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ABSTRACT 
Graph Neural Networks (GNNs) are de facto solutions to struc-
tural data learning. However, it is susceptible to low-quality and 
unreliable structure, which has been a norm rather than an excep-
tion in real-world graphs. Existing graph structure learning (GSL) 
frameworks still lack robustness and interpretability. This paper 
proposes a general GSL framework, SE-GSL, through structural 
entropy and the graph hierarchy abstracted in the encoding tree. 
Particularly, we exploit the one-dimensional structural entropy to 
maximize embedded information content when auxiliary neigh-
bourhood attributes is fused to enhance the original graph. A new 
scheme of constructing optimal encoding trees are proposed to 
minimize the uncertainty and noises in the graph whilst assur-
ing proper community partition in hierarchical abstraction. We 
present a novel sample-based mechanism for restoring the graph 
structure via node structural entropy distribution. It increases the 
connectivity among nodes with larger uncertainty in lower-level 
communities. SE-GSL is compatible with various GNN models 
and enhances the robustness towards noisy and heterophily struc-
tures. Extensive experiments show signifcant improvements in 
the efectiveness and robustness of structure learning and node 
representation learning. 
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1 INTRODUCTION 
Graph Neural Networks (GNNs) [49, 59] have become the corner-
stone and de facto solution of structural representation learning. 
Most of the state-of-the-art GNN models employ message pass-
ing [12] and recursive information aggregation from local neigh-
borhoods [17, 31, 41, 52] to learn node representation. These models 
have been advancing a variety of tasks, including node classifca-
tion [29, 45, 50], node clustering [2, 32], graph classifcation [30, 54], 
and graph generation [55], etc. 

GNNs are extremely sensitive to the quality of given graphs and 
thus require resilient and high-quality graph structures. However, 
it is increasingly difcult to meet such a requirement in real-world 
graphs. Their structures tend to be noisy, incomplete, adversarial, 
and heterophily (i.e., the edges with a higher tendency to connect 
nodes of diferent types), which can drastically weaken the repre-
sentation capability of GNNs [6, 25, 28]. Recent studies also reveal 
that even a minor perturbation in the graph structure can lead 
to inferior prediction quality [3, 38, 57]. Additionally, GNNs are 
vulnerable to attacks since the raw graph topology is decoupled 
from node features, and attackers can easily fabricate links between 
entirely diferent nodes [38, 57]. 
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Figure 1: An illustrative example of the hierarchical com-
munity (semantics) in a simple social network. (1) Vertices 
and edges represent the people and their interconnectivity 
(e.g., common locations, interests, occupations). There are 
diferent abstraction levels, and each community can be di-
vided into sub-communities in a fner-grained manner (e.g., 
students are placed in diferent classrooms while teachers 
are allocated diferent ofces). The lowest abstraction will 
come down to the individuals with own attributes, and the 
highest abstraction is the social network system. (b) An en-
coding tree is a natural form to represent and interpret such 
a multi-level hierarchy. 

To this end, Graph Structure Learning (GSL) [5, 16, 33, 39, 44, 
61, 62] becomes the recent driving force for learning superior task-
relevant graph topology and for enhancing the resilience and ro-
bustness of node representation. The existing works focus on jointly 
optimizing GNN whilst imposing regularization on refned graph 
structures. Typical methods include metric-based [5, 23, 44], proba-
bilistic sampling [8, 34, 58], and learnable structure approach [16], 
etc. While promising, GNNs and GSL still have the following issues. 
i) robustness to system noises and heterophily graphs. While many 
GSL models strive to fuse node features and topological features 
through edge reconstruction (e.g., add, prune, or reweight) [44, 57, 
62], additional noises and disassortative connections will be in-
evitably involved in the fused structure due to the unreliable priori 
topology and node embeddings, which would further degrade the 
GNNs representation capability [22]. ii) model interpretability. Fully 
parameterizing the adjacency matrix will incur a non-negligible 
cost of parameter storage and updating and is liable to low model 
interpretability [13]. Although some studies on the improved GNN 
interpretability [15, 53], few works can efectively explain the topol-
ogy evolution during graph structure learning. Therefore, fusing 
the node and topological features in a noisy system environment to 
obtain GNN-friendly graphs by exploiting inherent graph structures 
is still an underexplored problem [48]. 

In this paper, we present SE-GSL, a general and efective graph 
structure learning framework that can adaptively optimize the topo-
logical graph structure in a learning-free manner and can achieve 
superior node representations, widely applicable to the mainstream 
GNN models. This study is among the frst attempts to marry the 
structural entropy and encoding tree theory [18] with GSL, which 
ofers an efective measure of the information embedded in an arbi-
trary graph and structural diversity. The multi-level semantics of a 
graph can be abstracted and characterized through an encoding tree. 
Encoding tree [18, 20, 56] represents a multi-grained division of 
graphs into hierarchical communities and sub-communities, thus 

providing a pathway to better interpretability. Fig. 1 showcases 
how such graph semantics are hierarchically abstracted. Specif-
cally, we frst enhance the original graph topology by incorporating 
the vertex similarities and auxiliary neighborhood information via 
the �-Nearest Neighbors (�-NN) approach, so that noise can be 
better identifed and diminished. This procedure is guided by the 
�-selector that maximizes the amount of embedded information 
in the graph structure. We then propose a scheme to establish 
an optimal encoding tree to minimize the graph uncertainty and 
edge noises whilst maximizing the knowledge in the encoding tree. 
To restore the entire graph structure that can be further fed into 
GNN encoders, we recover edge connectivity between related ver-
tices from the encoding tree taking into account the structural 
entropy distribution among vertices. The core idea is to weaken 
the association between vertices in high-level communities whilst 
establishing dense and extensive connections between vertices in 
low-level communities. The steps above will be iteratively con-
ducted to co-optimize both graph structure and node embedding 
learning. SE-GSL1 is an interpretable GSL framework that efec-
tively exploits the substantive structure of the graph. We conduct 
extensive experiments and demonstrate signifcant and consistent 
improvements in the efectiveness of node representation learning 
and the robustness of edge perturbations. 

