
SE-GSL: A General and Efective Graph Structure Learning
Framework through Structural Entropy Optimization
Dongcheng Zou Hao Peng∗ Xiang Huang
Beihang University Beihang University Beihang University

Beijing, China Beijing, China Beijing, China
zoudongcheng@buaa.edu.cn penghao@buaa.edu.cn huang.xiang@buaa.edu.cn

Renyu Yang Jianxin Li Jia Wu
Beihang University Beihang University Macquarie University

Beijing, China Beijing, China Sydney, Australia
renyu.yang@buaa.edu.cn lijx@buaa.edu.cn jia.wu@mq.edu.au

Chunyang Liu Philip S. Yu
Didi Chuxing University of Illinois Chicago
Beijing, China Chicago, USA

liuchunyang@didiglobal.com psyu@uic.edu

ABSTRACT
Graph Neural Networks (GNNs) are de facto solutions to struc-
tural data learning. However, it is susceptible to low-quality and
unreliable structure, which has been a norm rather than an excep-
tion in real-world graphs. Existing graph structure learning (GSL)
frameworks still lack robustness and interpretability. This paper
proposes a general GSL framework, SE-GSL, through structural
entropy and the graph hierarchy abstracted in the encoding tree.
Particularly, we exploit the one-dimensional structural entropy to
maximize embedded information content when auxiliary neigh-
bourhood attributes is fused to enhance the original graph. A new
scheme of constructing optimal encoding trees are proposed to
minimize the uncertainty and noises in the graph whilst assur-
ing proper community partition in hierarchical abstraction. We
present a novel sample-based mechanism for restoring the graph
structure via node structural entropy distribution. It increases the
connectivity among nodes with larger uncertainty in lower-level
communities. SE-GSL is compatible with various GNN models
and enhances the robustness towards noisy and heterophily struc-
tures. Extensive experiments show signifcant improvements in
the efectiveness and robustness of structure learning and node
representation learning.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583453

CCS CONCEPTS
• Computing methodologies → Artifcial intelligence; • Math-
ematics of computing → Graph algorithms; • Information sys-
tems → Data mining.

KEYWORDS
Graph structure learning, structural entropy, graph neural network

ACM Reference Format:
Dongcheng Zou, Hao Peng, Xiang Huang, Renyu Yang, Jianxin Li, Jia Wu,
Chunyang Liu, and Philip S. Yu. 2023. SE-GSL: A General and Efective Graph
Structure Learning Framework through Structural Entropy Optimization.
In Proceedings of the ACM Web Conference 2023 (WWW ’23), April 30–May
04, 2023, Austin, TX, USA. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3543507.3583453

1 INTRODUCTION
Graph Neural Networks (GNNs) [49, 59] have become the corner-
stone and de facto solution of structural representation learning.
Most of the state-of-the-art GNN models employ message pass-
ing [12] and recursive information aggregation from local neigh-
borhoods [17, 31, 41, 52] to learn node representation. These models
have been advancing a variety of tasks, including node classifca-
tion [29, 45, 50], node clustering [2, 32], graph classifcation [30, 54],
and graph generation [55], etc.

GNNs are extremely sensitive to the quality of given graphs and
thus require resilient and high-quality graph structures. However,
it is increasingly difcult to meet such a requirement in real-world
graphs. Their structures tend to be noisy, incomplete, adversarial,
and heterophily (i.e., the edges with a higher tendency to connect
nodes of diferent types), which can drastically weaken the repre-
sentation capability of GNNs [6, 25, 28]. Recent studies also reveal
that even a minor perturbation in the graph structure can lead
to inferior prediction quality [3, 38, 57]. Additionally, GNNs are
vulnerable to attacks since the raw graph topology is decoupled
from node features, and attackers can easily fabricate links between
entirely diferent nodes [38, 57].

499

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zou and Peng, et al.

Semantic

level 0

Semantic

level 1

Semantic

level 2

Students

Teachers ··· ··· ···

Encoding tree

level 1

level 0

Abstract

Explain

level 2

Abstract

Class 1

Office

Class 2

(a) (b)

Root

S T

S.1 S.2

Figure 1: An illustrative example of the hierarchical com-
munity (semantics) in a simple social network. (1) Vertices
and edges represent the people and their interconnectivity
(e.g., common locations, interests, occupations). There are
diferent abstraction levels, and each community can be di-
vided into sub-communities in a fner-grained manner (e.g.,
students are placed in diferent classrooms while teachers
are allocated diferent ofces). The lowest abstraction will
come down to the individuals with own attributes, and the
highest abstraction is the social network system. (b) An en-
coding tree is a natural form to represent and interpret such
a multi-level hierarchy.

To this end, Graph Structure Learning (GSL) [5, 16, 33, 39, 44,
61, 62] becomes the recent driving force for learning superior task-
relevant graph topology and for enhancing the resilience and ro-
bustness of node representation. The existing works focus on jointly
optimizing GNN whilst imposing regularization on refned graph
structures. Typical methods include metric-based [5, 23, 44], proba-
bilistic sampling [8, 34, 58], and learnable structure approach [16],
etc. While promising, GNNs and GSL still have the following issues.
i) robustness to system noises and heterophily graphs. While many
GSL models strive to fuse node features and topological features
through edge reconstruction (e.g., add, prune, or reweight) [44, 57,
62], additional noises and disassortative connections will be in-
evitably involved in the fused structure due to the unreliable priori
topology and node embeddings, which would further degrade the
GNNs representation capability [22]. ii) model interpretability. Fully
parameterizing the adjacency matrix will incur a non-negligible
cost of parameter storage and updating and is liable to low model
interpretability [13]. Although some studies on the improved GNN
interpretability [15, 53], few works can efectively explain the topol-
ogy evolution during graph structure learning. Therefore, fusing
the node and topological features in a noisy system environment to
obtain GNN-friendly graphs by exploiting inherent graph structures
is still an underexplored problem [48].

In this paper, we present SE-GSL, a general and efective graph
structure learning framework that can adaptively optimize the topo-
logical graph structure in a learning-free manner and can achieve
superior node representations, widely applicable to the mainstream
GNN models. This study is among the frst attempts to marry the
structural entropy and encoding tree theory [18] with GSL, which
ofers an efective measure of the information embedded in an arbi-
trary graph and structural diversity. The multi-level semantics of a
graph can be abstracted and characterized through an encoding tree.
Encoding tree [18, 20, 56] represents a multi-grained division of
graphs into hierarchical communities and sub-communities, thus

providing a pathway to better interpretability. Fig. 1 showcases
how such graph semantics are hierarchically abstracted. Specif-
cally, we frst enhance the original graph topology by incorporating
the vertex similarities and auxiliary neighborhood information via
the �-Nearest Neighbors (�-NN) approach, so that noise can be
better identifed and diminished. This procedure is guided by the
�-selector that maximizes the amount of embedded information
in the graph structure. We then propose a scheme to establish
an optimal encoding tree to minimize the graph uncertainty and
edge noises whilst maximizing the knowledge in the encoding tree.
To restore the entire graph structure that can be further fed into
GNN encoders, we recover edge connectivity between related ver-
tices from the encoding tree taking into account the structural
entropy distribution among vertices. The core idea is to weaken
the association between vertices in high-level communities whilst
establishing dense and extensive connections between vertices in
low-level communities. The steps above will be iteratively con-
ducted to co-optimize both graph structure and node embedding
learning. SE-GSL1 is an interpretable GSL framework that efec-
tively exploits the substantive structure of the graph. We conduct
extensive experiments and demonstrate signifcant and consistent
improvements in the efectiveness of node representation learning
and the robustness of edge perturbations.

