
Rethinking and Scaling Up Graph Contrastive
Learning: An Extremely Efficient Approach with

Group Discrimination

Yizhen Zheng1, Shirui Pan2∗, Vincent CS Lee1, Yu Zheng3, Phillip S. Yu4,
1Monash University, 2Griffith University, 3La Trobe University, 4 University of Illinons at Chicago
yizhen.zheng1@monash.edu, s.pan@griffth.edu.au, vincent.cs.lee@monash.edu

yu.zheng@latrobe.edu.au, psyu@uic.edu

Abstract

Graph contrastive learning (GCL) alleviates the heavy reliance on label information
for graph representation learning (GRL) via self-supervised learning schemes.
The core idea is to learn by maximising mutual information for similar instances,
which requires similarity computation between two node instances. However,
GCL is inefficient in both time and memory consumption. In addition, GCL
normally requires a large number of training epochs to be well-trained on large-
scale datasets. Inspired by an observation of a technical defect (i.e., inappropriate
usage of Sigmoid function) commonly used in two representative GCL works,
DGI and MVGRL, we revisit GCL and introduce a new learning paradigm for
self-supervised graph representation learning, namely, Group Discrimination (GD),
and propose a novel GD-based method called Graph Group Discrimination (GGD).
Instead of similarity computation, GGD directly discriminates two groups of node
samples with a very simple binary cross-entropy loss. In addition, GGD requires
much fewer training epochs to obtain competitive performance compared with
GCL methods on large-scale datasets. These two advantages endow GGD with very
efficient property. Extensive experiments show that GGD outperforms state-of-the-
art self-supervised methods on eight datasets. In particular, GGD can be trained in
0.18 seconds (6.44 seconds including data preprocessing) on ogbn-arxiv, which
is orders of magnitude (10,000+) faster than GCL baselines while consuming
much less memory. Trained with 9 hours on ogbn-papers100M with billion edges,
GGD outperforms its GCL counterparts in both accuracy and efficiency.

1 Introduction

Graph Neural Networks (GNNs) have been widely-adopted in learning representations for graph-
structured data. By utilising message-passing over the topology of a graph, GNNs can learn effective
low-dimensional node embeddings, which can be used for a variety of downstream tasks such as node
classification [1]. GNNs have been further applied in diverse domains, e.g., federated learning [2, 3],
trustworthy systems [4, 5], dynamic graphs [6, 7] and anomaly detection [8, 9].

However, many GNNs adopt a supervised learning manner to train models with label information,
which is expensive and labour-intensive to collect in real-world. To address this issue, a few studies
(e.g., DGI [10], MVGRL [11], GMI [12], and GRACE [13]) borrow the idea of contrastive learning
from computer vision (CV), and introduce graph contrastive learning (GCL) methods for self-
supervised GRL. The core idea of these methods is to maximise the mutual information (MI) between
an anchor node and its positive counterparts, sharing similar semantic information while doing the

∗Corresponding Author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

opposite for negative counterparts as shown in Figure 1(a). Nonetheless, such a scheme relies on
similarity calculation in contrastive loss computation. Additionally, GCL normally requires a large
number of training epochs to be well-trained on large-scale datasets. Thus, when the size of the
dataset is large, these methods require a significant amount of time and resources to be well-trained.

(a)Graph Contrastive Learning

Maximise

Minimise

(b) Group Discrimination

Figure 1: The left subfigure shows the GCL learning
scheme. Red line indicates MI maximisation between two
nodes, each of which ∈ R1×D, while blue line indicates
the opposite operation. The right subfigure presents Group
Discrimination. It discriminates positive and negative node
samples, each of which ∈ R1×1.

Though a few GCL works attempt
to improve graph contrastive learning
with specially designed schemes, e.g.,
BGRL [15] and GBT [14], they are still
inefficient and require high time con-
sumption for model training. Inspired
by BYOL [16], BGRL [15] adopts a
bootstrapping scheme and remove neg-
ative node pairs. It only contrasts a
node from the online network (i.e., up-
dated with gradient) to its correspond-
ing embedding from the target network
(i.e., updated momentumly with stop
gradient). Based on Barlow-Twins [17],
GBT [14] borrows the idea of redundancy-reduction principle and utilises a cross-correlation-based
loss to build contrastiveness between embedding dimensions.

Table 1: Training time in seconds comparison be-
tween GGD and GBT [14] (i.e., the most efficient
GCL baseline as shown in section 5.1) on ogbn-
arxiv. Number in brackets means the hidden size.
‘Pre’, ‘Tr’ and ‘Epo’ indicate preprocessing time,
training time per epoch, and the number of epochs
for training GNNs. ‘Total(E)’ and ‘Total(T)’ are
total end-to-end training time (i.e., including pre-
processing), which equals to (Pre+Epo×Tr) and
total training time, which is (Epo× Tr). ‘Imp(E)’
and ‘Imp(T)’ indicate how many times GGD im-
prove on ‘Total(E)’ and ‘Total(T)’. ‘Acc’ is aver-
aged accuracy result on test set over five runs.