Contribution highlights: i) SE-GSL provides a generic GSL 
solution to improve both the efectiveness and robustness of the 
mainstream GNN approaches. ii) SE-GSL ofers a new perspective 
of navigating the complexity of attribute noise and edge noise by 
leveraging structural entropy as an efective measure and encoding 
tree as the graph hierarchical abstraction. iii) SE-GSL presents a se-
ries of optimizations on the encoding tree and graph reconstruction 
that can not only explicitly interpret the graph hierarchical mean-
ings but also reduce the negative impact of unreliable fusion of node 
features and structure topology on the performance of GNNs. iv) 
We present a visualization study to reveal improved interpretability 
when the graph structure is evolutionary. 

2 PRELIMINARIES 
This section formally reviews the basic concepts of Graph, Graph 
Neural Networks (GNNs), Graph Structure Learning (GSL), and 
Structural Entropy. Important notations are given in Appendix A.1. 

2.1 Graph and Graph Structure Learning 
Graph and Community. Let � = {� , �, � } denote a graph, where 
� is the set of � vertices2, � ⊆ � × � is the edge set, and � ∈ R�×� 

refers to the vertex attribute set. A ∈ R�×� denotes the adjacency 
matrix of � , where A� � is referred to as the weight of the edge 
between vertex � and vertex � in � . Particularly, if � is unweighted, 
A ∈ {0, 1}�×� and A� � only indicate the existence of the edges. In 
our work, we only consider the undirected graph, where A� � = A�� . 
For any vertex �� , the degree of �� is defned as � (�� ) = 

Í 
� A� � , and 

� = diag(� (�1), � (�2), . . . , � (�� )) refers to the degree matrix. 
Suppose that P = {�1, �2, . . . , �� } is a partition of � . Each �� is 

called a community (aka. module or cluster), representing a group 

1code is available at: https://github.com/RingBDStack/SE-GSL 
2A vertex is defned in the graph and a node in the tree. 
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of vertices with commonality. Due to the grouping nature of a real-
world network, each community of the graph can be hierarchically 
split into multi-level sub-communities. Such hierarchical community 
partition (i.e., hierarchical semantic) of a graph can be intrinsically 
abstracted as the encoding tree [18, 20], and each tree node repre-
sents a specifc community. Take Fig. 1 as an example: at a high 
abstraction (semantic) level, the entire graph can be categorized as 
two coarse-grained communities, i.e., teachers (T) and students (S). 
Students can be identifed as sub-communities like S.1 and S.2, as 
per the class placement scheme. 
Graph Structure Learning (GSL). For any given graph � , the goal 
of GSL [61] is to simultaneously learn an optimal graph structure 
�∗ optimized for a specifc downstream task and the correspond-
ing graph representation � . In general, the objective of GSL can 
be summarized as L��� = L���� (�, � ) + � L��� (�,�∗, �), where 
L���� refers to a task-specifc objective with respect to the learned 
representation � and the ground truth � . L��� imposes constraints 
on the learned graph structure and representations, and � is a 
hyper-parameter. 

2.2 Structural Entropy 
Diferent from information entropy (aka. Shannon entropy) that 
measures the uncertainty of probability distribution in information 
theory [37], structural entropy [18] measures the structural system 
diversity, e.g., the uncertainty embedded in a graph. 
Encoding Tree. Formally, the encoding tree T of graph � = (� , �)
holds the following properties: (1) The root node � in T has a label 
�� = � , � represents the set of all vertices in � . (2) Each non-root 
node � has a label �� ⊂ � . Furthermore, if � is a leaf node, �� is a 
singleton with one vertex in � . (3) For each non-root node � , its 
parent node in � is denoted as � − . (4) For each non-leaf node � , 
its �-th children node is denoted as � ⟨� ⟩ ordered from left to right 
as � increases. (5) For each non-leaf node � , assuming the number 
of children � is � , all vertex subset �� ⟨�⟩ form a partition of �� ,Ð� Ñ� written as �� = �=1�� ⟨�⟩ and �=1�� ⟨�⟩ = ∅. If the encoding tree’s 
height is restricted to � , we call it �-level encoding tree. Entropy 
measures can be conducted on diferent encoding trees. 
One-dimensional Structural Entropy. In a single-level encod-
ing tree T , its structural entropy degenerates to the unstructured 
Shannon entropy, which is formulated as: ∑ �� �� 

�1 (�) = − log2 , (1)
��� (�) ��� (�)

� ∈� 

where �� is the degree of vertex � , and ��� (�) is the sum of the 
degrees of all vertices in � . According to the fundamental re-
search [18], one-dimensional structural entropy � 1 (�) measures 
the uncertainty of vertex set � in � , which is also the upper bound 
on the amount of information embedded in � . 
High-dimensional Structural Entropy. For the encoding tree 
T , we defne high-dimensional structural entropy of � as: 

�� (�) = min {� T (�)}, (2)
∀T:ℎ���ℎ� (T)≤� ∑ ∑ �� V� 

� T (�) = � T (� ; �) = − log2 , (3)
��� (�) V� − 

� ∈T,�≠� � ∈T,�≠� 

where �� is the sum weights of the cut edge set [�� ,�� /��], i.e., all 
edges connecting vertices inside �� with vertices outside �� . V� is 
the sum of degrees of all vertices in �� . � T (� ; �) is the structural 
entropy of node � and � T (�) is the structural entropy of T . �� (�)
is the �-dimensional structural entropy, with the optimal encoding 
tree of �-level . 

3 OUR APPROACH 
This section presents the architecture of SE-GSL, then elaborate 
on how we enhance the graph structure learning by structural 
entropy-based optimization of the hierarchical encoding tree. 

3.1 Overview of SE-GSL 
Fig. 2 depicts the overall pipeline. At the core of SE-GSL is the 
structure optimization procedure that transforms and enhances 
the graph structure. More specifcally, it encompasses multi-stages: 
graph structure enhancement, hierarchical encoding tree genera-
tion, and sampling-based structure reconstruction before an itera-
tive representation optimization. 