Contribution highlights: i) SE-GSL provides a generic GSL
solution to improve both the efectiveness and robustness of the
mainstream GNN approaches. ii) SE-GSL ofers a new perspective
of navigating the complexity of attribute noise and edge noise by
leveraging structural entropy as an efective measure and encoding
tree as the graph hierarchical abstraction. iii) SE-GSL presents a se-
ries of optimizations on the encoding tree and graph reconstruction
that can not only explicitly interpret the graph hierarchical mean-
ings but also reduce the negative impact of unreliable fusion of node
features and structure topology on the performance of GNNs. iv)
We present a visualization study to reveal improved interpretability
when the graph structure is evolutionary.

2 PRELIMINARIES
This section formally reviews the basic concepts of Graph, Graph
Neural Networks (GNNs), Graph Structure Learning (GSL), and
Structural Entropy. Important notations are given in Appendix A.1.

2.1 Graph and Graph Structure Learning
Graph and Community. Let � = {� , �, � } denote a graph, where
� is the set of � vertices2, � ⊆ � × � is the edge set, and � ∈ R�×�

refers to the vertex attribute set. A ∈ R�×� denotes the adjacency
matrix of � , where A� � is referred to as the weight of the edge
between vertex � and vertex � in � . Particularly, if � is unweighted,
A ∈ {0, 1}�×� and A� � only indicate the existence of the edges. In
our work, we only consider the undirected graph, where A� � = A�� .
For any vertex �� , the degree of �� is defned as � (��) =

Í
� A� � , and

� = diag(� (�1), � (�2), . . . , � (��)) refers to the degree matrix.
Suppose that P = {�1, �2, . . . , �� } is a partition of � . Each �� is

called a community (aka. module or cluster), representing a group

1code is available at: https://github.com/RingBDStack/SE-GSL
2A vertex is defned in the graph and a node in the tree.

500

SE-GSL: A General and Efective Graph Structure Learning Framework through Structural Entropy Optimization WWW ’23, April 30–May 04, 2023, Austin, TX, USA

of vertices with commonality. Due to the grouping nature of a real-
world network, each community of the graph can be hierarchically
split into multi-level sub-communities. Such hierarchical community
partition (i.e., hierarchical semantic) of a graph can be intrinsically
abstracted as the encoding tree [18, 20], and each tree node repre-
sents a specifc community. Take Fig. 1 as an example: at a high
abstraction (semantic) level, the entire graph can be categorized as
two coarse-grained communities, i.e., teachers (T) and students (S).
Students can be identifed as sub-communities like S.1 and S.2, as
per the class placement scheme.
Graph Structure Learning (GSL). For any given graph � , the goal
of GSL [61] is to simultaneously learn an optimal graph structure
�∗ optimized for a specifc downstream task and the correspond-
ing graph representation � . In general, the objective of GSL can
be summarized as L��� = L���� (�, �) + � L��� (�,�∗, �), where
L���� refers to a task-specifc objective with respect to the learned
representation � and the ground truth � . L��� imposes constraints
on the learned graph structure and representations, and � is a
hyper-parameter.

2.2 Structural Entropy
Diferent from information entropy (aka. Shannon entropy) that
measures the uncertainty of probability distribution in information
theory [37], structural entropy [18] measures the structural system
diversity, e.g., the uncertainty embedded in a graph.
Encoding Tree. Formally, the encoding tree T of graph � = (� , �)
holds the following properties: (1) The root node � in T has a label
�� = � , � represents the set of all vertices in � . (2) Each non-root
node � has a label �� ⊂ � . Furthermore, if � is a leaf node, �� is a
singleton with one vertex in � . (3) For each non-root node � , its
parent node in � is denoted as � − . (4) For each non-leaf node � ,
its �-th children node is denoted as � ⟨� ⟩ ordered from left to right
as � increases. (5) For each non-leaf node � , assuming the number
of children � is � , all vertex subset �� ⟨�⟩ form a partition of �� ,Ð� Ñ� written as �� = �=1�� ⟨�⟩ and �=1�� ⟨�⟩ = ∅. If the encoding tree’s
height is restricted to � , we call it �-level encoding tree. Entropy
measures can be conducted on diferent encoding trees.
One-dimensional Structural Entropy. In a single-level encod-
ing tree T , its structural entropy degenerates to the unstructured
Shannon entropy, which is formulated as: ∑ �� ��

�1 (�) = − log2 , (1)
��� (�) ��� (�)

� ∈�

where �� is the degree of vertex � , and ��� (�) is the sum of the
degrees of all vertices in � . According to the fundamental re-
search [18], one-dimensional structural entropy � 1 (�) measures
the uncertainty of vertex set � in � , which is also the upper bound
on the amount of information embedded in � .
High-dimensional Structural Entropy. For the encoding tree
T , we defne high-dimensional structural entropy of � as:

�� (�) = min {� T (�)}, (2)
∀T:ℎ���ℎ� (T)≤� ∑ ∑ �� V�

� T (�) = � T (� ; �) = − log2 , (3)
��� (�) V� −

� ∈T,�≠� � ∈T,�≠�

where �� is the sum weights of the cut edge set [�� ,�� /��], i.e., all
edges connecting vertices inside �� with vertices outside �� . V� is
the sum of degrees of all vertices in �� . � T (� ; �) is the structural
entropy of node � and � T (�) is the structural entropy of T . �� (�)
is the �-dimensional structural entropy, with the optimal encoding
tree of �-level .

3 OUR APPROACH
This section presents the architecture of SE-GSL, then elaborate
on how we enhance the graph structure learning by structural
entropy-based optimization of the hierarchical encoding tree.

3.1 Overview of SE-GSL
Fig. 2 depicts the overall pipeline. At the core of SE-GSL is the
structure optimization procedure that transforms and enhances
the graph structure. More specifcally, it encompasses multi-stages:
graph structure enhancement, hierarchical encoding tree genera-
tion, and sampling-based structure reconstruction before an itera-
tive representation optimization.

First, the original topological information is integrated with ver-
tex attributes and the neighborhood in close proximity. Specifcally,
we devise a similarity-based edge reweighting mechanism and in-
corporate �-NN graph structuralization to provide auxiliary edge
information. The most suitable � is selected under the guidance
of the one-dimensional structural entropy maximization strategy
(§ 3.2). Upon the enhanced graph, we present a hierarchical ab-
straction mechanism to further suppress the edge noise and reveal
the high-level hierarchical community structure (encoding tree)
(§ 3.3). A novel sampling-based approach is designed to build new
graph topology from the encoding tree, particularly by restoring
the edge connectivity from the tree hierarchy (§ 3.4). The core
idea is to weaken the association between high-level communi-
ties whilst establishing dense and extensive connections within
low-level communities. To this end, we transform the node struc-
tural entropy into probability, rejecting the deterministic threshold.
Through multi-iterative stochastic sampling, it is more likely to
fnd favorable graph structures for GNNs. Afterward, the rebuilt
graph will be fed into the downstream generic GNN encoders. To
constantly improve both the node representation and the graph
structure, the optimization pipeline is iterated for multiple epochs.
The training procedure of SE-GSL is summarized in Appendix A.4.

3.2 Graph Structure Enhancement
To fully incorporate vertex attributes and neighborhood informa-
tion in the graph structure, we perform feature fusion and edge
reweighting so that the topological structure, together with the
informative vertex adjacent similarity, can be passed on to the en-
coding tree generator. To begin with, we calculate the pair-wise
similarity matrix � ∈ R |� |× |� | among vertices in graph � . To better
depict the linear correlation between two vertex attributes, we take
the Pearson correlation coefcient (PCC) as the similarity measure
in the experiments, i.e.,

� ((�� − ��) (� � − � �))
�� � = PCC(�� , � �) = , (4)

�� � �

501

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zou and Peng, et al.

k-NN structure

Topology structure

reweight

PCC

N
o

d
e-

p
a
ir

sa
m

p
li

n
g

H
ig

h
-d

im
en

si
o
n

al

st
ru

ct
u

ra
l

en
tr

o
p
y

m
in

im
iz

a
ti

o
n

Connect node pair

G
N

N

en
co

d
er

It
e
ra

ti
v
e

u
p

d
at

e

P
re

d
ic

ti
o
n

Encoding tree

···

···

Optimized graphOptimized graph

···

···

Vertex

attributes

···

···

Vertex

attributes

Similarity

matrix

Similarity

matrix

Fusion graph

Select k=3

One-dimensional

structural entropy

k-selector

Original dataOriginal data

IV. Node representation

learning

I. Graph structure enhancement

II. Hierarchical encoding tree

generation
III. Sample-based Graph reconstruction

G
fG

Node pairs

(,)

(,)

(,)

···

(,)

(,)

(,)

(,)

···

(,)

'G

···

···

Optimized

attributes

···

···

Optimized

attributes

ijw

S

()k

knnG

1 ()()k

fGH

Figure 2: The overall architecture of SE-GSL.

