements
of NN rather than 2V. For f € NN we write {e} to denote the
partial function defined by an oracle program encoded by e using f
as an oracle. Because we are using oracles in NN we will define the
Turing jump to yield a function rather than a set. Given f € N, the
Turing jump of f, written f”, is defined to be the characteristic
function of {e € N : {e}/(0)]}. By convention, we write ” for
the characteristic function of the halting set {e € N : {e}(0)]}.

A subset of N is computable if its characteristic function is a
total computable function, and is computably enumerable (c.e.)
if it is the domain of a partial computable function (equivalently,
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either empty or the range of a total computable function). We
will also speak of more elaborate finitary objects (such as sets of
finite tuples of rationals) as being computable or c.e. when they are
computable or c.e., respectively, under a standard encoding of the
objects via natural numbers.

For concreteness, we will use the notion of a presentation of a
real when defining computable metric spaces, but note that this
could also be formulated using represented spaces, as defined later
in the section. An extended real is an element of R U {o0}. A
presentation of an extended real is a sequence of rationals (q;);en
such that if there is some ¢ € N for which g1 < g¢ + 1, then for
all j,k € N with j < k we have ‘qgoﬂ- - qg0+k| < 277, where ¢, is
the least such ¢. If no such ¢ exists, we say that the sequence is a
presentation of co. If there is such an ¢, we say that the sequence is
a presentation of the real lim;_,« q;. We say that an extended real
is computable if it has a computable presentation. A computable
real is an element of R admitting a computable presentation as an
extended real.

We say that a sequence (t;);en in an extended metric space
X = (X, d) is a rapidly converging Cauchy sequence when for
all i < j we have d(t;,t;) < 27

Definition 3.1. A computable metric space is a triple
X = (X,dx, (Six)ieN) such that

(1) (X U S,dx) is a separable extended metric space, where
S={sX :ieN},

(2) (le)igN, called the sequence of ideal points of X, enumer-
ates a dense subset of (X U S, dx),

(3) X, called the underlying set of X, is dense in
(X US,dx), and

(4) dx, called the distance function, is such that
dX(SiX, st) is a computable extended real, uniformly in i and j.

An element x € X is said to be a computable point of X if there is

a computable function f: N — N such that (sif(l.))l-eN is a rapidly

converging Cauchy sequence that converges to x. We will omit the
superscripts and subscripts when they are clear from context.

Note that in many papers, computable metric spaces are not
allowed to take the value co. Further, in some papers (e.g., [8, Defi-
nition 2.1] and [7, Definition 7.1]), the notion of computable metric
space is defined only in the case where the set S of ideal points is a
subset of X, while in others (e.g., [13, Definition 2.4.1]) computable
metric spaces are also required to be complete metric spaces.

Example 3.2. The set R of real numbers forms a computable metric
space under the Euclidean metric, when equipped with the set Q
of rationals as ideal points under its standard enumeration (g;);en-
Its computable points are precisely the computable reals.

Note that in general, the ideal points of a computable metric
space are not required to be in its underlying set, as illustrated by
the following example.

Example 3.3. The set of irrational numbers forms a computable
metric space under the Euclidean metric, again equipped with
(gi)ien as the sequence of ideal points. The computable points
of this computable metric space are the computable irrational num-
bers.
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The two spaces in the next example will be key in many of our
constructions.

Example 3.4. Baire space, written NN, is the computable metric
space consisting of countably infinite sequences of natural num-
bers, with ideal points those sequences having only finitely many
nonzero values (ordered lexicographically), and where dyp is the
ultrametric on the countably infinite product of {0, 1}, i.e.,
dyr ((si)iens, (ti)seny) = 27 MHren(siho),

Cantor space, written 2V, is the computable metric subspace of N
consisting of binary sequences.

Let mp and 7m; be computable maps from N to N such that
i — (mo(i), m1(i)) is a computable bijection of N with N x N.

When X and Y are computable metric spaces, we write X X Y
to denote the computable metric space with underlying set X X Y,

with sequence of ideal points ((sX

Y
(i) sm(i))) ;x> and where

(XU SE)yx (Y USY), dyxy)

is the product extended metric space of (X U sX, dx) and
(Y usY, dy).

We let X=¢ be the coproduct [[,en [Tie[n) X i-e., the space
whose underlying set consists of finite sequences of elements of
X, whose ideal points are finite sequences of ideal points in X, and
where the distance function satisfies

max dx(xj,y;) ifm=n;
dyz<o ((xi)ie[n]> Wi)iepm)) = €M7

00 otherwise.

Note that this agrees with the definition as a topological space:
the extended metric space X<¢ indeed has topology that of the
coproduct topology for the sequence (X"), en of extended metric
spaces considered as a sequence of topological spaces.

Definition 3.5. Suppose X = (X,dx) and Y = (Y,dy) are
extended metric spaces and Z € X. Wesay amap f: X — Y
is continuous on Z if for all open sets U C Y, there is an open set
V C X such that f~}(U) N Z = V N Z. In other words, f restricted
to Z is continuous as a map from the extended metric space that X
induces on Z to Y.

Definition 3.6. Let X and Y be computable metric spaces with
ideal points (s;);en and (4;);en respectively, and suppose Z C X.
Suppose f: W — Y is a map where Z C W C X. We say that f is
computable on Z if for all (j, ) € NXQ thereisaset ®j 4 € NxQ
such that

o f7(B(tj @) N Z = (Uik.p)ea;. , Blsk-p)) N Z, and
o the set {(j,q.k.p) : (k,p) € ®j 4} isce.

