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Eulerian Finite-strain Elasticity with Phase-field and the

Reference Map Technique

1 Introduction

Many problems in science and engineering involve moving
boundaries. Some well-known examples include fluid-
structure interaction!!! , dendritic solidification!®!, and crack
propagation®®!. Numerical treatment of such problems
requires solving partial differential equations (PDEs) on
moving domains with boundary conditions on unknown and
moving sharp interfaces, which poses a considerable
challenge!® 3], Phase-field modeling has gained popularity
within the computational mechanics community as a
powerful tool to address the difficulties associated with
solving interface problems. Phase-field methods are based on
reformulating the moving boundary problem using a

continuous, smooth scalar variable that ranges between two
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values associated to the phases in the problem (e.g., 0 in one
side of the interface and 1 in the other). The smooth variation
of the scalar field, known as the phase-field variable or order
parameter, effectively replaces the sharp interface with a
diffuse transition zone and defines a scalar PDE over the
whole domain (see Fig. 1)!. In consequence, the sharp
interface does not have to be tracked anymore and emerges
naturally from the transition from one phase to the other,
given by the scalar field solution of the new PDE.

Diffuse interface
Sketch of a two-phase domain marked by the scalar
phase-field variable ¢. The value of the ¢ for the
outer and inner phase is zero and one, respectively.
The transition between the two phases happens
smoothly over the diffuse interface.

Fig. 1

In recent years, the phase-field method has been used to
model interface problems in soft matter, such as

biomembrane!” ¥ and fracture mechanics?® '

, avascular and
vascular tumor growth!'> 131 embryonic development!'#, and
interactive biological networks!'*.

From the continuum mechanics point of view, the motion
of a deformable body can be described using two different
frameworks: the Lagrangian framework and the Eulerian
framework. Engineers and scientists use the Lagrangian
framework to simulate the deformation of solids, due to a
reference framework and the explicit tracking of material
particle motion. However, this feature can lead to severe
mesh distortions when the Lagrangian approach is employed
in simulations involving large deformations. Such large
deformations are inherent in various applications, specifically
those that involve fluid-structure interactions and soft
biological materials. A suitable alternative is to use a Eulerian
framework, common in fluid mechanics, which uses a fixed
grid and does not explicitly track the motion of the particles.
The conversion is far from trivial due to the loss of the
reference configuration, which is fundamental in the
constitutive equations of solids, with the elastic behavior

being a prominent example. Different approaches have been
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proposed to activate Eulerian framework’s advantages in the
description of solid and fluid interface problems. One method
that aims to benefit from the advantages of both Lagrangian
and pure Eulerian descriptions is the Arbitrary Lagrangian-
Eulerian (ALE) formulation'®). The ALE method optimizes
the shape of the mesh elements by allowing for the arbitrary
movement of the mesh inside the domain while tying the
boundary and interface meshes to the material points.
Nevertheless, ALE is a mesh conforming method, and the
development of the solid mesh interface is not straight-
forward. Moreover, depending on the severity of the
deformations, remeshing of the domain may still be required.
A reasonable strategy is to use fully Eulerian framework
approaches, which are nonconforming, and thus eliminate the
remeshing problem and are amenable to large scale
simulations. However, these methods must elaborate
formulations to correctly estimate the stress state of the solid
portions of the domain due to the lack of a reference
framework. A conventional approach is the advection of the
strain and stress tensors over time, which typically leads to
numerical dissipation and inaccuracies close to the interface.
A Eulerian finite volume formulation that uses Lagrangian
marker particles to compute the solid constitutive behavior
has been recently presented!!”). An alternative to the
advection of the conventional tensors is to use a fully
Eulerian technique called the reference map technique
(RMT). This methodology was introduced and developed in
[18] to address the difficulties associated with conventional
Eulerian solid mechanics. The RMT defines an Eulerian
mapping from the deformed configuration to the reference
configuration (see Fig. 2). The evolution of this reference
map field is then calculated by setting its Eulerian material
time derivative equal to zero. The reference map's evolution
equation is supplemented with the specific initial condition
defined in the next section. The equations of RMT imply that
the reference map tracks the material points back to the
reference configuration during the deformation, enabling us
to accurately recover the deformation gradient tensor and, as
a result, calculate the solid deformations without
approximations. The RMT proves to be especially effective
in fluid-structure interaction problems by allowing one or
more deformable bodies to interact with themselves and the
background fluid"®’.

