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Abstract. Generation of robust trajectories for legged robots remains
a challenging task due to the underlying nonlinear, hybrid and intrin-
sically unstable dynamics which needs to be stabilized through limited
contact forces. Furthermore, disturbances arising from unmodelled con-
tact interactions with the environment and model mismatches can hinder
the quality of the planned trajectories leading to unsafe motions. In this
work, we propose to use stochastic trajectory optimization for gener-
ating robust centroidal momentum trajectories to account for additive
uncertainties on the model dynamics and parametric uncertainties on
contact locations. Through an alternation between the robust centroidal
and whole-body trajectory optimizations, we generate robust momen-
tum trajectories while being consistent with the whole-body dynamics.
We perform an extensive set of simulations subject to different uncer-
tainties on a quadruped robot showing that our stochastic trajectory
optimization problem reduces the amount of foot slippage for different
gaits while achieving better performance over deterministic planning.

Keywords: stochastic optimal control, chance-constraints, trajectory
optimization, legged robots

1 Introduction

Trajectory optimization has become a dominant paradigm for planning and con-
trol of whole-body trajectories for legged robots [1,2,3,4]. Despite recent advance-
ments in real-time trajectory re-planning [5,6], dealing with uncertainties and
assessing risk remains an open challenge in controlling legged robots. Uncertain-
ties arising from inaccurate modelling, estimation errors, etc., might cause the
robot to make/break contact at a different contact position and/or timing than
the planned trajectory. This often leads to constraint violations in the form of
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Residual Minimization (ERM) to solve a contact-implicit stochastic complemen-
tarity problem. However, contact-implicit trajectory optimization can be quite
hard to tune, computationally demanding, and gets easily stuck in local min-
imas. A middle-ground model between whole body and template models for
legged locomotion is the centroidal momentum dynamics [15]. While this model
captures the dynamics between the external forces and the centroidal states ex-
actly [16], it is relatively low dimensional and the nonlinearity structure in the
model is well understood [17]. Hence, it is more tractable to use direct methods
with explicit consideration of the force and CoM constraints and design force
trajectories that are robust to the different types of uncertainties in the model.
In this work, we propose to solve stochastic trajectory optimization problems
for centroidal momentum generation of legged robots in the presence of additive
uncertainties in the model dynamics and uncertainties in the contact location.
We write down the friction cone constraints as chance constraints and study the
effect of the uncertainties on the satisfaction of these constraints. Our work is
related to [18,19], where the motion of the CoM was restricted within certain
bounds to make the underlying optimal control problem convex. In our work
instead, we take into account different types of realistic uncertainties in the tra-
jectory optimization problem to find trajectories that are robust against them
and are better transferable to the real world. Moreover, compared to [18,19], we
construct the problem as a stochastic optimization rather than Min-max formu-
lation which is a less conservative formulation and facilitates the generation of
more complex behaviours.

Our main contributions are: 1) We propose to use stochastic trajectory op-
timization using Sequential Convex Programming (SCP) for generating robust
centroidal momentum trajectories subject to additive uncertainties in the dy-
namics, as well as parametric contact position uncertainties. 2) By consider-
ing chance constraints on the friction cones, this is the first work (to the best
of our knowledge) that designs controllers for legged robots that generates ro-
bust force trajectories subject to contact location uncertainty. In the same spirit
as [17], we propose a whole-body trajectory planning framework that alternates
between whole-body motion planning and centroidal momentum planning. Con-
trary to [17]—but similarly to [20]—we use whole-body DDP instead of a kine-
matics optimization, and use the solution to warm-start the stochastic SCP
centroidal momentum solver. The resulting (robust) momentum trajectories are
later used by the whole-body DDP again to track the resulting robust centroidal
trajectories and contact force trajectories. This way, we make sure that the gen-
erated momentum trajectories are robust while being consistent with the robot
whole-body dynamics. 3) Finally, we run 400 Monte-carlo simulations on the
open-source quadruped robot Solo [21] in a Pybullet simulation environment
[22] for dynamic trotting and bounding gaits while applying different distur-
bances. We show that Stochastic trajectory optimization is able to complete all
the motions safely while reducing feet slippage, and achieving better centroidal
tracking performance over the deterministic planning 5.