This definition captures the notion that the partial map f is
continuous on its restriction to Z and has a computable witness to
this continuity.

Observe that a computable function from N to a computable
metric space Y can be thought of as a program on an oracle Turing
machine that takes the input on its oracle tape, and outputs a
“representation” of a point in Y. The notion of a represented space is
one way of making this notion precise. For more details, see [6].
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Definition 3.7. A represented space (X, y) is a set X along with
a surjection y from a subset of NY onto X. When the choice of y is
clear from context, we call y the representation of X.

Definition 3.8. Suppose X = (X, dx, (siX)iEN) is a computable
metric space. Define CSx C NI to be the collection of functions
f: N — N for which (sif(l.)) ienv 18 a rapidly converging Cauchy
sequence whose limit is in X. The represented space induced by
X is defined to be (X, yxx), where

Yx:CSx —» X
assigns each function f the value lim; sjf(i).
Intuitively, a realizer of a function g takes a description of an

input x to a description of the corresponding output g(x), where
these descriptions are given in terms of representations.

Definition 3.9. Suppose (X, yx)and (Y, yy) are represented spaces,
and let g: X — Y be a map. A realizer of g is any function
G: dom(yx) — dom(yy) such that yy o G = g o yx.

A realizer is computable if it is computable on dom(yx ) (con-
sidered as a partial map between computable metric spaces N and
),

The notion of strong Weihrauch reducibility aims to capture the
intuitive idea that one function is computable given the other
function as an oracle, along with possibly some computable pre-
processing and post-processing, where access to the original in-
put is permitted only in pre-processing. (The weaker notion of
Weihrauch reducibility, in which the input may be used again in
post-processing, also arises in computable analysis, but in this paper
we are able to show that all of the relevant reductions are strong.)

Definition 3.10. Let (X;,yx;) and (Y3, yy,) be represented spaces
for i € {0,1}, and suppose that f: Xy — Yy and g: X1 — Y; are
functions. Let ¥ and G be the sets of realizers of f and g respectively.
We say that f is strongly Weihrauch reducible to g, and write
f <sw ¢, when there are computable functions H and K, each from
some subset of N to NV, such that for every G € G there exists an
F € ¥ satisfying F = H o G o K. We say that f and g are strongly
Weihrauch equivalent, and write f =gw g, when f <qw g and
g Ssw f .

Note that strong Weihrauch reducibility is usually described in
the more general setting of partial multifunctions. Here we will
only need single-valued functions with explicitly defined domains,
and Definition 3.10 coincides with the standard one in this situation.

The following important map describes the problem of comput-
ing limits on a represented space X induced by a computable metric
space X. (Note that elsewhere in the literature, limx is typically
referred to as limy.)

Definition 3.11. Suppose X is a computable metric space, and let
(X, yx) be the represented space it induces. The limit map limy is
the partial function from X to X that assigns every convergent
Cauchy sequence in X its limit (and is undefined elsewhere).

One can view limyp as playing a role in Weihrauch reducibility
analogous to the role played by the halting problem 0’ with respect
to Turing reducibility. For more details, see [6, §11.6].
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It will also be useful to introduce the notion of a rich space, which
bears a relation to limyu and is informally a space that computably
contains the real numbers.

Definition 3.12. A computable metric space X is rich if there
is some computable map :: 28 — X that is injective and whose
partial inverse ™! is also computable.

LEmMA 3.13 ([6, PrRoPOsITION 11.6.2]). IfX and Y are rich spaces,
then limy =gw limy. In particular, limy =gw limypae.

This implies that limy is maximal (under <gw) among limit
operators.

CoROLLARY 3.14. Let X be a computable metric space. Then
limx <gw limNN .

Proor. Let V be the space X[[NY, and note that
limy <gw limy.Because V isrich, limy =gw limyu by Lemma 3.13.
o

We will also work with the Turing jump mapJ: N — N, given
by z + z’, which is strongly Weihrauch equivalent to limyp.

LEMMA 3.15 ([6, THEOREM 11.6.7]). limype =gw J.

Although limyw =gw J, in general lim 7 is weaker. In Section 5
we will establish our upper bounds in terms of lim y for appropriate
computable metric spaces 7, while in Section 6 we will establish a
bound using the operator J.

Strong Weihrauch reductions to the parallelization of a function
allow one to ask for countably many instances of the function to
be evaluated. This concept will be important in Sections 5 and 6, as
we explain following Theorem 5.1.

Definition 3.16. Let f: X — Y be a map between represented
spaces. The parallelization of f is the map f: XN — YN defined

by F(Geidien) = (F) e
Observe that for any map f between represented spaces,
f <sw f. We will need the following standard fact.

LEMMA 3.17 ([6, THEOREM 11.6.6]). limym =g limyg.

