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Abstract. Generation of robust trajectories for legged robots remains
a challenging task due to the underlying nonlinear, hybrid and intrin-
sically unstable dynamics which needs to be stabilized through limited
contact forces. Furthermore, disturbances arising from unmodelled con-
tact interactions with the environment and model mismatches can hinder
the quality of the planned trajectories leading to unsafe motions. In this
work, we propose to use stochastic trajectory optimization for gener-
ating robust centroidal momentum trajectories to account for additive
uncertainties on the model dynamics and parametric uncertainties on
contact locations. Through an alternation between the robust centroidal
and whole-body trajectory optimizations, we generate robust momen-
tum trajectories while being consistent with the whole-body dynamics.
We perform an extensive set of simulations subject to different uncer-
tainties on a quadruped robot showing that our stochastic trajectory
optimization problem reduces the amount of foot slippage for different
gaits while achieving better performance over deterministic planning.

Keywords: stochastic optimal control, chance-constraints, trajectory
optimization, legged robots

1 Introduction

Trajectory optimization has become a dominant paradigm for planning and con-
trol of whole-body trajectories for legged robots [1,2,3,4]. Despite recent advance-
ments in real-time trajectory re-planning [5,6], dealing with uncertainties and
assessing risk remains an open challenge in controlling legged robots. Uncertain-
ties arising from inaccurate modelling, estimation errors, etc., might cause the
robot to make/break contact at a different contact position and/or timing than
the planned trajectory. This often leads to constraint violations in the form of
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Fig. 1: Robust trajectory optimization framework alternating between centroidal
states of whole-body DDP motions and stochastic centroidal SCP motions.

slipping or collision of the robot with its environment causing safety hazards.
Most of the work that took into account uncertainties in the control of legged
locomotion mainly resorts to linear models, such as the Linear Inverted Pendu-
lum Model (LIPM). For instance, Villa et al. [7] used a tube-based linear Robust
Model Predictive Control (RMPC) to plan Center of Mass (CoM) trajectories
subject to worst-case disturbances on the Center of Pressure (CoP). To reduce
the conservativeness of RMPC, Gazar et al. [3] resorted to linear stochastic MPC
subject to stochastic additive disturbances on the dynamics and CoM linear
chance-constraints. Yeganegi et al. [9] used Bayesian Optimization to learn cost
function weights to achieve robust walking motions under different uncertain-
ties. However, assuming fixed height for the CoM and zero angular momentum
around the CoM limits the range of motions and cannot plan trajectories in non
co-planar multi-contact scenarios.

There has been some effort in the literature to take into account uncertainties
in the nonlinear trajectory optimization problem for legged locomotion. In these
approaches, Differential Dynamic Programming (DDP) has been the method
of choice as it takes into account the structure of the underlying optimal con-
trol problem to find the optimal trajectories and control policy [10,11]. In an
effort to take uncertainties into account, Mordatch et al. [12] used an offline
ensemble DDP enabling them to transfer the whole-body trajectories to a real
humanoid robot. Recently, Hammoud et al. [13] used a risk-sensitive version of
DDP to optimize for impedance gains to deal with uncertainties in contact. De-
spite the appealing convergence properties of DDP-based approaches, inequality
constraints can only be considered implicitly in the form of penalties, which
makes it difficult to reason about the effect of uncertainties on the constraint
satisfaction robustness. Tangent to that work, Darnach et al. [14] used Expected
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Residual Minimization (ERM) to solve a contact-implicit stochastic complemen-
tarity problem. However, contact-implicit trajectory optimization can be quite
hard to tune, computationally demanding, and gets easily stuck in local min-
imas. A middle-ground model between whole body and template models for
legged locomotion is the centroidal momentum dynamics [15]. While this model
captures the dynamics between the external forces and the centroidal states ex-
actly [10], it is relatively low dimensional and the nonlinearity structure in the
model is well understood [17]. Hence, it is more tractable to use direct methods
with explicit consideration of the force and CoM constraints and design force
trajectories that are robust to the different types of uncertainties in the model.
In this work, we propose to solve stochastic trajectory optimization problems
for centroidal momentum generation of legged robots in the presence of additive
uncertainties in the model dynamics and uncertainties in the contact location.
We write down the friction cone constraints as chance constraints and study the
effect of the uncertainties on the satisfaction of these constraints. Our work is
related to [18,19], where the motion of the CoM was restricted within certain
bounds to make the underlying optimal control problem convex. In our work
instead, we take into account different types of realistic uncertainties in the tra-
jectory optimization problem to find trajectories that are robust against them
and are better transferable to the real world. Moreover, compared to [18,19], we
construct the problem as a stochastic optimization rather than Min-max formu-
lation which is a less conservative formulation and facilitates the generation of
more complex behaviours.