5 submission video.
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2 Background

2.1 Notation

A random variable x following a distribution Q is denoted as x ∼ Q, with E[x]
being the expected value of x, and Σx , E[(x−E[x])(x−E[x])⊤]. The weighted
l2 norm is denoted as ‖y‖P , y⊤Py.

2.2 Robot Dynamics

The full-body dynamics of a floating-base robot in contact with the environment
can be derived using Euler-Lagrange equations of motion as follows [16]:

M(q)q̈ + h(q, q̇) =

nc
∑

i=0

J⊤
e,i(q)λe,i + S⊤τ q, (1)

where q =
[

x̂
⊤, q̂⊤,θ⊤

]⊤

∈ R
3 × SO(3) × R

n represents the generalized robot

position characterizing the robot’s floating base pose (position and orienta-
tion) w.r.t. an inertial frame I, and the joint positions respectively. M(q) ∈
R

(n+6)×(n+6) denotes the inertia matrix, and h(q, q̇) ∈ R
n+6 is the vector cap-

turing the Coriolis, centrifugal, gravity and joint friction forces. Je,i is the asso-
ciated jacobian of the i-th end-effector wrench λe,i acting on the environment.
Finally, S =

[

0(n×6), In

]

is the selector matrix of the actuated joint torques τ q.
We can further split (1) into its under-actuated and actuated parts;

Mu(q)q̈ + hu(q, q̇) =

nc
∑

i=0

Ju⊤

e,i (q)λe,i, (2a)

Ma(q)q̈ + ha(q, q̇) =

nc
∑

i=0

Ja⊤

e,i (q)λe,i + τ q. (2b)

By writing down the floating-base dynamics for the CoM instead of the floating
base position x̂, we obtain the following relationship between the centroidal
momentum dynamics ḣG and the generalized velocities q̇

ḣG =

[

κ̇

l̇

]

= ȦG(q)q̈ + ȦG(q)q̇, (3)

via the Centroidal Momentum Matrix (CMM) AG ∈ R
6×(n+6) [15]. The angular

and linear momenta are denoted as κ and l ∈ R
3 respectively. Given (3), we are

interested in planning desired centroidal momentum trajectories that satisfy the
following Newton-Euler dynamics:

ḣ =

[

∑nc

i=0(pe,i +R
x,y
e,i ζe,i − c)× fe,i +Rz

e,iτe,i
mg +

∑nc

i=0 fe,i

]

(4)
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where c ∈ R
3 represents the robot’s CoM, at which the total mass m of the robot

is concentrated. pe,i ∈ R
3 is the i-th end-effector’s contact position, with ζe,i ∈

R
2 being the local Center of Pressure (CoP). fe,i ∈ R

3 and τe,i ∈ R represent
end-effector’s contact forces and torque for flat-footed robots, respectively. The
rotation matrix Re,i ∈ SO(3) captures the contact normals mapping quantities
from the i-th end-effector’s frame to the inertial frame. Note that for point-
footed robots, which we consider from now on, ζe,i and τe,i are always null, but
the same analysis still holds for flat-footed robots.

2.3 Centroidal Momentum Trajectory Optimization

First we present the deterministic nonlinear discrete-time optimal control prob-
lem (OCP) for centroidal momentum trajectory optimization with fixed contact
position and timing.

Problem 1. Nominal Optimal Control Problem (NOCP)

min
x,u

. lf (xN ) +

N−1
∑

i=0

l(xk,uk) (5a)

s.t.












ck+1

lk+1

κk+1













=















ck + 1
m
lk∆k

lk +mg∆k +
∑nc

i=0 fe,ik
∆k

κk +
∑nc

i=0(pe,ik
− ck)× fe,ik

∆k















, (5b)

− µfze,ik ≤ fxe,ik ≤ µfze,ik , fze,ik ≥ 0, (5c)

− µfze,ik ≤ f
y
e,ik

≤ µfze,ik , fze,ik ≥ 0, (5d)

|pe,ik
− ck| ≤ Lmax

e,i , (5e)

x0 = x(0), (5f)

xf = x(N), (5g)

