Rethinking and Scaling Up Graph Contrastive
Learning: An Extremely Efficient Approach with
Group Discrimination

Yizhen Zheng', Shirui Pan?} Vincent CS Lee!, Yu Zheng?, Phillip S. Yu?*,
Monash University, 2Griffith University, La Trobe University, 4 University of Illinons at Chicago
yizhen.zhengl@monash.edu, s.pan@griffth.edu.au, vincent.cs.lee@monash.edu
yu.zheng@latrobe.edu.au, psyu@uic.edu

Abstract

Graph contrastive learning (GCL) alleviates the heavy reliance on label information
for graph representation learning (GRL) via self-supervised learning schemes.
The core idea is to learn by maximising mutual information for similar instances,
which requires similarity computation between two node instances. However,
GCL is inefficient in both time and memory consumption. In addition, GCL
normally requires a large number of training epochs to be well-trained on large-
scale datasets. Inspired by an observation of a technical defect (i.e., inappropriate
usage of Sigmoid function) commonly used in two representative GCL works,
DGI and MVGRL, we revisit GCL and introduce a new learning paradigm for
self-supervised graph representation learning, namely, Group Discrimination (GD),
and propose a novel GD-based method called Graph Group Discrimination (GGD).
Instead of similarity computation, GGD directly discriminates two groups of node
samples with a very simple binary cross-entropy loss. In addition, GGD requires
much fewer training epochs to obtain competitive performance compared with
GCL methods on large-scale datasets. These two advantages endow GGD with very
efficient property. Extensive experiments show that GGD outperforms state-of-the-
art self-supervised methods on eight datasets. In particular, GGD can be trained in
0.18 seconds (6.44 seconds including data preprocessing) on ogbn-arxiv, which
is orders of magnitude (10,000+) faster than GCL baselines while consuming
much less memory. Trained with 9 hours on ogbn-papers100M with billion edges,
GGD outperforms its GCL counterparts in both accuracy and efficiency.

1 Introduction

Graph Neural Networks (GNNs) have been widely-adopted in learning representations for graph-
structured data. By utilising message-passing over the topology of a graph, GNNs can learn effective
low-dimensional node embeddings, which can be used for a variety of downstream tasks such as node
classification [1]. GNNs have been further applied in diverse domains, e.g., federated learning [2} /3],
trustworthy systems [4,|5], dynamic graphs [6,/7] and anomaly detection [8,|9].

However, many GNNs adopt a supervised learning manner to train models with label information,
which is expensive and labour-intensive to collect in real-world. To address this issue, a few studies
(e.g., DGI [10], MVGRL [11], GMI [12], and GRACE [13]]) borrow the idea of contrastive learning
from computer vision (CV), and introduce graph contrastive learning (GCL) methods for self-
supervised GRL. The core idea of these methods is to maximise the mutual information (MI) between
an anchor node and its positive counterparts, sharing similar semantic information while doing the

*Corresponding Author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

opposite for negative counterparts as shown in Figure[I[a). Nonetheless, such a scheme relies on
similarity calculation in contrastive loss computation. Additionally, GCL normally requires a large
number of training epochs to be well-trained on large-scale datasets. Thus, when the size of the
dataset is large, these methods require a significant amount of time and resources to be well-trained.

Positive | Positive Negative
Thgugh a few GCL works attempt Maximise—p @ B | Group Group
to improve graph contrastive learning ; |—='—| J’
Dmcnmmat

with specially designed schemes, e.g., @ E Anchor

BGRL [15] and GBT [14], they are still A Negative |
inefficient and require high time con- L= = -Minimise-- 9@ B
sumption for model training. Inspired
by BYOL [16], BGRL [15] adopts a
bootstrapping scheme and remove neg-
ative node pairs. It only contrasts a
node from the online network (i.e., up-
dated with gradient) to its correspond-
ing embedding from the target network
(i.e., updated momentumly with stop
gradient). Based on Barlow-Twins [17],
GBT [14] borrows the idea of redundancy-reduction principle and utilises a cross-correlation-based
loss to build contrastiveness between embedding dimensions.

o% % g

(b) Group Discrimination

(a)Graph Contrastive Learning

Figure 1: The left subfigure shows the GCL learning
scheme. Red line indicates MI maximisation between two
nodes, each of which € R'*P while blue line indicates
the opposite operation. The right subfigure presents Group
Discrimination. It discriminates positive and negative node
samples, each of which € R *1,

To boost training efficiency of self-supervised
GRL, inspired by an observation of a technical
defect (i.e., inappropriate application of Sigmoid
function) in two representative GCL studies, we
introduce a novel learning paradigm, namely,
Group Discrimination (GD). Instead of similar-
ity computation, GD directly discriminates a
group of positive nodes from a group of neg-
ative nodes, as shown in Figure EKb). Specifi-
cally, GD defines node samples generated with
original graph as the positive group, while node
samples obtained with corrupted topology are

Table 1: Training time in seconds comparison be-
tween GGD and GBT [14] (i.e., the most efficient
GCL baseline as shown in section on ogbn-
arxiv. Number in brackets means the hidden size.
‘Pre’, ‘Tr’ and ‘Epo’ indicate preprocessing time,
training time per epoch, and the number of epochs
for training GNNs. ‘Total(E)’ and ‘Total(T)’ are
total end-to-end training time (i.e., including pre-
processing), which equals to (Pre+ Epo x Tr) and
total training time, which is (Epo x Tr). ‘Imp(E)’
and ‘Imp(T)’ indicate how many times GGD im-
prove on ‘Total(E)’ and ‘Total(T)’. ‘Acc’ is aver-

regarded as the negative group. Then, GD trains
the model by classifying these node samples
into the correct group with a very simple bi-
nary cross-entropy loss. By doing so, the model
can extract valuable self-supervised signals from
learning the edge distribution of a graph. Com-
pared with GCL, GD enjoys numerous merits including extremely fast training, fast convergence
(e.g., 1 epoch to be well-trained on large-scale datasets), and high scalability while achieving SOTA
performance with existing GCL approaches.

aged accuracy result on test set over five runs.