∈ R1×� where �� and � � are the attribute vectors of vertices �
and � , respectively. �� and �� denote the mean value and variance
of �� , and � (·) is the dot product function. Based on � , we can
intrinsically construct the �-NN graph ���� = {� , ���� } where
each edge in ���� represents a vertex and its � nearest neighbors
(e.g., the edges in red in Fig 2). We fuse ���� and the original � to
� � = {� , �� = � ∪ ���� }.

A key follow-up step is pinpointing the most suitable number �
of nearest neighbors. An excessive value of � would make � � over-
noisy and computationally inefcient, while a small � would result
in insufcient information and difculties in hierarchy extraction.
As outlined in § 2.2, a larger one-dimensional structural entropy
indicates more information that � � can potentially hold. Hence, we
aim to maximize the one-dimensional structural entropy �1 (� �)
to guide the selection of � for larger encoding information. In
practice, we gradually increase the integer parameter � , generate

(�) (�)the corresponding � and compute �1 (�). Observably, when
� �

(�)
� reaches a threshold �� , �1 (�) comes into a plateau without

�
noticeable increase. This motivates us to regard this critical point
�� as the target parameter. The �-selector algorithm is depicted
in Appendix A.5. In addition, the edge �� � between �� and � � is
reweighted as: ∑ 1 1

�� � = �� � + �, � = · �� � , (5)
2|� | |� | 1<�, � <�

where � is a modifcation factor that amplifes the trivial edge
weights and thus makes the �-selector more sensitive to noises.

3.3 Hierarchical Encoding Tree Generation
Our methodology of abstracting the fused graph into a hierarchy
is inspired by the structural entropy theory [18, 20]. We intend
to minimize the graph uncertainty (i.e., edge noises) and maxi-
mize the knowledge embedded (e.g., optimal partition) in the high-
dimensional hierarchy. Correspondingly, the objective of structural
entropy minimization is to fnd out an encoding tree T that min-
imizes � T (� �) defned in Eq. 3. Due to the difculty in graph
semantic complexity quantifcation, we restrict the optimization
objective to the �-level tree with a hyperparameter � . The optimal
�-dimensional encoding tree is represented as:

T∗ = arg min (� T (�)). (6)
∀T:ℎ���ℎ� (T)≤�

To address this optimization problem, we design a greedy-based
heuristic algorithm to approximate �� (�). To assist the greedy
heuristic, we defne two basic operators:

Defnition 1. Combining operator: Given an encoding tree T
for � = (� , �), let � and � be two nodes in T sharing the same
parent � . The combining operator CBT (�, �) updates the encoding
tree as: � ← � − ; � ← � − ; � ← � − . A new node � is inserted
between � and its children �, � .

Defnition 2. Lifting operator: Given an encoding tree T for
� = (� , �), let � , � and � be the nodes in T , satisfying � − = � and
� − = � . The lifting operator LFT (�, �) updates the encoding tree
as: � ← � − ; IF :�� = ∅, THEN :drop(�) . The subtree rooted at � is
lifted by placing itself as � ’s child. If no more children exist after
lifting, � will be deleted from T .

502

SE-GSL: A General and Efective Graph Structure Learning Framework through Structural Entropy Optimization WWW ’23, April 30–May 04, 2023, Austin, TX, USA

In light of the high-dimensional structural entropy minimization
principle [20], we frst build a full-height binary encoding tree by
greedily performing the combining operations. Two children of
the root are combined to form a new partition iteratively until
the structural entropy is no longer reduced. To satisfy the height
restriction, we further squeeze the encoding tree by lifting subtrees
to higher levels. To do so, we select and conduct lifting operations
between a non-root node and its parent node that can reduce the
structural entropy to the maximum. This will be repeated until
the encoding tree height is less than � and the structural entropy
can no longer be decreased. Eventually, we obtain an encoding
tree with a specifc height � with minimal structural entropy. The
pseudo-code is detailed in Appendix A.6.

3.4 Sample-based Graph Reconstruction
The subsequent step is to restore the topological structure from the
hierarchy whilst guaranteeing the established hierarchical seman-
tics in optimal encoding tree T∗ . The key to graph reconstruction
is determining which edges to augment or weaken. Intuitively, the
nodes in real-life graphs in diferent communities tend to have
diferent labels. The work [63] has demonstrated the efective-
ness of strengthening intra-cluster edges and reducing inter-cluster
edges in a cluster-awareness approach to refne the graph topology.
However, for hierarchical communities, simply removing cross-
community edges will undermine the integrity of the higher-level
community. Adding edges within communities could also incur
additional edge noises to lower-level partitioning.

We optimize the graph structure with community preservation
by investigating the structural entropy of deduction between two
interrelated nodes as the criterion of edge reconstruction:

Defnition 3. Structural entropy of deduction: Let T be an en-
coding tree of � . We defne the structural entropy of the deduction
from non-leaf node � to its descendant � as: ∑

� T (� ; (�, �]) = � T (� ; �). (7)
�,�� ⊆�� ⊂��

This node structure entropy defnition exploits the hierarchical
structure of the encoding tree and ofers a generic measure of top-
down deduction to determine a community or vertex in the graph.

From the viewpoint of message passing, vertices with higher
structural entropy of deduction produce more diversity and uncer-
tainty and thus require more supervisory information. Therefore,
such vertices need expanded connection felds during the graph
reconstruction to aggregate more information via extensive edges.
To achieve this, we propose an analog sampling-based graph recon-
struction method. The idea is to explore the node pairs at the leaf
node level (the lowest semantic level) and stochastically generate an
edge for a given pair of nodes with a certain probability associated
with the deduction structural entropy.

Specifcally, for a given T , assume the node � has a set of child
nodes {� ⟨1⟩ , � ⟨2⟩ , . . . , � ⟨�⟩ }. The probability of the child � ⟨� ⟩ is de-
fned as: � (� ⟨� ⟩) = �� (� T (� � ; (�, � ⟨� ⟩])), where � is the root of T
and �� (·) represents a distribution function. Take sofmax function

as an example, the probability of � ⟨� ⟩ can be calculated as:

exp(� T (� � ; (�, � ⟨� ⟩]))
� (� ⟨� ⟩) = . (8)Í�

=1exp(� T (� � ; (�, � ⟨ � ⟩])) �

The probability of a non-root node can be acquired recursively.
To generate new edges, we sample leaf node pairs by a top-down
approach with a single sampling fow as follows:
(1) For the encoding tree (or subtree) with root node � , two difer-
ent child nodes � ⟨� ⟩ and � ⟨ � ⟩ are selected by sampling according
to � (� ⟨� ⟩) and � (� ⟨ � ⟩). Let �1 ← � ⟨� ⟩ and �2 ← � ⟨ � ⟩ (2) If �1 is a
non-leaf node, we perform sampling once on the subtree rooted

⟨� ⟩ ⟨� ⟩at �1 to get � , then update �1 ← � . The same is operated on 1 1
�2. (3) After recursively performing step (2), we sample two leaf
nodes �1 and �2, while adding the edge connecting vertex �1 = ��1 ′and �2 = ��2 into the edge set � ′ of graph � . To establish exten-
sive connections at all levels, multiple samplings are performed
on all encoding subtrees. For each subtree rooted at � , we conduct
independent samplings for � × � times, where � is the number of
� ’s children, and � is a hyperparameter that positively correlated
with the density of reconstructed graph. For simplicity, we adopt a
uniform � for all subtrees. Separately setting and tuning � of each
semantic level for precise control is also feasible.