First, the original topological information is integrated with ver-
tex attributes and the neighborhood in close proximity. Specifcally, 
we devise a similarity-based edge reweighting mechanism and in-
corporate �-NN graph structuralization to provide auxiliary edge 
information. The most suitable � is selected under the guidance 
of the one-dimensional structural entropy maximization strategy 
(§ 3.2). Upon the enhanced graph, we present a hierarchical ab-
straction mechanism to further suppress the edge noise and reveal 
the high-level hierarchical community structure (encoding tree) 
(§ 3.3). A novel sampling-based approach is designed to build new 
graph topology from the encoding tree, particularly by restoring 
the edge connectivity from the tree hierarchy (§ 3.4). The core 
idea is to weaken the association between high-level communi-
ties whilst establishing dense and extensive connections within 
low-level communities. To this end, we transform the node struc-
tural entropy into probability, rejecting the deterministic threshold. 
Through multi-iterative stochastic sampling, it is more likely to 
fnd favorable graph structures for GNNs. Afterward, the rebuilt 
graph will be fed into the downstream generic GNN encoders. To 
constantly improve both the node representation and the graph 
structure, the optimization pipeline is iterated for multiple epochs. 
The training procedure of SE-GSL is summarized in Appendix A.4. 

3.2 Graph Structure Enhancement 
To fully incorporate vertex attributes and neighborhood informa-
tion in the graph structure, we perform feature fusion and edge 
reweighting so that the topological structure, together with the 
informative vertex adjacent similarity, can be passed on to the en-
coding tree generator. To begin with, we calculate the pair-wise 
similarity matrix � ∈ R |� |× |� | among vertices in graph � . To better 
depict the linear correlation between two vertex attributes, we take 
the Pearson correlation coefcient (PCC) as the similarity measure 
in the experiments, i.e., 

� ((�� − �� ) (� � − � � )) 
�� � = PCC(�� , � � ) = , (4)

�� � � 
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Figure 2: The overall architecture of SE-GSL. 

∈ R1×� where �� and � � are the attribute vectors of vertices � 
and � , respectively. �� and �� denote the mean value and variance 
of �� , and � (·) is the dot product function. Based on � , we can 
intrinsically construct the �-NN graph ���� = {� , ���� } where 
each edge in ���� represents a vertex and its � nearest neighbors 
(e.g., the edges in red in Fig 2). We fuse ���� and the original � to 
� � = {� , �� = � ∪ ���� }. 

A key follow-up step is pinpointing the most suitable number � 
of nearest neighbors. An excessive value of � would make � � over-
noisy and computationally inefcient, while a small � would result 
in insufcient information and difculties in hierarchy extraction. 
As outlined in § 2.2, a larger one-dimensional structural entropy 
indicates more information that � � can potentially hold. Hence, we 
aim to maximize the one-dimensional structural entropy �1 (� � )
to guide the selection of � for larger encoding information. In 
practice, we gradually increase the integer parameter � , generate 

(� ) (� )the corresponding � and compute �1 (� ). Observably, when 
� � 

(� )
� reaches a threshold �� , �1 (� ) comes into a plateau without 

� 
noticeable increase. This motivates us to regard this critical point 
�� as the target parameter. The �-selector algorithm is depicted 
in Appendix A.5. In addition, the edge �� � between �� and � � is 
reweighted as: ∑ 1 1 

�� � = �� � + �, � = · �� � , (5)
2|� | |� | 1<�, � <� 

where � is a modifcation factor that amplifes the trivial edge 
weights and thus makes the �-selector more sensitive to noises. 

3.3 Hierarchical Encoding Tree Generation 
Our methodology of abstracting the fused graph into a hierarchy 
is inspired by the structural entropy theory [18, 20]. We intend 
to minimize the graph uncertainty (i.e., edge noises) and maxi-
mize the knowledge embedded (e.g., optimal partition) in the high-
dimensional hierarchy. Correspondingly, the objective of structural 
entropy minimization is to fnd out an encoding tree T that min-
imizes � T (� � ) defned in Eq. 3. Due to the difculty in graph 
semantic complexity quantifcation, we restrict the optimization 
objective to the �-level tree with a hyperparameter � . The optimal 
�-dimensional encoding tree is represented as: 

T∗ = arg min (� T (�)). (6) 
∀T:ℎ���ℎ� (T)≤� 

To address this optimization problem, we design a greedy-based 
heuristic algorithm to approximate �� (�). To assist the greedy 
heuristic, we defne two basic operators: 

Defnition 1. Combining operator: Given an encoding tree T 
for � = (� , �), let � and � be two nodes in T sharing the same 
parent � . The combining operator CBT (�, �) updates the encoding 
tree as: � ← � − ; � ← � − ; � ← � − . A new node � is inserted 
between � and its children �, � . 

Defnition 2. Lifting operator: Given an encoding tree T for 
� = (� , �), let � , � and � be the nodes in T , satisfying � − = � and 
� − = � . The lifting operator LFT (�, �) updates the encoding tree 
as: � ← � − ; IF :�� = ∅, THEN :drop(�) . The subtree rooted at � is 
lifted by placing itself as � ’s child. If no more children exist after 
lifting, � will be deleted from T . 
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In light of the high-dimensional structural entropy minimization 
principle [20], we frst build a full-height binary encoding tree by 
greedily performing the combining operations. Two children of 
the root are combined to form a new partition iteratively until 
the structural entropy is no longer reduced. To satisfy the height 
restriction, we further squeeze the encoding tree by lifting subtrees 
to higher levels. To do so, we select and conduct lifting operations 
between a non-root node and its parent node that can reduce the 
structural entropy to the maximum. This will be repeated until 
the encoding tree height is less than � and the structural entropy 
can no longer be decreased. Eventually, we obtain an encoding 
tree with a specifc height � with minimal structural entropy. The 
pseudo-code is detailed in Appendix A.6. 

3.4 Sample-based Graph Reconstruction 
The subsequent step is to restore the topological structure from the 
hierarchy whilst guaranteeing the established hierarchical seman-
tics in optimal encoding tree T∗ . The key to graph reconstruction 
is determining which edges to augment or weaken. Intuitively, the 
nodes in real-life graphs in diferent communities tend to have 
diferent labels. The work [63] has demonstrated the efective-
ness of strengthening intra-cluster edges and reducing inter-cluster 
edges in a cluster-awareness approach to refne the graph topology. 
However, for hierarchical communities, simply removing cross-
community edges will undermine the integrity of the higher-level 
community. Adding edges within communities could also incur 
additional edge noises to lower-level partitioning. 

