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AbstractÐBug localization is the task of recommending source
code locations (typically files) that probably contain the cause of a
bug and hence need to be changed to fix the bug. Along these lines,
information retrieval-based bug localization (IRBL) approaches
have been adopted, which identify the most bug-prone files from
the source code space. In current practice, a series of state-of-
the-art IRBL techniques leverage the combination of different
components, e.g., similar reports, version history, code structure,
to achieve better performance. ABLoTS is a recently proposed
approach with the core component, TraceScore, that utilizes
requirements and traceability information between different issue
reports, i.e., feature requests and bug reports, to identify buggy
source code snippets with promising results. To evaluate the
accuracy of these results and obtain additional insights into the
practical applicability of ABLoTS, supporting of future more
efficient and rapid replication and comparison, we conducted
a replication study of this approach with the original data
set and also on an extended data set. The extended data
set includes 16 more projects comprising 25,893 bug reports
and corresponding source code commits. While we find that
the TraceScore component as the core of ABLoTS produces
comparable results with the extended data set, we also find that
the ABLoTS approach no longer achieves promising results, due
to an overlooked side effect of incorrectly choosing a cut-off date
that led to training data leaking into test data with significant
effects on performance.

Index TermsÐbug localization, information retrieval, replica-
tion study

I. INTRODUCTION

A software bug refers to an error, fault, or flaw that produces

unexpected results or causes a system to behave unexpect-

edly [1]. A bug may cause the system to crash or become

vulnerable to security attacks [2], [3]. Bugs are a common

phenomenon. For example, a Mozilla triager complained that

ªevery day, almost 300 bugs appear that need triageº [4]. Con-

sidering the severe consequences and frequent occurrences,

bugs need to be responded to promptly and coped seriously.

To this end, various techniques to assist this process have been

suggested, for example, defect prediction [5], [6], bug triaging

[7], [8], bug fixing [9], [10], and bug localization [11], [12].

Bug localization is one of the main challenges when solving

bugs, which is identifying the parts of source code that cause

the bug and need to be changed in order to fix it [13]. However,

finding the buggy files from the source code can become

a daunting task [14], especially in large projects consisting

of thousands of source code files. To help to deal with this

issue, several researchers proposed automatic approaches for

bug localization [14]±[17].

Among existing approaches for bug localization, there is

a series of them that leverage bug reports for better lo-

calization [14], [16], [17], since bug reports often contain

rich information that allows us to infer the bug’s location.

Approaches that utilize the textual content of bug reports are

generally described as information retrieval-based bug local-

ization (IRBL). For a given bug report, IRBL tries to find and

rank code snippets that may be relevant to the bug report [18],

which is usually done by calculating the similarity between

the bug report and source code [18]. For example, Saha et

al. [19] propose the BLUiR approach that extracts structured

information (e.g., class names, method names, variable names,

and comments) from source code and calculates the textual

similarity between the source code and bug reports to retrieve

buggy files. However, there exists a lexical gap between bug

reports and source code files [20]. The terms used to describe

the bug in the bug report may not match the terms used in

class names, methods names, variable names, or comments.

Not surprisingly, textual similarity by itself will not necessarily

yield good results [14].

To this end, state-of-the-art approaches leverage multiple

sources of information to improve the performance of bug

localization. Wang et al. propose the AmaLgam approach,

which combines code structure, similar bug reports, and ver-

sion history [14]. BRTracer+ leverages bug reports similarity

and stack trace from bug reports for bug localization [21].

Youm et al. integrate stack trace information with all those

pieces of information used by AmaLgam [22]. AmaLgam+

leverages five sources of information, namely version history,

similar bug reports, code structure, stack trace, and reporter

information [17].

Recently, Rath et al. presented a new approach, named

ABLoTS, that leverages not only similar bug reports, version

history, code structure, but also similar non-bug reports, like

feature requests, enhancements, tasks, and so on, as well



as traceability information between bug reports and other

types of issues [23]. Rath et al. reused the structure of

AmaLgam, but proposed TraceScore to replace the similar bug

reports component, and additionally decided to use a decision

tree (DT) for dynamically combining the recommendations

from the individual components. The experimental evaluation

showed that ABLoTS greatly outperforms AmaLgam.

Although the original study by Rath et al. [23] showed

encouraging results (with no other state-of-the-art approaches

exhibiting better performance [24], [25]), there are no replica-

tions in the literature that confirm its outstanding performance.

Additionally, there are no studies that investigate whether the

performance also holds for a larger data set, i.e., that evaluate

the generalization of ABLoTS. A replication study is helpful

and necessary to verify experimental results from previous

studies [26]. They are a key aspect of empirical software

engineering, as they bring evidence that observations made

can hold (or not) under other conditions [27]. Extensive and

independent evaluations are also necessary to reach industrial

adoption and practice [28], [29].

In this paper, we present a literal and conceptual repli-

cation [30] of the ABLoTS approach. We replicate the ex-

periments as closely as possible to the initial procedures.

Meanwhile, we also run the experiment on another new data

set without changing anything else, to see how well the results

hold up. To this end, we first re-implemented TraceScore, the

core component of ABLoTS, and checked the replicability

of the results on the original data set. Then, we replicated

the overall ABLoTS framework on the original data set.

Additionally, we investigated the TraceScore’s and ABLoTS’

generalizability based on an extended data set from Rath and

MÈader [31]. Our work is organized according to standard

replication report guidelines for software engineering studies

[27]. This is an external and independent replication study

without any of the authors of the original paper taking part in

the replication process.

In general, our replication results show that TraceScore is

replicable and generalizable under specific settings. However,

ABLoTS is neither replicable on the original data set nor

on a larger data set [31]. Specifically, we observed that the

implementation of ABLoTS reused a subcomponent from prior

work (AmaLgam [14]) that incorrectly sets a cut-off date,

which leads to training data leaking into test data.

The contributions of this paper are:

1) an empirical investigation showing that the TraceScore

component is replicable and generalizable, thus strength-

ening confidence that relations between bug reports

and feature requests yield useful information for bug

localization.

2) a failed attempt to replicate the promising results of the

ABLoTS approach, thereby showing that bug localiza-

tion still needs significant research efforts and is not

ready for practical application.

3) identification of the major reason why replication failed,

thereby highlighting the challenge of reusing research

results.

4) a lab package1 to replicate our experiment and evaluate

the ABLoTS approach.