3.2 Learning theory

We now consider the traditional framework for uniform learnability,
formulated for Borel measurable hypotheses. A learning problem
is determined by a domain, label set, and hypothesis class, as we
now describe.
(i) a domain X of features that is a Borel subset of some com-
plete separable extended metric space X,
(i) alabel set Y that is a complete separable extended metric
space, and
(iii) a hypothesis class H consisting of Borel functions from X
to Y.
We will say that any Borel function from X to Y is a
hypothesis; note that such a map is sometimes also called a
predictor, classifier, or concept. In this paper, we will only
consider problems in binary classification, i.e., where Y = {0, 1},
considered as a metric space under the discrete topology.
Let D be a Borel measure on X X Y. The true error, or simply
error, of a hypothesis h € H with respect to D is the probability
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that (x, h(x)) disagrees with a randomly selected pair drawn from
D, ie,
Lp(h) = D({(x,y) € X xY | y # h(x)}).
The empirical error of a hypothesis h on a tuple
S = ((x1,y1)s- .- (Xn, yn)) € (X X Y)" of training examples
is the fraction of pairs in S on which h misclassifies the label of a
feature, i.e.,
Ls(h) = S h(x) - yi|'
n

Traditionally, one thinks of a learner as a map which takes finite
sequences of (X X Y)<® and returns a hypothesis, i.e., an element
of YX. We would then like to define a computable learner as a
learner which is computable as a map between computable metric
spaces. Unfortunately, here we encounter the obstruction that Y X
is not, in general, an extended metric space. We overcome it by
instead considering a learner as the “curried” version of a map from
(X x Y)<® to YX ie,asamap (X x Y)<?® x X — Y.In this
manner, we will be able to consider learners which are computable
as maps between computable metric spaces.

Definition 3.18. A learner is a Borel measurable function
A: (X X Y)<“ x X — Y. For notational convenience, for
S € (X X Y)<® we let A(S): X — Y be the function defined by
A(S)(x) = A(S, x).

The goal of a learner A is to return a hypothesis h that minimizes
the true error with respect to an unknown Borel distribution O
on X X Y. The learner does so by examining a D-ii.d. sequence
S = ((xl, Y1)y ... (xn, yn)). Notably, the learner cannot directly
evaluate L y; it is guided only by the information contained in the
sample S, including evaluations of Lg. However, as it is ignorant of
D, the learner does not know how faithfully Ls approximates L.

The most central framework for assessing learners with respect
to hypothesis classes is that of PAC learning (see, e.g., [15, Chap-
ter 3]). In the setting of efficient PAC learning [15, Definition 8.1],
one further requires that the learning algorithm be polynomial-
time in the reciprocal of its inputs € and &, to be described in the
following definition.

Definition 3.19. Let D be a collection of Borel distributions on
X x Y and let H be a hypothesis class. A learner A is said to PAC
learn H with respect to D (or is a learner for H with respect to D)
if there exists a function m: (0, l)2 — N, called a sample function,
that is non-increasing on each coordinate and satisfies the following
property: for every €, € (0, 1) and every Borel distribution D € D,
a finite ii.d. sample S from D with |S| > m(e, §) is such that, with
probability at least (1—3§) over the choice of S, the learner A outputs
a hypothesis A(S) with

Lp(A(S)) < jnf Li(h)+e. (1)

(Observe that (i) is a Borel measurable condition, as
LD(E(S)) = _/ L a(s,x)2yD(dx, dy).) The minimal such sample
function for A is its sample complexity. When there is some
learner A that learns H with respect to D, we say that H is PAC
learnable with respect to D (via A).

In the case where D consists of all Borel distributions on X X Y,
we say that H is agnostically PAC learnable and that A is an
agnostic PAC learner for H. In the case where D consists of the
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class of Borel distributions D on X X Y for which Lg(h) = 0 for
some h € H, we say that H is PAC learnable in the realizable
case and that A PAC learns H in the realizable case.

Remark 3.20. Some sources use “sample complexity” to refer
to a property of hypothesis classes H, defined as the pointwise
minimum of all of H’s PAC learners’ sample complexities (in the
sense of Definition 3.19). The learner-dependent definition will
be more appropriate for our purposes, in which, for instance, the
distinction between computable and noncomputable learners is of
central importance.

We will see shortly in Theorem 3.23 that a class that is PAC learn-
able in the realizable case must also be agnostically PAC learnable
(possibly via a different learner with worse sample complexity).

Definition 3.21. A learner E is an empirical risk minimizer (or
ERM) for H, if for all finite sequences S € (X X Y)<®, we have

ES) € argming cq¢ Ls(h).
Definition 3.22. The VC dimension of H is
sup {IC|: CC X and {htc: heH}={0,1)C}.
When {hlc: h € H} = {0,1}C, we say that H shatters the set C.

We now state the relevant portions of the fundamental
theorem of learning theory in our setting (binary classification with
0-1 loss), which holds for hypothesis classes satisfying the mild
technical assumption of universal separability [5, Appendix A]. This
condition is satisfied for any hypothesis class having a computable
presentation (see Definition 4.2), as is the case for all hypothesis
classes considered in this paper.

THEOREM 3.23 ([15, THEOREM 6.7]). Let H be a hypothesis class
of functions from a domain X to {0,1}. Then the following are
equivalent:

1. H has finite VC dimension.

2. ‘H is PAC learnable in the realizable case.

3. ‘H is agnostically PAC learnable.

4. Any ERM learner is a PAC learner for H, over any family of
measures.

Because of the equivalence between conditions 2 and 3, we will
say that a hypothesis class H is PAC learnable (without reference to
a class of distributions D, and without mentioning agnostic learning
or realizability) when any of these equivalent conditions hold. Note
that while every agnostic PAC learner for # is in particular a PAC
learner for H in the realizable case, the converse is not true; when
we speak of a PAC learner for H without mention of D, we will
mean the strongest such instance, namely that it is an agnostic PAC
learner for H.