Our main contributions are: 1) We propose to use stochastic trajectory op-
timization using Sequential Convex Programming (SCP) for generating robust
centroidal momentum trajectories subject to additive uncertainties in the dy-
namics, as well as parametric contact position uncertainties. 2) By consider-
ing chance constraints on the friction cones, this is the first work (to the best
of our knowledge) that designs controllers for legged robots that generates ro-
bust force trajectories subject to contact location uncertainty. In the same spirit
as [17], we propose a whole-body trajectory planning framework that alternates
between whole-body motion planning and centroidal momentum planning. Con-
trary to [17]—but similarly to [20]—we use whole-body DDP instead of a kine-
matics optimization, and use the solution to warm-start the stochastic SCP
centroidal momentum solver. The resulting (robust) momentum trajectories are
later used by the whole-body DDP again to track the resulting robust centroidal
trajectories and contact force trajectories. This way, we make sure that the gen-
erated momentum trajectories are robust while being consistent with the robot
whole-body dynamics. 3) Finally, we run 400 Monte-carlo simulations on the
open-source quadruped robot Solo [21] in a Pybullet simulation environment
[22] for dynamic trotting and bounding gaits while applying different distur-
bances. We show that Stochastic trajectory optimization is able to complete all
the motions safely while reducing feet slippage, and achieving better centroidal
tracking performance over the deterministic planning °.

5 submission video.
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2 Background

2.1 Notation

A random variable z following a distribution Q is denoted as x ~ Q, with E[z]
being the expected value of z, and X, = E[(z —E[z])(z —E[z]) "]. The weighted
I norm is denoted as|y||p = y' Py.

2.2 Robot Dynamics

The full-body dynamics of a floating-base robot in contact with the environment
can be derived using Euler-Lagrange equations of motion as follows [16]:

M(q)g+ h(q,q) ZJ Qe + ST, (1)

-
where q = {ﬁ:T, QT,BT} € R3 x SO(3) x R™ represents the generalized robot

position characterizing the robot’s floating base pose (position and orienta-
tion) w.r.t. an inertial frame Z, and the joint positions respectively. M(q) €
R(+6)x(n+6) denotes the inertia matrix, and h(q,q) € R"*6 is the vector cap-
turing the Coriolis, centrifugal, gravity and joint friction forces. J. ; is the asso-
ciated jacobian of the i-th end-effector wrench A.; acting on the environment.
Finally, S = [O(nx6), In] is the selector matrix of the actuated joint torques 7.
We can further split (1) into its under-actuated and actuated parts;

M"(q)§+h"(q,q) = ZJ (2a)

M*(q)§ +h*(q,q) = ZJ Dei +Tg- (2b)

By writing down the floating-base dynamics for the CoM instead of the floating
base position #, we obtain the following relationship between the centroidal
momentum dynamics hg and the generalized velocities q

hg = m = Ag(a)i + Agla)q 3)

via the Centroidal Momentum Matriz (CMM) Ag € R*(+6) [15]. The angular
and linear momenta are denoted as & and I € R respectively. Given (3), we are
interested in planning desired centroidal momentum trajectories that satisfy the
following Newton-Euler dynamics:

1 Z?:CO(pez +RZ’Zy e,i —C) X -fei+Rz iTe,i
- R (@)
mg + Zz 0
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where ¢ € R? represents the robot’s CoM, at which the total mass m of the robot
is concentrated. p,; € R? is the i-th end-effector’s contact position, with ¢, ; €
R? being the local Center of Pressure (CoP). f,; € R® and 7.; € R represent
end-effector’s contact forces and torque for flat-footed robots, respectively. The
rotation matrix R.; € SO(3) captures the contact normals mapping quantities
from the i-th end-effector’s frame to the inertial frame. Note that for point-
footed robots, which we consider from now on, ¢, ; and 7. ; are always null, but
the same analysis still holds for flat-footed robots.