The remainder of this paper is organized as follows. Sec-

tion II summarizes the original study, approach, evaluation,

and achieved results. Section III elaborates our replication

study design, research questions, and data set. The experimen-

tal results are presented and discussed in Section IV. Section V

discusses threats to validity. Related work is presented in

Section VI before Section VII concludes this work.

II. ORIGINAL STUDY

In this section, we provide an overview of the bug lo-

calization technique by Rath et al. [23]. We firstly present

the TraceScore component that is at the center of Rath et

al. ABLoTS approach, encapsulated in the Similar Reports

Component (see Fig 1) (Section II-A). Then, we present the

whole framework of the ABLoTS approach (Section II-B), the

utilized evaluation metrics (Section II-C) as well as the data

set as used in the original study (Section II-D). Finally, we

summarize the reported experimental results (Section II-E).
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Fig. 2. TraceScore Component.

A. TraceScore Component

TraceScore is one of the main components of the ABLoTS

approach. Specifically, it introduces a novel calculation scheme

for the Similar Reports Component. The core idea is that

similar bugs will be caused by similar source code snippets.

Hence, by identifying similar bugs and inspecting which files

were changed in their bug-fixing commits, one can obtain a

list of files indicating the bug location.

TraceScore mainly consists of six steps, as shown in Fig 2.

It takes a new bug report b*, previously resolved bug reports B

and non-bug reports R (e.g., feature request and enhancements)

1https://github.com/feifeiniu-se/Replication



as input. Step 1 is artifact selection, based on two criteria, i.e.,

time domain and number of modified files. For the time domain,

bug reports b ∈ B and feature requests r ∈ R that are fixed

within ªone year before b* was filedº to ªthe date when b* was

filedº, would be retained. As for number of modified files, only

bug reports b ∈ B that modify no more than 10 Java files and

feature requests r ∈ R that modify no more than 20 Java files

will be retained. The reasons for adoption of these two criteria

and their validity are explained in Section 6 of the original

study. Step 2 utilizes commonly used preprocessing techniques

to build a document-term-matrix [32] of the filtered artifacts

from Step 1. Then, TraceScore calculates the cosine similarity

between b* and each artifact in Step 3. In Step 4, a trace graph

is created, with b* as the root node, linked to sub-graphs of

different artifacts, by the edges indicating textual similarity

between b* and each artifact (if there is a trace link between

b* and artifact, the edge is set to 1). Each artifact traces

further to the files that are part of a corresponding commit

in the version control system. In this way, b* is indirectly

linked to a potentially large set of source code files, that need

subsequent ranking, where the ranking happens on the basis

of a TraceScore between each file and b* which is calculated

by (1) in Step 5. Finally, Step 6 sorts all the source code files

linked to b* according to TraceScore and outputs the ranked

list. A higher score indicates a higher likelihood of that file

being relevant.

SuspR(s, b∗) =
∑

ai∈{a|s∈fix(a)}

sim(ai, b∗)
2

|fix(ai)|
(1)

B. ABLoTS Approach

The overall ABLoTS approach consists of four components:

1) similar reports component, 2) version history component,

3) code structure component, and 4) composer component,

as shown in Fig 1. TraceScore is an implementation of a

similar reports component. We only briefly describe the other

three components, as these are reused by Rath et al. without

changes.

Version History Component makes use of BugCache [5],

[33], to predict which files are likely to be buggy in the

future. BugCache takes commit history as input and outputs

a list of files with a high ªsuspiciousnessº score. To this

end, it firstly identifies bug-fixing commits (commits whose

commit messages contain the word ªfixº or ªbugº) that were

committed within k days prior to the submission of the new

bug report b*. Then the suspiciousness score of each file f is

calculated by (2), where f is one of the buggy files in commit

c ∈ C, tc is the elapsed time in days between the commit

c and when the bug report was filed. k was set to 15 (days)

according to Wang et al. [14].

SuspH(f, b∗) =
∑

c∈C∧f∈c

1

1 + e12(1−((k−tc)/k))
(2)

Code Structure Component leverages BLUiR [19] to iden-

tify files from source code space according to the similarity

between source code files and bug report b*. It outputs a

ranked list of files with a suspiciousness score SuspS(f, b∗).
Composer Component aggregates the three suspiciousness

scores obtained by the first three components, i.e., SuspR,

SuspH , SuspS , and outputs the final results. Instead of

adopting a fixed weight scheme for the three scores as done by

Wang et al. [14], [17], ABLoTS applied Weka’s [34] J48 DT

to learn the best combination. For training, the classification

algorithm takes SuspR(f, b∗), SuspH(f, b∗), SuspS(f, b∗) as

the features, and whether that file f was changed as part of

the bug fix or not as the classification result. For each project

separately, they trained the classifier on 80% of the bug reports

that were resolved and evaluated ABLoTS on the remaining

20% that were resolved after the 80% cut-off deadline.

C. Evaluation Metrics

To evaluate the effectiveness of the approach, Rath et al.

adopted the following commonly used metrics:

Top@k [35] measures the percentage of bug reports in

which at least one of the buggy files is in top k ranked files,

where k=1,5,10.

Mean Average Precision (MAP) [32] is calculated as the

mean of the Average Precision over all queries. Average Pre-

cision of a given bug report aggregates precision of positively

recommended files as:

AP =
N∑

i=1

P (i) ∗ pos(i)

# of positive instances
(3)

where i is a rank of the ranked files, N is the number of

ranked files and pos(i) ∈ {0,1} indicates whether the ith file

is a buggy file or not. P (i) is the precision at a given top i

files.

Mean Reciprocal Rank (MRR) [36] computes the average

of the reciprocal of the positions of the first correctly located

buggy file in the ranked files.

D. Original Data Set

In the original study, Rath et al. contributed a data set [37]

consisting of 15 popular open-source projects with 13,581

bug reports and 9,219 feature requests. Firstly, they collected

issues (i.e., bug reports and feature requests), as well as the

dependency trace links from Jira [38], and downloaded source

code of these projects from GitHub [39]. Then the heuristic

proposed in [40] was applied to create links between issues

and commits. The ABLoTS approach was evaluated based on

this data set.

E. Achieved Performance Originally Reported

The achieved performance by Rath et al. is shown in

Table I, which is the average of 15 projects. According to

Rath et al., TraceScore benefits from leveraging non-bug issues

as well as traceability information. It can outperform two

state-of-the-art similar reports based approaches: SimiScore

[16] and CollabScore [41]. The overall ABLoTS framework

outperforms the AmaLgam framework [14] which was used

as a baseline.