Furthermore, there exists a connection between the VC dimen-
sion of a PAC learnable class and the sample functions of its ERM
learners.

THEOREM 3.24 ([15, CHAPTER 28]). Let H be a hypothesis class
of functions from a domain X to {0, 1} with finite VC dimension d.
Then its ERM learners are PAC learners with sample functions

m(e, 8) = 4%1 -log (%1) + % - (8dlog(e/d) + 21og(4/9)).
€ € €
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4 NOTIONS OF COMPUTABLE LEARNING
THEORY

As described before Definition 3.18, the notion of learner we con-
sider in this paper is the curried version of the standard one, in
order to allow for it to be a computable map between computable
metric spaces. We now make use of this, to define when a learner
is computable and when a hypothesis class is computably PAC
learnable.

Definition 4.1. By a computable learner we mean a learner
A: (X X Y)<® x X — Y which is computable as a map of com-
putable metric spaces. We say a hypothesis class H is computably
PAC learnable if there is a computable learner that PAC learns it.

It will also be important to have a computable handle on
hypothesis classes themselves. As such, we will primarily consider
hypothesis classes as collection of hypotheses endowed with (not
necessarily unique) indices. This information is collected up into a
presentation of the class.

Definition 4.2. A presentation of a hypothesis class is a Borel
measurable function H: 7 X X — Y. We call I the index space.
Let $: 7 — Y¥ be the function defined by $()(x) = H(i, x). We
write $7 to denote the underlying hypothesis class, i.e., range(g).
We say that § presents the class $' and that a hypothesis is an
element of $ when it is in $.

Definition 4.3. A presentation $: 7 X X — Y of a hypothesis
class is computable if 7 is a computable metric space and 9 is
computable as a map of computable metric spaces.

Classically, a proper learner for a hypothesis class H is usually
regarded simply as a learner which happens to always produce
hypotheses in the class H. This is a key notion, about which we
will want to reason computably.

In our setting, to study the computability of proper learning, it
will be valuable to consider the case in which the elements of H
are identified by indices bearing additional structure, and thus to
consider learners that identify hypotheses in H by such indices,
using a presentation 9. Consequently, and in contrast to the classi-
cal setting, we take proper learners to be slightly different objects
than ordinary learners. Our proper learners map samples to indices,
rather than mapping samples and features to labels. We then can de-
fine a computable proper learner to be simply a proper learner that
is computable (similarly to Definition 4.1 of a computable learner).

Definition 4.4. Let $: 7 XX — Y be a presentation of a hypothe-
sis class. A proper learner for $ is a map
A: (X X Y)<“ — I.If the map A defined by

A((xi» Y)ie[n]> *) = DU, Yi)ie[n]> X)

is a PAC learner for Sf)T, then A is a proper PAC learner for $, and
we call A the learner induced by 2 (as a proper learner for $). If
$ is a computable presentation, we say that a proper learner U for
$ is computable when it is computable as a map of computable
metric spaces.

Note that the learner A induced by a computable proper PAC
learner for $ in Definition 4.4 is a computable learner for SjT, as
we have required both A and $ to be computable. Intuitively, $
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is computably properly PAC learnable if there is a computable
function which takes in finite sequences of elements of X X Y and
outputs the index of an element of $, and where the corresponding
learner PAC learns SﬁT.

Definition 4.5. Given a hypothesis class H, define
gy © (XXY)=? tobe the set of those finite sequences (x;, Yi)ie[n]
for which {(x1,y1),...,(xn,yn)} is a subset of the graph of h for
some h € H, ie.,

Uner Lnen {(x, h(x))

Recall that the realizable case restricts attention to measures 9
for which D-i.i.d. sequences are almost surely in the graph of some
element of H. In particular, for any such O and n € N, the product
measure D" is concentrated on Pg;N(X XY)". Note, however, that
@y itself will not in general be Borel, even though every element
of H is a Borel map. Yet, in the following definition, ®¢, plays only
the role of a subdomain on which the computability of learners
in the realizable case is considered, and thus its measure-theoretic
properties are of no consequence.

: xeX}n.

Definition 4.6. Let H be a hypothesis class. Then a learner A for
H is computable in the realizable case for H if it is
computable on ®¢; X X as a function between computable metric
spaces (X X Y)<“ x X and Y. A proper learner U for a computable
presentation $ of H is computable in the realizable case if A
is computable on ®¢; as a function between computable metric
spaces (X X Y)<“ and I.

Note that it is possible to have a noncomputable learner for
H which is nevertheless computable in the realizable case for H.
However, all computable learners for H are computable in the
realizable case for H.

It will be important to impose computability constraints on sam-
ple functions as well as learners.

Definition 4.7. A sample function m: (0,1)> — N is computable
if uniformly in n € N there are computable sequences of rationals
(Cn,i)ien, (rn,i)ien, (tn,i)ien, and (bp,i)ien such that

e U, C m~!(n) for every n € N, and

o the closure of the set ,,en Un is (0, 1)2,
where for each n we define Uy = U;en(€n,i-7n,i) X (tn, i, bn, i)-

Given a computable PAC learner and a computable sample
function for this learner, one can produce an algorithm that, given
an error rate and failure probability, outputs a hypothesis having
at most that error rate with at most the stated failure probability. If
the computable learner is an ERM, then by Theorem 3.24 it has a
computable sample function, and so one obtains such an algorithm.
On the other hand, we will see in Theorem 4.12 that not every com-
putable PAC learner (for a given hypothesis class H and class of
distributions D) admits a computable sample function (with respect
to H and D).