3.5 Time Complexity of SE-GSL
The overall time complexity is � (�2 + � + � log2 �), in which �
is the number of nodes. Separately, in § 3.2, the time complexity
of calculating similarity matrix is � (�2) and of �-selector is � (�).
According to [18], the optimization of a high-dimensional encoding
tree in § 3.3 costs the time complexity of � (� log2 �). As for the
sampling process in § 3.4, the time complexity can be proved as
� (2�). We report the time cost of SE-GSL in Appendix A.3.

4 EXPERIMENTAL SETUP
Software and Hardware. All experiments are conducted on a
Linux server with GPU (NVIDIA RTX A6000) and CPU (Intel i9-
10980XE), using PyTorch 1.12 and Python 3.9.
Datasets. We experiment on nine open graph benchmark datasets,
including three citation networks (i.e., Cora, Citeseer, and Pubmed),
two social networks (i.e., PT and TW), three website networks from
WebKB (i.e., Cornell, Texas, and Wisconsin), and a co-occurrence
network. Their statistics are summarized in Appendix A.2.
Baseline and backbone models. We compare SE-GSL with base-
lines including general GNNs (i.e., GCN, GAT, GCNII, Grand) and
graph learning/high-order neighborhood awareness methods (i.e.
MixHop, Dropedge, Geom-GCN, GDC, GEN, H2GCN). Four classic
GNNs (GCN, GAT, GraphSAGE, APPNP) are chosen as the backbone
encoder that SE-GSL works upon. Details are in Appendix A.3.
Parameter settings. For SE-GSL with various backbones, we uni-
formly adopt two-layer GNN encoders. To avoid over-ftting, We
adopt ReLU (ELU for GAT) as the activation function and ap-
ply a dropout layer with a dropout rate of 0.5. The training it-
eration is set to 10. The embedding dimension � is chosen from
{8, 16, 32, 48, 64}, while the height of the encoding tree � is searched
among {2, 3, 4}, and the hyperparameter � in 3.4 is tuned among

503

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zou and Peng, et al.

Table 1: Classifcation Accuracy (%) comparison, with improvement range of SE-GSL against the baselines. The best results are
bolded and the second-bests are underlined. Green denotes the outperformance percentage, while yellow denotes underperformance.

Method Cora Citeseer Pubmed PT TW Actor Cornell Texas Wisconsin

GCN 87.26±0.63 76.22±0.71 87.46±0.12 67.62±0.21 62.46±1.94 27.65±0.55 49.19±1.80 57.30±2.86 48.57±4.08

GAT 87.52±0.69 76.04±0.78 86.61±0.15 68.76±1.01 61.68±1.20 27.77±0.59 57.09±6.32 58.10±4.14 51.34±4.78

GCNII 87.57±0.87 75.47±1.01 88.64±0.23 68.93±0.93 65.17±0.47 30.66±0.66 58.76±7.11 55.36±6.45 51.96±4.36

Grand 87.93±0.71 77.59±0.85 86.14±0.98 69.80±0.75 66.79±0.22 29.80±0.60 57.21±2.48 56.56±1.53 52.94±3.36

Mixhop 85.71±0.85 75.94±1.00 87.31±0.44 69.48±0.30 66.34±0.22 33.72±0.76 64.47±4.78 63.16±6.28 72.12±3.34

Dropedge 86.32±1.09 76.12±1.32 87.58±0.34 68.49±0.91 65.24±1.45 30.10±0.71 58.94±5.95 59.20±5.43 60.45±4.48

Geom-GCN-P 84.93 75.14 88.09 - - 31.63 60.81 67.57 64.12
Geom-GCN-S 85.27 74.71 84.75 - - 30.30 55.68 59.73 56.67
GDC 87.17±0.36 76.13±0.53 88.08±0.16 66.14±0.54 64.14±1.40 28.74±0.76 59.46±4.35 56.42±3.99 48.30±4.29

GEN 87.84±0.69 78.77±0.88 86.13±0.41 71.62±0.78 65.16±0.77 36.69±1.02 65.57±6.74 73.38±6.65 54.90±4.73

H2GCN-2 87.81±1.35 76.88±1.77 89.59±0.33 68.15±0.30 63.33±0.77 35.62±1.30 82.16±6.00 82.16±5.28 85.88±4.22

SE-GSL 87.93±1.24 77.63±1.65 88.16±0.76 71.91±0.66 66.99±0.93 36.34±2.07 75.21±5.54 82.49±4.80 86.27±4.32

Improvement 0.00∼3.00 -1.14∼2.92 -1.43∼3.41 0.29∼5.77 0.20∼5.31 -0.35∼8.69 -6.95∼26.02 0.33∼27.13 0.39∼37.97

{0.5, 1, 3, 5, 10, 30}. We adopt the scheme of data split in Geom-
GCN [28] and H2GCN [60] for all experiments – nodes are ran-
domly divided into the train, validation, and test sets, which take
up 48%, 32%, 20%, respectively. In each iteration, the GNN encoder
optimization is carried out for 200 epochs, using the Adam opti-
mizer, with an initial learning rate of 0.01 and a weight decay of
5� − 4. The model with the highest accuracy on validation sets is
used for further testing and reporting.

5 RESULTS AND ANALYSIS
In this section, we demonstrate the efcacy of SE-GSL on semi-
supervised node classifcation (§ 5.1, followed by micro-benchmarks
that investigate the detailed efect of the submodules on the overall
performance and validate the robustness of SE-GSL when tackling
random perturbations (§ 5.2). For better interpretation, we visualize
the change of structural entropy and graph topology (§ 5.3).

5.1 Node Classifcation
5.1.1 Comparison with baselines. We compare the node classif-
cation performance of SE-GSL with ten baseline methods on nine
benchmark datasets. Table 1 shows the average accuracy and the
standard deviation. Note that the results of H2GCN (except PT and
TW) and Geom-GCN are from the reported value in original pa-
pers (- for not reported), while the rest are obtained based on the
execution of the source code provided by their authors under our
experimental settings. Our observations are three-fold:
(1) SE-GSL achieves optimal results on 5 datasets, runner-up results
on 8 datasets, and advanced results on all datasets. The accuracy can
be improved up to 3.41% on Pubmed, 3.00% on Cora, and 2.92% on
Citeseer compared to the baselines. This indicates that our design
can efectively capture the inherent and deep structure of the graph
and hence the classifcation improvement.
(2) SE-GSL shows signifcant improvement on the datasets with het-
eropily graphs, e.g., up to 37.97% and 27.13% improvement against
Wisconsin and Texas datasets, respectively. This demonstrates the

Table 2: Classifcation accuracy(%) of SE-GSL and correspond-
ing backbones. Wisc. is short for Wisconsin.

Method Actor TW Texas Wisc. Improvement
SE-GSL��� 35.03 66.88 75.68 79.61 ↑ 5.20∼31.04
SE-GSL���� 36.20 66.92 82.49 86.27 ↑ 0.25∼6.79
SE-GSL��� 32.46 63.57 74.59 78.82 ↑ 4.69∼27.48
SE-GSL��� � � 36.34 66.99 81.28 83.14 ↑ 2.01∼12.16

importance of the graph structure enhancement that can contribute
to a more informative and robust node representation.
(3) While all GNN methods can achieve satisfactory results on
citation networks, the graph learning/high-order neighborhood
awareness frameworks substantially outperform others on the We-
bKB datasets and the actor co-occurrence networks, which is highly
disassortative. This is because these methods optimize local neigh-
borhoods for better information aggregation. Our method is one
of the top performers among them due to the explicit exploita-
tion of the global structure information in the graph hierarchical
semantics.