On the numerical side, the RMT has been mostly
implemented using the finite differences for solving the
PDEs, and a level set approach to distinguish the phases (i.e.,
solid and fluid) of the domain. Both the volume conservation
for finite difference schemes and the lack of physics
associated to the interface in level set methods present
substantial obstacles to its implementation in engineering
schemes. As a response, several efforts have been recently
put into combining the simplicity of the RMT with other
numerical schemes that improve on the approximation

Fig. 2 A material point is mapped from the deformed
configuration B; to the reference configuration B via the
reference map &(x, f). Position vectors X and x mark the
location of the material point, relative to the coordinate
system, in the reference and the deformed
configurations, respectively.

scheme and the interface treatment. For example, a

combination of RMT with a finite volume-based method is

presented in [20]. In this study, we present a novel approach
to integrate the RMT in large deformation Eulerian elasticity
with a phase-field based interface treatment, and we solve it
with a finite element method (FEM) approximation. The
structure of this paper is as follows: in Section 2, we define
the governing equations that include the reference map's
evolution equations, the phase-field modified balance of mass
and balance of linear momentum, and the derivation of the
weak forms needed for the FEM implementation. We then
dedicate Section 3 to numerical examples that illustrate the
performance of our formulation. We give our concluding
remarks and future lines of work in Section 4.

2 Governing Equations

We start by defining an Eulerian vector field called the
reference map &(X, ¢), which initial state coincides with the
reference configuration of a domain Q. The evolution of
£(x, 1) is defined as:

06 (x,1)

=t (VEvV =0, )]

XDl =x=X, @)
where x and X indicate the location of a material point in the
current and in the reference configuration, respectively.
Equation (1) along with the initial condition defined in Eq. (2)
imply that the reference map &(x, ) never changes due to the
velocity field, therefore, £(x, ) points to the location from
which the material point currently at x originally started.
Furthermore, for a line element in the reference configuration
we can write:

dX = (V) dx, 3)
therefore,
F =&, (4)

where V here indicates the gradient with respect to the current
configuration, and F is the deformation gradient tensor.

We then use the phase field ¢ to indicate the solid region ( ¢
= 1) and the region outside the solid (¢ = 0). The evolution of
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the phase-field is as follows:

d¢ oY (4, V¢)
—~ +Vp-v=-L 5
= V- e ®)
where v is the velocity field vector and L is the mobility.

Moreover, V¥ is the phase-field free energy functional which

we define as:
Y (¢, Vo) = f(l + W)dQ, (6)
Q
_ 1o @)
1= € VoI,
W =¢*(1-¢)*. (®)

In Egs. (6) to (8), I corresponds to the interfacial energy and
W is a symmetric double-well. Also, € is a small length scale
proportional to the width of the diffuse interface. Taking the
first variation of the free energy potential ¥ with respect to the
phase field ¢ yields:

oY (¢, Vo)

55 "¢ (44 - 60 +2) - €9, )
where A indicates the Laplacian operator. Therefore, Eq. (5)

can be re-written as:

9¢ [ >

E+V¢-V—L[EA¢—¢(4¢ -6 +2)|. (10)
We then write the phase field modified balance of mass

and the balance of linear momentum in the Eulerian

framework as:
H(@)p~J"po =0, (1)

av

V-(H(p)o)+H(@)pb=p o

+H($)(VV)v|, (12)

where o and po are the current and the initial mass densities, and
o is the Cauchy stress. H (¢) is a smooth Heaviside function of
the phase field that localizes the mass density and the stress for the
solid and is defined as:

H() = %[tanh(%)+ 1], (13)

where a and b are constants that control the transition point
and the slope of the transition zone, respectively. One can
observe that the values of Eq. (13) vary between 0 and 1 for
all the values of phase-field ¢ . Moreover, V- in Eq. (12)
indicates the divergence calculated with respect to the current
configuration. Also, indicating the determinant of a tensor A
with detA , we define J as:

J = detF = det[(V¢)™']. (14)

Since the deformation gradient tensor F can be described using
the reference map &(xt) , we are able to model the constitutive
response of the large-deformation, thermodynamically consistent
solid laws in the Eulerian framework!". For this study, we choose
the constitutive model to be a compressible neo-Hookean elastic
solid, in which the Cauchy stress o is defined as:

o =GJBdevB) +k(J - DL (15)
In Eq. (15), G and « are material properties, dev (B) is the

deviatoric part of B, the left Cauchy-Green deformation tensor,
and I is the second-order identity tensor. Note that the left
Cauchy-Green deformation tensor B can be written in terms of
¢ as follows:
B =FF" = (V&)'(V&) . (16)
To construct the weak from, we define the space of trial
solutions as:

U={ppeH Q¢ =0,0niQp). (17
S ={v.£€ H' (Q)|v=vyoniQp}. (18)
and the space of test functions as:

\% ={wa,,waH1 (Q)|w¢=00naQD}, (19)
W = {wv,wf e H' (Q) | wy = 0on aQD}, (20)

where 9Qp is the Dirichlet boundary. Then the weak form
becomes: Given ¢; and v, ,find ¢ , p € Uandv, & € §
such that for all w,, , w, € V and forall wy, w; € W :

fw¢(a—¢+V¢‘v)dQ=L62wa¢~V¢dQ
o ot Q

21
-Lé? f W (4¢2 —6¢+ 2) $dQ,
Q
f woH (¢) pdQ — f wpd "1 dQ = 0, 22)
Q Q
ov
pl=—+H(@)(Vv)v]|-wydQ
= f H(p)o : VwydQ + f H(¢)pb - wy dQ,
Q Q
f at'f‘wng+f V& v-wegdQ =0, (24)
Q Q
with
o =GJ 7 Pdev (V&) (V) T| + k(- DL (25)
EX, Do =x=X. (26)

Note that in the second line of Egs. (21) and (23), we have
made use of the integration-by-parts along with the
divergence theorem. Moreover, with the definitions of the test
functions given in Egs. (19) and (20), the boundary terms
resulting from the application of the divergence theorem

vanish.

3 Numerical Examples

We implement the weak form defined in Egs. (21) to (24)
in MOOSE (Multiphysics Object-Oriented Simulation
Environment)!??), which is our FEM implementation of
choice. MOOSE is an open-source finite element solver
package developed primarily at the Idaho National
Laboratory that uses PETSc[?* 2*! for efficient, robust
parallelization.

For all the examples shown in this section, we set
€=1x10"% and L = 1. Moreover, we choose the material
properties, G and « (corresponding to shear and bulk moduli,
respectively, in small strain regime), in such a way that the

STHEI¥



W4 (e

RICANET) B

4017

resulting behavior resembles that of a rubber-like material with
very limited compressibility, more specifically, G << « ],
We use Newton-Raphson method as a nonlinear solver, and a
standard second order backward difference formula (BDF2) as
the time marching algorithm. We utilize the standard linear
Lagrange shape functions with the corresponding QUAD4
elements. We also take advantage of the adaptive meshing
capabilities in MOOSE for refining the mesh in the phase-field
diffuse interface region (see Fig. 3), as well as adaptive time
stepping scheme with the initial time step of At = 5x107 s .

Fig. 3 Adaptive mesh is used to make sure that the diffuse
interface is well-resolved without making the entire
mesh unnecessarily dense.

3.1 Uniaxial Stretch

In the first set of examples, shown in Fig. 2 and Fig. 3, we
use a unit mass density and apply a uniaxial stretch to a bar
(represented with the phase-field ¢ ) in two different settings.
In the first setting, we fix the bar on one end and apply the
stretch to the bar’s right side. Figures 4a and 4b show the
initial and the deformed configurations, respectively.
Numerically, it is straight-forward to fix the bar by letting the
bar extend past the left boundary. Note that v, = 0 at the
boundaries. We then apply the nontrivial stretch condition at
the right end of the bar by using a localized uniform velocity
field. We observe that, as expected, the bar elongates in the
direction of the applied stretch accompanied by thinning in
the lateral direction, matching the result of conventional
Lagrangian scheme (see Fig. 4b).