2.3 Centroidal Momentum Trajectory Optimization

First we present the deterministic nonlinear discrete-time optimal control prob-
lem (OCP) for centroidal momentum trajectory optimization with fixed contact
position and timing.

Problem 1. Nominal Optimal Control Problem (NOCP)

N-1
min . [y(@y) + Z Uz, uk) (5a)
' i=0
s.t.
Cit1 cr + =l A
lyy1 | = Iy +mgA + 307, Jei, Ay ; (5b)
Kkt1 KE + Z?:uo(pe,ik —ci) X feoi Ak
— e, <Fei, S Hcq, fei, 20, (5¢)
- /j,f;ik < g,ik < /u‘fz,ikv fz,ik >0, (5d)
P, — kel < LT (5¢)
xo = z(0), (5f)
@ =x(N), (58)
Vk € {0,1,..,N — 1}, (5h)
where & = (zo, ..., zy) with xx € R® = (¢, Iy, ki), and u = (ug, ..., un_1)
with uy, € R3"e = (fe0>--+s Fen,) are the states and control optimizers along

the control horizon N. The centroidal momentum dynamics are discretized with
a time-step Ay using an explicit Euler integration scheme (5b), where (5f)-(5g)
represents the initial and final conditions respectively. In order to avoid con-
tact slippage, the local contact forces in the end-effector frame (f = R f) are
constrained inside the linearized friction cone constraints (5¢)-(5d), where the
static coefficient of friction is denoted as p with the vertical component of the
force being positive. Finally, the CoM is constrained to be within the leg length
reachability limits (5¢).
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3 Stochastic Optimal Control for Centroidal Momentum
Trajectory Optimization

In this section we present a stochastic version of problem (1) that takes into
account additive stochastic uncertainties on the centroidal momentum dynam-
ics as well as contact position uncertainties subject to friction pyramid chance
constraints. We consider the following discrete-time stochastic nonlinear OCP:

Problem 2. Stochastic Optimal Control Problem (SOCP)

N-1
I:El’lILl lf(:I)N) + Z l(sck,uk) (6a)
i=0
s.1.
@1 = f(@r, up, O, wy), (6b)
Pr(Hxy < h) > ay, (6¢)
Pr(Gui < g) > o, (6d)
xo = x(0), (Ge)
x; = x(N), (6£)
vk e {0,1,..,N —1}. (6g)

With an abuse of notation from Problem (1), ) and wug will be considered
the stochastic state and control policies evolving according to the parametric
and additive stochastic disturbance realizations 0y, and wy. (6¢)-(6d) are the
state and control polytopic joint chance constraints with «, and «a, being the
probability levels of state and control constraint satisfaction respectively.

Assumption 1. (i.i.d. Gaussian disturbances)

0r ~ N(E[0;], X,), and wy, ~ N (Elwy], Xw,) are assumed to be indepen-
dent and identically distributed (i.i.d.) disturbance realisations following Gaus-
sian distributions. E[0] = p,; . and Xq, € RGnex3ne) represent the mean and
covariance of the contact positions respectively. Elwy] = 0 and X, € R are
the mean and covariance of the additive noise on the centroidal dynamics.