We optimize the graph structure with community preservation 
by investigating the structural entropy of deduction between two 
interrelated nodes as the criterion of edge reconstruction: 

Defnition 3. Structural entropy of deduction: Let T be an en-
coding tree of � . We defne the structural entropy of the deduction 
from non-leaf node � to its descendant � as: ∑ 

� T (� ; (�, �]) = � T (� ; �). (7) 
�,�� ⊆�� ⊂�� 

This node structure entropy defnition exploits the hierarchical 
structure of the encoding tree and ofers a generic measure of top-
down deduction to determine a community or vertex in the graph. 

From the viewpoint of message passing, vertices with higher 
structural entropy of deduction produce more diversity and uncer-
tainty and thus require more supervisory information. Therefore, 
such vertices need expanded connection felds during the graph 
reconstruction to aggregate more information via extensive edges. 
To achieve this, we propose an analog sampling-based graph recon-
struction method. The idea is to explore the node pairs at the leaf 
node level (the lowest semantic level) and stochastically generate an 
edge for a given pair of nodes with a certain probability associated 
with the deduction structural entropy. 

Specifcally, for a given T , assume the node � has a set of child 
nodes {� ⟨1⟩ , � ⟨2⟩ , . . . , � ⟨�⟩ }. The probability of the child � ⟨� ⟩ is de-
fned as: � (� ⟨� ⟩ ) = �� (� T (� � ; (�, � ⟨� ⟩ ])), where � is the root of T 
and �� (·) represents a distribution function. Take sofmax function 

as an example, the probability of � ⟨� ⟩ can be calculated as: 

exp(� T (� � ; (�, � ⟨� ⟩ ])) 
� (� ⟨� ⟩ ) = . (8)Í� 

=1exp(� T (� � ; (�, � ⟨ � ⟩ ])) � 

The probability of a non-root node can be acquired recursively. 
To generate new edges, we sample leaf node pairs by a top-down 
approach with a single sampling fow as follows: 
(1) For the encoding tree (or subtree) with root node � , two difer-
ent child nodes � ⟨� ⟩ and � ⟨ � ⟩ are selected by sampling according 
to � (� ⟨� ⟩ ) and � (� ⟨ � ⟩ ). Let �1 ← � ⟨� ⟩ and �2 ← � ⟨ � ⟩ (2) If �1 is a 
non-leaf node, we perform sampling once on the subtree rooted 

⟨� ⟩ ⟨� ⟩at �1 to get � , then update �1 ← � . The same is operated on 1 1 
�2. (3) After recursively performing step (2), we sample two leaf 
nodes �1 and �2, while adding the edge connecting vertex �1 = ��1 ′and �2 = ��2 into the edge set � ′ of graph � . To establish exten-
sive connections at all levels, multiple samplings are performed 
on all encoding subtrees. For each subtree rooted at � , we conduct 
independent samplings for � × � times, where � is the number of 
� ’s children, and � is a hyperparameter that positively correlated 
with the density of reconstructed graph. For simplicity, we adopt a 
uniform � for all subtrees. Separately setting and tuning � of each 
semantic level for precise control is also feasible. 

3.5 Time Complexity of SE-GSL 
The overall time complexity is � (�2 + � + � log2 �), in which � 
is the number of nodes. Separately, in § 3.2, the time complexity 
of calculating similarity matrix is � (�2) and of �-selector is � (�). 
According to [18], the optimization of a high-dimensional encoding 
tree in § 3.3 costs the time complexity of � (� log2 �). As for the 
sampling process in § 3.4, the time complexity can be proved as 
� (2�). We report the time cost of SE-GSL in Appendix A.3. 

4 EXPERIMENTAL SETUP 
Software and Hardware. All experiments are conducted on a 
Linux server with GPU (NVIDIA RTX A6000) and CPU (Intel i9-
10980XE), using PyTorch 1.12 and Python 3.9. 
Datasets. We experiment on nine open graph benchmark datasets, 
including three citation networks (i.e., Cora, Citeseer, and Pubmed), 
two social networks (i.e., PT and TW), three website networks from 
WebKB (i.e., Cornell, Texas, and Wisconsin), and a co-occurrence 
network. Their statistics are summarized in Appendix A.2. 
Baseline and backbone models. We compare SE-GSL with base-
lines including general GNNs (i.e., GCN, GAT, GCNII, Grand) and 
graph learning/high-order neighborhood awareness methods (i.e. 
MixHop, Dropedge, Geom-GCN, GDC, GEN, H2GCN). Four classic 
GNNs (GCN, GAT, GraphSAGE, APPNP) are chosen as the backbone 
encoder that SE-GSL works upon. Details are in Appendix A.3. 
Parameter settings. For SE-GSL with various backbones, we uni-
formly adopt two-layer GNN encoders. To avoid over-ftting, We 
adopt ReLU (ELU for GAT) as the activation function and ap-
ply a dropout layer with a dropout rate of 0.5. The training it-
eration is set to 10. The embedding dimension � is chosen from 
{8, 16, 32, 48, 64}, while the height of the encoding tree � is searched 
among {2, 3, 4}, and the hyperparameter � in 3.4 is tuned among 
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Table 1: Classifcation Accuracy (%) comparison, with improvement range of SE-GSL against the baselines. The best results are 
bolded and the second-bests are underlined. Green denotes the outperformance percentage, while yellow denotes underperformance. 