5.1.2 Comparison base on diferent backbones. Table 2 shows the
mean classifcation accuracy of SE-GSL with diferent backbone
encoders. Observably, SE-GSL upon GCN and GAT overwhelmingly
outperforms its backbone model, with an accuracy improvement of
up to 31.04% and 27.48%, respectively. This indicates the iterative
mechanism in the SE-GSL pipeline can alternately optimize the
node representation and graph structure. We also notice that despite
the lower improvement, SE-GSL variants based on GraphSAGE and
APPNP perform relatively better compared to those on GCN and
GAT. This is most likely due to the backbone model itself being
more adapted to handle disassortative settings on graphs.

5.2 Micro-benchmarking
5.2.1 Efectiveness of �-selector. This subsection evaluates how the
one-dimensional structural entropy guides the �-selector in § 3.2.
Table 3 showcases the selected parameter � in each iteration with

504

SE-GSL: A General and Efective Graph Structure Learning Framework through Structural Entropy Optimization WWW ’23, April 30–May 04, 2023, Austin, TX, USA

(b) (a) (c) (d) SE-GSLGCN SE-GSLGAT SE-GSLSAGE SE-GSLAPPNP

Figure 3: Results of SE-GSL with diferent encoding tree heights.

Table 3: The � selection for each iteration in structural opti-
mization. Bolds represent the � selection when the accuracy
reaches maximum.

Iteration 1 2 3 4 5 6 7 8 9
Cora 22 22 19 22 21 22 20 21 20
Actor 23 15 15 15 14 15 14 14 15
TW 50 16 16 17 15 17 27 16 16
Wisconsin 21 16 11 16 14 13 16 13 11
Texas 21 13 13 13 13 10 14 10 14

SE-GSLGCN SE-GSLGAT

GCN GAT

GCN-Jaccard

GCN-DropEdge

SE-GSLGCN SE-GSLGAT

GCN GAT

GCN-Jaccard

GCN-DropEdge

(a) Cora (b) Citeseer

0.0809 0.0183

Figure 4: Robustness of SE-GSL against random noises.

SE-GSL��� . Noticeably, as the iterative optimization proceeds, the
optimal parameter � converges to a certain range, indicating the
gradual stabilization of the graph structure and node representation.
The disparity of parameter � among diferent datasets also demon-
strates the necessity of customizing � in diferent cases rather than
using � as a static hyperparameter.

5.2.2 Impact of the encoding tree’s height � . We evaluate all four
variants of SE-GSL on the website network datasets, and the encod-
ing tree height � involved in § 3.3 varies from 2 to 4. As shown in
Fig. 3, there is a huge variation in the optimal tree heights among
diferent datasets. For example, in the variants based on GAT, GCN,
and APPNP, the best results can be targeted at � = 3 in Texas and
at � = 4 in Cornell and Wisconsin. By contrast, in SE-GSL���� ,
� = 2 can enable the best accuracy of 86.27%. This weak corre-
lation between the best � and the model performance is worth
investigating further, which will be left as future work.

5.2.3 Sensitivity to perturbations. We introduce random edge noises
into Cora and Citeseer, with perturbation rates of 0.2, 0.4, 0.6, 0.8,

and 1. As shown in Fig. 4(a), SE-GSL outperforms baselines in both
GCN and GAT cases under most noise settings. For instance, SE-
GSL��� achieves up to 8.09% improvement against the native GCN
when the perturbation rate is 0.8; by contrast, improvements by
GCN-Jaccard and GCN-DropEdge are merely 6.99% and 5.77%, re-
spectively. A similar phenomenon is observed for most cases in the
Citeseer dataset (Fig. 4(b)), despite an exception when compared
against GCN-Jaccard. Nevertheless, our approach is still competi-
tive and even better than GCN-Jaccard at a high perturbation rate.

5.3 Interpretation of Structure Evolution
5.3.1 Structural entropy variations analysis. We evaluate how the
structural entropy changes during the training of SE-GSL��� with
2-dimensional structural entropy on WebKB datasets. For compari-
son, we visualize the entropy changes on Wisconsin without the
structure learning. In the experiment setting, both the graph struc-
ture and the encoding tree are updated once at each iteration (i.e.,
200 GNN epochs), and within one iteration, the structural entropy is
only afected by edge weights determined by the similarity matrix.
For comparison, we normalize the structural entropy by � T (�) .

� 1 (�)
As shown in Fig. 5(a)-(c), as the accuracy goes up, the normal-

ized structural entropy constantly decreases during the iterative
graph reconstruction, reaching the minimums of 0.7408 in Texas,
0.7245 in Cornell, and 0.7344 in Wisconsin. This means the increas-
ing determinism of the overall graph structure and the reduced
amount of information required to determine a vertex. Interest-
ingly, if our graph reconstruction mechanism is disabled (as shown
in Fig. 5(d)), the normalized structural entropy keeps rising from
0.7878, compared with Fig. 5(c). Accordingly, the fnal accuracy will
even converge to 55.34%, a much lower level.

Such a comparison also provides a feasible explanation for the
rising trend of the normalized structural entropy within every single
iteration. This stems from the smoothing efect during the GNN
training. As the node representation tends to be homogenized, the
graph structure will be gradually smoothed, leading to a decrease
in the one-dimensional structural entropy thus the normalized
structural entropy increases.

5.3.2 Visualization. Fig. 6 visualizes the topology of the original
Cora and Citeseer graph and of the 2nd and 5th iterations. The
vertex color indicates the class it belongs to, and the layout denotes
connecting relations. Edges are hidden for clarity. As the iteration

505

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zou and Peng, et al.

Figure 5: The normalized structural entropy changes during the training of SE-GSL��� with 2-dimensional structural entropy
on (a) Texas, (b) Cornell, and (c) Wisconsin. The structure is iterated every 200 epochs. By comparison, (d) shows the entropy
changes on Wisconsin without the graph reconstruction strategy.

(a) The original topology

(Cora)

SE=11.06

(b) The topology of

2nd iteration (Cora)

SE=10.88

(c) The topology of

5th iteration (Cora)

SE=10.83

(d) The original topology

(Citeseer)

SE=11.12

(e) The topology of 2nd

iteration (Citeseer)

SE=11.04

(f) The topology of

5th iteration (Citeseer)

SE=10.99

Figure 6: The visualized evolution of the graph structure on
Cora (a,b,c) and Citeseer (d,e,f). The corresponding Structural
Entropy (SE) is also shown.

continues, much clearer clustering manifests – few outliers and
more concentrated clusters. Vertices with the same label are more
tightly connected due to the iterative graph reconstruction scheme.
This improvement hugely facilitates the interpretability of the GSL
and the node representation models.

pan2021information

6 RELATED WORK
Graph structure learning and neighborhood optimization.
The performance of GNNs is heavily dependent on task-relevant
links and neighborhoods. Graph structure learning explicitly learns
and adjusts the graph topology, and our SE-GSL is one of them.
GDC [10] reconnects graphs through graph difusion to aggregate
from multi-hop neighborhoods. Dropedge [34], Neuralsparse [58]
contribute to graph denoising via edge-dropping strategy while
failing to renew overall structures. LDS-GNN [8] models edges by
sampling graphs from the Bernoulli distribution. Meanwhile, we
consider linking the structural entropy, which is more expressive
of graph topology, to the sampling probability. GEN [43], IDGL [5]

explore the structure from the node attribute space by the �-NN
method. Diferently, instead of directly using attribute similarity,
we regenerate edges from the hierarchical abstraction of graphs to
avoid inappropriate metrics. Besides adjusting the graph structure,
methods to optimize aggregation are proposed with results on het-
erophily graphs. MixHop [1] learns the aggregation parameters for
neighborhoods of diferent hops through a mixing network, while
H2GCN [60] identifes higher-order neighbor-embedding separa-
tion and intermediate representation combination, for adapting
to heterophily graphs. Geom-GCN [28] aggregates messages over
both the original graph and latent space by a designed geometric
scheme.
Structural entropy with neural networks. Structural informa-
tion principles [18], defning encoding trees and structural entropy,
were frst used in bioinformatic structure analysis [19, 20]. Exist-
ing work mainly focuses on network analysis, node clustering and
community detection[21, 24, 27]. As an advanced theory on graphs
and hierarchical structure, structural information theory has great
potential in combination with neural networks. SR-MARL [56] ap-
plies structural information principles to hierarchical role discovery
in multi-agent reinforcement learning, thereby boosting agent net-
work optimization. SEP [47] provides a graph pooling scheme based
on optimal encoding trees to address local structure damage and
suboptimal problem. It essentially uses structural entropy mini-
mization for a multiple-layer coarsened graph. MinGE [26] and
MEDE [52] estimate the node embedding dimension of GNNs via
structural entropy, which introduces both attribute entropy and
structure entropy as objective. Although these works exploit struc-
tural entropy to mine the latent settings of neural networks and
GNNs, how to incorporate this theory in the optimization process
is still understudied, and we are among the frst attempts.