TABLE I
ORIGINAL, REPORTED PERFORMANCES [23]

Algorithm MAP MRR Top 1 Top 5 Top 10

TraceScore 0.202 0.260 0.174 0.350 0.436
ABLoTS 0.488 0.545 0.487 0.610 0.649

III. REPLICATION METHODOLOGY

Our goal of the replication study is to investigate whether

the results based on the TraceScore component and ABLoTS

approach are replicable and generalizable. To this end, we 1)

replicate the component and the approach on a subset of the

original data set and 2) apply the component and the approach

on an extended data set consisting of 16 more projects.

This study is considered to be an external [27] replication

study of the original study, since none of the authors took part

in the replication process. However, we reused 11 projects of

the original data set to verify the results 2.

A. Research Questions

In the scope of this paper, we aim at answering the following

two research questions:

• RQ1. How effective is TraceScore in identifying bug-

relevant source code files?

± RQ1.1 Are we able to replicate the original perfor-

mance of the TraceScore component?

± RQ1.2 Does the TraceScore component yield similar

performance when applied to other data?

• RQ2. How effective is ABLoTS for bug localization?

± RQ2.1 Are we able to replicate the results of the

ABLoTS approach?

± RQ2.2 Does the ABLoTS approach yield similar

performance when applied to other data?

Our research questions are adapted from those addressed

in the original study, which involve the main contribution of

the Rath et al. study [23]. Specifically, RQ1 is adapted from

RQ1 of the original study, which evaluates the TraceScore

component. RQ2 is adapted from RQ4 of the original study,

which evaluates the ABLoTS approach. For each research

question, we replicate from two dimensions, i.e., replicability

and generalizability. The core difference of the dimensions is

the data set being used for evaluation. For the replicability

validation, we evaluate on the same projects with the original

study, to see if our replication results are consistent with

the original results. As for the generalizability validation,

we adopted an extended data set to see if the approach is

applicable to other projects as well. The other two RQs of the

original study mainly investigate the effectiveness of artifacts

selection, which is irrelevant of our goal, so we do not include

them in this study.

2The other four projects from the original data set were excluded due to
some missing commits on GitHub.

B. RQ1. How effective is TraceScore in identifying bug-

relevant source code files?

This research question mainly focuses on the main contri-

bution of Rath et al., i.e., TraceScore for the similar reports

component.

As the original source code is not available, we followed

the procedures proposed in the original paper (as illustrated

in Section II-A) as close as possible to duplicate all facets of

TraceScore. Specifically, on each project basis, we sort all the

issues according to the resolved date. Then we split all the

bug reports 80:20, with the latter 20% used as the test set to

recommend buggy files.

As in the original study, we filter the number of related bug

reports and features as well as commits based on age and size

from which to obtain a recommendation. For each bug report

b∗ in the test set, we consider only bug reports (and features)

b that occurred before b∗ as determined by the following con-

dition: ªb.fixed date > b∗ .created date−365 daysº. How-

ever, we are of the opinion that there is another constraint that

also should be satisfied: ªb.fixed date < b∗ .created dateº,

which means that only bug reports fixed before b∗ were filed

should be retained. These two settings describe the following

two recommendation situations: the former describes the bug

localization mechanism called shortly before fixing the bug,

close to the bug report’s closing date, while the latter describes

a recommendation immediately made upon bug creation. For

our replication, we were unable to determine whether the

authors only adopted the first constraint (denoted as relaxed

cut-off date) or adopted both constraints (denoted as strict cut-

off date). We conducted the replication with both relaxed and

strict cut-off date to understand the impact the additional con-

straint has on the results. Then, we select bug reports/features

according to the number of modified files identified in their

commits. We exclude issues that modify more than 10 files

for bug reports and more than 20 files for non-bug reports).

We then build up the trace graph from these issue subset as

shown in Fig 2 in Step 4. The edges between the root node

b∗ and other artifacts are calculated using cosine similarity

[42]. When an issue explicitly links to another issue, then the

link weight overrides the cosine similarity and becomes 1.

With the trace graph, the TraceScore between each file node s

and b∗, TraceScore(s, b∗) is calculated. Finally, all the files

according to their tracescore, we will get the ranked list for

b∗.

Then we evaluate our replication on the extended data set.

For the extended data set, we applied preprocessing as Step

2 (in Section II-A) to be consistent with the original data

set and to fit the replication. Specifically, for each issue, we

preprocessed the text including both summary and descrip-

tion according to Step 2 in Section II-A. We utilize NLTK

library [43] in Python for preprocessing, including stop words

removing, camel case splitting, lower casing and stemming.

Then the preprocessed texts are converted into TF-IDF [44]

vector with the sklearn library [45]. For the source code, we

exclude non-source code files based on the file name extension



and only retain Java files (ª*.javaº). For each file changed in

each commit, the extended data set contains the old name and

the new name for this file. According to the original study, we

only utilize the new name for each file, which means, removed

files will be excluded for each commit.

C. RQ2. How effective is ABLoTS for bug localization?

The ABLoTS approach is essentially an ensemble of three

components, i.e., similar reports, version history, and code

structure, as shown in Fig 1. Each strategy outputs a suspi-

ciousness score for a given bug report b* and source code file

s, denoted by SuspR(s, b∗), SuspH(s, b∗), and SuspS(s, b∗).
Then a composer component aggregates all three scores to

determine the final classification result. As described in the

original study, the ABLoTS approach is an evolved version of

AmaLgam [14] with two main differences: first, it replaces the

similar reports component with TraceScore; second, it applies

a dynamic suspiciousness score combination (instead of the

former static one). At the time of conducting the replication,

there is no open source code available for the whole frame-

work. We, therefore, replicated the overall framework along

the following lines.

Version History. As mentioned in Section II-B, the version

history component is implemented by BugCache, which is

proposed by Kim et al. [5]. BugCache maintains the mod-

ification history of files to predict buggy-prone files in the

future. It proved that more recently and frequently modified

files are more likely to be buggy in the future. Rahman

et al. proposed a simpler version of BugCache [33], which

only maintains a short history of file modification. Google’s

developers adapted Rahman et al.’s algorithm on their large

systems [46], [47]. AmaLgam adapted Google’s well-tested

algorithm with a version history component. We reused AmaL-

gam’s implementation of BugCache3, but made the following

modifications:

1) The BugCache version used in AmaLgam was written

in Java, while we manually translated it to Python, to be

compatible with our implementation.