Method Cora Citeseer Pubmed PT TW Actor Cornell Texas Wisconsin 

GCN 87.26±0.63 76.22±0.71 87.46±0.12 67.62±0.21 62.46±1.94 27.65±0.55 49.19±1.80 57.30±2.86 48.57±4.08 

GAT 87.52±0.69 76.04±0.78 86.61±0.15 68.76±1.01 61.68±1.20 27.77±0.59 57.09±6.32 58.10±4.14 51.34±4.78 

GCNII 87.57±0.87 75.47±1.01 88.64±0.23 68.93±0.93 65.17±0.47 30.66±0.66 58.76±7.11 55.36±6.45 51.96±4.36 

Grand 87.93±0.71 77.59±0.85 86.14±0.98 69.80±0.75 66.79±0.22 29.80±0.60 57.21±2.48 56.56±1.53 52.94±3.36 

Mixhop 85.71±0.85 75.94±1.00 87.31±0.44 69.48±0.30 66.34±0.22 33.72±0.76 64.47±4.78 63.16±6.28 72.12±3.34 

Dropedge 86.32±1.09 76.12±1.32 87.58±0.34 68.49±0.91 65.24±1.45 30.10±0.71 58.94±5.95 59.20±5.43 60.45±4.48 

Geom-GCN-P 84.93 75.14 88.09 - - 31.63 60.81 67.57 64.12 
Geom-GCN-S 85.27 74.71 84.75 - - 30.30 55.68 59.73 56.67 
GDC 87.17±0.36 76.13±0.53 88.08±0.16 66.14±0.54 64.14±1.40 28.74±0.76 59.46±4.35 56.42±3.99 48.30±4.29 

GEN 87.84±0.69 78.77±0.88 86.13±0.41 71.62±0.78 65.16±0.77 36.69±1.02 65.57±6.74 73.38±6.65 54.90±4.73 

H2GCN-2 87.81±1.35 76.88±1.77 89.59±0.33 68.15±0.30 63.33±0.77 35.62±1.30 82.16±6.00 82.16±5.28 85.88±4.22 

SE-GSL 87.93±1.24 77.63±1.65 88.16±0.76 71.91±0.66 66.99±0.93 36.34±2.07 75.21±5.54 82.49±4.80 86.27±4.32 

Improvement 0.00∼3.00 -1.14∼2.92 -1.43∼3.41 0.29∼5.77 0.20∼5.31 -0.35∼8.69 -6.95∼26.02 0.33∼27.13 0.39∼37.97 

{0.5, 1, 3, 5, 10, 30}. We adopt the scheme of data split in Geom-
GCN [28] and H2GCN [60] for all experiments – nodes are ran-
domly divided into the train, validation, and test sets, which take 
up 48%, 32%, 20%, respectively. In each iteration, the GNN encoder 
optimization is carried out for 200 epochs, using the Adam opti-
mizer, with an initial learning rate of 0.01 and a weight decay of 
5� − 4. The model with the highest accuracy on validation sets is 
used for further testing and reporting. 

5 RESULTS AND ANALYSIS 
In this section, we demonstrate the efcacy of SE-GSL on semi-
supervised node classifcation (§ 5.1, followed by micro-benchmarks 
that investigate the detailed efect of the submodules on the overall 
performance and validate the robustness of SE-GSL when tackling 
random perturbations (§ 5.2). For better interpretation, we visualize 
the change of structural entropy and graph topology (§ 5.3). 

5.1 Node Classifcation 
5.1.1 Comparison with baselines. We compare the node classif-
cation performance of SE-GSL with ten baseline methods on nine 
benchmark datasets. Table 1 shows the average accuracy and the 
standard deviation. Note that the results of H2GCN (except PT and 
TW) and Geom-GCN are from the reported value in original pa-
pers ( - for not reported), while the rest are obtained based on the 
execution of the source code provided by their authors under our 
experimental settings. Our observations are three-fold: 
(1) SE-GSL achieves optimal results on 5 datasets, runner-up results 
on 8 datasets, and advanced results on all datasets. The accuracy can 
be improved up to 3.41% on Pubmed, 3.00% on Cora, and 2.92% on 
Citeseer compared to the baselines. This indicates that our design 
can efectively capture the inherent and deep structure of the graph 
and hence the classifcation improvement. 
(2) SE-GSL shows signifcant improvement on the datasets with het-
eropily graphs, e.g., up to 37.97% and 27.13% improvement against 
Wisconsin and Texas datasets, respectively. This demonstrates the 

Table 2: Classifcation accuracy(%) of SE-GSL and correspond-
ing backbones. Wisc. is short for Wisconsin. 

Method Actor TW Texas Wisc. Improvement 
SE-GSL��� 35.03 66.88 75.68 79.61 ↑ 5.20∼31.04 
SE-GSL���� 36.20 66.92 82.49 86.27 ↑ 0.25∼6.79 
SE-GSL��� 32.46 63.57 74.59 78.82 ↑ 4.69∼27.48 
SE-GSL��� � � 36.34 66.99 81.28 83.14 ↑ 2.01∼12.16 

importance of the graph structure enhancement that can contribute 
to a more informative and robust node representation. 
(3) While all GNN methods can achieve satisfactory results on 
citation networks, the graph learning/high-order neighborhood 
awareness frameworks substantially outperform others on the We-
bKB datasets and the actor co-occurrence networks, which is highly 
disassortative. This is because these methods optimize local neigh-
borhoods for better information aggregation. Our method is one 
of the top performers among them due to the explicit exploita-
tion of the global structure information in the graph hierarchical 
semantics. 

5.1.2 Comparison base on diferent backbones. Table 2 shows the 
mean classifcation accuracy of SE-GSL with diferent backbone 
encoders. Observably, SE-GSL upon GCN and GAT overwhelmingly 
outperforms its backbone model, with an accuracy improvement of 
up to 31.04% and 27.48%, respectively. This indicates the iterative 
mechanism in the SE-GSL pipeline can alternately optimize the 
node representation and graph structure. We also notice that despite 
the lower improvement, SE-GSL variants based on GraphSAGE and 
APPNP perform relatively better compared to those on GCN and 
GAT. This is most likely due to the backbone model itself being 
more adapted to handle disassortative settings on graphs. 

5.2 Micro-benchmarking 
5.2.1 Efectiveness of �-selector. This subsection evaluates how the 
one-dimensional structural entropy guides the �-selector in § 3.2. 
Table 3 showcases the selected parameter � in each iteration with 
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(b) (a) (c) (d) SE-GSLGCN SE-GSLGAT SE-GSLSAGE SE-GSLAPPNP

Figure 3: Results of SE-GSL with diferent encoding tree heights. 

Table 3: The � selection for each iteration in structural opti-
mization. Bolds represent the � selection when the accuracy 
reaches maximum. 