7 CONCLUSION
To cope with edge perturbations in graphs with heterophily, this
paper proposes a novel graph structure learning framework SE-GSL
that considers the structural entropy theory in graph structure op-
timization. We design a structure enhancement module guided by
the one-dimensional structural entropy maximization strategy to
extend the information embedded in the topology. To capture the hi-
erarchical semantics of graphs, high-dimensional structural entropy
minimization is performed for optimal encoding trees. We propose

506

SE-GSL: A General and Efective Graph Structure Learning Framework through Structural Entropy Optimization WWW ’23, April 30–May 04, 2023, Austin, TX, USA

a node sampling technique on the encoding tree to restore the most
appropriate edge connections at diferent community levels, taking
into account the deduction structural entropy distribution. In the
future, we plan to combine delicate loss functions with structural
entropy so that the knowledge in encoding trees can be converted
into gradient information, which will further allow for end-to-end
structure optimization.

ACKNOWLEDGMENTS
This paper was supported by the National Key R&D Program
of China through grant 2021YFB1714800, NSFC through grant
62002007, S&T Program of Hebei through grant 20310101D, Natural
Science Foundation of Beijing Municipality through grant 4222030,
CCF-DiDi GAIA Collaborative Research Funds for Young Scholars,
the Fundamental Research Funds for the Central Universities, Xi-
aomi Young Scholar Funds for Beihang University, and in part by
NSF under grants III-1763325, III-1909323, III-2106758, and SaTC-
1930941.

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. Mixhop:
Higher-order graph convolutional architectures via sparsifed neighborhood
mixing. In international conference on machine learning. PMLR, 21–29.

[2] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. 2020. Spectral
clustering with graph neural networks for graph pooling. In Proceedings of the
International Conference on Machine Learning. PMLR, 874–883.

[3] Aleksandar Bojchevski and Stephan Günnemann. 2019. Certifable robustness
to graph perturbations. Advances in Neural Information Processing Systems 32
(2019).

[4] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In Proceedings of the International
Conference on Machine Learning. PMLR, 1725–1735.

[5] Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020. Iterative deep graph learning
for graph neural networks: Better and robust node embeddings. Advances in
Neural Information Processing Systems 33 (2020), 19314–19326.

[6] Enyan Dai, Charu Aggarwal, and Suhang Wang. 2021. Nrgnn: Learning a label
noise resistant graph neural network on sparsely and noisily labeled graphs. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 227–236.

[7] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang
Yang, Evgeny Kharlamov, and Jie Tang. 2020. Graph random neural networks for
semi-supervised learning on graphs. Advances in Neural Information Processing
Systems 33 (2020), 22092–22103.

[8] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. 2019. Learn-
ing discrete structures for graph neural networks. In Proceedings of the Interna-
tional Conference on Machine Learning. PMLR, 1972–1982.

[9] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2019.
Predict then Propagate: Graph Neural Networks meet Personalized PageRank. In
Proceedings of the International Conference on Learning Representations.

[10] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. 2019. Difu-
sion improves graph learning. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems (NeurIPS). 13366–13378.

[11] Lise Getoor. 2005. Link-based classifcation. In Advanced methods for knowledge
discovery from complex data. Springer, 189–207.

[12] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In Proceedings of the
International Conference on Machine Learning. PMLR, 1263–1272.

[13] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and
Lalana Kagal. 2018. Explaining explanations: An overview of interpretability of
machine learning. In 2018 IEEE 5th International Conference on data science and
advanced analytics (DSAA). IEEE, 80–89.

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in Neural Information Processing Systems 30
(2017).

[15] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. 2022.
Graphlime: Local interpretable model explanations for graph neural networks.
IEEE Transactions on Knowledge and Data Engineering (2022).

[16] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph structure learning for robust graph neural networks. In Proceedings

of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining. 66–74.

[17] Xu Keyulu, Hu Weihua, Leskovec Jure, and Stefanie Jegelka. 2019. How powerful
are graph neural networks. Proceedings of the International Conference on Learning
Representations.

[18] Angsheng Li and Yicheng Pan. 2016. Structural information and dynamical
complexity of networks. IEEE Transactions on Information Theory 62, 6 (2016),
3290–3339.

[19] Angsheng Li, Xianchen Yin, and Yicheng Pan. 2016. Three-dimensional gene
map of cancer cell types: Structural entropy minimisation principle for defning
tumour subtypes. Scientifc reports 6, 1 (2016), 1–26.

[20] Angsheng Li, Xianchen Yin, Bingxiang Xu, Danyang Wang, Jimin Han, Yi Wei,
Yun Deng, Ying Xiong, and Zhihua Zhang. 2018. Decoding topologically associ-
ating domains with ultra-low resolution Hi-C data by graph structural entropy.
Nature communications 9, 1 (2018), 1–12.

[21] Angsheng Li, Xiaohui Zhang, and Yicheng Pan. 2017. Resistance maximization
principle for defending networks against virus attack. Physica A: Statistical
Mechanics and its Applications 466 (2017), 211–223.

[22] Kuan Li, Yang Liu, Xiang Ao, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing
He. 2022. Reliable Representations Make A Stronger Defender: Unsupervised
Structure Refnement for Robust GNN. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 925–935.

[23] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adaptive graph
convolutional neural networks. In Proceedings of the AAAI Conference on Artifcial
Intelligence, Vol. 32.

[24] Yiwei Liu, Jiamou Liu, Zijian Zhang, Liehuang Zhu, and Angsheng Li. 2019. REM:
From structural entropy to community structure deception. Advances in Neural
Information Processing Systems 32 (2019).

[25] Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen,
and Xiang Zhang. 2021. Learning to drop: Robust graph neural network via
topological denoising. In Proceedings of the 14th ACM international conference on
web search and data mining. 779–787.

[26] Gongxu Luo, Jianxin Li, Jianlin Su, Hao Peng, Carl Yang, Lichao Sun, Philip S
Yu, and Lifang He. 2021. Graph entropy guided node embedding dimension
selection for graph neural networks. In Proceedings of the Thirtieth International
Joint Conference on Artifcial Intelligence. 2767–2774.

[27] Yicheng Pan, Feng Zheng, and Bingchen Fan. 2021. An Information-theoretic
Perspective of Hierarchical Clustering. arXiv preprint arXiv:2108.06036 (2021).

[28] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2019.
Geom-GCN: Geometric Graph Convolutional Networks. In Proceedings of the
International Conference on Learning Representations.

[29] Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai,
and Philip S. Yu. 2019. Fine-Grained Event Categorization with Heterogeneous
Graph Convolutional Networks. In Proceedings of the 28th International Joint
Conference on Artifcial Intelligence. AAAI Press, 3238–3245.

[30] Hao Peng, Jianxin Li, Qiran Gong, Senzhang Wang, Yuanxin Ning, and Lifang He.
2020. Motif-Matching Based Subgraph-Level Attentional Convolutional Network
for Graph Classifcation. In Proceedings of 34th AAAI Conference on Artifcial
Intelligence.