Method Pre Tr Epo Total(E) Imp(E) Total(T) Imp(T) Acc

GBT(256) 5.52 6.47 300 1,946.52 - 1,941.00 - 70.1

GGD(256) 6.26 0.18 1 6.44 302.25 × 0.18 10,783.33× 70.3
GGD(1,500) 6.26 0.95 1 7.21 269.96× 0.95 2,043.16× 71.6

To boost training efficiency of self-supervised
GRL, inspired by an observation of a technical
defect (i.e., inappropriate application of Sigmoid
function) in two representative GCL studies, we
introduce a novel learning paradigm, namely,
Group Discrimination (GD). Instead of similar-
ity computation, GD directly discriminates a
group of positive nodes from a group of neg-
ative nodes, as shown in Figure 1(b). Specifi-
cally, GD defines node samples generated with
original graph as the positive group, while node
samples obtained with corrupted topology are
regarded as the negative group. Then, GD trains
the model by classifying these node samples
into the correct group with a very simple bi-
nary cross-entropy loss. By doing so, the model
can extract valuable self-supervised signals from
learning the edge distribution of a graph. Com-
pared with GCL, GD enjoys numerous merits including extremely fast training, fast convergence
(e.g., 1 epoch to be well-trained on large-scale datasets), and high scalability while achieving SOTA
performance with existing GCL approaches.

Using GD as backbone, we design a new self-supervised GRL model with the Siamese structure
called Graph Group Discrimination (GGD). Firstly, we can optionally augment a given graph with
augmentation techniques, e.g., feature and edge dropout. Then, the augmented graph is fed into a
GNN encoder and a projector to obtain embeddings for the positive group. After that, the augmented
feature is corrupted with node shuffling (i.e., disarranging the order of nodes in the feature matrix)
to disrupt the topology of a graph and input to the same network for obtaining embeddings of the
opposing group. Finally, the model is trained by discriminating these two groups of node samples.
The contributions of this paper are three-fold: 1) We re-examine existing GCL approaches (e.g.,
DGI [10] and MVGRL [11]), and we introduce a novel and efficient self-supervised GRL paradigm,
namely, Group Discrimination (GD). 2) Based on GD, we propose a new self-supervised GRL model,
GGD, which is fast in training and convergence, and possess high scalability. 3) We conduct extensive
experiments on eight datasets, including an extremely large dataset, ogbn-papers100M with billion
edges. The experiment results show that our proposed method reaches state-of-the-art performance
while consuming much less time and memory than baselines, e.g., 10783 × faster than the most
efficient GCL baseline with its best selected epochs number [14], as shown in Table 1.

2

2 Rethinking Representative GCL Methods

Corrupt

maximise

minimise

Pooling

Figure 2: The architecture of DGI. Cubes indicate
node embeddings. Red and blue lines represent MI
maximisation and minimisation, respectively. G

and G̃ denote the original graph and the corrupted
graph. s is the summary vector.

In this section, we analyse a technical defect
observed in two representative GCL methods,
DGI [10] and MVGRL [11]. Based on the tech-
nical defect, we show that mutual information
maximisation behind these two approaches is
not the contributed factor to contrastive learn-
ing, but a new paradigm, group discrimination.
Finally, from the analysis, we provide the defi-
nition of this new concept.

2.1 Rethinking GCL Methods

DGI [10] is the first work introducing con-
trastive learning into GRL. However, due to a
technical defect observed in their official open-
source code, we found it is essentially not work-
ing as the authors thought (i.e., learning via MI interaction).

Constant Summary Vector. As shown in Figure 2, the original idea of DGI is to maximise the MI
(i.e., the red line) between a node a and the summary vector s, which is obtained by averaging all
node embeddings in a graph G. Also, to regularise the model training, DGI corrupts G by shuffling the
node order of the input feature matrix to get G̃. Then, generated embeddings of G̃ serve as negative
samples, which are pulled apart from the summary vector s via MI minimisation.

Table 2: Summary vector statistics on three datasets with
different activation functions including ReLU, LeakyReLU
(i.e., LReLU shown below), PReLU, and Sigmoid.

Activation Statistics Cora CiteSeer PubMed

Mean 0.50 0.50 0.50
ReLU/LReLU/PReLU Std 1.3e-03 1.0e-04 4.0e-04

Range 1.4e-03 8.0e-04 1.5e-03

Mean 0.62 0.62 0.62
Sigmoid Std 5.4e-05 2.9e-05 6.6e-05

Range 3.6e-03 3.0e-03 3.2e-03

Nonetheless, in the implementation of
DGI, a Sigmoid function is inappropri-
ately applied on the summary vector
generated from a GNN whose weight
is initialised with Xavier initialisation.
As a result, elements in the summary
vector are very close to the same value.
We have validated this finding on three
datasets, Cora, CiteSeer and PubMed.
The experiment result is shown in Ta-
ble 2, which shows that summary vec-
tors in all datasets are approximately a constant vector ϵI, where ϵ is a scalar and I is an all-ones
vector (i.e., ϵ=0.50 with ReLU/LReLU/PReLU and ϵ=0.62 with Sigmoid as non-linear activation in
these datasets).

Table 3: The experiment result on three
datasets with changing value from 0 to 1.0
for the summary vector.