3.1 Individual Chance Constraints Reformulation

Solving the above joint chance constraints (6¢)-(6d) involves the integration of
multi-dimensional Gaussian Probability Density Functions (PDFs), which be-
comes computationally intractable for high dimensions. One effective solution is
to use Boole’s inequality:

Pr(\/ C;) < ZPY(Ci) (7)

as a conservative union bound on the joint chance constraints [23]. We can rewrite
the complement of the state chance constraints as a conjunction of individual
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chance constraints as follows:

lz
(6c) = Pr(/\ Hix < hy) > ag,
i=1

which can be written conservatively as

lz
Pr(\/ Hiz > h;) <1 - a,. (8)

i=1

By applying Boole’s inequality on the above equation, and allocating con-
straint violation risk equally €,, = (1 — a,)/l;, with [, being the number of
intersecting hyper-planes forming the state joint polytopic constraint, we reach

lo
(8) <L S Pr(Hz > hy) < e,
i=1
lz
= Pr(Hiz <h)>1-¢,. 9)

=1

Similarly, control joint chance constraint (6d) can be reformulated as a set of
individual chance constraints following the same arguments as before

lu
ZPY(GM <gi) > 1—ey, (10)

i=1
where ¢,, = (1 — ) /l, is the equally distributed control constraint risk.

Remark 1. Allocating risk of constraint violations equally can be quite conser-
vative since one would preferably allocate more risk to active constraints over
inactive ones. Another approach can be optimizing for allowable violation for
each constraint as in [24], which involves higher computational complexity.

3.2 Deterministic Reformulation of Individual Chance Constraints

Solving the chance constraints (9)-(10), requires propagating the uncertainty
through the nonlinear dynamics. We adopt a linearization-based covariance prop-
agation as in [25][26]. Using a state-feedback control policy uy = vy + K (2 —
sk), where K, are pre-stabilizing feedback gains, then the mean and covariance
of the dynamics evolve as

Sk1 ~ F(Sk, Vi, Do, 0) + Ar(si — s3,) + Bi(vy, — v), (11a)
Zapis = AaZa Ad + CrZeC) + B, (11b)

LTk+1

where f is the nominal nonlinear dynamics estimated at current mean of the
state s7, and controls v}, of the jth trajectory. X, = 0, and Aq = Ay +B, K}, is
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the closed-loop dynamics. Aj, £ %f(sk, Vi, Do kos O)|(Sj vl 18 the Jacobian of the
’ k" k

dynamics w.r.t. the state. B, £ % (8ks Vks Pe s O)‘(Si vl) is the Jacobian of the

dynamics w.r.t. controls. Finally, C}, £ 8}? - F (8K, Uk, Do 1o 0)|(sj o7 Tepresents
e, ’ k" k

the Jacobian of the dynamics w.r.t. the contact positions.

Remark 2. Other approaches can be used for uncertainty propagation through
nonlinear dynamics like unscented-based transforms [27], or Generalized Poly-
nommial Chaos (gPC) [28]. These methods can lead to more accurate estimate
of the propagated uncertainty at the cost of significant increase in complex-
ity. Since computational efficiency is more important in our case (especially for
online re-planning of the trajectories), we prefer to not use these methods.

Based on Assumption (1) and the covariance propagation in (11b), we seek
the least conservative upper bounds on the state and controls individual chance-
constraints (6¢)-(6d). Using the inverse of the Cumulative Density Function
(CDF) ¢! of a Gaussian distribution, we arrive to a deterministic reformu-
lation of the chance constraints:

Hisk S hZ - nxi,m (12&)
Givk) S 9i — nui,k’ (12b)
where Neiw = ¢71(1 — €,) ‘HlHZ‘k and Nuige = ¢71(1 — €u;) |G1Kk||2k are

known as the state and control back-off bounds ensuring the satisfaction of the
individual chance constraints (6¢)-(6d), respectively.

3.3 Deterministic Reformulation of SOCP

Given the previous reformulation of the individual chance constraints, we can
write down the following NOCP.

Problem 3. NOCP with reformulated individual chance-constraints:

N-1
min. y(sy) + > Usk, vr) (13a)
i=0
s.t.
Spr1 = f(sk, vkape,kvo)v (13b)
H;psp < hig — N,y Vie{l,2,.,1.}, (13c¢)
GixVk < Gik — Nu, Vie{1,2,.,l.}, (13d)
so = s(0), (13e)
sy = s(N), (13f)
Vk e {0,1,.,N —1}. (13g)

where (13b) is now the mean of the nonlinear dynamics. In order to solve the
the above nonlinear OCP, we resort to Sequential Convex Programming (SCP),
which we explain in the next subsection.