4.1 Countable hypothesis classes

Suppose that X is countable and discrete. Requiring that a learner A
be computable is then tantamount to asking that the maps
x + A(S, x) be uniformly computable as S ranges over (X X Y)<¢.
By collecting up this data, such a computable learner A can be
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encoded as a computable map from N to N. In a similar fashion, a
computable presentation of a hypothesis class could be encoded by
a single computable map from N to N.

The paper [3] studies computable PAC learning in the setting
where X = N, a countable discrete metric space. As such, they
are able to work with the encodings of these simplified notions of
computable learners and presentations of hypothesis classes, as we
have just sketched.

4.2 Examples

To illustrate these definitions, we now describe two examples —
one a very basic one in this formalism, and the other a standard
example from learning theory.

4.2.1  “Apply” function. Let the index space I be 2" and the sample
space X be N. We define the “apply” presentation of the hypothesis
class 2N to be the map $: 7 x X — {0,1} where $(x,n) = x(n).
Note that while $ is computable, there is no single Turing degree
which bounds every hypothesis in $7 = 2V, In particular, this
example demonstrates that the notion of computable hypothesis
class that we consider is fundamentally more general than the corre-
sponding notion in [3], which considers only countable collections
of hypotheses.

4.2.2 Decision stump. Recall the decision stump problem from
classical learning theory defined by X = R, Y = {0,1}, and
H = {lsc ¢ € R}. In the realizable case, the learning prob-
lem amounts to estimating the true cutoff point ¢ from a sample
S = (Xi,Yi)ie[n) for which y; = 1if and only if x; > c. It is well-
known to be PAC learnable in the realizable case via the following
algorithm:

1. If S has negatively labeled examples (i.e., (x;, y;) with y; = 0),
then set m to be the maximal such x;. Otherwise, set m to
be the minimal feature among positively labeled examples.

2. Return 1.

In particular, this implements an ERM learner for # in the realizable
case. Further, as H has VC dimension 1, it is a PAC learner for
H in the realizable case by the equivalence of clauses 1 and 4 in
Theorem 3.23.

The classical algorithm does not give rise to a computable learner
in the sense of Definition 3.18, however, as 1, cannot be com-
puted from S. In particular, undecidability of equality for real num-
bers obstructs such a computation from being performed over R.
In order to more sensibly cast the problem in a computable setting,
we restrict focus to cutoff points located at computable reals and
take the noncomputable reals as the domain set X.

Now consider the computable presentation $Hstep:
Re X (R \ R;) — {0, 1} of a hypothesis class with index set the
computable reals R, given by 9step(c, x) = 1 ¢(x). Its underlying
hypothesis class ‘6:tep ={ls¢ : ¢ € R} consists of computable
functions (whose domains are R \ R), thus proper learners have a
chance of success. Nevertheless, the classical algorithm fails: m will
reside in X, and thus 1 ,, will be noncomputable as a function on
X (even when one has access to m).

We will exhibit a proper learner Ustep for Hstep that is computable
in the realizable case and whose induced learner is an ERM. Fix a
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computable enumeration (g;);en of Q and uniformly enumerate a
computable presentation of each as a computable real.

Algorithm 4.8 (Algorithm step). Given a sample S, output the
first gj € (gi)ien for which the empirical error of 1 4; is 0.

ProOPOSITION 4.9. Ustep is a proper learner for Sstep that is
computable in the realizable case and whose induced learner is an
ERM.

ProOF. Observe that the sequence of functions (1sg4;)ien is
uniformly computable on X = R \ R¢. The empirical error of
each 14, can be computed exactly on any sample (and hence
compared with 0). The loop terminates upon reaching a rational
g; that separates the sample S, one of which must exist for any S
under consideration in the realizable case. O

COROLLARY 4.10. Ustep is a computable proper PAC learner in the
realizable case for Hstep.

ProoF. By Proposition 4.9, Ustep is a computable proper learner
in the realizable case for Hstep, whose induced learner is an ERM.

The class Sﬁ:tep

clauses 1 and 4 in Theorem 3.23, the learner induced by Ustep is a
PAC learner in the realizable case. ]

has VC dimension 1, and so by the equivalence of

In fact, we will see shortly in Theorem 5.3 that Corollary 4.10 is
an instance of a more general result, namely that all classes with
computable presentations have computable ERM learners in the
realizable case.

4.3 Computable learners with noncomputable
sample functions

Theorem 4.12 shows that even when a hypothesis class H and
class of distributions D admit some computable PAC learner with
a computable sample function, not all computable learners for H
with respect to D must have a computable sample function.

Therefore, when investigating the computability of
algorithms for outputting a hypothesis (with the desired error rate
and failure probability), we must consider the computability of a
pair consisting of a PAC learner and sample function, not merely
the PAC learner alone.

The intuition behind the proof of Theorem 4.12 is that we can
enumerate those programs that halt, and whenever the nth program
to halt does so, we then coarsen all samples of size n up to accuracy
27%, where s is the size of the program. Consequently, for each
desired degree of accuracy, we eventually obtain answers that are
never coarsened beyond that accuracy. On the other hand, knowing
how many samples are needed for a given accuracy allows us to
determine a point past which we never again coarsen to a given
level. This then lets us deduce when a given initial segment of the
halting set has stabilized.