Method \ Pre Tr Epo Total(E) Imp(E)
GBT(256) | 5.52 6.47 300 1,946.52

GGD(256) | 626 0.18 1 644
GGD(1,500) | 626 0.95 1 7.21

Total(T) Imp(T) | Acc
1,941.00 | 70.1

0.18 10,783.334 70.3
095 2,043.16x | 71.6

302.25 x
269.96 x

Using GD as backbone, we design a new self-supervised GRL model with the Siamese structure
called Graph Group Discrimination (GGD). Firstly, we can optionally augment a given graph with
augmentation techniques, e.g., feature and edge dropout. Then, the augmented graph is fed into a
GNN encoder and a projector to obtain embeddings for the positive group. After that, the augmented
feature is corrupted with node shuffling (i.e., disarranging the order of nodes in the feature matrix)
to disrupt the topology of a graph and input to the same network for obtaining embeddings of the
opposing group. Finally, the model is trained by discriminating these two groups of node samples.
The contributions of this paper are three-fold: 1) We re-examine existing GCL approaches (e.g.,
DGI [10] and MVGRL [11]), and we introduce a novel and efficient self-supervised GRL paradigm,
namely, Group Discrimination (GD). 2) Based on GD, we propose a new self-supervised GRL model,
GGD, which is fast in training and convergence, and possess high scalability. 3) We conduct extensive
experiments on eight datasets, including an extremely large dataset, ogbn-papers100M with billion
edges. The experiment results show that our proposed method reaches state-of-the-art performance
while consuming much less time and memory than baselines, e.g., 10783 x faster than the most
efficient GCL baseline with its best selected epochs number [14]], as shown in Table

2 Rethinking Representative GCL Methods

In this section, we analyse a technical defect - —

observed in two representative GCL methods, = E maximise
DGI [10] and MVGRL [11]]. Based on the tech- _E =

nical defect, we show that mutual information FL
maximisation behind these two approaches is Corrupt |—Poulln —>5s
not the contributed factor to contrastive learn- r— 0

ing, but a new paradigm, group discrimination. | = E J'
Finally, from the analysis, we provide the defi- L= (E); minimise

nition of this new concept.

Figure 2: The architecture of DGI. Cubes indicate
2.1 Rethinking GCL Methods node embeddings. Red and blue lines represent MI
maximisation and minimisation, respectively. §
and G denote the original graph and the corrupted
graph. s is the summary vector.

DGI [10] is the first work introducing con-
trastive learning into GRL. However, due to a
technical defect observed in their official open-
source code, we found it is essentially not work-
ing as the authors thought (i.e., learning via MI interaction).

Constant Summary Vector. As shown in Figure[2] the original idea of DGI is to maximise the MI
(i.e., the red line) between a node a and the summary vector s, which is obtained by averaging all
node embeddings in a graph G. Also, to regularise the model training, DGI corrupts G by shuffling the

node order of the input feature matrix to get §. Then, generated embeddings of G serve as negative
samples, which are pulled apart from the summary vector s via MI minimisation.

Nonetheless, in the implementation of

. . SO . Table 2: Summary vector statistics on three datasets with
DG, a Sigmoid function is inappropri- ry

different activation functions including ReLU, LeakyReLLU

ately applied on the summary vector . . ;
gencrated from a GNN whose weight (i.e., LReLU shown below), PReL.U, and Sigmoid.

is initialised with Xavier initialisation. Activation | Statistics Cora CiteSeer PubMed
As aresult, elements in the summary Mean 0.50 050 0.50
vector are very close to the same value, ~ <VHREEIPRELU B e et e
We have validated this finding on three Mean 0.62 0.62 0.62
datasets, Cora, CiteSeer and PubMed. Sigmoid Range Yot s 802

The experiment result is shown in Ta-
ble[2] which shows that summary vec-
tors in all datasets are approximately a constant vector eI, where € is a scalar and I is an all-ones
vector (i.e., €e=0.50 with ReLU/LReLU/PReLU and €=0.62 with Sigmoid as non-linear activation in
these datasets).

To theoretically explain this phenomenon, we present Table 3: The experiment result on three
the proposition below: datasets with changing value from O to 1.0
for the summary vector.

Proposition 1 Given G = {X € RV*P A € RV*N},

and a GCN encoder ¢(-) initialised with Xavier ini- P2t 0 02 04 06 08 10

L N . Cora 70.340.7 82.440.2 82.3+0.3 82.5:£0.4 82.3+£0.3 82.5£0.1
tialisation, we can obtain its embedding H = 0(g(G)), CieSeer 618208 71740.6 71940.7 716209 717410 71.6+0.8

where O'() isa non_linear activationfunction. By ap- PubMed 68.3+1.5 77.840.5 77.94+0.8 77.7£0.9 77.4+1.1 77.2£0.9

plying the sigmoid function o;4(-) to the summary vector s (i.e., the average row vector of H), values
in 0i4(S) approximately become 0.5 with ReLU/LReLU/PReLU or 0.62 with Sigmoid as non-linear
activation of g(+) at the initialisation stage.

Based on this proposition, we can see these summary vectors can lose variance and become a constant
vector at the initialisation stage. Based on Table[2] we can see the constant in the summary vector
remain unchanged, and the information loss still occurs even if the GNN encoder is trained. Thus, we
conjecture the training process won'’t affect the constant value much in the summary vector of DGI.
The proof for the proposition is presented in Appendix A.1.