Dataset 0 0.2 0.4 0.6 0.8 1.0

Cora 70.3±0.7 82.4±0.2 82.3±0.3 82.5±0.4 82.3±0.3 82.5±0.1
CiteSeer 61.8±0.8 71.7±0.6 71.9±0.7 71.6±0.9 71.7±1.0 71.6±0.8
PubMed 68.3±1.5 77.8±0.5 77.9±0.8 77.7±0.9 77.4±1.1 77.2±0.9

To theoretically explain this phenomenon, we present
the proposition below:

Proposition 1 Given G = {X ∈ RN×D,A ∈ RN×N},
and a GCN encoder g(·) initialised with Xavier ini-
tialisation, we can obtain its embedding H = σ(g(G)),
where σ(·) is a non-linear activation function. By ap-
plying the sigmoid function σsig(·) to the summary vector s (i.e., the average row vector of H), values
in σsig(s) approximately become 0.5 with ReLU/LReLU/PReLU or 0.62 with Sigmoid as non-linear
activation of g(·) at the initialisation stage.

Based on this proposition, we can see these summary vectors can lose variance and become a constant
vector at the initialisation stage. Based on Table 2, we can see the constant in the summary vector
remain unchanged, and the information loss still occurs even if the GNN encoder is trained. Thus, we
conjecture the training process won’t affect the constant value much in the summary vector of DGI.
The proof for the proposition is presented in Appendix A.1.

To evaluate the effect of ϵ to constant summary vector, we vary the scalar ϵ (from 0 to 1 increment
by 0.2) to change the constant summary vector and report the model performance (i.e., averaged
accuracy on five runs) in Table 3.

3

From this table, we can see, except for 0, the model performance is trivially affected by ϵ for constant
summary vector. When the summary vector is set to 0, the model performance plummets because
node embeddings become all 0 when multiplying with such vector and the model converges to the
trivial solution. As the summary vector only has a trivial effect on model training, the hypothesis of
DGI [10] on learning via contrastiveness between anchor nodes and the summary instance does not
hold, which raises a question to be investigated: What truly leads to the success of DGI?

Simplifying DGI. To answer the question, we predigest the objective function proposed in DGI (i.e.,
maximising the MI between hi and the summary vector s) by using an all-ones vector as the summary
vector s (i.e., setting s = ϵI = I) and simplifying the discriminator D(·) (i.e., removing the learnable
weight matrix). Then, we rewrite the objective function to the following form:

LDGI =
1

2N
(

N∑
i=1

logD(hi, s) + log(1−D(h̃i, s))),

=
1

2N
(

N∑
i=1

log(hi · s) + log(1− h̃i · s))),

=
1

2N
(

N∑
i=1

log(sum(hi)) + log(1− sum(h̃i))),

(1)

where · is the vector multiplication operation, N is the number of nodes in a graph, hi ∈ R1×D and
h̃i ∈ R1×D are the original and corrupted embedding for node i, sum(·) is the summation function,
and D(·) is a discriminator for bilinear transformation, which can be formulated as follows:

D(hi, s) = σsig(hi · W · s), (2)

Table 4: Comparison of the original DGI and
DGIBCE in terms of accuracy (averaged on
five runs), memory efficiency (in MB) and
training time (in seconds). Number after |
shows how many times have DGIBCE im-
proved on top of DGI.

Experiment Method Cora CiteSeer PubMed

Accuracy DGI 81.7±0.6 71.5±0.7 77.3±0.6
DGIBCE 82.5±0.3 71.7±0.6 77.7±0.5

Memory DGI 4189MB 8199MB 11471MB
DGIBCE 1475MB|64.8% 1587MB|80.6% 1629MB|85.8%

Time DGI 0.085s 0.134s 0.158s
DGIBCE 0.010s|8.5× 0.021s|6.4× 0.015s|10.5×

where W is a learnable weight matrix and σsig(·)
is the sigmoid function. Specifically, as shown in
Equation 2, by removing the weight matrix W, hi is
directly multiplied with s. As s is a vector containing
only one, the multiplication of hi and s is equivalent
to summing hi itself directly. From this form, we
can see that the multiplication of hi and the summary
vector only serves as an aggregation function (i.e.,
summation aggregation) to aggregate hi. To explore
the effect of other aggregation functions, we replace
the summation function in Equation 1 with other
aggregation methods such as mean-, minimum-, and
maximum- pooling, and present the experiment result
in Appendix A.3.

Based on Equation 1, we can rewrite it to a very simple binary cross entropy loss if we also include
corrupted nodes as data samples and setting ŷi = agg(hi), where agg(·) stands for aggregation:

LBCE = − 1

2N
(

2N∑
i=1

yi log ŷi + (1− yi) log(1− ŷi)), (3)

where yi ∈ R1×1 means the indicator for node i (i.e., if node i is corrupted, yi is 0, otherwise it is
1), and ŷi ∈ R1×1 represents the prediction for a node sample i. As we include corrupted nodes
as data samples, the size of nodes to be processed is doubled to 2N (i.e., the number of corrupted
nodes is equal to the number of original nodes). From the equation above, we can easily observe
that what DGI truly does is discriminate between a group of nodes generated with correct topology
and nodes generated with corrupted topology, as shown in Figure 1. We name this self-supervised
learning paradigm "Group Discrimination". To validate the effectiveness of this paradigm, we
replace the original DGI loss with Equation 3, namely, DGIBCE and compare it with DGI on three
datasets in terms of training time, memory efficiency and model performance as shown in Table 4.
Here, DGIBCE adopts the same parameter setting as DGI. From this table, we can observe DGIBCE

dramatically improves DGI in both memory and time efficiency while it slightly enhances the model
performance of DGI. This may be contributed to the removal of multiplication operations between
node pairs, which eases the burden of computation and memory consumption.