2) In their paper, Wang et al. [14] elaborate that the approach

identifies commits that are committed 15 days before the new

bug report is created. However, after checking the source

code, we found that the implementation utilized the bug

report’s resolved date as the cut-off date to obtain previously

committed commits within 15 days. We contacted the authors,

and they agreed that the bug report’s creation dates should

have been adopted. Therefore, in our implementation, we used

the creation date for all our experiments.

3) To identify bug-fixing commits, Wang et al. proposed

that commit logs should match regular expression regex:

(.*fix.*)|(.*bug.*). Considering that some programming lan-

guages (e.g., Java and Python) are case-sensitive, we firstly

convert commit logs into lowercase, which is missing in

the original implementation. What is more, according to our

observation of the data set, some bug-fixing commit logs

3https://sites.google.com/view/mambalab/projects/amalgam

maybe not contain keywords like ªfixº or ªbugº. However,

they might start with the bug report’s ID. To this end, we

also include commits that start with any bug ID in their logs,

to identify bug-fixing commits more accurately. AmaLgam’s

authors also agree with us on this. This adapted selection of

commits only affects the commits used for BugCache, but not

any other component in ABLoTS.

Code Structure. Code Structure metrics are obtained with

BLUiR [19], which calculates the similarity between a new

bug report and the code structure of a source code file. It

takes summary and description of a bug report as two separate

parts and extracts class names, method names, variable names,

and comments of a source code file with Abstract Syntax

Tree. Then it indexes and searches buggy files based on the

Indri toolkit [48]. In this paper, instead of replicating our

own BLUiR tool, we used the implementation4 without any

modification from an empirical study by Lee et al. [24] to

obtain the SuspS(s, b∗) score.

Composer. ABLoTS applied J48 DT with default pruning

settings to classify source code files for bug reports. Specifi-

cally, for each b∗, there are multiple candidate source code files

s for recommendation. For each (s,b*), there will be a label C

∈ {true, false} indicating whether the file s is modified to

fix b or not. For training, the classifier takes the SuspR(s, b∗),
SuspH(s, b∗), and SuspS(s, b∗) scores for each (s, b*) as

feature and C as label. For test data, instead of output a label

indicating true or false, the probability of s being true (i.e., s

is modified by b∗) is utilized. Then for each b∗, all the files

are ranked according to the probability score.

On each project basis, Rath et al. sorted all the bug reports

by resolved date and took the first 80% bug reports as training

data, and the rest 20% as test data. To mitigate the influence of

imbalanced training data, ABLoTS used Weka’s sub-sampling

to under-sampling the training data.

Since our replication is based on Python, we chose the

popular open sourced Python library sklearn [45] for the DT

classifier and RandomUnderSampler in the Imblearn library

[49] for under-sampling. Essentially they are the same algo-

rithm with the original study, but just implemented by different

libraries. We assume that this will not cause significant differ-

ence to the result as we used exactly the same training data

as in the original paper (i.e., rather than sampling our own set

of training data we utilized the precalculated suspiciousness

scores and classification result from the replication package

to obtain a trained DT).

We applied the same procedure on the original data set and

the extended data set.

D. Data set

For the replicability validation, we reuse the data set pro-

vided for replication by Rath et al. [37]. However, by the time

we carried out the replication study, many commits from four

projects (namely, Axis2, Hadoop, Infinispan, and Pig) were no

longer available programmatically on GitHub and neither are

4https://github.com/exatoa/bench4bl



part of the original replication package. Hence, as we could not

obtain complete commit history for BugCache, we excluded

these four projects from the analysis in this paper.

In order to investigate the generalizability of TraceScore

component and ABLoTS approach, we picked an extended

data set, SEOSS 33 data set [31], which includes an additional

18 projects and 36,482 bug reports out of which we could

not use 2 projects due to the same issue of non-accessible

commits. This extended data set also includes the 15 original

projects from the replication package [37]. Details about the

extended data set are shown in Table II. We choose this data set

because it not only links bug reports to commit code change,

but also includes traceability information between bug reports

and non-bug issues, which caters to our needs perfectly.

Apart from the information in the data set, we additionally

collected version information for each project. In each commit,

developers may modify a file, add a new file, or remove an

old file. Removed files are obsolete and should not appear in

the recommendation of a new bug report. However, the similar

reports component leverages historical issues, which may be

pointing to no longer existing files. In this way, they may bias

the prediction results. To address this issue, we determine for

each commit which files exist just prior to this commit. Files

in this set can only be used as the candidates to recommend

the bug’s location.

TABLE II
CHARACTERISTICS OF THE EXTENDED DATA SET.

PROJECTS
Time Period

(Month)
# Bug

Reports
# Non-bug

Reports
# Commits

ARCHIVA 162 371 411 8006
CASSANDRA 106 3571 2813 23592
ERRAI 99 267 194 7645
FLINK 43 1350 2351 12419
GROOVY 173 1933 1017 12378
HBASE 131 4581 5171 14331
HIBERNATE 172 1947 1706 8173
HIVE 113 4776 4326 11179
JBOSS-T.-M. 145 331 489 2204
KAFKA 78 639 1149 4426
LUCENE 197 3773 5324 28995
MAVEN 183 760 574 10315
RESTEASY 119 345 228 3684
SPARK 93 328 7022 20829
SWITCHYARD 86 451 759 2928
ZOOKEEPER 116 470 471 1600

IV. RESULTS AND DISCUSSION

A. RQ1. How effective is TraceScore in identifying bug-

relevant source code files?

RQ1.1 Replicability. We carried out the replication accord-

ing to Section III-B. Results on the original data set are as

shown in Table III. The performance impact of using the strict

cut-off date is on average around 17% lower than using the

relaxed cut-off date.

To find out which implementation most likely has been

adopted by the original implementation, we performed a

pairwise t-test on the 11 projects, comparing both replica-

tion results against the reported results in [23] to establish

statistically whether these results can be considered to be the

same. According to the pairwise t-test, the relaxed cut-off date

is closer to the original implementation. The pairwise t-test

results (as shown in Table IV) show that for MRR, Top1, Top5,

and Top10, there is no significant difference while for MAP

we have to reject the null hypothesis for the relaxed cut-off

date: the average MAP reported by Rath et al. is 32% higher

than our replication result. For the remaining four evaluation

metrics, there is no significant difference; the mean values are

statistically the same. So we conclude that with the relaxed

cut-off date TraceScore can be considered replicable while

with the strict cut-off date it cannot be considered replicable

as we cannot achieve statistically comparable or better results.