To evaluate the effect of € to constant summary vector, we vary the scalar € (from O to 1 increment
by 0.2) to change the constant summary vector and report the model performance (i.e., averaged
accuracy on five runs) in Table 3]

From this table, we can see, except for 0, the model performance is trivially affected by e for constant
summary vector. When the summary vector is set to 0, the model performance plummets because
node embeddings become all 0 when multiplying with such vector and the model converges to the
trivial solution. As the summary vector only has a trivial effect on model training, the hypothesis of
DGI [10] on learning via contrastiveness between anchor nodes and the summary instance does not
hold, which raises a question to be investigated: What truly leads to the success of DGI?

Simplifying DGI. To answer the question, we predigest the objective function proposed in DGI (i.e.,
maximising the MI between h; and the summary vector s) by using an all-ones vector as the summary
vector s (i.e., setting s = el = I) and simplifying the discriminator D(+) (i.e., removing the learnable
weight matrix). Then, we rewrite the objective function to the following form:

N
1 ~
Lpar = ﬁ(E log D(h;,s) + log(1 — D(h;,s))),
i=1

1 N
ﬁ(;k’g(‘” -s) +log(1 —h; -5)),)

1

N
= ﬁ(; log(sum(h;)) + log(1 — sum(fll))),

where - is the vector multiplication operation, IV is the number of nodes in a graph, h; € R**? and
h; € R'*P are the original and corrupted embedding for node i, sum(-) is the summation function,
and D(-) is a discriminator for bilinear transformation, which can be formulated as follows:

D(hi,S) = Usig(hi -W- S), (2)

where W is a learnable weight matrix and o;g(-) Table 4: Comparison of the original DGI and
is the sigmoid function. Specifically, as shown in DGIz¢ g in terms of accuracy (averaged on
Equation by removing the weight matrix W, h; is five runs), memory efficiency (in MB) and
directly multiplied with s. As s is a vector containing training time (in seconds). Number after |

only one, the multiplication of h; and s is equivalent shows how many times have DGlpcp im-
to summing h; itself directly. From this form, we proved on top of DGI.

can see that the multiplication of h; and the summary

vector only serves as an aggregation function (i.e., _Fxperiment Method Cora CiteSeer PubMed
s : . Accuracy DGI 81.7£0.6 71.5£0.7 71.3+0.6
summation aggregation) to aggregate h;. To explore DGlpce 825403 717406 77.740.5
the effect of other aggregation functions, we replaceé Memoy par 4189MB 8199MB 1147IMB
the summation function in Equation |1| with other DGlscr 1473MBIG.8% 158TMBIS0.6% 1629MBIS5. 8%
: L Time DGI 0.085s 0.134s 0.158s
aggregation methods such as mean-, minimum-, and DGl 0.010s8.5x 0.021si64x 0.015510.5x
maximum- pooling, and present the experiment result
in Appendix A.3.

Based on Equation[I} we can rewrite it to a very simple binary cross entropy loss if we also include
corrupted nodes as data samples and setting §; = agg(h;), where agg(-) stands for aggregation:

9N
1 . N
LpcE = _72N(§ yilog gi + (1 —y;) log(1 — 4;)), 3)
i=1

where y; € R*! means the indicator for node i (i.e., if node i is corrupted, y; is 0, otherwise it is
1), and §; € RY*! represents the prediction for a node sample i. As we include corrupted nodes
as data samples, the size of nodes to be processed is doubled to 2N (i.e., the number of corrupted
nodes is equal to the number of original nodes). From the equation above, we can easily observe
that what DGI truly does is discriminate between a group of nodes generated with correct topology
and nodes generated with corrupted topology, as shown in Figure[I| We name this self-supervised
learning paradigm "Group Discrimination”. To validate the effectiveness of this paradigm, we
replace the original DGI loss with Equation 3| namely, DGIpc g and compare it with DGI on three
datasets in terms of training time, memory efficiency and model performance as shown in Table[4]
Here, DGl g adopts the same parameter setting as DGI. From this table, we can observe DGlgc g
dramatically improves DGI in both memory and time efficiency while it slightly enhances the model
performance of DGI. This may be contributed to the removal of multiplication operations between
node pairs, which eases the burden of computation and memory consumption.

Similar to DGI, the same technical defect is observed in MVGRL [11], which makes it become a
GD-based method. Extended on DGI, MVGRL [11] incorporates diffusion augmentation to inject
additional global information into model training, which enhances the model performance. The
detailed analysis for MVGRL is presented in Appendix A.4.

2.2 Definition of Group Discrimination

As mentioned above, Group Discrimination is a self-supervised GRL paradigm, which learns by dis-
criminating different groups of node samples. Specifically, the paradigm assigns different indicators
to different groups of node samples. For example, for binary group discrimination, one group is
considered as the positive group with class 1 as its indicator, whereas the other group is the negative
group, having its indicator assigned as 0. Given a graph G, the positive group usually includes node
samples generated with the original graph § or its augmented views (i.e., similar graph instances of §
created by augmentation). In contrast, the opposing group contains negative samples obtained by
corrupting G, e.g., changing its topology structure.

Based on our theoretical analysis, group discrimination is learning to avoid making ‘mistakes’ (i.e.,
bias the encoder towards avoiding mistaken samples), thus improving the quality of generated
embeddings. The analysis and an intuitive explanation are presented in Section|6.1.1/and A.2.1.

3 Methodology

We first define unsupervised node representation learning and then present the architecture of GGD,
which extends DGI g with additional augmentation, the projector and embedding reinforcement to
reach better model performance. Given a graph G with attributes X € RV*? where N is the number
of nodes in G, and D is the number of dimensions of X, our aim is to train a GNN encoder without
the reliance on labelling information. With the trained encoder, taking § and X as input, it can output
learned representations H € RV* P ', where D’ is the predefined hidden dimension. H can then be
used in many downstream tasks such as node classification.