4

Similar to DGI, the same technical defect is observed in MVGRL [11], which makes it become a
GD-based method. Extended on DGI, MVGRL [11] incorporates diffusion augmentation to inject
additional global information into model training, which enhances the model performance. The
detailed analysis for MVGRL is presented in Appendix A.4.

2.2 Definition of Group Discrimination

As mentioned above, Group Discrimination is a self-supervised GRL paradigm, which learns by dis-
criminating different groups of node samples. Specifically, the paradigm assigns different indicators
to different groups of node samples. For example, for binary group discrimination, one group is
considered as the positive group with class 1 as its indicator, whereas the other group is the negative
group, having its indicator assigned as 0. Given a graph G, the positive group usually includes node
samples generated with the original graph G or its augmented views (i.e., similar graph instances of G
created by augmentation). In contrast, the opposing group contains negative samples obtained by
corrupting G, e.g., changing its topology structure.

Based on our theoretical analysis, group discrimination is learning to avoid making ‘mistakes’ (i.e.,
bias the encoder towards avoiding mistaken samples), thus improving the quality of generated
embeddings. The analysis and an intuitive explanation are presented in Section 6.1.1 and A.2.1.

3 Methodology

We first define unsupervised node representation learning and then present the architecture of GGD,
which extends DGIBCE with additional augmentation, the projector and embedding reinforcement to
reach better model performance. Given a graph G with attributes X ∈ RN×D, where N is the number
of nodes in G, and D is the number of dimensions of X, our aim is to train a GNN encoder without
the reliance on labelling information. With the trained encoder, taking G and X as input, it can output
learned representations H ∈ RN×D′

, where D′ is the predefined hidden dimension. H can then be
used in many downstream tasks such as node classification.

Discriminate

Figure 3: The architecture of GGD. Given a graph G with a feature matrix X, we can optionally apply
augmentation on them to generate Ĝ and X̂. Then, we corrupt X̂ and Ĝ to obtain X̃ and G̃. Taking X̂
and Ĝ as input to the encoder and the projector, i.e., a multilayer perceptron, positive node samples
can be obtained. Similarly, X̃ and G̃ are fed to the same encoder and projector to generate negative
samples. The generated embeddings are aggregated to get predictions for the group discrimination
task. This process will be iteratively conducted until reaching the predefined training epochs.

3.1 Graph Group Discrimination

Based on the proposed self-supervised GRL paradigm, group discrimination, we have designed a
novel method, namely GGD, to learn node representations using a siamese network structure and a
BCE loss. The architecture of GGD is presented in Figure 3. The framework mainly consists of four
components: augmentation, corruption, a siamese GNN network, and group discrimination.

Augmentation. With a given graph G and feature matrix X, optionally, we can augment it with
augmentation techniques such as edge and feature dropout to create Ĝ and X̂. In practice, we follow the

5

augmentation proposed in GraphCL [18]. Specifically, edge dropout removes a predefined fraction of
edges, while we use node dropout to mask a predefined proportion of feature dimension, i.e., assigning
0 to replace values in randomly selected dimensions. This step is optional in implementation.

Notably, the motivation of using augmentation in our framework is distinct from contrastive learning
methods. In our study, augmentation is used to increase the difficulty of the self-supervised training
tasks. With augmentation, Ĝ and X̂ change in every training iteration, which forces the model to lessen
the dependence on the fixed pattern (i.e., unchanged edge and feature distribution) in a monotonous
graph. However, in contrastive learning, augmentation creates augmented views sharing similar
semantic information for building contrastiveness.

Corruption. Ĝ and X̂ are then corrupted to build G̃ and X̃ for the generation of node embeddings in the
negative group. We adopt the same corruption technique used in DGI [10] and MVGRL [11] (as shown
in Figure 5). The corruption technique devastates the topology structure of Ĝ by randomly changing
the order of nodes in X̂. The corrupted X̃ and G̃ can be used for producing node representations with
incorrect network connections.

The Siamese GNN. We have designed a siamese GNN network to output node representations given
a graph and its attribute. The siamese GNN network is made up of two components, which are a
GNN encoder and a projector. The backbone GNN encoder is replaceable with a variety of choices
of GNNs, e.g., GCN [19] and GAT [20]. In our work, we adopt GCN as the backbone. The projector
is a multi-layer perceptron network, whose number of layers can be adjusted. When generating node
embeddings of the positive group, the Siamese network takes Ĝ and X̂ as input. Using the same
encoder and projector, the Siamese network output the negative group with G̃ and X̃. These two
groups of node embeddings are considered as a collection of data samples with a size of 2N for
discrimination. Before conducting group discrimination, in the “aggregation” phase, all data samples
are aggregated with the same aggregation technique, e.g., sum-, mean-, and linear aggregation.