Iteration 1 2 3 4 5 6 7 8 9 
Cora 22 22 19 22 21 22 20 21 20 
Actor 23 15 15 15 14 15 14 14 15 
TW 50 16 16 17 15 17 27 16 16 
Wisconsin 21 16 11 16 14 13 16 13 11 
Texas 21 13 13 13 13 10 14 10 14 

SE-GSLGCN SE-GSLGAT

GCN GAT

GCN-Jaccard

GCN-DropEdge

SE-GSLGCN SE-GSLGAT

GCN GAT

GCN-Jaccard

GCN-DropEdge

(a) Cora (b) Citeseer

0.0809 0.0183

Figure 4: Robustness of SE-GSL against random noises. 

SE-GSL��� . Noticeably, as the iterative optimization proceeds, the 
optimal parameter � converges to a certain range, indicating the 
gradual stabilization of the graph structure and node representation. 
The disparity of parameter � among diferent datasets also demon-
strates the necessity of customizing � in diferent cases rather than 
using � as a static hyperparameter. 

5.2.2 Impact of the encoding tree’s height � . We evaluate all four 
variants of SE-GSL on the website network datasets, and the encod-
ing tree height � involved in § 3.3 varies from 2 to 4. As shown in 
Fig. 3, there is a huge variation in the optimal tree heights among 
diferent datasets. For example, in the variants based on GAT, GCN, 
and APPNP, the best results can be targeted at � = 3 in Texas and 
at � = 4 in Cornell and Wisconsin. By contrast, in SE-GSL���� , 
� = 2 can enable the best accuracy of 86.27%. This weak corre-
lation between the best � and the model performance is worth 
investigating further, which will be left as future work. 

5.2.3 Sensitivity to perturbations. We introduce random edge noises 
into Cora and Citeseer, with perturbation rates of 0.2, 0.4, 0.6, 0.8, 

and 1. As shown in Fig. 4(a), SE-GSL outperforms baselines in both 
GCN and GAT cases under most noise settings. For instance, SE-
GSL��� achieves up to 8.09% improvement against the native GCN 
when the perturbation rate is 0.8; by contrast, improvements by 
GCN-Jaccard and GCN-DropEdge are merely 6.99% and 5.77%, re-
spectively. A similar phenomenon is observed for most cases in the 
Citeseer dataset (Fig. 4(b)), despite an exception when compared 
against GCN-Jaccard. Nevertheless, our approach is still competi-
tive and even better than GCN-Jaccard at a high perturbation rate. 

5.3 Interpretation of Structure Evolution 
5.3.1 Structural entropy variations analysis. We evaluate how the 
structural entropy changes during the training of SE-GSL��� with 
2-dimensional structural entropy on WebKB datasets. For compari-
son, we visualize the entropy changes on Wisconsin without the 
structure learning. In the experiment setting, both the graph struc-
ture and the encoding tree are updated once at each iteration (i.e., 
200 GNN epochs), and within one iteration, the structural entropy is 
only afected by edge weights determined by the similarity matrix. 
For comparison, we normalize the structural entropy by � T (� ) .

� 1 (� )
As shown in Fig. 5(a)-(c), as the accuracy goes up, the normal-

ized structural entropy constantly decreases during the iterative 
graph reconstruction, reaching the minimums of 0.7408 in Texas, 
0.7245 in Cornell, and 0.7344 in Wisconsin. This means the increas-
ing determinism of the overall graph structure and the reduced 
amount of information required to determine a vertex. Interest-
ingly, if our graph reconstruction mechanism is disabled (as shown 
in Fig. 5(d)), the normalized structural entropy keeps rising from 
0.7878, compared with Fig. 5(c). Accordingly, the fnal accuracy will 
even converge to 55.34%, a much lower level. 

Such a comparison also provides a feasible explanation for the 
rising trend of the normalized structural entropy within every single 
iteration. This stems from the smoothing efect during the GNN 
training. As the node representation tends to be homogenized, the 
graph structure will be gradually smoothed, leading to a decrease 
in the one-dimensional structural entropy thus the normalized 
structural entropy increases. 

5.3.2 Visualization. Fig. 6 visualizes the topology of the original 
Cora and Citeseer graph and of the 2nd and 5th iterations. The 
vertex color indicates the class it belongs to, and the layout denotes 
connecting relations. Edges are hidden for clarity. As the iteration 
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Figure 5: The normalized structural entropy changes during the training of SE-GSL��� with 2-dimensional structural entropy 
on (a) Texas, (b) Cornell, and (c) Wisconsin. The structure is iterated every 200 epochs. By comparison, (d) shows the entropy 
changes on Wisconsin without the graph reconstruction strategy. 

(a) The original topology 

(Cora)

SE=11.06

(b) The topology of 

2nd iteration (Cora)

SE=10.88

(c) The topology of 

5th iteration (Cora)

SE=10.83

(d) The original topology 

(Citeseer)

SE=11.12

(e) The topology of 2nd 

iteration (Citeseer)

SE=11.04

(f) The topology of 

5th iteration (Citeseer)

SE=10.99

Figure 6: The visualized evolution of the graph structure on 
Cora (a,b,c) and Citeseer (d,e,f). The corresponding Structural 
Entropy (SE) is also shown. 

continues, much clearer clustering manifests – few outliers and 
more concentrated clusters. Vertices with the same label are more 
tightly connected due to the iterative graph reconstruction scheme. 
This improvement hugely facilitates the interpretability of the GSL 
and the node representation models. 