X Positive
§ ¢ e |
Augmentation - @ - Encoder ™\ Projector ™_/ Aggregation - | .. [] |
Edge/Feat Dropout ® O
(Optional) L— * —
t l Corrupt Shared Weight Shared Weight Shared Aggregation Discriminate
¢ g o
X X
i . ® o
E @ Encoder "\ Projector ™\, Aggregation Y
[N
L 1
Negative

Figure 3: The architecture of GGD. Given a graph § with a feature matrix X, we can optionally apply
augmentatlon on them to generate G and X. Then, we corrupt X and § to obtain X and §. Taking X
and G as input to the encoder and the projector, i.e., a multilayer perceptron, positive node samples

can be obtained. Similarly, X and § are fed to the same encoder and projector to generate negative
samples. The generated embeddings are aggregated to get predictions for the group discrimination
task. This process will be iteratively conducted until reaching the predefined training epochs.

3.1 Graph Group Discrimination

Based on the proposed self-supervised GRL paradigm, group discrimination, we have designed a
novel method, namely GGD, to learn node representations using a siamese network structure and a
BCE loss. The architecture of GGD is presented in Figure 3| The framework mainly consists of four
components: augmentation, corruption, a siamese GNN network, and group discrimination.

Augmentation. With a given graph G and feature matrix X, optlonally, we can augment it with
augmentation techniques such as edge and feature dropout to create GandX. In practice, we follow the

augmentation proposed in GraphCL [18]. Specifically, edge dropout removes a predefined fraction of
edges, while we use node dropout to mask a predefined proportion of feature dimension, i.e., assigning
0 to replace values in randomly selected dimensions. This step is optional in implementation.

Notably, the motivation of using augmentation in our framework is distinct from contrastive learning
methods. In our study, augmentation is used to increase the difficulty of the self-supervised training

tasks. With augmentation, G and X change in every training iteration, which forces the model to lessen
the dependence on the fixed pattern (i.e., unchanged edge and feature distribution) in a monotonous
graph. However, in contrastive learning, augmentation creates augmented views sharing similar
semantic information for building contrastiveness.

Corruption. G and X are then corrupted to build G and X for the generation of node embeddings in the
negative g up We adopt the same corruption technique used in DGI [10] and MVGRL [11] (as shown

in Figure|5)). The corruptlon technique devastates the topology structure of G by randomly changing

the order of nodes in X. The corrupted X and G can be used for producing node representations with
incorrect network connections.

The Siamese GNN. We have designed a siamese GNN network to output node representations given
a graph and its attribute. The siamese GNN network is made up of two components, which are a
GNN encoder and a projector. The backbone GNN encoder is replaceable with a variety of choices
of GNNg, e.g., GCN [19] and GAT [20]. In our work, we adopt GCN as the backbone. The projector
is a multi-layer perceptron network, whose number of layers can be adjusted When generating node

embeddings of the positive group, the Siamese network takes G and X as input. Using the same

encoder and projector, the Siamese network output the negative group with G and X. These two
groups of node embeddings are considered as a collection of data samples with a size of 2N for
discrimination. Before conducting group discrimination, in the “aggregation” phase, all data samples
are aggregated with the same aggregation technique, e.g., sum-, mean-, and linear aggregation.

Group Discrimination. In the group discrimination process, we adopt a very simple binary cross
entropy (BCE) loss to discriminate two groups of node samples as shown in Equation (3| In our
implementation, y; is 0 and 1 for node embeddings in negative and positive groups. During model
training, the model is optimised by categorising node embeddings in the collection of data samples
into their corresponding class correctly. The loss is computed by comparing the prediction of a node
1, 1.e., a scalar, with its indicator y;. With the ease of BCE loss computation, the training process of
GGD is very fast and memory efficient.

3.2 Model Inference

During training, the model is optimised via loss minimisation with Equation[3] The time complexity
analysis of GGD is provided in Appendix A.5. In the inference phase, we freeze the trained GNN
encoder gy and obtain node embeddings Hy with the input G.

Inspired by MVGRL [11], which strengthens the output embeddings by including additional global
information, we adopt a conceptually similar embedding reinforcement approach. Specifically,
they obtain the final embeddings by summing up embeddings from two views: the original view
comprising local information and the diffused view with global information. This operation reinforces
the final embeddings and leads to model performance improvement. Nonetheless, graph diffusion
impairs the scalability of a model [21] and hence cannot be directly applied in our embedding
generation process. To avoid the diffusion computation, we have come up with a workaround in
the virtue of the power of a graph to extract global information. The power of a graph can extend
the message passing scope of Hy to n-hop neighbourhood, which encodes global information from
distant neighbours. It can be formulated as follows:

Hzlobal — Aan, (4)

where Hgl‘)b“l is the global embedding, and A is the adjacency matrix of the graph G. It is notable that
this operation can be easily decomposed with the associative property of matrix multiplication and is
easy to compute. To show the easiness of such computation, we conduct an experiment showing its
time consumption on various datasets in Appendix A.6. Finally, the final embedding can be achieved
by H = Hgl"b“l + Hy, which can be used for downstream tasks. In our experiment, we conduct node
classification tasks. Following the common practice of GCL methods [10}[13,[15,[12}[17], these tasks
are performed by using the final embeddings H to train and test a simple logistic regression classifier.