Group Discrimination. In the group discrimination process, we adopt a very simple binary cross
entropy (BCE) loss to discriminate two groups of node samples as shown in Equation 3. In our
implementation, yi is 0 and 1 for node embeddings in negative and positive groups. During model
training, the model is optimised by categorising node embeddings in the collection of data samples
into their corresponding class correctly. The loss is computed by comparing the prediction of a node
i, i.e., a scalar, with its indicator yi. With the ease of BCE loss computation, the training process of
GGD is very fast and memory efficient.

3.2 Model Inference

During training, the model is optimised via loss minimisation with Equation 3. The time complexity
analysis of GGD is provided in Appendix A.5. In the inference phase, we freeze the trained GNN
encoder gθ and obtain node embeddings Hθ with the input G.

Inspired by MVGRL [11], which strengthens the output embeddings by including additional global
information, we adopt a conceptually similar embedding reinforcement approach. Specifically,
they obtain the final embeddings by summing up embeddings from two views: the original view
comprising local information and the diffused view with global information. This operation reinforces
the final embeddings and leads to model performance improvement. Nonetheless, graph diffusion
impairs the scalability of a model [21] and hence cannot be directly applied in our embedding
generation process. To avoid the diffusion computation, we have come up with a workaround in
the virtue of the power of a graph to extract global information. The power of a graph can extend
the message passing scope of Hθ to n-hop neighbourhood, which encodes global information from
distant neighbours. It can be formulated as follows:

Hglobal
θ = AnHθ, (4)

where Hglobal
θ is the global embedding, and A is the adjacency matrix of the graph G. It is notable that

this operation can be easily decomposed with the associative property of matrix multiplication and is
easy to compute. To show the easiness of such computation, we conduct an experiment showing its
time consumption on various datasets in Appendix A.6. Finally, the final embedding can be achieved
by H = Hglobal

θ + Hθ, which can be used for downstream tasks. In our experiment, we conduct node
classification tasks. Following the common practice of GCL methods [10, 13, 15, 12, 17], these tasks
are performed by using the final embeddings H to train and test a simple logistic regression classifier.

6

4 Related Work

Graph Neural Networks (GNNs). are generalised deep neural networks for graph-structured
data. GNNs mainly have two categories, spectral-based GNNs and spatial-based GNNs. Spectral
GNNs attempt to use eigen-decomposition to obtain the spectral-based representation of graphs,
whereas spatial GNNs focus on using spatial neighbours of nodes for message passing. Extending
spectral-based methods to the spatial domain, GCN [19] utilises first-order Chebyshev polynomial
filters to approximate spectral-based graph convolution. Taking the weight of spatial neighbours in
consideration, GAT [20], improves GCN by introducing attention module in message passing. To
decouple message passing from neural networks, SGC [22] simplifies GCN by removing non-linearity
and weight matrices in graph convolution layers. However, these studies cannot handle datasets with
limited or no labels. Graph contrastive learning has been recently exploited to address this issue.

Graph Contrastive Learning (GCL). aims to alleviate the reliance on labelling information in model
training based on the concept of mutual information (MI). Specifically, GCL approaches maximise MI
between instances with similar semantic information, and minimise MI between dissimilar instances.
For example, DGI [10] builds contrastiveness between node embeddings and a summary vector
(i.e., a graph level embedding obtained by averaging all node embeddings) with a JSD estimator.
To improve DGI, MVGRL [11] and GMI [12] extends the idea of DGI by introducing multi-view
contrastiveness with diffusion augmentation, and focusing on a local scope with the first-order
neighbourhood, respectively. Adopting InfoNCE loss, GRACE [13] applies augmentation techniques
to create two augmented views and inject contrastiveness between them. Though these GCL methods
have successfully outperformed some supervised baselines in benchmark datasets, these methods
suffer from significant limitations, including time-consuming training, memory inefficiency, and poor
scalability. In contrast, GGD requires much less time in training and posses high scalability.

Scalable GNNs. Efficiency is a bottleneck for most existing GNNs to handle large graphs. To
address this challenge, there are mainly three categories of approaches: layer-wise sampling (e.g.,
GraphSage [23]), graph sampling methods such as Cluster-GCN [24] and GraphSAINT [25], and
linear models, e.g., SGC [22] and PPRGo [26]. GraphSage [23] introduces a neighbour-sampling
approach, which creates fixed-size subgraphs for each node. Underpinned by graph sampling,
Cluster-GCN [24] decomposes a large-scale graph into multiple subgraphs based on clustering, while
GraphSAINT [25] utilises light-weight graph samplers along with a normalisation technique for
biases elimination in mini-batches. Linear models, SGC [22] and PPRGo [26], decouple graph
convolution from embedding transformation (i.e., matrix multiplication with weight matrices), and
leverage Personalised PageRank to encode multi-hop neighbourhood, respectively. However, all these
methods only focus on supervised learning on graphs. For unsupervised/self-supervised learning
settings where no labelled supervision signal is available, these frameworks are not applicable.
The closest works to ours to handle large scale graph datasets under self-supervised settings are
BGRL [15] and GBT [14]. They try to improve the contrastive losses by removing negative samples.
However, BGRL [15] and GBT [14] still require much more time in training compared with GGD.

5 Experiments
Table 5: Model performance of node classifica-
tion on 5 datasets. X, A and Y represent feature,
adjacency matrix, and labels. Best performance
for each dataset is in bold. Comp and Photo refer
to Amazon Computers and Amazon Photos.