To give benefit to doubt, we adopted the relaxed cut-off

date for the remainder of the replication and generalization

investigations. However, in practice, the choice between re-

laxed cut-off date and strict cut-off date is artificial as only

commits available at the time the bug localization mechanism

is applied are considered for producing the recommendation.

RQ1.2 Generalizability The evaluation results based on the

extended data set are shown in Table V. The average MAP,

MRR, Top 1, Top 5 and Top 10 are 18.3%, 28.4%, 19.6%,

38.4%, 47.3%, respectively. The MAP value is distributed

between 4.4% and 32.5%. In order to confirm if there is a

difference between the distribution of the original results and

extended results, we leverage the two-sample Kolmogorov-

Smirnov test (K-S test) [50], which is used to test whether

two samples come from the same underlying one-dimensional

probability distribution. For each evaluation metric, we per-

form a two-sample K-S test, with one sample being the results

from the original data set and the other sample being the

results from the extended data set. Results are shown in the

ªTraceScoreº column of Table VI. Since all the p-values are

larger than 5%, we can assert that the two samples come from

the same distribution. The left plot in Fig 3 shows the data

value on all five metrics, from which we can see that on the

extended data set, TraceScore yields slightly higher median

and wider variations. The average over the extended data set

is about 12% ∼ 27% higher than on the original data set (e.g.,

MAP is 26% higher). But there is no major difference overall.

Moreover, we also investigate the improvement of

TraceScore over the same baseline as in the original paper.

With SimiScore [16] as baseline, we obtain the improvement

of TraceScore over SimiScore on both original and extended

data set. The ªImprovementº column of Table VI shows the

results of the K-S test. Given the p values, the improvement

of MRR, Top 1, and Top 10 on the original data set and

the extended data set are very likely to come from different

distributions. To this end, from the middle box plot in Fig 3

for improvement, we can observe a much higher median,

maximum, and minimum, which indicates TraceScore yields

higher performance improvement on the extended data set.

We can therefore conclude that the performance of

TraceScore also holds for a larger data set, and we gain confi-

dence that TraceScore’s performance is generally achievable.



TABLE III
TRACESCORE PERFORMANCE ON THE ORIGINAL DATA SET.

Relaxed Cut-off Date Strict Cut-off Date
PROJECTS MAP MRR Top 1 Top 5 Top 10 PROJECTS MAP MRR Top 1 Top 5 Top 10
DERBY 0.124 0.240 0.149 0.340 0.404 DERBY 0.084 0.158 0.096 0.219 0.272
DROOLS 0.183 0.383 0.276 0.502 0.615 DROOLS 0.171 0.37 0.265 0.467 0.603
HORNETQ 0.134 0.241 0.130 0.352 0.481 HORNETQ 0.105 0.207 0.093 0.315 0.444
IZPACK 0.170 0.229 0.156 0.328 0.422 IZPACK 0.101 0.152 0.094 0.219 0.297
KEYCLOAK 0.125 0.234 0.152 0.323 0.418 KEYCLOAK 0.081 0.16 0.082 0.241 0.323
LOG4J2 0.182 0.271 0.191 0.360 0.416 LOG4J2 0.165 0.256 0.18 0.315 0.382
RAILO 0.138 0.202 0.117 0.267 0.350 RAILO 0.131 0.194 0.117 0.25 0.35
SEAM2 0.134 0.195 0.141 0.244 0.288 SEAM2 0.099 0.159 0.103 0.212 0.263
TEIID 0.194 0.278 0.188 0.385 0.465 TEIID 0.140 0.222 0.135 0.331 0.412
WELD 0.102 0.208 0.098 0.312 0.420 WELD 0.103 0.201 0.098 0.304 0.411
WILDFLY 0.108 0.185 0.116 0.268 0.326 WILDFLY 0.085 0.146 0.087 0.217 0.268
Average 0.145 0.242 0.156 0.335 0.419 Average 0.115 0.202 0.123 0.281 0.366

MAP MRR Top 1 Top 5 Top 10

TraceScore
MAP MRR Top 1 Top 5 Top 10

TraceScore
MAP MRR Top 1 Top 5 Top 10

Improvement of TraceScore over SimiScore
MAP MRR Top 1 Top 5 Top 10

Improvement of TraceScore over SimiScore
MAP MRR Top 1 Top 5 Top 10

Fixed weight
MAP MRR Top 1 Top 5 Top 10

Fixed weight

Fig. 3. Box plots of TraceScore, improvement of Tracescore and fixed weight, on both original and extended data set.

TABLE IV
PAIRWISE T-TEST BETWEEN RELAX CONSTRAINT RESULT AND ORIGINAL

RESULT.

Metrics
Pairs

Deviation P value
Original Replication

MAP 0.191 0.145 0.05 0.000**
MRR 0.248 0.242 0.01 0.522
Top 1 0.163 0.156 0.01 0.407
Top 5 0.336 0.335 0.00 0.924

Top 10 0.419 0.419 0.00 0.99

*p <0.05 **p <0.01

Answering RQ1: Under the relax cut-off date constraint,

TraceScore is replicable and also can be generalized to an

extended data set. However, under the strict cut-off date

constraint, we cannot claim replicability as the performance

is significantly lower than reported.

B. RQ2. How effective is ABLoTS for bug localization?

RQ2.1 Replicability ABLoTS’s performance results on the

original data set are shown in Table VII. Compared to the

results reported in the original paper (cf. Table I) we note that

our replication produces far worse results. MAP and MRR are

below 10% for most projects. ABLoTS, which combines three

scores: SuspR, SuspH , and SuspS , does not even achieve the

same results as the single SuspR score. This counterintuitive

TABLE V
TRACESCORE PERFORMANCE ON THE EXTENDED DATA SET.