Nonlinear Stochastic Trajectory Optimization 9

3.4 SCP with L1 Trust Region Penalty Cost

SCP attempts to solve nonlinear OCPs by successively linearizing the dynam-
ics, costs and constraints to solve a convex sub-problem at every iteration. The
dynamics are linearized with a first-order Taylor expansion around the previ-
ous state and control trajectories computed at the j-th succession. Successive
linearization introduces two well-known problems [24].

1) Artificial infeasibility: the problem becomes infeasible even if the origi-
nal nonlinear problem is feasible. The most evident example of this arises when
the problem is linearized about an unrealistically short time horizon, so that
there is no feasible control input that can satisfy the prescribed dynamics and
constraints. 2) Artificial unboundedness: the solution takes steps far away from
the validity of the linear model. In order to mitigate artificial unboundedness, a
trust-region constraint is employed. Different approaches are adapted to tackle
artificial infeasiblity. In [24], the authors employ hard constraints and virtual
controls as slack variables on the constraints. However, [29] enforced hard con-
straints on the dynamics and convex soft penalties on the rest of the constraints
along with trust region constraints. In this work we follow the same rationale as
[29,30], where the trust region constraints ¢;(x) < 0 are enforced as I; penalty
cost in the form of

arg min .{arg max .7y(c;(z),0)}, (14a)

ci(x) = |zp — x| — 2. (14b)

where (2 is the trust region radius. Notice that the above I; penalty cost is
exact—meaning that as the penalty weight + gets infinitely large, the constraint

violations are driven to zero. Even though (14a) is non-differentiable, yet it can
be solved efficiently by introducing a slack variable ¢ as follows:

mtin. ~t (15a)
s.t.
e — 2| - 2 <t, (15b)
—t<o0. (15¢)

In order to solve problem (3), we solve a sequence of Quadratic Programs (QPs)
in problem (4), accompanied by a trust region update mechanism based on the
accuracy ratio of the linearized model w.r.t. the nonlinear model as in [29][26].

Problem 4. Convezified QP at the j-th SCP iteration:

N-1 N
gngr% li(sn) + iz;l(sk,vk)+7j;tk (16a)
s.1.
Sk41 = F(Sk: Uk Do g, 0) + Ap(si — s1.) + Bi(vi — v}), (16b)
Zip1 = AuSa, AL+ CrXeC) + X, (16c)

Yo = Ogxo, (16d)
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9 ,
Higsr < hip =67 (1= o) (|| Hull g, + 5[ Hill s, (21— 21).
Vie{1,2,.,1,}, (16e)
o ,
Gipvp < gir— ¢ (11— eui)(HGi,kKkHEk + &HGi,kKkHEk (2 — Zi)),
Vie {1,2,..,1,}, (16f)

|F-‘,k — K,ff‘ — .Qj S tk, 715]@ S O, (16g)
s0 = s(0), (16h)
sy =s(N), (161)
vk e {0,1,..,N —1}. (163)
z, € R9T3% = (s, v;) is the concatenated vector of states and controls

at time k. Constraints (16e)-(16f) are the linearized state and control chance
constraints, where

9
0z

1

2||HiJcsz(2Hi Zkafzﬂi,k + ZZhihja—ZEij). (17)

i=0 j=0

1H k]| 5, =

8%2 € R9¥9x(9+3ne) represents the covariance derivative w.r.t. z. Notice that
this term is more involved since it includes the propagation of the tensor deriva-
tives of the covariance matrix given the current states and controls as well as
the previous states and controls as follows:

k-1
zzkﬂ = ZAkQSkHI'AZ + gz’kﬂm- (18)
0z 0z ! 0z

We resort to the autodiff library JAX [31] for such computation. Finally, the
trust region constraints (16g) are enforced only on the angular momentum ry
since it’s the only nonlinear part in the centroidal dynamics.