4 Related Work

Graph Neural Networks (GNNs). are generalised deep neural networks for graph-structured
data. GNNs mainly have two categories, spectral-based GNNs and spatial-based GNNs. Spectral
GNNs attempt to use eigen-decomposition to obtain the spectral-based representation of graphs,
whereas spatial GNNs focus on using spatial neighbours of nodes for message passing. Extending
spectral-based methods to the spatial domain, GCN [19] utilises first-order Chebyshev polynomial
filters to approximate spectral-based graph convolution. Taking the weight of spatial neighbours in
consideration, GAT [20], improves GCN by introducing attention module in message passing. To
decouple message passing from neural networks, SGC [22] simplifies GCN by removing non-linearity
and weight matrices in graph convolution layers. However, these studies cannot handle datasets with
limited or no labels. Graph contrastive learning has been recently exploited to address this issue.

Graph Contrastive Learning (GCL). aims to alleviate the reliance on labelling information in model
training based on the concept of mutual information (MI). Specifically, GCL approaches maximise MI
between instances with similar semantic information, and minimise MI between dissimilar instances.
For example, DGI [10] builds contrastiveness between node embeddings and a summary vector
(i.e., a graph level embedding obtained by averaging all node embeddings) with a JSD estimator.
To improve DGI, MVGRL [11]] and GMI [12] extends the idea of DGI by introducing multi-view
contrastiveness with diffusion augmentation, and focusing on a local scope with the first-order
neighbourhood, respectively. Adopting InfoNCE loss, GRACE [13]] applies augmentation techniques
to create two augmented views and inject contrastiveness between them. Though these GCL methods
have successfully outperformed some supervised baselines in benchmark datasets, these methods
suffer from significant limitations, including time-consuming training, memory inefficiency, and poor
scalability. In contrast, GGD requires much less time in training and posses high scalability.

Scalable GNNs. Efficiency is a bottleneck for most existing GNNs to handle large graphs. To
address this challenge, there are mainly three categories of approaches: layer-wise sampling (e.g.,
GraphSage [23]), graph sampling methods such as Cluster-GCN [24] and GraphSAINT [25], and
linear models, e.g., SGC [22] and PPRGo [26]. GraphSage [23] introduces a neighbour-sampling
approach, which creates fixed-size subgraphs for each node. Underpinned by graph sampling,
Cluster-GCN [24] decomposes a large-scale graph into multiple subgraphs based on clustering, while
GraphSAINT [25] utilises light-weight graph samplers along with a normalisation technique for
biases elimination in mini-batches. Linear models, SGC [22] and PPRGo [26], decouple graph
convolution from embedding transformation (i.e., matrix multiplication with weight matrices), and
leverage Personalised PageRank to encode multi-hop neighbourhood, respectively. However, all these
methods only focus on supervised learning on graphs. For unsupervised/self-supervised learning
settings where no labelled supervision signal is available, these frameworks are not applicable.
The closest works to ours to handle large scale graph datasets under self-supervised settings are
BGRL [15] and GBT [14]. They try to improve the contrastive losses by removing negative samples.
However, BGRL [15] and GBT [14] still require much more time in training compared with GGD.
Table 5: Model performance of node classifica-
tion on 5 datasets. X, A and Y represent feature,
adjacency matrix, and labels. Best performance
for each dataset is in bold. Comp and Photo refer
to Amazon Computers and Amazon Photos.

S Experiments

We evaluate the effectiveness of our model us-
ing eight benchmark datasets of different sizes.

These datasets include five small- and medium- Data | Method | Cora CiteSeer PubMed Comp Photo

scale datasets: Cora, CiteSeer, PubMed [27], Xx,A,Y| GCN | 815 703 790 76.3+0.5 87.3£1.0
X,A,Y | GAT | 83.040.7 72.5+0.7 79.04£0.3 79.3+1.1 86.2+1.5

Amazon Computers, and Amazon Pho.tos [28], X,A,Y | SGC | 81.0£0.0 71.920.1 78.940.0 74.42:0.1 86.4::0.0
as well as large-scale datasets ogbn-arxiv, ogbn- X,A,Y | CG3 | 83.420.7 73.6£0.8 80.2+£0.8 79.9:£0.6 89.4£0.5
products and ogbn-papers100M. Notably, ogbn- x,A DGI | 81.70.6 71.5£0.7 77.3£0.6 75.940.6 83.1+0.5
- : X,A GMI | 82.740.2 73.040.3 80.140.2 76.840.1 85.1£0.1

papers100M is the largest dataset provided by 'y | MvGRL| 829107 72.650.7 79.440.3 79.040.6 §7.340.3
Open Graph Benchmark][29]] for node property X, A GRACE | 80.040.4 71.740.6 79.5+1.1 71.8+0.4 81.8£1.0
. s X,A | GraphCL| 82.5+0.2 72.840.3 77.540.2 OOM 79.5:0.4
prediction tasks. It has over 110 million nodes ¥’y BGRL | 80.5£1.0 71.0£1.2 79.5+0.6 89.2£0.9 91.2£0.8
and 1 billion edges. The statistics of these X, A GBT 81.0£0.5 70.840.2 79.0+0.1 88.5+1.0 91.1+0.7

datasets are summarised in Appendix A.7. To X, A ‘ GGD ‘ 83.9+0.4 73.04+0.6 81.3£0.8 90.1+0.9 92.5+0.6

ensure reproducibility, the detailed experiment settings and computing infrastructure are sum-
marised in Appendix A.8. The source code is already open sourced

“https://github.com/zyzisastudyreallyhardguy/Graph-Group-Discrimination

5.1 Evaluating on Small- and Medium-scale Datasets

We compare GGD with ten baselines includ- Table 6: Comparison of training time per epoch
ing four supervised GNNs (i.e., GCN [19], in seconds between six GCL-based methods and
GAT [20], SGC [22], and CG3 [30]) and GGD on five datasets. Improve means how many
six GCL methods (i.e., DGI [10], GMI [12], times are GGD faster than baselines. ‘-> means the
MVGRL [11]], GRACE [13], BGRL [15] and improvement range.