pan2021information 

6 RELATED WORK 
Graph structure learning and neighborhood optimization. 
The performance of GNNs is heavily dependent on task-relevant 
links and neighborhoods. Graph structure learning explicitly learns 
and adjusts the graph topology, and our SE-GSL is one of them. 
GDC [10] reconnects graphs through graph difusion to aggregate 
from multi-hop neighborhoods. Dropedge [34], Neuralsparse [58] 
contribute to graph denoising via edge-dropping strategy while 
failing to renew overall structures. LDS-GNN [8] models edges by 
sampling graphs from the Bernoulli distribution. Meanwhile, we 
consider linking the structural entropy, which is more expressive 
of graph topology, to the sampling probability. GEN [43], IDGL [5] 

explore the structure from the node attribute space by the �-NN 
method. Diferently, instead of directly using attribute similarity, 
we regenerate edges from the hierarchical abstraction of graphs to 
avoid inappropriate metrics. Besides adjusting the graph structure, 
methods to optimize aggregation are proposed with results on het-
erophily graphs. MixHop [1] learns the aggregation parameters for 
neighborhoods of diferent hops through a mixing network, while 
H2GCN [60] identifes higher-order neighbor-embedding separa-
tion and intermediate representation combination, for adapting 
to heterophily graphs. Geom-GCN [28] aggregates messages over 
both the original graph and latent space by a designed geometric 
scheme. 
Structural entropy with neural networks. Structural informa-
tion principles [18], defning encoding trees and structural entropy, 
were frst used in bioinformatic structure analysis [19, 20]. Exist-
ing work mainly focuses on network analysis, node clustering and 
community detection[21, 24, 27]. As an advanced theory on graphs 
and hierarchical structure, structural information theory has great 
potential in combination with neural networks. SR-MARL [56] ap-
plies structural information principles to hierarchical role discovery 
in multi-agent reinforcement learning, thereby boosting agent net-
work optimization. SEP [47] provides a graph pooling scheme based 
on optimal encoding trees to address local structure damage and 
suboptimal problem. It essentially uses structural entropy mini-
mization for a multiple-layer coarsened graph. MinGE [26] and 
MEDE [52] estimate the node embedding dimension of GNNs via 
structural entropy, which introduces both attribute entropy and 
structure entropy as objective. Although these works exploit struc-
tural entropy to mine the latent settings of neural networks and 
GNNs, how to incorporate this theory in the optimization process 
is still understudied, and we are among the frst attempts. 

7 CONCLUSION 
To cope with edge perturbations in graphs with heterophily, this 
paper proposes a novel graph structure learning framework SE-GSL 
that considers the structural entropy theory in graph structure op-
timization. We design a structure enhancement module guided by 
the one-dimensional structural entropy maximization strategy to 
extend the information embedded in the topology. To capture the hi-
erarchical semantics of graphs, high-dimensional structural entropy 
minimization is performed for optimal encoding trees. We propose 
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a node sampling technique on the encoding tree to restore the most 
appropriate edge connections at diferent community levels, taking 
into account the deduction structural entropy distribution. In the 
future, we plan to combine delicate loss functions with structural 
entropy so that the knowledge in encoding trees can be converted 
into gradient information, which will further allow for end-to-end 
structure optimization. 
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A APPENDIX 

A.1 Glossary of notations 
In Table 4, we summarize the notations used in our work. 

Table 4: Glossary of Notations. 

Notation Description 
� ; �; � Graph; Adjacency matrix; Similarity matrix. 
� ; � ; � Vertex; Edge; Vertex attribute. 
� ; �; � Vertex set; Edge set; Attribute set. 
|� |; |� |
P; �� 

The number of vertices and edges. 
The partition of � ; A community. 

� ; � (�� )
�� � 

The degree matrix; The degree of vertex �� . 
The edge between �� and � � . 

�� � The weight of edge �� � . 
��� (�)
(� )

� 
��� 

� � 

The volume of graph � , i.e., degree sum in � . 
The �-NN graph with parameter � . 
Fusion graph. 

(� )
� 
� The fusion graph with parameter � . 

T Encoding tree. 
T ∗ The optimal encoding tree. 
� The root node of an encoding tree. 
� A non-root node of an encoding tree. 
� − The parent node of � . 
� ⟨� ⟩ the �-th child of � . 
�� The label of �, i.e., node set � . 
�� The label of � , i.e., a subset of � . 
V� Volume of graph � . 
�� 
� (T ) 

the sum weights of cut edge set [�� ,�� /��]. 
The number of non-root node in T . 

� T (�)
�� (�)
� 1 (�)
� T (� ; �)
� T (� ; (�, �]) 

Structural entropy of � under T . 
�-dimensional structural entropy. 
One-dimensional structural entropy. 
Structural entropy of node � in T . 
Structural entropy of a deduction from � to � . 

A.2 Dataset and Time Costs of SE-GSL 
Our framework SE-GSL is evaluated on nine graph datasets. the 
statistics of these datasets are shown in Table 5. The time costs of 
SE-GSL on all datasets are shown in Table 6. 

Table 5: Statistics of benchmark datasets. 

Dataset Nodes Edges Classes Features homophily 
Cora 2708 5429 7 1433 0.83 

Citeseer 3327 4732 6 3703 0.71 
Pubmed 19717 44338 3 500 0.79 

PT 1912 31299 2 3169 0.59 
TW 2772 63462 2 3169 0.55 
Actor 7600 33544 5 931 0.24 
Cornell 183 295 5 1703 0.30 
Texas 183 309 5 1703 0.11 

Wisconsin 251 499 5 1703 0.21 

• Citation networks [45, 51]. Cora, Citeseer, and Pubmed are 
benchmark datasets of citation networks. Nodes represent paper, 
and edges represent citation relationships in these networks. The 
features are bag-of-words representations of papers, and labels 
denote their academic felds. 

• Social networks [35]. TW and PT are two subsets of Twitch 
Gamers dataset [36], designed for binary node classifcation tasks, 
where nodes correspond to users and links to mutual friendships. 
The features are liked games, location, and streaming habits of 
the users. The labels denote whether a streamer uses explicit 
language (Taiwanese and Portuguese). 

• WebKB networks [11]. Cornell, Texas, and Wisconsin are three 
subsets of WebKB, where nodes are web pages, and edges are 
hyperlinks. The features are the bag-of-words representation of 
pages. The labels denote categories of pages, including student, 
project, course, staf, and faculty. 

• Actor co-occurrence network [40]. This dataset is a subgraph 
of the flm-director-actor-writer network, in which nodes repre-
sent actors, edges represent co-occurrence relation, node features 
are keywords of the actor, and labels are the types of actors. 

A.3 Baselines 
Baselines are briefy described as follows3: 

• GCN [45] is the most popular GNN, which defnes the frst-order 
approximation of a localized spectral flter on graphs. 

• GAT [41] introduces a self-attention mechanism to important 
scores for diferent neighbor nodes. 