¢

0.0 0.2 0.4 0.6 0.8 1.0

" —————

B
(a) (b)

Fig. 4 Deformation of a bar under uniaxial stretch. (a) Is the
initial shape and (b) shows the deformed shape. The
bar is fixed at the left end while being stretched at
the right end using a localized velocity field.

In a second setting, we repeat the uniaxial stretch test in a
different scenario. In this case, we take a bar with identical

material properties to the previous example and stretch it
from both sides. The stretch is applied equally at both ends of
the bar using a localized velocity field. We demonstrate the
results of this second uniaxial stretch test in Fig. 5 in which
the undeformed and deformed configurations are shown in
Fig. 5a and 5b, respectively. We see in Fig. 3b that, matching
again the results that MOOSE attains with the regular
Lagrangian approach, the elongation of the bar is
accompanied by the necking in the middle.

¢

0.0 0.2 0.4 0.6 0.8 1.0

— ——

S —/D
(a) (b)

Fig. 5 Deformation of a bar under uniaxial stretch. (a) Is the
initial shape and (b) shows the deformed shape. The
bar is stretched at both ends using equal localized
velocity fields.

3.2 Uniform Loading Bending

In this section we report the results from the deflection
simulation of a clamped beam subjected to its own weight.
The beam is fixed at both ends using the same methodology
explained in the previous section. The weight is applied to
the beam as a uniform vector field in the vertical direction
and enters the balance of linear momentum equation (see Eq.
(12)) as Pb_ where p is the beam's mass density per unit
volume and b is the gravity vector field. We use a higher
mass density for this example (o = 10 kg/m? ), compared to
the previous examples, to create an exaggerated deformation
under self-weight. Figure 6a shows the initial undeformed
shape and Fig. 6b shows the final deformed shape of the fixed
beam. The deformed shape clearly shows the expected
behavior of a fixed beam under uniformly distributed load
(self-weight), with zero slopes at the fixed ends and in the
middle, and maximum deflection in the middle of the beam.

¢

0.0 0.2 0.4 0.6 0.8 1.0

——————

| V
(a) (b)

Fig. 6 Deformation of a fixed beam under uniformly
distributed load, i.e., self-weight. (a) Is the initial
shape and (b) shows the deformed shape.

3.3 Advanced Responses I: Stretch and Release
This section demonstrates a more dynamic example than
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the previous ones. Similar to example 2 of section 3.1 (see
Fig. 5), we apply two equal and opposite constant velocity
fields to the left and the right side of the circle shown in Fig.
7. Furthermore, in order to generate a more dynamic
response, we only apply the velocity fields for a limited time
from the initial time step (¢ = 0.2 s ), after which we release
the stretched circle by setting the velocities equal to zero.
Figure 7 illustrates the process of stretch and release of the
circle in time. As expected, after the release (see Fig. 7,
second image from the left), the circle gets contracted in the
direction that the stretch was applied and eventually relaxes
into its initial configuration.

3.4 Advanced Responses II: Bouncing Ball

In this final example, we demonstrate the dynamics of the
contact of a circular rubber-like solid with the boundary. For
this purpose, we simulate a free fall by placing the solid in
the middle of the domain and letting gravity be the only force
applied to the solid. Note that the velocity is equal to zero at
the boundaries. Figure 8 shows the dynamics of the circular
solid before, during, and after contact with the boundary.

0.0 0.2 0.4 0.6 0.8 1.0
time

Fig. 7 Deformation of a circular solid domain due to stretch
and release. The time increases in the direction of
the arrow. From left to right: initial configuration,
stretched configuration at t=0.2 s, contracted shape
after the release, and final relaxed configuration.