GBT [14]) on five small- and medium scale Method Cora CiteSeer PubMed Comp Photo
benchmark datasets. In the experiment, we fol- gI\GAI] 8233 8& ggg (l)g; 8223
low the same data splits as [31] for Cora, Cite- wmverL 0123 0.171 0.488 0.663 0.468
Seer and PubMed. For Amazon Computers and graer o008 fyiees pest oo o2
Photos, we use a random split setting, Whl?h BRI 0.085 0.004 o7 03 073
randomly allocates 10/10/80% of data to train- — o010 ooa1 ools o016 0000

ing/validation/test set, respectively. The model o 73394x 34237x 69-1523% 107-153% 192-708%
performance is measured using the averaged
classification accuracy with five results along with standard deviations and reported in Table|[5]

Accuracy. From Table 5| we can observe that Table 7: Comparison of memory consumption

GGD generally outperforms all baselines in jn MBs of six GCL baselines and GGD on five
all datasets. The only exception is on Cite- dJatasets.

Seer dataset, where the semi-supervised method, —emea

s A 3 Cora CiteSeer PubMed Comp Photo

CG3[30], Sllghﬂy outperforms GGD, which still DGI 4,189 3,199 11,471 7.991 4,946

3 3 GMI 4,527 5,467 14,697 10,655 5,219

proyldes the 2nd best performance. In this ex- YyG 5381 Pt P bons o

periment, we use the officially released code of GRACE 1913 2043 12,597 3129 4881
y Tapl) N ., X

GraphCL [18], BGRL [15] and GBT [14] tore- scrL 1.627 1749 2,299 5,069 3303

. {¢
produce the result, while the other results are —°°T 1631 1799 2461 2057 2641
GGD 1,475 1,587 1,629 1,787 1,637

sourced fme previous studies [30’ 1] Improve 10.7-72.6% 11.8-80.6% 27.2-85.8% 64.5-83.2% 38.0-75.4%

Efficiency and Memory Consumption. GGD is

substantially more efficient than other self-supervised baselines in time and memory consumption as
shown in Table[6|and Table[7] Remarkably, GGD is 19.2 times faster in Amazon Photos for training
time per epoch, and consumes 64.5% less memory in Amazon Computers for memory consumption
than the most efficient baseline (i.e., GBT [14]]). The dramatic boost of time and memory efficiency of
GGD is contributed to the exclusion of similarity computation, which enables model training without
multiplication of node embeddings.

5.2 Evaluating on Large-scale datasets

To evaluate the scalability of GGD, we choose three large-scale datasets from Open Graph Bench-
mark [29], which are ogbn-arxiv, ogbn-products, and ogbn-papers100M. ogbn-papers100M is the
most challenging large-scale graph available in Open Graph Benchmark for node property prediction
with over 1 billion edges and 110 million nodes. Extending to extremely large graphs (i.e., ogbn-
products and ogbn-papers100M), we adopt a Neighbourhood Sampling strategy, which is described

in Appendix A.8.) . .
Table 8: Node classification result and efficiency

ogbn-arxiv & ogbn-products. For comparison on ogbn-arxiv. ‘epo’ means epoch.
ogbn-arxiv, we compare GGD against four ‘Time’ means training time per epoch (in seconds).
self-supervised baselines (i.e., DGI [10], ‘Total’ is total training time (Number of epochs x
GRACE [13], BGRL [15]and GBT [14]), ‘Time’). OOM indicates out-of-memory on Nvidia

whereas BGRL [15] and GBT [14] are A40 (48GB). Number after \ means the hidden size
selected to be compared for ogbn-products. In of GGD.

addition, we include the performance of MLP, —jmea Valid Test | Memory Time Total
Node2vec [32], and supervised GCN [19] supervisecdGON 73,0402 717403 |
sourced from [29] in Table[8]and Table[9] For e e
d t . . t . Node2vec 71.3£0.1 70.1£0.1
memory and training time comparison, we T 050s
only compare GGD with the two most efficient gggfﬁgl?k ev(;w it I Fulleraph) ;
. . . epos. .540.1 71.6+0. ‘ull-grapl
baselines (i.e., BGRL and GBT according t0 GBTG00epos) 71.0+0.1 70.1+0.2 14,950MB 647 1941.00

14,666MB 0.95 0.9512,043x

Tables[6|and[7). In ogbn-arxiv, we reproduce 6 epo\1500) 72703 71.6+0.5
4,513MBI69.8% 0.18 0.18110,783x

BGRL [15] and found it fails to process GO cpo\B0 T2
ogbn-arxiv in full batch. Thus, we only compare GGD and GBT in this dataset, which can successfully
train in full-graph processing mode.

Table 9: Node classification result and efficiency
comparison on ogbn-products.
Method Valid Test \ Memory Time Total
Supervised GCN 92.0+0.0 75.6:+0.2 |

From Table[8]and Table[9] we can see GGD re-
markably achieves the state-of-the-art perfor-
mance using only one epoch to train. As aresult,

GGD is 10,783 times faster than the most efficient —yp 75,5000 61.140.0
baseline. i.e., GBT [14], on total training time to ~_Nede2wee 0.040.0 688400

; : : BGRL (100 cpos) 781421 640416 29303MB S3ml6s 5,326md0s
reach the desirable performance in ogbn-arxiv. Gur(oepss 850401 70.5i0‘4‘ 20419MB 48m38s 4.863m20s