Definition 4.11. For M € N, let Dy be the collection of Borel
probability distributions D over (R \ R;) x {0, 1} such that

(i) Lp(h) = 0 for some element h of Hstep, and

(if) O is absolutely continuous (with respect to Lebesgue

measure) and has a probability density function bounded by
M.
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THEOREM 4.12. Foreach M € N, there is a learner Aon X = R\R,
and Y = {0, 1} such that

o A is computable in the realizable case with respect to $

e Aisa PAC learner for 55Ztep

e (0’ is computable from any sample function for A (as a learner
for Sf);rtep over D).

+
step’

over Dy, and

PRrROOF. Define a: Q X N — Q by a(q,!) = |_2[qJ/2‘7, and let
c: (X x ¥)<® — Q be such that ¢(S) is the rational g of least
index attaining zero empirical error on S if one exists, and 0 other-
wise. Hereafter, we will additionally demand that the computable
enumeration of Q employed by ¢ be one which enumerates J first.
Define ¢*: (X X ¥)<® x N — Q by ¢*(S,n) = a(c(S),n), i.e., the
previous decision stump learner discretized to accuracy 27".

Let (ex )k en be a computable enumeration without repetition of
all e € N for which {e}(0)]. For S € (X x Y)<?, write len(S) for its
length. Define A: (X XY)=“XX — Y by A(S, %) = hes (s, e1005) (X)-
In other words, we discretize the decision stump algorithm to accu-
racy 27 %n(S), Note that because limy e = oo, we can find arbitrarily
good approximations as we increase the sample size, even if (as we
will show) we cannot compute how large such samples must be.

Note that A is computable in the realizable case. Further, for
every r € N there is an i € N such that e,+ > i for all r* > r.
Then for every integer £ > 0, there is an n € N such that whenever
len(S) > n, the set

U= {x : 55step(9’[step(s)v x) # A(S, x)}

is contained in an interval of length 27¢. A is thus a PAC learner for
55; ep OVer Dy, as the loss incurred by A on U is bounded uniformly
over Dy by 27¢ - M.

Let m(e, §) be a sample function for A and consider n € N. We
will compute the function @’ restricted to the set [n] = {0, ...,n—1}.
Fix any rational § € (0,1), and set m, = m(2~("*2)_§). Suppose
there is some i > m, such that e; < n. Then given a sample S of
size i, the function A(S, -) will discretize ¢(S) to an accuracy below
27", This would cause A to incur a true loss of at least 27" on the
distribution which is uniform on features in [0, 1] and takes labels
according to 151y, as (s, k) < 1/3—2_("J“2), a contradiction. Hence
i < my whenever e; < n. We can therefore determine membership
in {ex : k € N} N [n], and hence can compute @’ restricted to
[n]. O

5 UPPER BOUNDS ON THE COMPUTABILITY
OF LEARNERS

We now study upper bounds on the computability of learners, for
a hypothesis class with a computable presentation. For the rest
of the paper, we remain in the setting of binary classification, i.e.,
Y ={0,1}.

For any computable presentation of a hypothesis class, we
establish a concrete upper bound, depending only on the index
space, for how computable some ERM must be.

THEOREM 5.1. Suppose H: I X X — Y is a computable presenta-
tion of a hypothesis class. Then there is a proper learner for $ that is
strongly Weihrauch reducible to lim r, and is such that the learner it
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induces is an ERM for 7. In particular, there is an ERM for $T that
is strongly Weihrauch reducible tolimy.

Proor. Fix a sample S = (xi,yi)ie[n]- To invoke limy, we
introduce a procedure for approximating an input
z = (zi)jen € IV, In particular, we approximate z using the se-
quence (zj ) ey, With each z; € T taking the form

1 k-1 _k _k
Zk = (zk,...,zk ,zk,zk,...),
i.e., constant after the (k — 1)th term.
z{c is computed as follows, for j € [k]:

1. Take balls around the x; and around the first j ideal points
of 7, all of radius 2% In addition, calculate which value is
taken by y; € {0, 1}.

2. For each of the first j ideal points of 7, use $ to
determine whether the balls around the x; and the ideal
point suffice to calculate a well-defined empirical error with
respect to S.

3. If none of the first j ideal points induce a well-defined empiri-
cal error, set z{c to be the first ideal point of 7. Otherwise, set

z;; to be the first ideal point which attains minimal empirical
error among the first j ideal points.

As 9 is continuous, and as there are only finitely many possible
empirical errors, if w € 7 is such that g(w) has minimal empirical
error with respect to S, then there must be an open ball around w
where all elements of the ball give rise to a function with the same
minimal empirical error (with respect to S). In particular, there must
be an ideal point ¢ such that $(c) has minimal empirical error with
respect to S. Therefore z = (z;) jeN converges to the ideal point
with minimal index among those that give rise to minimal empirical
error with respect to S. Calling lim 7 on z thus is a proper learner
whose induced learner for $' is an ERM, as desired. O

When comparing the relative computational strength of two
maps [ and g, the notion of g being “more complex” than f can
be intuitively thought of as the statement that one can compute f
when given access to g. This is made precise using the formalism
of strong Weihrauch reducibility, in which a single application of f
must be computed using a single application of g (possibly along
with some uniform pre- and post-processing). In some situations, it
is useful to be able to use multiple applications of g when computing
an application of f’; this capability is formalized using the notion of
parallelization (see Definition 3.16). For those familiar with classical
computability theory, working with strong Weihrauch reductions
to the parallelization more closely resembles Turing reductions, as
opposed to m-reductions.