Data Method Cora CiteSeer PubMed Comp Photo

X, A, Y GCN 81.5 70.3 79.0 76.3±0.5 87.3±1.0
X, A, Y GAT 83.0±0.7 72.5±0.7 79.0±0.3 79.3±1.1 86.2±1.5
X, A, Y SGC 81.0±0.0 71.9±0.1 78.9±0.0 74.4±0.1 86.4±0.0
X, A, Y CG3 83.4±0.7 73.6±0.8 80.2±0.8 79.9±0.6 89.4±0.5

X, A DGI 81.7±0.6 71.5±0.7 77.3±0.6 75.9±0.6 83.1±0.5
X, A GMI 82.7±0.2 73.0±0.3 80.1±0.2 76.8±0.1 85.1±0.1
X, A MVGRL 82.9±0.7 72.6±0.7 79.4±0.3 79.0±0.6 87.3±0.3
X, A GRACE 80.0±0.4 71.7±0.6 79.5±1.1 71.8±0.4 81.8±1.0
X, A GraphCL 82.5±0.2 72.8±0.3 77.5±0.2 OOM 79.5±0.4
X, A BGRL 80.5±1.0 71.0±1.2 79.5±0.6 89.2±0.9 91.2±0.8
X, A GBT 81.0±0.5 70.8±0.2 79.0±0.1 88.5±1.0 91.1±0.7

X, A GGD 83.9±0.4 73.0±0.6 81.3±0.8 90.1±0.9 92.5±0.6

We evaluate the effectiveness of our model us-
ing eight benchmark datasets of different sizes.
These datasets include five small- and medium-
scale datasets: Cora, CiteSeer, PubMed [27],
Amazon Computers, and Amazon Photos [28],
as well as large-scale datasets ogbn-arxiv, ogbn-
products and ogbn-papers100M. Notably, ogbn-
papers100M is the largest dataset provided by
Open Graph Benchmark[29] for node property
prediction tasks. It has over 110 million nodes
and 1 billion edges. The statistics of these
datasets are summarised in Appendix A.7. To
ensure reproducibility, the detailed experiment settings and computing infrastructure are sum-
marised in Appendix A.8. The source code is already open sourced2.

2https://github.com/zyzisastudyreallyhardguy/Graph-Group-Discrimination

7

5.1 Evaluating on Small- and Medium-scale Datasets

Table 6: Comparison of training time per epoch
in seconds between six GCL-based methods and
GGD on five datasets. Improve means how many
times are GGD faster than baselines. ‘-’ means the
improvement range.

Method Cora CiteSeer PubMed Comp Photo

DGI 0.085 0.134 0.158 0.171 0.059
GMI 0.394 0.497 2.285 1.297 0.637
MVGRL 0.123 0.171 0.488 0.663 0.468
GRACE 0.056 0.092 0.893 0.546 0.203
GraphCL 0.073 0.085 0.123 OOM 0.188
BGRL 0.085 0.094 0.147 0.337 0.273
GBT 0.073 0.072 0.103 0.492 0.173

GGD 0.010 0.021 0.015 0.016 0.009

Improve 7.3-39.4× 3.4-23.7× 6.9-152.3× 10.7-15.3× 19.2-70.8×

We compare GGD with ten baselines includ-
ing four supervised GNNs (i.e., GCN [19],
GAT [20], SGC [22], and CG3 [30]) and
six GCL methods (i.e., DGI [10], GMI [12],
MVGRL [11], GRACE [13], BGRL [15] and
GBT [14]) on five small- and medium scale
benchmark datasets. In the experiment, we fol-
low the same data splits as [31] for Cora, Cite-
Seer and PubMed. For Amazon Computers and
Photos, we use a random split setting, which
randomly allocates 10/10/80% of data to train-
ing/validation/test set, respectively. The model
performance is measured using the averaged
classification accuracy with five results along with standard deviations and reported in Table 5.

Table 7: Comparison of memory consumption
in MBs of six GCL baselines and GGD on five
datasets.

Method Cora CiteSeer PubMed Comp Photo

DGI 4,189 8,199 11,471 7,991 4,946
GMI 4,527 5,467 14,697 10,655 5,219
MVGRL 5,381 5,429 6,619 6,645 6,645
GRACE 1,913 2,043 12,597 8,129 4,881
GraphCL 4,163 8,249 11,555 OOM 9,083
BGRL 1,627 1,749 2,299 5,069 3,303
GBT 1,651 1,799 2,461 5,037 2,641

GGD 1,475 1,587 1,629 1,787 1,637

Improve 10.7-72.6% 11.8-80.6% 27.2-85.8% 64.5-83.2% 38.0-75.4%

Accuracy. From Table 5, we can observe that
GGD generally outperforms all baselines in
all datasets. The only exception is on Cite-
Seer dataset, where the semi-supervised method,
CG3[30], slightly outperforms GGD, which still
provides the 2nd best performance. In this ex-
periment, we use the officially released code of
GraphCL [18], BGRL [15] and GBT [14] to re-
produce the result, while the other results are
sourced from previous studies [30, 1].