4 Simulations Results

In this section, we report simulation results for the quadruped robot Solo in
the Pybullet simulation environment [22]. We compare trajectories generated
using centroidal stochastic trajectory optimization against nominal trajectory
optimization for trotting and bounding gaits on challenging unknown cluttered
terrains. Offline, we warm start the centroidal SCP solver using centroidal tra-
jectories coming from the whole-body DDP solver Croccodyl [11]. Then, we
optimize whole-body trajectories to track back the optimized centroidal and
force trajectories from the SCP solver as illustrated pictorially in Fig. 1. The
cost weights for both whole-body DDP and centroidal SCP are summarized in
Table 1 and Table 2, respectively. Both DDP and SCP solvers were discretized
with a sampling time of Ay = 10 ms for a planning horizon length of N = 165,



Nonlinear Stochastic Trajectory Optimization 11

Fig. 2: Trot motion in an unplanned cluttered environment using stochastic cen-
troidal SCP and whole-body DDP.

Table 1: Whole-body DDP cost weights.
DDP solver task weights

Task Trot Bound
Swing foot le6 le6
SCP CoM tracking le3 lel
SCP centroidal tracking le3 le3
SCP force tracking le2 8el
Friction cone 2e2 2e0
State regulation le-1 le-1
Control regulation 1le0 le0
Contact impact velocity regulation 2el 2el

and motion plans were designed on a flat ground with a floor static coefficient
of friction p = 0.5 for both solvers.

During simulation (i.e. online), whole-body DDP joint-space trajectories were
tracked at a higher sampling rate of A; = 1 ms using a PD control law:

Te =Tk + Kpla, — @) + Kaldy, — i), (19)

where T, are the DDP optimal feedforward joint torque controls, g;, and g;, rep-

resent the DDP optimal joint positions and velocities respectively. Although in

theory the optimal DDP gains could be used, it was not transferable in our case

for highly dynamic motions, especially with long horizon as the motion diverged

quickly. For that reason, we used hand-tuned PD gains for the scenarios de-

scribed in the following subsection. The chance-constraints hyper parameters of

the stochastic SCP were tuned as follows for the trotting and bounding motions:

the probability level of friction pyramid constraint violations for every leg is o, =

0.1. The covariance of the contact position parametric uncertainties for each foot

is set to Xy = diag [0.427 0.42, 0.42]. The covariance of additive centroidal uncer-

tainties is set to X, = diag [0.85%,0.42,0.012,0.752,0.4%,0.01%,0.85%,0.42, 0.012],
and X, = diag [0.75%,0.4%,0.01%,0.85%,0.42,0.012,0.752,0.4%,0.01?] for the trot-
ting and bounding motions, respectively.

4.1 Simulations setup

We ran a set of Monte-carlo simulations for two scenarios per motion: Scenario
1) without debris: 100 simulations on flat ground with a reduced floor friction
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Fig.3: Bound motion in an unplanned cluttered environment using stochastic
centroidal SCP and whole-body DDP.

Table 2: Centroidal SCP cost weights.
SCP solver task weights

Task Trot Bound
DDP CoM tracking led led
DDP linear momentum tracking le3 le3
DDP angular momentum tracking led led
Lateral force regulation per foot (x-direction) le2 le2
Lateral force regulation per foot (y-direction) 1e0 le2
Vertical force regulation per foot lel lel
Initial trust region weight le2 le2

1 = 0.4, while applying random lateral force disturbances for 200 ms at the center
of the robot’s base link. For trotting motion, we set K, = 4.0x], K4 = 0.2x]. For
the bounding motion, we set K, = 3.0%I, K4 = 0.2%I. Scenario 2) with debris:
100 simulations with reduced floor friction pu = 0.4, while adding unplanned
debris of 2 — 3 cm height (6.6 — 10% of the robot’s leg length) with varying
orientations of 0 — 17 degrees along x and y directions as shown in Fig. 2 and
Fig. 3 for trotting and bounding motions, respectively (please refer to the video
for more details).The joint impedances were set to K, = 5.0%1, K4 = 0.2x1 for
the trotting motion, and K, = 4.7 I, K4 = 0.2 * I for the bounding motion.
Further, we apply again random lateral force impulses for 200 ms at the center
of the robot’s base.