When considering learners on continuum-sized metric spaces, it
is important to study the parallelization of the learner, and not just
the learner itself, for reasons we now describe. Because we have
chosen for a learner to be a map from (X x Y)<® x X to {0,1} (as
opposed to a map from (X x Y)<® to {0, 1}%), a single application
of a learner can only return a single bit of information about its
input. In contrast, limyr is a map from NY to N for which a single
application contains countably many bits of information. As such,
when comparing a learner to limyp, it is somewhat artificial to
allow only a single application of the learner. We can overcome this
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obstacle by instead considering the parallelization of the learner,
i.e,, by allowing ourselves to simultaneously ask countably many
questions of the learner, rather than a single one.

In considering the parallelization, the upper bound may increase
from lim 7 to limyus, but no further.

COROLLARY 5.2. Suppose H: I x X — Y is a computable
presentation of a hypothesis class. Then there is a proper learner
for § whose parallelization is strongly Weihrauch reducible to limypv,
and is such that the learner it induces is an ERM for $t. In particular,
there is an ERM for $1 whose parallelization is strongly Weihrauch
reducible to limypy.

ProoF. Let A be the proper learner constructed in the proof of
Theorem 5.1, which satisfies A <qw limz. By Corollary 3.14, we
have lim 7 <gw limyg, so that A <gw limyg.

Observe that strong Weihrauch reductions are preserved under
parallelization, and so A <sw h’”;N\N . Finally, we have m =sw
limyp by Lemma 3.17. O

In Section 6 we provide matching lower bounds on the
parallelization of proper learners.

We now show in Theorem 5.3 that in the setting of Theorem 5.1,
there is always an ERM that is computable in the realizable case.
Theorem 5.3 can be viewed as a generalization of [3, Theorem 10].

THEOREM 5.3. Suppose H: I x X — Y is a computable
presentation of a hypothesis class. Then there is a proper learner for $
that is computable in the realizable case, and is such that its induced
learner is an ERM for $' that is computable in the realizable case. In
particular, there is an ERM for $T that is computable in the
realizable case.

PRrOOF. Suppose S € ®g+. There is some w € I such that H(w)
has empirical error 0 with respect to S. Because there are only
finitely many possible values of the empirical error with respect
to S, there must be some open ball B around w such that for all
elements w* € B, the function $(w*) has empirical error 0 with
respect to S. In particular, there must be some ideal point ¢ in this
ball. Therefore the algorithm which searches through all ideal points
and returns the first to attain an empirical error 0 with respect to
S will eventually halt. This algorithm is a proper learner that is
computable in the realizable case, and its induced learner is an ERM
for $* that is computable in the realizable case. O

Remark 5.4. The algorithms in Theorems 5.1 and 5.3 would have
failed had Y not been computably discrete, in which case verify-
ing that a hypothesis incurs an empirical error of 0 would not be
computable. When Y = {0, 1}, as in this paper, the predictions of
hypotheses on features can be deduced exactly, allowing for pre-
cise computation of empirical errors. If ¥ = R, in contrast, then
predictions of hypotheses h take the form (g — 275, g + 27%)
for q; € Q and chosen k € N, amounting to the information that
hix) € (q = 27%, qic + 275).

Some such intervals allow one to conclude that h(x) # y, namely
when y ¢ (g — 27, g; + 27%), and thus that h does not attain an
empirical error of 0. Yet no such interval allows one to conclude
that h(x) = y for even a single example (x, y) if y may take any real
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value, much less that h attains an empirical error of 0 across an
entire sample.

5.1 Applications

We now apply techniques from the proof of Theorem 5.3 to concrete
settings where we have more information about the structure of
the hypothesis class.

The restricted setting of computability in the realizable case,
as in Theorem 5.3, provides a stopping criterion for detecting a
hypothesis in $7 attaining minimal empirical risk on S, thereby
eliminating the need for lim 7. A similar criterion would arise if
the size of the restriction of a (computably presented) class H
to a given sample S could be known in advance. In such a case,
one could walk through the ideal points of 7 as in the proof of
Theorem 5.3 until all such behaviors on S are encountered, subse-
quently returning one which attains the minimal empirical error.

THEOREM 5.5. Suppose H: I x X — Y is a computable
presentation of a hypothesis class, and that for all finite U C X,
the size of {hly : h € $T} can be computed, uniformly in U. Then
an ERM learner for §' is computable.

Proor. Let n € N. Define $": 7 X X" — Y" to be the map
where $"(w, (xj)je[n]) = (D(W, x})) j[n]- Note that this is a contin-
uous function, and hence for all w € 7 and for every u € X" there
is an ideal point ¢ such that $"(w, u) = $"(c, u).

Suppose U C X is finite. We then have

|{h[U : he Sf)T)}| = |{5(C)TU : ¢ is an ideal point 0f[}|.