Efficiency and Memory Consumption. GGD is
substantially more efficient than other self-supervised baselines in time and memory consumption as
shown in Table 6 and Table 7. Remarkably, GGD is 19.2 times faster in Amazon Photos for training
time per epoch, and consumes 64.5% less memory in Amazon Computers for memory consumption
than the most efficient baseline (i.e., GBT [14]). The dramatic boost of time and memory efficiency of
GGD is contributed to the exclusion of similarity computation, which enables model training without
multiplication of node embeddings.

5.2 Evaluating on Large-scale datasets

To evaluate the scalability of GGD, we choose three large-scale datasets from Open Graph Bench-
mark [29], which are ogbn-arxiv, ogbn-products, and ogbn-papers100M. ogbn-papers100M is the
most challenging large-scale graph available in Open Graph Benchmark for node property prediction
with over 1 billion edges and 110 million nodes. Extending to extremely large graphs (i.e., ogbn-
products and ogbn-papers100M), we adopt a Neighbourhood Sampling strategy, which is described
in Appendix A.8.

Table 8: Node classification result and efficiency
comparison on ogbn-arxiv. ‘epo’ means epoch.
‘Time’ means training time per epoch (in seconds).
‘Total’ is total training time (Number of epochs ×
‘Time’). OOM indicates out-of-memory on Nvidia
A40 (48GB). Number after \ means the hidden size
of GGD.

Method Valid Test Memory Time Total

Supervised GCN 73.0±0.2 71.7±0.3 - - -

MLP 57.7±0.4 55.5±0.2 - - -
Node2vec 71.3±0.1 70.1±0.1 - - -

DGI 71.3±0.1 70.3±0.2 - - -
GRACE(10k epos) 72.6±0.2 71.5±0.1 - - -
BGRL(10k epos) 72.5±0.1 71.6±0.1 OOM (Full-graph) / /
GBT(300 epos) 71.0±0.1 70.1±0.2 14,959MB 6.47 1,941.00

GGD(1 epo\1500) 72.7±0.3 71.6±0.5 14,666MB 0.95 0.95|2,043×
GGD(1 epo\256) 71.0±0.2 70.3±0.3 4,513MB|69.8% 0.18 0.18|10,783×

ogbn-arxiv & ogbn-products. For
ogbn-arxiv, we compare GGD against four
self-supervised baselines (i.e., DGI [10],
GRACE [13], BGRL [15]and GBT [14]),
whereas BGRL [15] and GBT [14] are
selected to be compared for ogbn-products. In
addition, we include the performance of MLP,
Node2vec [32], and supervised GCN [19]
sourced from [29] in Table 8 and Table 9. For
memory and training time comparison, we
only compare GGD with the two most efficient
baselines (i.e., BGRL and GBT according to
Tables 6 and 7). In ogbn-arxiv, we reproduce
BGRL [15] and found it fails to process
ogbn-arxiv in full batch. Thus, we only compare GGD and GBT in this dataset, which can successfully
train in full-graph processing mode.

8

With the corruption technique, negative samples in the negative group are generated with incorrect
edges. Thus, by discriminating the positive group (i.e., nodes generated with ground truth edges) and
the negative group, we conjecture the model can distil valuable signals by learning how to identify
nodes generated with correct topology and output effective node embeddings. To provide explanation
to this, we present the theoretical analysis of group discrimination in the following section.

6.1.1 Theoretical Analysis of Group Discrimination

Figure 5: Corruption technique in DGI and MVGRL.

Group discrimination is learning to avoid
making ‘mistakes’ (i.e., bias the encoder to-
wards avoiding mistaken samples). To ex-
plain this point, we first present Theorem 1
and then provide an intuitive explanation for
group discrimination.

Theorem 1 Given a graph G, a corrupted
graph G̃, and a encoding network g(·), we consider the distribution of positive embeddings g(G) as
Ppos and negative embeddings g(G̃) as Pneg . Optimising the group discrimination loss is equivalent
to maximising the Jensen-Shannon divergence between Ppos and Pneg .

The proof for Theorem 1 is presented in Appendix A.2. From the theorem above, we can see
maximising the group discrimination loss L is the same as maximising JS(Ppos ∥ Pneg), where
JS represents the Jenson-Shannon divergence. Thus, by optimising the loss L, Ppos and Pneg

tend to be separated. As a result, group discrimination is intuitively learning to avoid making
‘mistakes’ (i.e., bias the encoder towards avoiding mistaken samples) as shown in Figure 6. This is
because by separating Ppos and Pneg, Ppos can gradually become similar to Poptimal, the optimal
distribution for node embeddings. As Poptimal, is disjoint with Pneg, if the generated embeddings
can avoid being similar to out-of-distribution samples, i.e., negative samples, it can be ideally closer
to Poptimal. Therefore, the trained model can improve the quality of generated node embeddings for
node samples.

7 Future Work

Become

Figure 6: Poptimal is the optimal distribution for node embed-
dings, Ppos is the distribution of positive samples, Pneg is the
distribution of negative samples, blue nodes represent negative
samples, and red nodes are samples in the optimal distribution. At
the beginning, Ppos is overlapped with Pneg . Then, Ppos is gradu-
ally separated from Pneg and ideally become closer to Poptimal.