∀k ∈ {0, 1, .., N − 1}, (5h)

where x = (x0, . . . ,xN ) with xk ∈ R
9 = (ck, lk,κk), and u = (u0, . . . ,uN−1)

with uk ∈ R
3nc = (fe,0, . . . ,fe,nc

) are the states and control optimizers along
the control horizon N. The centroidal momentum dynamics are discretized with
a time-step ∆k using an explicit Euler integration scheme (5b), where (5f)-(5g)
represents the initial and final conditions respectively. In order to avoid con-
tact slippage, the local contact forces in the end-effector frame (f = RTf) are
constrained inside the linearized friction cone constraints (5c)-(5d), where the
static coefficient of friction is denoted as µ with the vertical component of the
force being positive. Finally, the CoM is constrained to be within the leg length
reachability limits (5e).
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3 Stochastic Optimal Control for Centroidal Momentum

Trajectory Optimization

In this section we present a stochastic version of problem (1) that takes into
account additive stochastic uncertainties on the centroidal momentum dynam-
ics as well as contact position uncertainties subject to friction pyramid chance
constraints. We consider the following discrete-time stochastic nonlinear OCP:

Problem 2. Stochastic Optimal Control Problem (SOCP)

min
x,u

. lf (xN ) +

N−1
∑

i=0

l(xk,uk) (6a)

s.t.

xk+1 = f(xk,uk,θk,wk), (6b)

Pr(Hxk ≤ h) ≥ αx, (6c)

Pr(Guk ≤ g) ≥ αu, (6d)

x0 = x(0), (6e)

xf = x(N), (6f)

∀k ∈ {0, 1, .., N − 1}. (6g)

With an abuse of notation from Problem (1), xk and uk will be considered
the stochastic state and control policies evolving according to the parametric
and additive stochastic disturbance realizations θk, and wk. (6c)-(6d) are the
state and control polytopic joint chance constraints with αx and αu being the
probability levels of state and control constraint satisfaction respectively.

Assumption 1. (i.i.d. Gaussian disturbances)
θk ∼ N (E[θk],Σθk

), and wk ∼ N (E[wk],Σwk
) are assumed to be indepen-

dent and identically distributed (i.i.d.) disturbance realisations following Gaus-
sian distributions. E[θk] = pe,ik

, and Σθk
∈ R

(3nc×3nc) represent the mean and

covariance of the contact positions respectively. E[wk] = 0 and Σwk
∈ R

9×9 are
the mean and covariance of the additive noise on the centroidal dynamics.

3.1 Individual Chance Constraints Reformulation

Solving the above joint chance constraints (6c)-(6d) involves the integration of
multi-dimensional Gaussian Probability Density Functions (PDFs), which be-
comes computationally intractable for high dimensions. One effective solution is
to use Boole’s inequality:

Pr(

n
∨

i=1

Ci) ≤
n
∑

i

Pr(Ci) (7)

as a conservative union bound on the joint chance constraints [23]. We can rewrite
the complement of the state chance constraints as a conjunction of individual
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chance constraints as follows:

(6c) = Pr(

lx
∧

i=1

Hix ≤ hi) ≥ αx,

which can be written conservatively as

Pr(

lx
∨

i=1

Hix > hi) ≤ 1− αx. (8)

By applying Boole’s inequality on the above equation, and allocating con-
straint violation risk equally ǫxi

= (1 − αx)/lx, with lx being the number of
intersecting hyper-planes forming the state joint polytopic constraint, we reach

(8)
(7)

⇐==
lx
∑

i=1

Pr(Hix > hi) ≤ ǫxi

≡
lx
∑

i=1

Pr(Hix ≤ hi) ≥ 1− ǫxi
. (9)

Similarly, control joint chance constraint (6d) can be reformulated as a set of
individual chance constraints following the same arguments as before

lu
∑

i=1

Pr(Giu ≤ gi) ≥ 1− ǫui
, (10)

where ǫui
= (1− αu)/lu is the equally distributed control constraint risk.

Remark 1. Allocating risk of constraint violations equally can be quite conser-
vative since one would preferably allocate more risk to active constraints over
inactive ones. Another approach can be optimizing for allowable violation for
each constraint as in [24], which involves higher computational complexity.