PROJECTS MAP MRR TOP 1 Top 5 Top 10

ARCHIVA 0.134 0.22 0.147 0.28 0.413
CASSANDRA 0.218 0.333 0.222 0.453 0.551
ERRAI 0.059 0.15 0.093 0.204 0.296
FLINK 0.18 0.305 0.207 0.415 0.522
GROOVY 0.325 0.393 0.271 0.522 0.625
HBASE 0.236 0.352 0.25 0.455 0.561
HIBERNATE 0.118 0.231 0.172 0.3 0.359
HIVE 0.264 0.38 0.267 0.506 0.599
JBOSS-T.-M. 0.136 0.247 0.164 0.373 0.433
KAFKA 0.296 0.473 0.367 0.578 0.688
LUCENE 0.201 0.32 0.228 0.419 0.494
MAVEN 0.162 0.222 0.132 0.316 0.382
RESTEASY 0.101 0.202 0.101 0.348 0.435
SPARK 0.31 0.383 0.273 0.545 0.576
SWITCHYARD 0.044 0.114 0.088 0.121 0.198
ZOOKEEPER 0.149 0.226 0.149 0.309 0.436

Average 0.183 0.284 0.196 0.384 0.473

TABLE VI
K-S TEST RESULT.

TraceScore Improvement Fixed Weight
Metrics K-S test P value K-S test P value K-S test P value

MAP 0.438 0.124 0.500 0.054 0.313 0.452
MRR 0.409 0.175 0.693 0.002 0.295 0.512
Top 1 0.409 0.175 0.625 0.007 0.210 0.856
Top 5 0.409 0.175 0.443 0.115 0.443 0.115
Top 10 0.415 0.159 0.540 0.028 0.358 0.289



result motivated us to investigate in more detail how this

outcome can be explained.

For the strict replication, we trained the DT on the in-

termediate three scores (i.e., SuspR, SuspH , SuspS) made

available by Rath et al. in their replication package, For

comparison, we also trained a separate DT from our own

sample of files, their suspiciousness scores, and bug reports.

Note that the original replication package just provided tu-

ples of suspiciousness scores and classification results, but

not which bug report and which files were used to obtain

those suspiciousness scores. We, however, applied the same

sampling criteria.

We inspected the original DT (i.e., the one obtained from

the replication data) to obtain the average5 feature importance

(non-normalized) of each component: 0.037 for BLUiR, 0.377

for BugCache, and 0.018 for TraceScore. This indicates that

BugCache almost exclusively determines the final classifica-

tion result. In contrast, in the AmaLgam approach, which was

used as a baseline for ABLoTS, the authors empirically set

fixed weights for the three suspiciousness scores, which are

0.56 for BLUiR, 0.3 for BugCache and 0.14 for TraceScore.

Our DT trained from scratch exhibited the following (non-

normalized) feature importance: 0.243 for BLUiR, 0.007 for

BugCache, 0.037 for TraceScore, which still does not yield as

good results (see Table VII) as the fixed weights determined

in AmaLgam.

This discrepancy in feature importance values helped us

identify the root cause for the difference in performance

results. Rath et al. adopted the implementation of BugCache by

Wang et al. [14], where the bug report’s fixed date was utilized

for the cut-off date, as shown in Fig 4. If one or more bug-

fixing commits occurred within 15 days prior to the fixed date,

BugCache would recommend the files within these commits

(i.e., potentially exactly those files that were changed to fix

the bug). However, in a realistic bug localization situation,

any file recommendation would only be useful before any of

those commits. Thus, for correct evaluation, these commits

must not be used.

Figure 4 illustrates such a situation. There is a bug report

ªHORNETQ-1301º created on 2014-01-09, and fixed on 2014-

01-14. Two commits c6 and c7 were committed to fix this

bug between the created date and fixed date, on 2014-01-09.

When BugCache adopts the fixed date as the cut-off date and

identifies bug-fixing commits within 15 days, then c4, c5, c6,

and c7 would be taken into consideration and result in a high

SuspH score, according to Eq. 2. Doing so, the DT would

learn that the scores by BugCache are very indicative of the

actual classification result and hence assign it a high feature

importance. However, in practice, c6 and c7 are unknown for

predicting bug report ªHORNETQ-1301º, they are foreknowl-

edge about the bug. The right way of implementing BugCache

is using the creation date, or any date before the bug’s first

partial fix implementation. After contacting the authors of

both ABLoTS and AmaLgam, AmaLgam’s authors stated that

5Recall that the DT is trained separately for each project.

they agreed with our finding and that they adopted the wrong

date, while authors of ABLoTS stated that they directly reused

AmaLgam’s implementation.

The incorrectly derived SuspH scores thus greatly boost the

result of the DT. When we utilized BugCache in the correct

manner (i.e., use the created date as the cut-off date), DT

did not yield results even close to the original performance

(even when applying hyperparameter tuning). For comparison,

we adopted AmaLgam’s composer with a fixed weight for

each component: 0.56 for BLUiR, 0.3 for BugCache, and 0.14

for TraceScore. The results of the fixed weight composer are

shown in Table VIII, the average MAP, MRR, Top 1. Top

5, and Top 10 are 29.8%, 43.3%, 32%, 56.3% and 64%,

respectively. Compared to TraceScore, the results have been

improved by 105.8%, 78.7%, 105.2%, 68.4%, and 52.9%,

respectively.

Aside from the DT feature importance values, a second

discrepancy emerged when we investigated the evaluation data

set. In the replication package, the intermediary suspiciousness

scores were provided not only as a training set for the DT but

also as an evaluation set (i.e., the remaining 20%). When we

trained and evaluated with these two data sets, we could repli-

cate the results. However, as outlined above, when obtaining

the suspiciousness scores ourselves, we could not. The discrep-

ancy we found was that the evaluation data set contained much

fewer evaluation data points (i.e., suspiciousness scores with

their classification ground truth) than these projects contained

source code files. In other words, for a particular bug, not all

source code files were utilized for evaluation but just a subset.6

Across all projects, the number of candidates ranges from 60

to 70, regardless of actual number of files in the respective

project. For the project HORNETQ, for example, even when

we select only files for which a TraceScore suspiciousness

score and a BLUiR suspiciousness score exist, we obtain

around 4500 file candidates. In addition, for some of these

files the evaluation data set does not provide any of the

three suspiciousness scores at all, just the classification result.

Hence, we could not establish how these file candidates have

been filtered and why only a subset has been chosen. The

paper does not describe this aspect, but rather refers to the

evaluation design of Amalgam.

All in all, we found that ABLoTS adopted the wrong cut-off

date for BugCache due to having reused the component and

configuration from AmaLgam without further investigation,

resulting in the incorrect SuspH scores. Hence, we conclude

that ABLoTS performance cannot be replicated.