Please note that the number of epoches in our GOD(1 epo) 90.9+0.5 75.7+0.4| 4,391MBI78.5%12md6s 12m46s1381 x
experiment is consistent with the optimal choice

of this hyperparameter specified in GBT [14]. For ogbn-products, we are 381 x faster than GBT
on total training time. Notably, our performance is significantly higher than GCL baselines using
100 epochs (i.e., 6% and 5.2% improvement on GBT in validation and test set, respectively)
with only one epoch training in this dataset. In addition, we compare the convergence speed among
GGD, BGRL [15] and GBT on ogbn-arxiv and ogbn-products, which are shown in Figure [4]
For ogbn-arxiv, BGRL is running using batched processing with neighbour sampling. This
figure shows the preeminence of our GGD in convergence speed as GGD can be well-trained with
only one epoch (i.e., reaching the peak model performance in the first epoch and staying stable with
increased epochs). In contrast, the other two baselines require comparatively much more epochs
to gradually improve their performance. Compared with GCL baselines, GGD achieves much faster
convergence via Group Discrimination. We conjecture this is because GD-based method focuses
on the general edge distribution of graphs instead of node-specific information. Inversely, GCL
methods can suffer from convergence inefficiency as they may be easily distracted from too-detailed
node-specific information during training.

ogbn-papers100M. We further com-
pare GGD with BGRL [15] and
GBT [14] on ogbn-papers100M, the
largest OGB dataset with billion scale

edges. Other self-supervised learn- A el el
ing algorithms such as DGI and — BGRL — BGRL
GMlI fail to scale to such a large 6551730 40 60 80 100 > 510 15 20
graph with a reasonable batch size Epoches Epoches

T (a) ogbn-arxiv (b) ogbn-products
g‘:)-:l;[aii?.ofvgzcin?{gf}?ijt{;)r;lﬂ;t?tgeg Figure 4: Convergence speed comparison among GGD,

sinole epoch of trainine in Table BGRL[15] and GBT [14]]. X-axis means number of epochs,
;luegto thlfe extreme qcalegof the dataset while Y-axis represents the accuracy on test set.

and the limitation of our available re-

sources. From the table, we can observe that GGD outperforms the two GCL counterparts, BGRL
and GBT in both accuracy and efficiency. Specifically, GGD achieves 60.2 in accuracy while
BGRL and GBT reach 59.3 and 58.9 in test set, respectively. With only one epoch, these two
algorithms may not be well trained. However, training each epoch of these two requires over 1 day
and if we would like to train them for 100 epochs, then we will need 100+ GPU days, which is
prohibitively impractical for general practitioners. In contrast, GGD can be trained in about 9 hours to
achieve a good result for this dataset, which is more appealing in practice.

-1
—_
n

76.0

 —

I sl S 66.0

Accuracy
o
o0
i
Accuracy

6 Explore Group Discrimination

In this section, we explore the corruption technique in GGD and provide the theoretical analysis of
group discrimination.

6.1 Exploring Corruption

Firstly, we explore the corruption technique used Table 10: Node classification result and efficiency
in DGI and MVGRL [L1], which is shown comparison on ogbn-papers100M.

in Figure These two studies corrupt the topol- Method Validation Test | Memory Time
ogy of a given graph G by shuffling the feature supervised SGC 633202 66.520.2|

matrix X. This is because by changing the node mLp 472403 49.6£0.3 ‘
- . . v
order of X, the neighbouring structure of G is =~ _Node2wee 256200 58100
: BGRL (1epoch) 59.3+0.5 62.1+0.3| 14,057TMB 26h28m
completely Changt?d, e.g., neighbours of node @ gpr cpoch) 589404 615+0.5| 13,185MB 24h3%m
become node b neighbours. GGD(1epoch) 60.2+0.3 63.5:0.5| 4,10SMBI68.9% 9h13mi2.7x

With the corruption technique, negative samples in the negative group are generated with incorrect
edges. Thus, by discriminating the positive group (i.e., nodes generated with ground truth edges) and
the negative group, we conjecture the model can distil valuable signals by learning how to identify
nodes generated with correct topology and output effective node embeddings. To provide explanation
to this, we present the theoretical analysis of group discrimination in the following section.

6.1.1 Theoretical Analysis of Group Discrimination

Group discrimination is learning to avoid - E M . 7 =N

making ‘mistakes’ (i.e., bias the encoder to- _):_ @ ~ (e Corrupt _i(_ @ 7 @

wards avoiding mistaken samples). To ex- !_g_ la] | # | —S— b |
lain this point, we first present Theorem[1] 4 5

plain this point, we first p enl] E5 6) == o

and then provide an intuitive explanation for —_— = — —_—

group discrimination.
Figure 5: Corruption technique in DGI and MVGRL.

Theorem 1 Given a graph G, a corrupted
graph G, and a encoding network g(-), we consider the distribution of positive embeddings g(9) as

P,.s and negative embeddings g(G) as P,eq. Optimising the group discrimination loss is equivalent
to maximising the Jensen-Shannon divergence between Ppo5 and Pyg.

The proof for Theorem |1|is presented in Appendix A.2. From the theorem above, we can see
maximising the group discrimination loss £ is the same as maximising J.S(Ppos || Preg). Where
J S represents the Jenson-Shannon divergence. Thus, by optimising the loss £, Pps and Pyeg4
tend to be separated. As a result, group discrimination is intuitively learning to avoid making
‘mistakes’ (i.e., bias the encoder towards avoiding mistaken samples) as shown in Figure[6] This is
because by separating P, and P4, Ppos can gradually become similar to P, ptimai, the optimal
distribution for node embeddings. As FPyptimai, is disjoint with P4, if the generated embeddings
can avoid being similar to out-of-distribution samples, i.e., negative samples, it can be ideally closer
to Poptimal. Therefore, the trained model can improve the quality of generated node embeddings for
node samples.