3.2 Deterministic Reformulation of Individual Chance Constraints

Solving the chance constraints (9)-(10), requires propagating the uncertainty
through the nonlinear dynamics. We adopt a linearization-based covariance prop-
agation as in [25][26]. Using a state-feedback control policy uk = vk +Kk(xk −
sk), where Kk are pre-stabilizing feedback gains, then the mean and covariance
of the dynamics evolve as

sk+1 ≈ f̄(sk,vk,pe,k,0) +Ak(sk − s
j
k) +Bk(vk − v

j
k), (11a)

Σxk+1
= AclΣxk

A⊤
cl +CkΣθC

⊤
k +Σw, (11b)

where f̄ is the nominal nonlinear dynamics estimated at current mean of the
state sjk and controls vj

k of the jth trajectory.Σx0
= 0, andAcl , Ak+BkKk is
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the closed-loop dynamics. Ak , ∂
∂s

f(sk,vk,pe,k,0)|(sj

k
,v

j

k
) is the Jacobian of the

dynamics w.r.t. the state. Bk , ∂
∂v

f(sk,vk,pe,k,0)|(sj

k
,v

j

k
) is the Jacobian of the

dynamics w.r.t. controls. Finally, Ck , ∂
∂pe,k

f(sk,vk,pe,k,0)|(sj

k
,v

j

k
) represents

the Jacobian of the dynamics w.r.t. the contact positions.

Remark 2. Other approaches can be used for uncertainty propagation through
nonlinear dynamics like unscented-based transforms [27], or Generalized Poly-
nommial Chaos (gPC) [28]. These methods can lead to more accurate estimate
of the propagated uncertainty at the cost of significant increase in complex-
ity. Since computational efficiency is more important in our case (especially for
online re-planning of the trajectories), we prefer to not use these methods.

Based on Assumption (1) and the covariance propagation in (11b), we seek
the least conservative upper bounds on the state and controls individual chance-
constraints (6c)-(6d). Using the inverse of the Cumulative Density Function
(CDF) φ−1 of a Gaussian distribution, we arrive to a deterministic reformu-
lation of the chance constraints:

Hisk ≤ hi − ηxi,k
, (12a)

Givk ≤ gi − ηui,k
, (12b)

where ηxi,k
= φ−1(1 − ǫxi

)‖Hi‖Σk
and ηui,k

= φ−1(1 − ǫui
)‖GiKk‖Σk

are
known as the state and control back-off bounds ensuring the satisfaction of the
individual chance constraints (6c)-(6d), respectively.

3.3 Deterministic Reformulation of SOCP

Given the previous reformulation of the individual chance constraints, we can
write down the following NOCP.

Problem 3. NOCP with reformulated individual chance-constraints:

min
s,v

. lf (sN ) +

N−1
∑

i=0

l(sk,vk) (13a)

s.t.

sk+1 = f(sk,vk,pe,k,0), (13b)

Hi,ksk ≤ hi,k − ηxi,k
∀i ∈ {1, 2, .., lx}, (13c)

Gi,kvk ≤ gi,k − ηui,k
∀i ∈ {1, 2, .., lu}, (13d)

s0 = s(0), (13e)

sf = s(N), (13f)

∀k ∈ {0, 1, .., N − 1}. (13g)

where (13b) is now the mean of the nonlinear dynamics. In order to solve the
the above nonlinear OCP, we resort to Sequential Convex Programming (SCP),
which we explain in the next subsection.
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3.4 SCP with L1 Trust Region Penalty Cost

SCP attempts to solve nonlinear OCPs by successively linearizing the dynam-
ics, costs and constraints to solve a convex sub-problem at every iteration. The
dynamics are linearized with a first-order Taylor expansion around the previ-
ous state and control trajectories computed at the j-th succession. Successive
linearization introduces two well-known problems [24].

1) Artificial infeasibility: the problem becomes infeasible even if the origi-
nal nonlinear problem is feasible. The most evident example of this arises when
the problem is linearized about an unrealistically short time horizon, so that
there is no feasible control input that can satisfy the prescribed dynamics and
constraints. 2) Artificial unboundedness: the solution takes steps far away from
the validity of the linear model. In order to mitigate artificial unboundedness, a
trust-region constraint is employed. Different approaches are adapted to tackle
artificial infeasiblity. In [24], the authors employ hard constraints and virtual
controls as slack variables on the constraints. However, [29] enforced hard con-
straints on the dynamics and convex soft penalties on the rest of the constraints
along with trust region constraints. In this work we follow the same rationale as
[29,30], where the trust region constraints ci(x) ≤ 0 are enforced as l1 penalty
cost in the form of

argmin .{argmax .γ(ci(x), 0)}, (14a)

ci(x) = |xk − x
j
k| −Ω. (14b)

where Ω is the trust region radius. Notice that the above l1 penalty cost is
exact—meaning that as the penalty weight γ gets infinitely large, the constraint
violations are driven to zero. Even though (14a) is non-differentiable, yet it can
be solved efficiently by introducing a slack variable t as follows:

min
t

. γt (15a)

s.t.