• GraphSAGE [14] is an inductive framework that leverages node 
features to generate embeddings by sampling and aggregating 
features from the local neighborhood. 

• APPNP [9] combines GCN with personalized PageRank. 
• GCNII4 [4] employs residual connection and identity mapping. 
• Grand5 [7] purposes a random propagation strategy for data 
augmentation, and uses consistency regularization to optimize. 

• Mixhop6 [1] aggregates mixing neighborhood information. 
• Geom-GCN7 [28] exploits geometric relationships to capture 
long-range dependencies within structural neighborhoods. Three 
variant of Geom-GCN is used for comparison. 

• GDC8 [10] refnes graph structure based on difusion kernels. 
• GEN9 [43] estimates underlying meaningful graph structures. 
• H2GCN10 [60] combine multi-hop neighbor-embeddings for 
adapting to both heterophily and homophily graph settings. 

• DropEdge11 [34] randomly removes edges from the input graph 
for over-ftting prevention. 

• Jaccard12 [46] prunes the edges connecting nodes with small 
Jaccard similarity. 

3For GCN, GAT, GraphSAGE, and APPNP layers, we adopt implementation from DGL 
library [42]:https://github.com/dmlc/dgl
4https://github.com/chennnM/GCNII 
5https://github.com/THUDM/GRAND 
6https://github.com/samihaija/mixhop 
7https://github.com/graphdml-uiuc-jlu/geom-gcn 
8https://github.com/gasteigerjo/gdc 
9https://github.com/BUPT-GAMMA/Graph-Structure-Estimation-Neural-Networks
10https://github.com/GemsLab/H2GCN 
11https://github.com/DropEdge/DropEdge 
12https://github.com/DSE-MSU/DeepRobust 
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Table 6: Comparison of training time(hr.) of achieving the best performance based on GPU. 

Method Cora Citeseer Pubmed PT TW Actor Cornell Texas Wisconsin 
SE-GSL��� 0.071 0.213 4.574 0.178 0.374 1.482 0.006 0.008 0.009 
SE-GSL���� 0.074 0.076 4.852 0.169 0.214 0.817 0.006 0.007 0.009 
SE-GSL��� 0.071 0.180 4.602 0.172 0.329 1.273 0.006 0.008 0.009 
SE-GSL��� � � 0.073 0.215 4.854 0.138 0.379 1.367 0.010 0.011 0.013 

A.4 Overall algorithm of SE-GSL 
The overall algorithm of SE-GSL is shown in Algorithm 1. Note that, 
if choose to retain the connection from the previous iteration, to 
ensure that the number of edges remains stable during the training, 
a percentage of edges in the reconstructed graph with low similarity 
will be dropped in each iteration. 

Algorithm 1: Model training for SE-GSL 

Input: a graph � = (� , �), features � , labels �� , mode 
∈ ����, ����� 

iterations �, encoding tree height � , hyperparameter � 
′Output: optimized graph � = (� , � ′), prediction �� , GNN 

parameters Θ 
1 Initialize Θ; 
2 for � = 1 to � do 
3 Update Θ by classifcation loss L��� (��, �� ); 

′ 4 Getting node representation � = GNN(� ); 
5 Initialize � = 1 for �-NN structuralization; 
6 Create fusion map � � according to Algorithm 2; 
7 Create �-dimensional encoding tree T∗ according to 

Algorithm 3; 
8 for each non-root node � in T∗ do 
9 Calculate � T

∗ (� � ; (�, �]) through Eq. 7; 
10 Assign probability � (�) to � through Eq. 8; 
11 for each subtree rooted at � in T∗ do 
12 Assuming � has � children, set � = � × �; 
13 for � = 1 to � do 
14 Sample a node pair (��, �� ) according to § 3.4; 
15 Adding edge ��� to � ′; 

16 if mode then 
17 Let � ′ = � ∪ � ′, where � ′ and � are the edge set of 

′ � and � , respectively; 
18 Drop a percentage of edges in � ′; 
19 Update graph structure � ← � ′; Update node 

representation: � ← � ′; 
20 Get prediction �� ; 
21 Return � ′ , �� and Θ; 

A.5 Algorithm of one-dimensional structural 
entropy guided graph enhancement 

The �-selector is designed for choosing an optimal � for �-NN 
structuralization under the guidance of one-dimensional structural 
entropy maximization. The algorithm of �-selector and fusion graph 
construction is shown in Algorithm 2. 

Algorithm 2: �-selector and fusion graph construction 

Input: a graph � = (� , �), node representation � 
Output: fusion graph � � 

1 Calculate � ∈ R |� |× |� | via Eq. 4; 
2 for � = 2 to |� | − 1 do 
3 Generate ���� by � ; 

(� )
4 Generate � = {� , �� = � ∪ ���� };� 

(� )
5 Reweight � via Eq. 5; 

� 
(� )

6 Calculate �1 (� ) via Eq. 1; 
� 

(� )
7 if �1 (� ) reaches the maximal optima then

� 
(� )

8 � � ← �
� ; 

9 Return � � ; 

A.6 Algorithm of high-dimensional structural 
entropy minimization 

The pseudo-code of the high-dimensional structural entropy mini-
mization algorithm is shown in Algorithm 3. 

Algorithm 3: K-dimensional structural entropy minimiza-
tion 
Input: a graph � = (� , �), the height of encoding tree � > 1 
Output: Optimal high-dimensional encoding tree T∗ 

1 //Initialize an encoding tree T with height 1 and root � 
2 Create root node �; 
3 for �� ∈ � do 
4 Create node �� . Let ��� = �� ; 
5 � − = �;

� 

6 //Generation of binary encoding tree 
7 while � has more than 2 children do 
8 Select �� and � � in T , condition on � − = � − = � and

� � 

arg max(� T (�) − � T (�));CB(�� ,� � )�� ,� � 

9 CB(�� , � � ) according to Defnition 1; 
10 //Squeezing of encoding tree 
11 while height(T ) > � do 
12 Select non-root node � and � in T , condition on � − = � 

and arg max(� T (�) − �LF 
T
(�,� ) (�)); 

�,� 

13 LF(�, �) according to Defnition 2; 
14 Return T∗ ← T ; 
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