RQ2.2 Generalizability Since ABLoTS is not replicable,

exploring its performance on the extended data set for gen-

eralizability evaluation would yield little insight. However, in

order to explore how TraceScore would perform when jointly

used with the other two components, like in AmaLgam [14],

[17], we applied a fixed weight to aggregate the three scores.

That is, the suspiciousness score for the source code file s is

6The identity of the files is not provided in the replication package.



Fig. 4. BugCache using created date vs using fixed date.

TABLE VII
ABLOTS PERFORMANCE ON ORIGINAL DATA SET.

PROJECTS MAP MRR TOP 1 Top 5 Top 10

DERBY 0.076 0.111 0.02 0.171 0.326
DROOLS 0.049 0.06 0.023 0.054 0.097
HORNETQ 0.057 0.067 0 0.056 0.185
IZPACK 0.086 0.11 0.016 0.172 0.375
KEYCLOAK 0.029 0.05 0.006 0.044 0.101
LOG4J2 0.065 0.072 0.011 0.067 0.146
RAILO 0.06 0.077 0 0.1 0.283
SEAM2 0.08 0.105 0.019 0.179 0.333
TEIID 0.056 0.079 0.015 0.104 0.231
WELD 0.02 0.024 0 0.018 0.027
WILDFLY 0.03 0.04 0.007 0.036 0.087

Average 0.055 0.072 0.011 0.091 0.199

calculated according to Eq. 4, where the value of a and b are

set to 0.2 and 0.3 as per prior work.

The results of fixed weight are shown in Table IX. On

the additional 16 projects, the fixed weight composer can

achieve an average MAP, MRR, Top 1, Top 5, Top 10 as

34.4%, 47.7%, 35.6%, 62.1% and 71.4%, which improves over

the single TraceScore by 87.8%, 67.8%, 81.8%, 61.6% and

50.8%, respectively. Compared to the results on the original

data set, the average evaluation results over the extended

data set are 10% ∼ 16% higher (e.g., the average MAP is

34.4 vs 20.2). K-S test (ªFixed Weightº column in Table VI)

shows that all the p-values are larger than 5%, so we should

reject the hypothesis that the two samples come from different

distributions. According to the box plot (right in Fig 3), we

can see the distribution on each metric is more concentrated,

TABLE VIII
FIXED WEIGHT COMPOSER ON ORIGINAL DATA SET.

PROJECTS MAP MRR TOP 1 Top 5 Top 10

DERBY 0.312 0.478 0.36 0.615 0.725
DROOLS 0.272 0.464 0.339 0.607 0.712
HORNETQ 0.37 0.555 0.426 0.704 0.778
IZPACK 0.37 0.493 0.391 0.594 0.672
KEYCLOAK 0.234 0.377 0.247 0.525 0.595
LOG4J2 0.391 0.541 0.416 0.719 0.753
RAILO 0.286 0.398 0.267 0.567 0.65
SEAM2 0.339 0.402 0.308 0.532 0.583
TEIID 0.12 0.169 0.1 0.208 0.296
WELD 0.252 0.445 0.33 0.562 0.634
WILDFLY 0.334 0.441 0.333 0.565 0.645

Average 0.298 0.433 0.320 0.563 0.640

more similar, and the mean values are closer. Hence, we can

conclude that the performance of the fixed weight composer

also holds for a larger data set, and we gain confidence in its

generalizability.

SuspR,S,H(s) = b ∗ SuspH(s)+

(1− b) ∗ (SuspR(s) ∗ a+ (1− a) ∗ SuspS(s))
(4)

TABLE IX
FIXED WEIGHT COMPOSER ON THE EXTENDED DATA SET.

PROJECTS MAP MRR TOP 1 Top 5 Top 10

ARCHIVA 0.322 0.477 0.347 0.587 0.667
CASSANDRA 0.335 0.462 0.330 0.622 0.741
ERRAI 0.310 0.505 0.389 0.630 0.722
FLINK 0.416 0.560 0.456 0.670 0.752
GROOVY 0.388 0.458 0.331 0.618 0.726
HBASE 0.398 0.528 0.398 0.697 0.778
HIBERNATE 0.234 0.400 0.290 0.551 0.626
HIVE 0.357 0.483 0.343 0.647 0.746
JBOSS-T.-M. 0.370 0.536 0.403 0.701 0.791
KAFKA 0.474 0.623 0.516 0.742 0.844
LUCENE 0.321 0.466 0.336 0.624 0.710
MAVEN 0.337 0.416 0.296 0.546 0.671
RESTEASY 0.257 0.391 0.275 0.536 0.638
SPARK 0.406 0.496 0.379 0.606 0.712
SWITCHYARD 0.160 0.300 0.220 0.407 0.462
ZOOKEEPER 0.422 0.537 0.383 0.745 0.830

AVERAGE 0.344 0.477 0.356 0.621 0.714

Answering RQ2: The reported results of ABLoTS are not

replicable, because of the incorrect use of the cut-off date in

the BugCache component and the sub-optimal configuration

of the composer. Consequently, we did not check the general-

izability of ABLoTS, since applying an incorrect technique

would provide little useful insight. However, with a fixed

weight scheme, the results are generalizable on the extended

data set.

C. Discussion

Overall, as shown in Table X, our experimental results

suggest that TraceScore is replicable under relaxed cut-

off date constraint, but, non-replicable under strict cut-off

date constraint, where the former can achieve better results.

However, in actual applications, the choice between relaxed

cut-off date and strict cut-off date is flexible, as commits

available at the time when developers perform bug-fixing tasks

will be considered for recommendation.

On the extended data set, TraceScore also yields simi-

lar results compared with on the original data set, which

demonstrates that TraceScore possesses good generalizabil-

ity. However, the results vary more (i.e., some projects ex-

hibit much higher performance, other projects exhibit even

lower performance), it is not possible to accurately predict

the performance of TraceScore on a new project. Additional

investigations are necessary to understand when TraceScore

is expected to perform well and under which conditions

TraceScore will not yield a lot of benefits.



ABLoTS, in contrast, is not reproducible for two main

reasons: 1) the authors reused the wrong BugCache imple-

mentation from Wang et al. [14] (we confirmed the incorrect

use with Wang et al.), which results in the BugCache score

greatly boosting the final result; 2) when we adopt the correct

BugCache score, we could not duplicate the DT composer

because of a lack of details in the original study. We are

skeptical whether DT is the right choice for the composer, as

also different sampling strategies and hyperparameter tuning

yielded a performance worse than the static composer configu-

ration. When we utilized this fixed weight composer proposed

by AmaLgam we observed its performance to hold also for

the extended data set.