|x− xj | −Ω ≤ t, (15b)

− t ≤ 0. (15c)

In order to solve problem (3), we solve a sequence of Quadratic Programs (QPs)
in problem (4), accompanied by a trust region update mechanism based on the
accuracy ratio of the linearized model w.r.t. the nonlinear model as in [29][26].

Problem 4. Convexified QP at the j-th SCP iteration:

min
s,v,t

. lf (sN ) +

N−1
∑

i=0

l(sk,vk) + γj

N
∑

i=0

tk (16a)

s.t.

sk+1 = f̄(sk,vk,pe,k,0) +Ak(sk − s
j
k) +Bk(vk − v

j
k), (16b)

Σk+1 = AclΣxk
A⊤

cl
+CkΣθC

⊤
k +Σw, (16c)

Σ0 = 09×9, (16d)
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Hi,ksk ≤ hi,k − φ−1(1− ǫxi
)
(

∥

∥Hi,k

∥

∥

Σk
+

∂

∂z

∥

∥Hi,k

∥

∥

Σk
(zk − z

j
k)
)

,

∀i ∈ {1, 2, .., lx}, (16e)

Gi,kvk ≤ gi,k − φ−1(1− ǫui
)
(

∥

∥Gi,kKk

∥

∥

Σk
+

∂

∂z

∥

∥Gi,kKk

∥

∥

Σk
(zk − z

j
k)
)

,

∀i ∈ {1, 2, .., lu}, (16f)

|κk − κ
j
k| −Ωj ≤ tk, −tk ≤ 0, (16g)

s0 = s(0), (16h)

sf = s(N), (16i)

∀k ∈ {0, 1, .., N − 1}. (16j)

zk ∈ R
9+3nc = (sk,vk) is the concatenated vector of states and controls

at time k. Constraints (16e)-(16f) are the linearized state and control chance
constraints, where

∂

∂z

∥

∥Hi,k

∥

∥

Σk
=

1

2
∥

∥Hi,k

∥

∥

Σk

(

2H⊤
i Σk

∂

∂z
Hi,k +

n
∑

i=0

n
∑

j=0

hihj

∂

∂z
Σij

)

. (17)

∂
∂z

Σ ∈ R
9×9×(9+3nc) represents the covariance derivative w.r.t. z. Notice that

this term is more involved since it includes the propagation of the tensor deriva-
tives of the covariance matrix given the current states and controls as well as
the previous states and controls as follows:

∂

∂z
Σk+1 =

k−1
∑

i=0

Ak

∂

∂z
Σk+1|iA

⊤
k +

∂

∂z
Σk+1|k. (18)

We resort to the autodiff library JAX [31] for such computation. Finally, the
trust region constraints (16g) are enforced only on the angular momentum κk

since it’s the only nonlinear part in the centroidal dynamics.

4 Simulations Results

In this section, we report simulation results for the quadruped robot Solo in
the Pybullet simulation environment [22]. We compare trajectories generated
using centroidal stochastic trajectory optimization against nominal trajectory
optimization for trotting and bounding gaits on challenging unknown cluttered
terrains. Offline, we warm start the centroidal SCP solver using centroidal tra-
jectories coming from the whole-body DDP solver Croccodyl [11]. Then, we
optimize whole-body trajectories to track back the optimized centroidal and
force trajectories from the SCP solver as illustrated pictorially in Fig. 1. The
cost weights for both whole-body DDP and centroidal SCP are summarized in
Table 1 and Table 2, respectively. Both DDP and SCP solvers were discretized
with a sampling time of ∆k = 10 ms for a planning horizon length of N = 165,
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Fig. 2: Trot motion in an unplanned cluttered environment using stochastic cen-
troidal SCP and whole-body DDP.

Table 1: Whole-body DDP cost weights.