In particular, by searching through all the ideal points of 7 we
realize all behavior (restricted to U) that occurs in $. So, from
|{hrU the 557}‘ we can compute ideal points of 7 realizing all such
behavior. From this it is straightforward to choose an ideal point
which minimizes the empirical error on any sample (xi, yi);e[m]
where {x; : i € [m]} =U. O

It has been shown in [11] that the computability condition of
Theorem 5.5 is enjoyed by maximum classes, i.e., those which
achieve the bound of the Sauer-Shelah lemma. We can thus
conclude computable PAC learnability for such maximum classes.

COROLLARY 5.6. IfH: T xX — Y is a computable presentation of
a hypothesis class, and SﬁT is a maximum class of finite VC dimension,
then it is computably PAC learnable.

6 LOWER BOUNDS ON THE
COMPUTABILITY OF LEARNERS

We now provide a converse to Corollary 5.2 by establishing a lower
bound on the computability of a proper PAC learner and a sample
function for it.

Let B be the proper learner produced by Corollary 5.2. Because
B induces an ERM, it is a proper PAC learner with computable
sample function r (by Theorem 3.24). Hence (%, r) <sw limyp.
Theorem 6.1 (in the case where sample functions are computable)
provides a converse.
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THEOREM 6.1. There is a hypothesis class that is PAC learnable but
which admits a computable presentation $ such that
limye <gw (‘ﬁ, m) whenever U is a proper PAC learner for  and m
is a sample function for the PAC learner for §' that % induces.

ProoF. Let X be the product of computable metric spaces N and
NN and define the index space I to be

{(e,2) e Nx N {e}Z(0)(}

with distance inherited from X and ideal points of the form (e, z)
where z has only finitely many nonzero values, ordered by when
the respective programs with oracles halt on input 0.

Given (e, z0), (e1,21) € X, we write (eg,z9) ~ (e1,z1) when
(@) ep = e1 and (b) {e9}?°(0) | if and only if {e;}?1(0) |, with
program ey with oracle zg taking the same number of steps to
halt on input 0 as does e; with oracle z; (when they both halt).
Define $: 7 x X — {0,1} by

1 (eo,z0) ~ (e1,21);
0 otherwise.

55((60, 20)5 (61, Zl)) = {

Note that $ is computable because {eg}?°(0) | for every (eo, z0) € .

First we show that SjT shatters no set of size 2, so that it has
VC dimension 1 and hence is PAC learnable by Theorem 3.23. Let
(eo,20),(e1,21) € X be distinct. If there exists an h € 9" with
h(ep,z9) = 1 and h(e1,z1) = 0, then there is some k such that
the program ey with oracle zy halts on input 0 in exactly k steps
but either ey # e; or the program e; with oracle z; does not halt
on input 0 in exactly k steps. But then there is no g € $7 with
g(eo,zo) = 1 and g(e1,z1) = 1. Therefore %' does not shatter the
set {(eo, 20). (e1,21)}.

Now suppose that %: (X X Y)<“ — I is a proper PAC learner
for 9, let A be the induced PAC learner for SjT, and let m be a
sample function for A (as a PAC learner for $7). We will show that
J <sw (‘i, m). Then by Lemma 3.15, we will have limypv <qw (ﬁ, m).

Let z € N, We aim to uniformly compute z’ using %, m, and
z. First we preprocess. Calculate k = m(e, §) for any choice of
€,8 € (0,1) and construct the sequence Se ; = (((e, 2), l)k)eeN'
Then, apply A to obtain a sequence (e, Se)eeN-

Now consider the measure D(,, ) which places a pointmass on
((e,z),1). Because A is a PAC learner, we have

Pr (0.0 (A(S) = min L, Bw)| <€) > 1-6.

(e, z)

Therefore, as Dy, ) is a pointmass, we have
LD, ., (A(Se,2)) = min Lp,, _ (S(w))| < e.
? wel ’

Again because A is a PAC learner and D(, ;) is atomic, we have an
equivalence between the following statements:

(1) A(Se,z)e, 2) = 1.

(2 LD(E‘Z) (A(Se,z)) =0.

3) LD(e’Z)(SS(w)) =0 for some w € 1.
(4) 9(w,(e,z)) =1for somew € 7.

In particular, (3) = (2) because Dfe 2)

concentrates mass on S(e’ 2)
so otherwise A would be guaranteed to incur a loss of 1 > €
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when trained on samples drawn from Dé‘ , contradicting the PAC

e,z)
condition on m(e, ).

Now note that if {€}?(0) |, then there isa w = (e,z) € I such
that H(w, (e, z)) = 1; by the previous equivalence, this implies that
A(Se,z)(e,2) = 1.

We are now equipped to post-process and calculate z’(n). If n #
{n, then A(Sp,,z)(n,z) = 0 and, via =(1) = —(4) in the equivalence,
{n}#(0) 7, meaning z’(n) = 0.

Otherwise, n = £p,. First compute {n}*7(0). This computation is
guaranteed to halt, by definition of 7 and the fact that U is a proper
learner. Let t be the number of steps it took to halt. Next run {n}?
on input 0 for ¢ steps. If it halts within ¢ steps, then {n}#(0) | and
so z’(n) = 1. If {n}* has not halted on input 0 within ¢ steps, then
A(Sn,z)(n, z) = 0 and the equivalence again implies that {n}#(0)T,
meaning z’(n) = 0. O

Theorem 6.1 establishes that for computably presented
hypothesis classes (of finite VC dimension), in general there is
no computable procedure for PAC learning the hypothesis class
from samples.
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