As expected, the circular solid gains momentum due to
gravity and hits the bottom boundary where the velocities are
prescribed as zero. It then bounces off the surface after
undergoing a large deformation and finally comes to its final
stable configuration. One can see from the figure that during
this dynamic large deformation simulation, the mass of the
circular solid is conserved, and the profile of the phase-field,
indicated by the black line, is preserved throughout the

evolution in time.

4 Conclusions

We have presented a phase-field modified hyper-elastic
model in a pure Eulerian framework which integrates the
RMT to recover the deformation gradient tensor. We have
developed here for the first time the coupled PDEs that
govern the balance laws of a phase-field reference map
formulation. We then derived the variational form of the
equations required for the FEM implementation of the PDEs.
We have shown, through several examples, our formulation's

capabilities and potential in different scenarios. We expect
this work to contribute to the simulation of complex fluid-
solid soft matter ensembles that require physical accuracy
and control of the interfaces. In particular, we highlight that
the overall mass of the solid during all the examples is
conserved. Furthermore, since the material model is nearly
incompressible (G << « ), the Jacobian of the deformation
J should always stay approximately equal to one, which is
also confirmed during our investigation. We would also like
to point out that in the dynamic examples shown in sections
3.3 and 3.4, the final relaxed configuration is the
configuration at the final time step of our simulations and not
the steady-state solution. This is due to the fact that we do
not require any dissipation mechanism in our formulations.
The dissipation can be introduced, for instance, with the
simple addition of a background viscous fluid, which will be
a subject of a later study.

¢

0.4 0.6

time
Fig. 8 Deformation of a circular solid domain due to the
contact with the surface. The time increases in the
direction of the arrow. From left to right: initial
configuration, deformation due to the contact with
the surface, bouncing off the surface, and final
relaxed configuration.

0.0 0.2 0.8 1.0

Finally, we note that no special treatment was done to
ensure the numerical stability of our solutions. This
interesting feature is owing to the fact that we kept the
velocity magnitudes of our simulations relatively small to
avoid advection dominance. However, the implementation of
stabilization methods such as streamline upwind Petrov-
Galerkin stabilization method (SUPG) is straightforward and
will be explored in the application of this method to more

extreme dynamical events.

References

[11 Y. Liu, C. Peco, and J. Dolbow, “A fully coupled mixed finite
element method for surfactants spreading on thin liquid films,”
Comput. Methods Appl. Mech. Eng., vol. 345, pp. 429-453,
2019.

R. Kobayashi, “Modeling and numerical simulations of
dendritic crystal growth,” Phys. D Nonlinear Phenom., vol. 63,
no. 3-4, pp. 410-423, Mar. 1993.

C. Miehe, M. Hofacker, and F. Welschinger, “A phase field
model for rate-independent crack propagation: Robust
algorithmic implementation based on operator splits,” Comput.
Methods Appl. Mech. Eng., vol. 199, no. 45-48, pp. 2765-2778,
Nov. 2010.

(12)

STHEI¥



WO s, (PoEfzic AnE3) B0

<#1>

(7

[10]

[11]

[12]

[13]

[14]

F. Greco, L. Filice, C. Peco, and M. Arroyo, “A stabilized
formulation with maximum entropy meshfree approximants
for viscoplastic flow simulation in metal forming,” Int. J.
Mater. Form., vol. 8, no. 3, pp. 341-353, 2015.

B. W. Spencer, W. Jiang, J. E. Dolbow, and C. Peco, “Pellet
cladding mechanical interaction modeling using the extended
finite element method,” Top Fuel 2016 LWR Fuels with
Enhanc. Saf. Perform., pp. 929-938, 2016.

L.-Q. Chen, “Phase-Field Models for Microstructure
Evolution,” Annu. Rev. Mater. Res., vol. 32, no. 1, pp. 113-140,
Aug. 2002.

A. Rosolen, C. Peco, and M. Arroyo, “An adaptive meshfree
method for phase-field models of biomembranes. Part I:
Approximation with maximum-entropy basis functions,” J.
Comput. Phys., vol. 249, pp. 303-319, Sep. 2013.

C. Peco, A. Rosolen, and M. Arroyo, “An adaptive meshfree
method for phase-field models of biomembranes. Part II: A
Lagrangian approach for membranes in viscous fluids,” J.
Comput. Phys., vol. 249, pp. 320-336, Sep. 2013.