DDP solver task weights

Task Trot Bound

Swing foot 1e6 1e6
SCP CoM tracking 1e3 1e1

SCP centroidal tracking 1e3 1e3
SCP force tracking 1e2 8e1

Friction cone 2e2 2e0
State regulation 1e-1 1e-1

Control regulation 1e0 1e0
Contact impact velocity regulation 2e1 2e1

and motion plans were designed on a flat ground with a floor static coefficient
of friction µ = 0.5 for both solvers.

During simulation (i.e. online), whole-body DDP joint-space trajectories were
tracked at a higher sampling rate of ∆k = 1 ms using a PD control law:

τ k = τ̄ k +Kp(qk − q̃k) +Kd(q̇k − ˙̃qk), (19)

where τ̄ k are the DDP optimal feedforward joint torque controls, qk and q̇k rep-
resent the DDP optimal joint positions and velocities respectively. Although in
theory the optimal DDP gains could be used, it was not transferable in our case
for highly dynamic motions, especially with long horizon as the motion diverged
quickly. For that reason, we used hand-tuned PD gains for the scenarios de-
scribed in the following subsection. The chance-constraints hyper parameters of
the stochastic SCP were tuned as follows for the trotting and bounding motions:
the probability level of friction pyramid constraint violations for every leg is αu =
0.1. The covariance of the contact position parametric uncertainties for each foot
is set to Σθ = diag

[

0.42, 0.42, 0.42
]

. The covariance of additive centroidal uncer-

tainties is set toΣw = diag
[

0.852, 0.42, 0.012, 0.752, 0.42, 0.012, 0.852, 0.42, 0.012
]

,

andΣw = diag
[

0.752, 0.42, 0.012, 0.852, 0.42, 0.012, 0.752, 0.42, 0.012
]

for the trot-
ting and bounding motions, respectively.

4.1 Simulations setup

We ran a set of Monte-carlo simulations for two scenarios per motion: Scenario
1) without debris: 100 simulations on flat ground with a reduced floor friction
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Fig. 3: Bound motion in an unplanned cluttered environment using stochastic
centroidal SCP and whole-body DDP.

Table 2: Centroidal SCP cost weights.

SCP solver task weights

Task Trot Bound

DDP CoM tracking 1e4 1e4
DDP linear momentum tracking 1e3 1e3
DDP angular momentum tracking 1e5 1e5

Lateral force regulation per foot (x-direction) 1e2 1e2
Lateral force regulation per foot (y-direction) 1e0 1e2

Vertical force regulation per foot 1e1 1e1
Initial trust region weight 1e2 1e2

µ = 0.4, while applying random lateral force disturbances for 200 ms at the center
of the robot’s base link. For trotting motion, we setKp = 4.0∗I,Kd = 0.2∗I. For
the bounding motion, we set Kp = 3.0∗I, Kd = 0.2∗I. Scenario 2) with debris:
100 simulations with reduced floor friction µ = 0.4, while adding unplanned
debris of 2 − 3 cm height (6.6 − 10% of the robot’s leg length) with varying
orientations of 0 − 17 degrees along x and y directions as shown in Fig. 2 and
Fig. 3 for trotting and bounding motions, respectively (please refer to the video
for more details).The joint impedances were set to Kp = 5.0∗ I, Kd = 0.2∗ I for
the trotting motion, and Kp = 4.7 ∗ I, Kd = 0.2 ∗ I for the bounding motion.
Further, we apply again random lateral force impulses for 200 ms at the center
of the robot’s base.

The same force disturbances were applied to the nominal and stochastic tra-
jectories, and were sampled from a Gaussian distribution with zero mean and
σ = 15 N (60% of the robot weight). The force impulse is applied at the same ran-
domly sampled time instance after the first second of the motion. We analyze the
robustness of the motions generated using stochastic SCP against their nominal
counterpart by evaluating the Normalized cumulative sum of the contact posi-
tion deviations of the robot feet when a foot is in contact with the ground (i.e.
foot slippage), which reflects the saturation of the friction pyramid constraints.
The normalized cumulative sum was computed by subtracting the average cu-
mulative sum of the previous samples from the current integral quantity at each
point in time. Moreover, we report the centroidal tracking performance between
the generated SCP references and the simulated trajectories.

First, we discuss the optimized contact forces generated using nominal and
stochastic SCPs, which are later tracked using whole-body DDP. In Fig. 4, we
plot the ratio between the norm of the tangential forces and the vertical forces for
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