In this paper, we have intro-
duced a new self-supervised
GRL paradigm: Group Discrim-
ination, which achieves the same
level of performance as GCL
methods with much less resource
consumption (i.e., training time
and memory). Some limitations
of this work are we still have
not explored some questions for
GD. For example, can we ex-
tend the current binary Group
Discrimination scheme (i.e., clas-
sifying nodes generated with dif-
ferent topology) to discrimina-
tion among multiple groups? Are
there any other corruption tech-
nique to create a more difficult negative group for discrimination? More importantly, with the
extremely efficient property, GD has the potential to be deployed to various real-world applications,
e.g., recommendation systems, which have limited labelling information and desire fast computation
with limited resources.

10

Acknowledgments and Disclosure of Funding

This research was partially supported by an Australian Research Council (ARC) Future Fellowship
(FT210100097).

This work is supported in part by NSF under grants III-1763325, III-1909323, III-2106758, and
SaTC-1930941.

References
[1] Ming Jin, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou, and Shirui Pan. Multi-scale contrastive

siamese networks for self-supervised graph representation learning. IJCAI, 2021.

[2] Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and Jing Jiang. Federated learning from pre-trained
models: A contrastive learning approach. In First Workshop on Pre-training: Perspectives, Pitfalls, and
Paths Forward at ICML 2022.

[3] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fedproto:
Federated prototype learning across heterogeneous clients. In AAAI Conference on Artificial Intelligence,
volume 1, page 3, 2022.

[4] He Zhang, Bang Wu, Xingliang Yuan, Shirui Pan, Hanghang Tong, and Jian Pei. Trustworthy graph neural
networks: Aspects, methods and trends. arXiv preprint arXiv:2205.07424, 2022.

[5] He Zhang, Bang Wu, Xiangwen Yang, Chuan Zhou, Shuo Wang, Xingliang Yuan, and Shirui Pan. Projective
ranking: A transferable evasion attack method on graph neural networks. In CIKM, 2021.

[6] Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation learning on
continuous-time dynamic graphs. In Advances in Neural Information Processing Systems, 2022.

[7] Ming Jin, Yu Zheng, Yuan-Fang Li, Siheng Chen, Bin Yang, and Shirui Pan. Multivariate time series
forecasting with dynamic graph neural odes. arXiv preprint arXiv:2202.08408, 2022.

[8] Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly detection on
attributed networks via contrastive self-supervised learning. TNNLS, 2021.

[9] Yizhen Zheng, Vincent Lee, Zonghan Wu, and Shirui Pan. Heterogeneous graph attention network for
small and medium-sized enterprises bankruptcy prediction. In PAKDD, pages 140–151. Springer, 2021.

[10] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm.
Deep graph infomax. ICLR, 2019.

[11] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on graphs.
In ICML, pages 4116–4126. PMLR, 2020.

[12] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou Huang.
Graph representation learning via graphical mutual information maximization. In WWW, pages 259–270,
2020.

[13] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. ICML Workshop on Graph Representation Learning and Beyond, 2020.

[14] Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V Chawla. Graph barlow twins: A self-supervised
representation learning framework for graphs. arXiv preprint arXiv:2106.02466, 2021.

[15] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Veličković, and
Michal Valko. Bootstrapped representation learning on graphs. ICLR2021, 2021.

[16] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap
your own latent: A new approach to self-supervised learning. NIPS, 2020.

[17] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In ICML, pages 12310–12320, 2021.

[18] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. NIPS, 33:5812–5823, 2020.

11

[19] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
ICLR, 2017.

[20] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. ICLR, 2018.

[21] Yizhen Zheng, Ming Jin, Shirui Pan, Yuan-Fang Li, Hao Peng, Ming Li, and Zhao Li. Towards graph
self-supervised learning with contrastive adjusted zooming. arXiv preprint arXiv:2111.10698, 2021.

[22] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In ICML, pages 6861–6871. PMLR, 2019.

[23] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, pages 1025–1035, 2017.

[24] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In KDD, pages 257–266, 2019.

[25] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. ICLR, 2019.

[26] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rózem-
berczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with approximate
pagerank. In KDD, pages 2464–2473, 2020.

[27] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[28] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of
graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

[29] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. NIPS, 2020.

[30] Sheng Wan, Shirui Pan, Jian Yang, and Chen Gong. Contrastive and generative graph convolutional
networks for graph-based semi-supervised learning. AAAI, 2020.

[31] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In ICML, pages 40–48. PMLR, 2016.

[32] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD, pages
855–864, 2016.

[33] Behzad Kamgar-Parsi, Behrooz Kamgar-Parsi, and Menashe Brosh. Distribution and moments of the
weighted sum of uniforms random variables, with applications in reducing monte carlo simulations. Journal
of Statistical Computation and Simulation, 52(4):399–414, 1995.

[34] Jean Daunizeau. Semi-analytical approximations to statistical moments of sigmoid and softmax mappings
of normal variables. arXiv preprint arXiv:1703.00091, 2017.

[35] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

12

	Introduction
	Rethinking Representative GCL Methods
	Rethinking GCL Methods
	Definition of Group Discrimination

	Methodology
	Graph Group Discrimination
	Model Inference

	Related Work
	Experiments
	Evaluating on Small- and Medium-scale Datasets
	Evaluating on Large-scale datasets

	Explore Group Discrimination
	Exploring Corruption
	Theoretical Analysis of Group Discrimination

	Future Work