The same force disturbances were applied to the nominal and stochastic tra-
jectories, and were sampled from a Gaussian distribution with zero mean and
o = 15 N (60% of the robot weight). The force impulse is applied at the same ran-
domly sampled time instance after the first second of the motion. We analyze the
robustness of the motions generated using stochastic SCP against their nominal
counterpart by evaluating the Normalized cumulative sum of the contact posi-
tion deviations of the robot feet when a foot is in contact with the ground (i.e.
foot slippage), which reflects the saturation of the friction pyramid constraints.
The normalized cumulative sum was computed by subtracting the average cu-
mulative sum of the previous samples from the current integral quantity at each
point in time. Moreover, we report the centroidal tracking performance between
the generated SCP references and the simulated trajectories.

First, we discuss the optimized contact forces generated using nominal and
stochastic SCPs, which are later tracked using whole-body DDP. In Fig. 4, we
plot the ratio between the norm of the tangential forces and the vertical forces for
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Fig. 4: Ratio of norm of tangential forces w.r.t. vertical force for a trotting motion
(left) and a bounding motion (right).

dynamic trotting and bounding motions. As expected, the forces optimized using
stochastic SCP saturate less the friction cones compared to the ones optimized
with nominal SCP, especially during single support phases where the solution
of the QP is unique. This highlights the contribution of the control back-off
magnitudes, which increase along the horizon due to the covariance propagation
along the linearized dynamics (16f).

For the trotting motion (Fig. 5), trajectories designed using stochastic SCP
(our method) achieved less feet slippage mean (26.3% and 28.9% for scenario
1 and 2, respectively) than nominal SCP and an improved centroidal tracking
performance mean (8.41% and 13.0%). The same analysis was carried out for
the bounding motion in a more challenging terrain (Fig. 3). As shown in Fig. 6,
stochastic SCP trajectories contributed to less feet slippage mean (22.8% and
14.8% for scenarios 1 and 2, respectively) than nominal SCP, and an improved
centroidal tracking performance mean (25.6% and 13.6%).

5 Discussion and Conclusions

In this work, we used nonlinear stochastic trajectory optimization for generat-
ing robust centroidal momentum trajectories for legged robots that take into
account additive uncertainties on the centroidal dynamics as well as parametric
uncertainties on the contact positions. We used a linearization-based covariance
propagation for resolving the stochastic nonlinear dynamics. Furthermore, we
resolved the friction pyramid joint chance constraints by designing proper up-
per bounds (back-offs) at each point in time on the individual hyper-planes
forming the friction pyramid polytopes. Finally, we presented a whole-body tra-
jectory optimization framework that alternates between stochastic centroidal
trajectory optimization and whole-body trajectory optimization for generating
feasible robust whole-body motions. We used our framework to generate trot-
ting and bounding dynamic gaits for the quadruped robot Solo. We then tracked
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Fig.5: Normalized cumulative sum of feet slippage norm (left) and centroidal
tracking cost (right) for a trotting motion.
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Fig.6: Normalized cumulative sum of feet slippage norm (left) and centroidal
tracking cost (right) for a bounding motion.

these trajectories in a Pybullet physics simulator, introducing different distur-
bance realizations and contact uncertainties. The results show that our approach
generated safer motions by contributing to less average contact slippage, as well
as improved centroidal tracking performance over deterministic trajectory opti-
mization. Although the current stochastic SCP approach does not require addi-
tional optimization variables over a deterministic approach SCP, the computa-
tional complexity is relatively higher due to uncertainty propagation and the ad-
ditional tensor derivatives required for solving the linearized chance-constraints.

Another limitation of the current stochastic SCP approach lies in the accu-
racy of uncertainties propagation through the linearized dynamics, which might
be hindered for long horizons. However, we believe that this might not be an
issue in practice when applied in receding horizon fashion. To this end, we plan
to extend the current framework to nonlinear stochastic MPC in the future.
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