[31] Hao Peng, Ruitong Zhang, Yingtong Dou, Renyu Yang, Jingyi Zhang, and Philip S.
Yu. 2021. Reinforced Neighborhood Selection Guided Multi-Relational Graph
Neural Networks. ACM Trans. Inf. Syst. 40, 4 (2021), 1–46.

[32] Hao Peng, Ruitong Zhang, Shaoning Li, Yuwei Cao, Shirui Pan, and Philip S. Yu.
2023. Reinforced, Incremental and Cross-Lingual Event Detection From Social
Messages. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 1
(2023), 980–998.

[33] Sun Qingyun, Li Jianxin, Peng Hao, Wu Jia, Fu Xingcheng, Ji Cheng, and Yu
Philip S. 2022. Graph Structure Learning with Variational Information Bottleneck.
In Proceedings of 36th AAAI Conference on Artifcial Intelligence.

[34] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. DropE-
dge: Towards Deep Graph Convolutional Networks on Node Classifcation. In
Proceedings of the International Conference on Learning Representations.

[35] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed
node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.

[36] Benedek Rozemberczki and Rik Sarkar. 2021. Twitch gamers: a dataset for
evaluating proximity preserving and structural role-based node embeddings.
arXiv preprint arXiv:2101.03091 (2021).

[37] Claude Elwood Shannon. 1948. A mathematical theory of communication. The
Bell system technical journal 27, 3 (1948), 379–423.

[38] Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, S Yu Philip, Lifang
He, and Bo Li. 2022. Adversarial Attack and Defense on Graph Data: A Survey.
IEEE Transactions on Knowledge and Data Engineering (2022), 1–20.

[39] Qingyun Sun, Jianxin Li, Haonan Yuan, Xingcheng Fu, Hao Peng, Cheng Ji, Qian
Li, and Philip S. Yu. 2022. Position-Aware Structure Learning for Graph Topology-
Imbalance by Relieving Under-Reaching and Over-Squashing. In Proceedings of
the 31st ACM International Conference on Information & Knowledge Management.
Association for Computing Machinery, 1848–1857.

507

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zou and Peng, et al.

[40] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. 2009. Social infuence analysis
in large-scale networks. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. 807–816.

[41] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. Proceedings of the
International Conference on Learning Representations (2017).

[42] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

[43] Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi, and Xing
Xie. 2021. Graph structure estimation neural networks. In Proceedings of the Web
Conference 2021. 342–353.

[44] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. 2020. Am-
gcn: Adaptive multi-channel graph convolutional networks. In Proceedings of
the 26th ACM SIGKDD international conference on knowledge discovery & data
mining. 1243–1253.

[45] Max Welling and Thomas N Kipf. 2016. Semi-supervised classifcation with
graph convolutional networks. In Proceedings of the International Conference on
Learning Representations.

[46] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming
Zhu. 2019. Adversarial examples for graph data: deep insights into attack and
defense. In Proceedings of the 28th International Joint Conference on Artifcial
Intelligence. 4816–4823.

[47] Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. 2022. Structural entropy
guided graph hierarchical pooling. In Proceedings of the International Conference
on Machine Learning. PMLR, 24017–24030.

[48] Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. 2020. Graph information
bottleneck. Advances in Neural Information Processing Systems 33 (2020), 20437–
20448.

[49] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2020), 4–24.

[50] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks?. In Proceedings of the International Conference on
Learning Representations.

[51] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In Proceedings of the International
Conference on Machine Learning. PMLR, 40–48.

[52] Zhengyu Yang, Ge Zhang, Jia Wu, Hao Peng, Xue Shan, Jian Yang, Li Angsheng,
Jianlin Su, and Quan Z. Sheng. 2023. Minimum Entropy Principle Guided Graph
Neural Networks. In Proceedings of the ACM International WSDM Conference.

[53] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. Gnnexplainer: Generating explanations for graph neural networks. Ad-
vances in Neural Information Processing Systems 32 (2019).

[54] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with diferentiable
pooling. Advances in Neural Information Processing Systems 31 (2018).

[55] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. 2018.
Graphrnn: Generating realistic graphs with deep auto-regressive models. In
Proceedings of the International Conference on Machine Learning. PMLR, 5708–
5717.

[56] Xianghua Zeng, Hao Peng, and Angsheng Li. 2023. Efective and Stable Role-based
Multi-Agent Collaboration by Structural Information Principles. In Proceedings
of 37th AAAI Conference on Artifcial Intelligence.

[57] Xiang Zhang and Marinka Zitnik. 2020. Gnnguard: Defending graph neural
networks against adversarial attacks. Advances in Neural Information Processing
Systems 33 (2020), 9263–9275.

[58] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu,
Haifeng Chen, and Wei Wang. 2020. Robust graph representation learning via
neural sparsifcation. In Proceedings of the International Conference on Machine
Learning. PMLR, 11458–11468.

[59] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

[60] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai
Koutra. 2020. Beyond homophily in graph neural networks: Current limitations
and efective designs. Advances in Neural Information Processing Systems 33
(2020), 7793–7804.

[61] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang.
2021. Deep graph structure learning for robust representations: A survey. arXiv
preprint arXiv:2103.03036 (2021).

[62] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph contrastive learning with adaptive augmentation. In Proceedings of the
Web Conference 2021. 2069–2080.

[63] Yanqiao Zhu, Yichen Xu, Feng Yu, Shu Wu, and Liang Wang. 2020. Cagnn:
Cluster-aware graph neural networks for unsupervised graph representation
learning. arXiv preprint arXiv:2009.01674 (2020).

508

SE-GSL: A General and Efective Graph Structure Learning Framework through Structural Entropy Optimization WWW ’23, April 30–May 04, 2023, Austin, TX, USA

A APPENDIX

A.1 Glossary of notations
In Table 4, we summarize the notations used in our work.

Table 4: Glossary of Notations.

Notation Description
� ; �; � Graph; Adjacency matrix; Similarity matrix.
� ; � ; � Vertex; Edge; Vertex attribute.
� ; �; � Vertex set; Edge set; Attribute set.
|� |; |� |
P; ��

The number of vertices and edges.
The partition of � ; A community.

� ; � (��)
�� �

The degree matrix; The degree of vertex �� .
The edge between �� and � � .

�� � The weight of edge �� � .
��� (�)
(�)

�
���

� �

The volume of graph � , i.e., degree sum in � .
The �-NN graph with parameter � .
Fusion graph.

(�)
�
� The fusion graph with parameter � .

T Encoding tree.
T ∗ The optimal encoding tree.
� The root node of an encoding tree.
� A non-root node of an encoding tree.
� − The parent node of � .
� ⟨� ⟩ the �-th child of � .
�� The label of �, i.e., node set � .
�� The label of � , i.e., a subset of � .
V� Volume of graph � .
��
� (T)

the sum weights of cut edge set [�� ,�� /��].
The number of non-root node in T .

� T (�)
�� (�)
� 1 (�)
� T (� ; �)
� T (� ; (�, �])

Structural entropy of � under T .
�-dimensional structural entropy.
One-dimensional structural entropy.
Structural entropy of node � in T .
Structural entropy of a deduction from � to � .

A.2 Dataset and Time Costs of SE-GSL
Our framework SE-GSL is evaluated on nine graph datasets. the
statistics of these datasets are shown in Table 5. The time costs of
SE-GSL on all datasets are shown in Table 6.

Table 5: Statistics of benchmark datasets.

Dataset Nodes Edges Classes Features homophily
Cora 2708 5429 7 1433 0.83

Citeseer 3327 4732 6 3703 0.71
Pubmed 19717 44338 3 500 0.79

PT 1912 31299 2 3169 0.59
TW 2772 63462 2 3169 0.55
Actor 7600 33544 5 931 0.24
Cornell 183 295 5 1703 0.30
Texas 183 309 5 1703 0.11

Wisconsin 251 499 5 1703 0.21

• Citation networks [45, 51]. Cora, Citeseer, and Pubmed are
benchmark datasets of citation networks. Nodes represent paper,
and edges represent citation relationships in these networks. The
features are bag-of-words representations of papers, and labels
denote their academic felds.