We observed that combining all three scores can improve

the TraceScore result by 50% ∼ 105% on both data set, which

suggests that a combination of different components is likely

to outperform any single mechanism. To this end, the choice

of composer is a crucial aspect. In preliminary results, that

are outside the scope of this paper, we have found that other

machine learning and AI techniques can outperform the static

composer.

One additional take-away of our replication study is paying

attention to the challenge of properly evaluating a technique

in the presence of temporal aspects, especially when third-

party research outcomes (i.e., BugCache) behave differently

than expected. The case of the 15-day interval of BugCache

is especially tricky, as for other data sets where commits of a

bug predominately happen more than 15 days before the bug’s

closing date, no such negative side effect would have been

noticeable. In the case of ABLoTS sanity checks on the DT’s

feature importance values would have identified unexpected

results (i.e., with BugCache rather than TraceScore dominating

the classification result), subsequently triggering confirmation

or revision of the composer mechanism.

Overall, the results of this replication study suggest that the

state of the art in bug localization is not as useful as prior

results have suggested and that further research is still needed

to obtain results that are good enough to be useful in practice.

TABLE X
SUMMARY OF RESULTS.

Replicable Generalizable

TraceScore
Relaxed cut-off date Yes Yes
Strict cut-off date No -

ABLoTS No -

Fixed Weight Composer - Yes

D. Implications to Future Replication

In this section, we summarize lessons learned through our

replication specific to bug localization. The goal is to support

researchers in more efficiently and rapidly replicating the

approach for a comparative study or as a baseline for novel

approaches.

• Data Collection: During the data collection, Rath et al.

collected both bug reports and non-bug reports, trace-

ability information between reports, commit logs, commit

code change, and constructed links from issues to code

change. For the ground truth construction, Rath et al.

utilized the modified files and newly added files as

the ground truth. However, in our opinion, which files

are newly added cannot be predicted by definition. In

contrast, removed files are predictable, and should be

included in the ground truth. This minor change would

not change the technique in the approach, but might

impact the evaluation scores.

• Trace Graph Construction: The construction of the trace

graph requires previously fixed issues. When replicating,

researchers should be careful about the date for artifacts

selection. That is, only commits created before the pre-

diction date may be considered.

• BugCache Calculation: For selecting the historical bug-

fixing commits, apart from keywords-based selection,

also a bug ID can identify bug-fixing commits. More im-

portant, as with the trace graph construction, any commit

information taken for file candidate scoring must have

been already available by the fictive recommendation

time (e.g., bug creation date) or at the latest the bug’s

first partial fix implementation. As we have seen in the

replication study, using the bugs fixed date may lead to

data leakage.

• Choice of Composer: With a limited set of features (i.e.,

the three suspiciousness scores), a DT may not be the

best choice.

V. THREATS TO VALIDITY

Construct Validity. One possible threat to construct validity

is that there is no available open source implementation of

ABLoTS approach, which means we have to re-implement it

by ourselves. To alleviate this, we carefully read the original

study, trying to reproduce it as close as possible. For the

BLUiR component, we reused existing open source code from

a published paper to reduce possible errors. As for BugCache

component, we translate the original implementation from Java

into Python with great care. We carefully examined the code

and the output to avoid errors.

Internal Validity. From a perspective of internal validity,

potential errors can happen in the reproduction (e.g., settings

and library usage), which is a common threat to replication

studies. We tried out possible settings and compare the results

with the original study. Another potential threat is that the open

source projects in our data set might have been changed by the

day we collected from GitHub. To address this threat, we filter

out projects that do not have complete commits information

anymore.

External Validity. Regarding external validity, we exper-

imented only on open source Java projects. We encourage

future studies to replicate this study with other programming

languages as well as commercial projects.

Conclusion Validity. Conclusion Validity could come from

the interpretation of the results, which includes the evaluation

metrics for evaluation and K-S test for comparison. To mitigate

the threat, we adopted the same evaluation metrics adopted



in the original paper. Then the two sample K-S test was

utilized to compare the difference of experiment results, as

it is sensitive to differences in both location and shape of the

empirical cumulative distribution functions of the two samples.

VI. RELATED WORK

Recently, many IRBF approaches have been proposed,

which leverage information retrieval techniques to find buggy-

prone snippets from all source code candidates. BugLoca-

tor calculates similarity between bug reports to recommend

similar files to similar bug reports [16]. Sisman and Kak

propose a source code version history-based fault localization

approach, which utilizes the frequency of a file being buggy

and its modifications to prioritize candidate source code files

[51]. Wang et al. combine similar bug reports, code version

history, and code structure to find the buggy files [14], [17].

Niu et al. proposed a refactoring-aware traceability model

for constructing more accurate code history, which can boost

the results of similar bug reports and code version history

component [52]. Wen et al. use change logs and change hunks

from commit message as alternative of segments of source

code files to enable more accurate bug localization [53]. For

comparison of state-of-the-art approaches, Lee et al. conducted

a generalized and large-scale investigation into six IRBL

techniques [24]. Li et al. re-implement six state-of-the-art bug

localization approaches and report their effectiveness on 10

Huawei projects [25]. Both studies analyzed the same five

state-of-the-art approaches and found lower average results

than the original ABLoTS results (e.g., MAP less than 0.4, and

MRR less than 0.53). However, neither of these two studies

included ABLoTS, which strengthens the usefulness of our

study.

VII. CONCLUSION

In this paper, we conduct a replication study of the ABLoTS

approach for bug localization. We recreated the original

approach, both on the original data set and an extended

data set. We found that the core component of ABLoTS,

i.e., TraceScore, is replicable and generalizable under a re-

laxed cut-off constraint, but irreplicable under a strict cut-

off constraint. ABLoTS is neither replicable nor generalizable

because of the adoption of an incorrect cut-off date in the Bug-

Cache subcomponent, leading to training data leaking into test

data. Also, the chosen technique to combine multiple scores

yielded poor results when applied to the correctly derived

scores. Our study emphasizes the importance of choosing the

proper cut-off dates in evaluating bug localization techniques.

As part of future work, we already started investigating al-

ternative information sources and techniques to improve bug

localization performance, specifically focusing on techniques

to better combine multiple scoring techniques.
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