B. Li, C. Peco, D. Millén, I. Arias, and M. Arroyo, “Phase-field
modeling and simulation of fracture in brittle materials with
strongly anisotropic surface energy,” Int. J. Numer. Methods
Eng., vol. 102, no. 3-4, pp. 711-727, 2015.

C. Peco, W. Chen, Y. Liu, M. M. Bandi, J. E. Dolbow, and E.
Fried, “Influence of surface tension in the surfactant-driven
fracture of closely-packed particulate monolayers,” Soft
Matter, vol. 13, no. 35, pp. 5832-5841, 2017.

C. Peco, Y. Liu, C. Rhea, and J. E. Dolbow, “Models and
simulations of surfactant-driven fracture in particle rafts,” /nt.
J. Solids Struct., vol. 156-157, pp. 194-209, 2019.

J. Xu, G. Vilanova, and H. Gomez, “A Mathematical Model
Coupling Tumor Growth and Angiogenesis,” PLoS One, vol.
11, no. 2, p. €0149422, Feb. 2016.

M. Fritz, P. K. Jha, T. K6ppl, J. T. Oden, and B. Wohlmuth,
“Analysis of a new multispecies tumor growth model coupling
3D phase-fields with a 1D vascular network,” Nonlinear Anal.
Real World Appl., vol. 61, p. 103331, Jun. 2020.

X. Kuang et al., “Computable early Caenorhabditis elegans
embryo with a phase field model,” PLOS Comput. Biol., vol.
18, no. 1, p. 1009755, Jan. 2022.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

F. Ghanbari, F. Costanzo, D. P. Hughes, and C. Peco, “Phase-
field modeling of constrained interactive fungal networks,” J.
Mech. Phys. Solids, vol. 145, p. 104160, Dec. 2020.

N. Takashi and T. J. R. Hughes, “An arbitrary Lagrangian-
Eulerian finite element method for interaction of fluid and a
rigid body,” Comput. Methods Appl. Mech. Eng., vol. 95, no. 1,
pp. 115-138, Feb. 1992.

T. Shimada, K. Nishiguchi, C. Peco, S. Okazawa, and M.
Tsubokura, “Eulerian unified formulation for fluid-structure
interaction problems using marker particles with Reference
map,” Trans. Japan Soc. Comput. Eng. Sci., vol. 2022, p.
20220002, 2022.

K. Kamrin and J.-C. Nave, “An Eulerian approach to the
simulation of deformable solids: Application to finite-strain
elasticity,” Jan. 2009.

C. H. Rycroft, C. H. Wu, Y. Yu, and K. Kamrin, “Reference
map technique for incompressible fluid-structure interaction,”
J. Fluid Mech., vol. 898, p. A9, 2020.

T. Shimada, K. Nishiguchi, C. Peco, S. Okazawa, and M.
Tsubokura, “Eulerian formulation using lagrangian marker
particles with reference map technique for fluid-structure
interaction problem,” in 9th edition of the International
Conference on Computational Methods for Coupled Problems
in Science and Engineering, 2021, pp. 1-7.

B. Valkov, C. H. Rycroft, and K. Kamrin, “Eulerian method for
multiphase interactions of soft solid bodies in fluids,” J. Appl.
Mech. Trans. ASME, vol. 82, no. 4, Sep. 2014.

A. D. Lindsay et al., “2.0 - MOOSE: Enabling massively
parallel multiphysics simulation,” SoftwareX, vol. 20, p.
101202, Dec. 2022.

J. Zhang et al., “The PetscSF Scalable Communication Layer,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 4, pp. 842-853,
Feb. 2021.

S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith,
“Efficient Management of Parallelism in Object-Oriented
Numerical Software Libraries,” in Modern Sofiware Tools for
Scientific Computing, Boston, MA: Birkhduser Boston, 1997,
pp- 163-202.

A. F. Bower, “Applied mechanics of solids,” Appl. Mech.
Solids, pp. 1-795, Jan. 2009.

Vol.27, No.1 2023

(13)