• Social networks [35]. TW and PT are two subsets of Twitch
Gamers dataset [36], designed for binary node classifcation tasks,
where nodes correspond to users and links to mutual friendships.
The features are liked games, location, and streaming habits of
the users. The labels denote whether a streamer uses explicit
language (Taiwanese and Portuguese).

• WebKB networks [11]. Cornell, Texas, and Wisconsin are three
subsets of WebKB, where nodes are web pages, and edges are
hyperlinks. The features are the bag-of-words representation of
pages. The labels denote categories of pages, including student,
project, course, staf, and faculty.

• Actor co-occurrence network [40]. This dataset is a subgraph
of the flm-director-actor-writer network, in which nodes repre-
sent actors, edges represent co-occurrence relation, node features
are keywords of the actor, and labels are the types of actors.

A.3 Baselines
Baselines are briefy described as follows3:

• GCN [45] is the most popular GNN, which defnes the frst-order
approximation of a localized spectral flter on graphs.

• GAT [41] introduces a self-attention mechanism to important
scores for diferent neighbor nodes.

• GraphSAGE [14] is an inductive framework that leverages node
features to generate embeddings by sampling and aggregating
features from the local neighborhood.

• APPNP [9] combines GCN with personalized PageRank.
• GCNII4 [4] employs residual connection and identity mapping.
• Grand5 [7] purposes a random propagation strategy for data
augmentation, and uses consistency regularization to optimize.

• Mixhop6 [1] aggregates mixing neighborhood information.
• Geom-GCN7 [28] exploits geometric relationships to capture
long-range dependencies within structural neighborhoods. Three
variant of Geom-GCN is used for comparison.

• GDC8 [10] refnes graph structure based on difusion kernels.
• GEN9 [43] estimates underlying meaningful graph structures.
• H2GCN10 [60] combine multi-hop neighbor-embeddings for
adapting to both heterophily and homophily graph settings.

• DropEdge11 [34] randomly removes edges from the input graph
for over-ftting prevention.

• Jaccard12 [46] prunes the edges connecting nodes with small
Jaccard similarity.

3For GCN, GAT, GraphSAGE, and APPNP layers, we adopt implementation from DGL
library [42]:https://github.com/dmlc/dgl
4https://github.com/chennnM/GCNII
5https://github.com/THUDM/GRAND
6https://github.com/samihaija/mixhop
7https://github.com/graphdml-uiuc-jlu/geom-gcn
8https://github.com/gasteigerjo/gdc
9https://github.com/BUPT-GAMMA/Graph-Structure-Estimation-Neural-Networks
10https://github.com/GemsLab/H2GCN
11https://github.com/DropEdge/DropEdge
12https://github.com/DSE-MSU/DeepRobust

509

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zou and Peng, et al.

Table 6: Comparison of training time(hr.) of achieving the best performance based on GPU.

Method Cora Citeseer Pubmed PT TW Actor Cornell Texas Wisconsin
SE-GSL��� 0.071 0.213 4.574 0.178 0.374 1.482 0.006 0.008 0.009
SE-GSL���� 0.074 0.076 4.852 0.169 0.214 0.817 0.006 0.007 0.009
SE-GSL��� 0.071 0.180 4.602 0.172 0.329 1.273 0.006 0.008 0.009
SE-GSL��� � � 0.073 0.215 4.854 0.138 0.379 1.367 0.010 0.011 0.013

A.4 Overall algorithm of SE-GSL
The overall algorithm of SE-GSL is shown in Algorithm 1. Note that,
if choose to retain the connection from the previous iteration, to
ensure that the number of edges remains stable during the training,
a percentage of edges in the reconstructed graph with low similarity
will be dropped in each iteration.

Algorithm 1: Model training for SE-GSL

Input: a graph � = (� , �), features � , labels �� , mode
∈ ����, �����

iterations �, encoding tree height � , hyperparameter �
′Output: optimized graph � = (� , � ′), prediction �� , GNN

parameters Θ
1 Initialize Θ;
2 for � = 1 to � do
3 Update Θ by classifcation loss L��� (��, ��);

′ 4 Getting node representation � = GNN(�);
5 Initialize � = 1 for �-NN structuralization;
6 Create fusion map � � according to Algorithm 2;
7 Create �-dimensional encoding tree T∗ according to

Algorithm 3;
8 for each non-root node � in T∗ do
9 Calculate � T

∗ (� � ; (�, �]) through Eq. 7;
10 Assign probability � (�) to � through Eq. 8;
11 for each subtree rooted at � in T∗ do
12 Assuming � has � children, set � = � × �;
13 for � = 1 to � do
14 Sample a node pair (��, ��) according to § 3.4;
15 Adding edge ��� to � ′;

16 if mode then
17 Let � ′ = � ∪ � ′, where � ′ and � are the edge set of

′ � and � , respectively;
18 Drop a percentage of edges in � ′;
19 Update graph structure � ← � ′; Update node

representation: � ← � ′;
20 Get prediction �� ;
21 Return � ′ , �� and Θ;

A.5 Algorithm of one-dimensional structural
entropy guided graph enhancement

The �-selector is designed for choosing an optimal � for �-NN
structuralization under the guidance of one-dimensional structural
entropy maximization. The algorithm of �-selector and fusion graph
construction is shown in Algorithm 2.

Algorithm 2: �-selector and fusion graph construction

Input: a graph � = (� , �), node representation �
Output: fusion graph � �

1 Calculate � ∈ R |� |× |� | via Eq. 4;
2 for � = 2 to |� | − 1 do
3 Generate ���� by � ;

(�)
4 Generate � = {� , �� = � ∪ ���� };�

(�)
5 Reweight � via Eq. 5;

�
(�)

6 Calculate �1 (�) via Eq. 1;
�

(�)
7 if �1 (�) reaches the maximal optima then

�
(�)

8 � � ← �
� ;

9 Return � � ;

A.6 Algorithm of high-dimensional structural
entropy minimization

The pseudo-code of the high-dimensional structural entropy mini-
mization algorithm is shown in Algorithm 3.

Algorithm 3: K-dimensional structural entropy minimiza-
tion
Input: a graph � = (� , �), the height of encoding tree � > 1
Output: Optimal high-dimensional encoding tree T∗

1 //Initialize an encoding tree T with height 1 and root �
2 Create root node �;
3 for �� ∈ � do
4 Create node �� . Let ��� = �� ;
5 � − = �;

�

6 //Generation of binary encoding tree
7 while � has more than 2 children do
8 Select �� and � � in T , condition on � − = � − = � and

� �

arg max(� T (�) − � T (�));CB(�� ,� �)�� ,� �

9 CB(�� , � �) according to Defnition 1;
10 //Squeezing of encoding tree
11 while height(T) > � do
12 Select non-root node � and � in T , condition on � − = �

and arg max(� T (�) − �LF
T
(�,�) (�));

�,�

13 LF(�, �) according to Defnition 2;
14 Return T∗ ← T ;

510

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph and Graph Structure Learning
	2.2 Structural Entropy

	3 Our Approach
	3.1 Overview of SE-GSL
	3.2 Graph Structure Enhancement
	3.3 Hierarchical Encoding Tree Generation
	3.4 Sample-based Graph Reconstruction
	3.5 Time Complexity of SE-GSL

	4 Experimental Setup
	5 Results and Analysis
	5.1 Node Classification
	5.2 Micro-benchmarking
	5.3 Interpretation of Structure Evolution

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Glossary of notations
	A.2 Dataset and Time Costs of SE-GSL
	A.3 Baselines
	A.4 Overall algorithm of SE-GSL
	A.5 Algorithm of one-dimensional structural entropy guided graph enhancement
	A.6 Algorithm of high-dimensional structural entropy minimization