7 Future Work

In this paper, we have intro-
duced a new self-supervised
GRL paradigm: Group Discrim-
ination, which achieves the same
level of performance as GCL
methods with much less resource
consumption (i.e., training time
and memory). Some limitations
of this work are we still have
not explored some questions for Figure 6: P,,timq i the optimal distribution for node embed-
GD. For example, can we ex- dings, P, is the distribution of positive samples, P,,., is the
tend the current binary Group distribution of negative samples, blue nodes represent negative
Discrimination scheme (i.e., clas- samples, and red nodes are samples in the optimal distribution. At
sifying nodes generated with dif- the beginning, P, is overlapped with P,,,. Then, P, is gradu-
ferent topology) to discrimina- ally separated from P, and ideally become closer to Poptimai-

tion among multiple groups? Are

there any other corruption tech-

nique to create a more difficult negative group for discrimination? More importantly, with the
extremely efficient property, GD has the potential to be deployed to various real-world applications,
e.g., recommendation systems, which have limited labelling information and desire fast computation
with limited resources.

Become

10

Acknowledgments and Disclosure of Funding

This research was partially supported by an Australian Research Council (ARC) Future Fellowship
(FT210100097).

This work is supported in part by NSF under grants III-1763325, III-1909323, I1I-2106758, and
SaTC-1930941.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

[12]

(13]

[14]

(15]

(16]

(17]

(18]

Ming Jin, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou, and Shirui Pan. Multi-scale contrastive
siamese networks for self-supervised graph representation learning. IJCAI, 2021.

Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and Jing Jiang. Federated learning from pre-trained
models: A contrastive learning approach. In First Workshop on Pre-training: Perspectives, Pitfalls, and
Paths Forward at ICML 2022.

Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fedproto:
Federated prototype learning across heterogeneous clients. In AAAI Conference on Artificial Intelligence,
volume 1, page 3, 2022.

He Zhang, Bang Wu, Xingliang Yuan, Shirui Pan, Hanghang Tong, and Jian Pei. Trustworthy graph neural
networks: Aspects, methods and trends. arXiv preprint arXiv:2205.07424, 2022.

He Zhang, Bang Wu, Xiangwen Yang, Chuan Zhou, Shuo Wang, Xingliang Yuan, and Shirui Pan. Projective
ranking: A transferable evasion attack method on graph neural networks. In CIKM, 2021.

Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation learning on
continuous-time dynamic graphs. In Advances in Neural Information Processing Systems, 2022.

Ming Jin, Yu Zheng, Yuan-Fang Li, Siheng Chen, Bin Yang, and Shirui Pan. Multivariate time series
forecasting with dynamic graph neural odes. arXiv preprint arXiv:2202.08408, 2022.

Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly detection on
attributed networks via contrastive self-supervised learning. TNNLS, 2021.

Yizhen Zheng, Vincent Lee, Zonghan Wu, and Shirui Pan. Heterogeneous graph attention network for
small and medium-sized enterprises bankruptcy prediction. In PAKDD, pages 140-151. Springer, 2021.

Petar Velickovi¢, William Fedus, William L Hamilton, Pietro Lid, Yoshua Bengio, and R Devon Hjelm.
Deep graph infomax. ICLR, 2019.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on graphs.
In ICML, pages 4116—4126. PMLR, 2020.

Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou Huang.
Graph representation learning via graphical mutual information maximization. In WWW, pages 259-270,
2020.

Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. ICML Workshop on Graph Representation Learning and Beyond, 2020.

Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V Chawla. Graph barlow twins: A self-supervised
representation learning framework for graphs. arXiv preprint arXiv:2106.02466, 2021.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Veli¢kovié, and
Michal Valko. Bootstrapped representation learning on graphs. /CLR2021, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap
your own latent: A new approach to self-supervised learning. NIPS, 2020.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In ICML, pages 12310-12320, 2021.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. NIPS, 33:5812-5823, 2020.

11

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
ICLR, 2017.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. ICLR, 2018.

Yizhen Zheng, Ming Jin, Shirui Pan, Yuan-Fang Li, Hao Peng, Ming Li, and Zhao Li. Towards graph
self-supervised learning with contrastive adjusted zooming. arXiv preprint arXiv:2111.10698, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In ICML, pages 6861-6871. PMLR, 2019.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, pages 1025-1035, 2017.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In KDD, pages 257-266, 2019.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. /CLR, 2019.

Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek R6zem-
berczki, Michal Lukasik, and Stephan Giinnemann. Scaling graph neural networks with approximate
pagerank. In KDD, pages 2464-2473, 2020.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 29(3):93-93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. Pitfalls of
graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. NIPS, 2020.

Sheng Wan, Shirui Pan, Jian Yang, and Chen Gong. Contrastive and generative graph convolutional
networks for graph-based semi-supervised learning. AAAI, 2020.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In ICML, pages 40-48. PMLR, 2016.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD, pages
855-864, 2016.

Behzad Kamgar-Parsi, Behrooz Kamgar-Parsi, and Menashe Brosh. Distribution and moments of the
weighted sum of uniforms random variables, with applications in reducing monte carlo simulations. Journal
of Statistical Computation and Simulation, 52(4):399—414, 1995.

Jean Daunizeau. Semi-analytical approximations to statistical moments of sigmoid and softmax mappings
of normal variables. arXiv preprint arXiv:1703.00091, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

12

	Introduction
	Rethinking Representative GCL Methods
	Rethinking GCL Methods
	Definition of Group Discrimination

	Methodology
	Graph Group Discrimination
	Model Inference

	Related Work
	Experiments
	Evaluating on Small- and Medium-scale Datasets
	Evaluating on Large-scale datasets

	Explore Group Discrimination
	Exploring Corruption
	Theoretical Analysis of Group Discrimination

	Future Work

