From Known to Unknown: Quality-aware Self-improving Graph
Neural Network for Open Set Social Event Detection

Jiagian Ren

Institute of Information Engineering,

Chinese Academy of Sciences,
Beijing, China
School of Cyber Security,

University of Chinese Academy of

Sciences,
Beijing, China
renjiaqian@iie.ac.cn

Yuwei Cao
University of Illinois Chicago,
Chicago, IL 60607, USA
ycao43@uic.edu

Lei Jiang®

The Second Research Room,

Institute of Information Engineering,

Chinese Academy of Sciences,
Beijing, China
jlanglei@iie.ac.cn

Jia Wu
Macquarie University,
Sydney NSW 2109, Australia
jla.wu@mg.edu.au

Hao Peng*

School of Cyber Science and
Technology,
Beihang University,
Beijing, China
penghao@buaa.edu.cn

Philip S. Yu
University of Illinois Chicago,
Chicago, IL 60607, USA
psyu@uic.edu

Lifang He
Lehigh University,
Bethlehem, PA 18015, USA
lih319@lehigh.edu

ABSTRACT

State-of-the-art Graph Neural Networks (GNNs) have achieved
tremendous success in social event detection tasks when restricted
to a closed set of events. However, considering the large amount of
data needed for training and the limited ability of a neural network
in handling previously unknown data, it is hard for existing GNN-
based methods to operate in an open set setting. To address this
problem, we design a Quality-aware Self-improving Graph Neu-
ral Network (QSGNN) which extends the knowledge from known
to unknown by leveraging the best of known samples and reli-
able knowledge transfer. Specifically, to fully exploit the labeled
data, we propose a novel supervised pairwise loss with an addi-
tional orthogonal inter-class relation constraint to train the back-
bone GNN encoder. The learnt, already-known events further serve
as strong reference bases for the unknown ones, which greatly
prompts knowledge acquisition and transfer. When the model is
generalized to unknown data, to ensure the effectiveness and re-
liability, we further leverage the reference similarity distribution
vectors for pseudo pairwise label generation, selection and quality
assessment. Following the diversity principle of active learning,
our method selects diverse pair samples with the generated pseudo
labels to fine-tune the GNN encoder. Besides, we propose a novel
quality-guided optimization in which the contributions of pseudo
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labels are weighted based on consistency. Experimental results val-
idate that our model achieves state-of-the-art results and extends
well to unknown events.
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1 INTRODUCTION

For the task of social event detection, previous studies often utilize
text contents [2, 27, 38, 44, 48, 49] or auxiliary attributes extracted
from texts [9, 12, 21, 46, 47] to make social event detection. In recent
years, there is a trend towards GNN-based methods [5, 6, 30-32]
which have the ability to combine rich information together and
achieve remarkable performance when restricted to a closed set
setting. Taking a deep dive into these neural network models, their
success heavily relies on the large amount of labeled data under
the closed-world assumption. However, the data of social networks
is being updated all the time, which means there are lots of newly
emerging events. On the one hand, consistently identifying and
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Figure 1: The two-step learning strategy for knowledge trans-
ferring from known to unknown.

annotating all emerging categories for model training are cost-
inhibitive. On the other hand, given the presence of significant
distribution gaps between the already-known training events and
the emerging unknown events, directly applying the models trained
on known data to unknown data in the real world typically exhibits
clear performance degradation. When the conventional closed set
assumption no longer holds, how to keep the strength of GNN
methods as well as generalize them to open set application is a
challenging problem.

We argue that the aforementioned problem can be solved by
human-like learning processes. A human can easily identify sam-
ples of new events after they are trained to distinguish events with
some already-known samples. Likewise, for the training of models,
it is natural to leverage the already-known events (the annotated
data) to explore the new, unlabeled events, rather than in a com-
pletely unsupervised way. Generally, the success of human beings
in recognizing new events is due to two kinds of abilities: 1) the
ability to find the pattern of an event with already-known samples,
and 2) the ability to transfer knowledge from known to unknown.
Analogously, the key challenges in open set social event detection
are: 1) how to fully exploit the labeled data to learn discriminative
features, and 2) how to achieve effective and reliable knowledge
transfer to promote the discovery of new events. However, existing
GNN-based event detection methods still have room for improve-
ment on the first issue, and totally ignore the second one. Consider
the first challenge, authors in [6, 30] train GNN networks to learn
the discriminative features of events based on the cross-entropy
loss. While great results have been achieved, they are unsuitable for
the open world. Authors in [5] and [32] replace the cross-entropy
loss with a triplet loss to train the model. However, they still can-
not fully exploit data. This is because the complicated sampling
strategy in the triplet loss brings a weaker generalization capability
when being extended to the unknown set, and the relative distances
between positive and negative pairs learnt from the triplet loss are
not always distinguishable (the intra-class distances are sometimes
larger than the inter-class distances). To solve these problems, we
propose a stricter pairwise loss in this paper.

As to the second challenge, i.e., knowledge transferring from
known to unknown, those GNN-based methods [5, 32] which con-
sider the incremental, novel events setting in the real world, need
labeled data for continuous training. However, constantly labeling
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new data is time-consuming and labor-intensive. To achieve knowl-
edge transfer in an unsupervised way, it is worth noting that a
series of methods [16-19, 50, 51] are proposed for the task of novel
class discovery. As shown in Fig. 1, these methods typically follow
a two-step learning strategy: 1) pre-training the model with labeled
data to obtain basic discriminative ability; 2) adopting clustering or
pairwise determination algorithms to generate pseudo labels for
the training of the new classes. However, using all pseudo labels for
training is inefficient. Besides, these methods fail to consider the
noise in the obtained pseudo-labels and, therefore, are unreliable.
How to select a small number of high-quality samples to achieve
effective and reliable knowledge transfer becomes an important
problem. In a word, the task of open set social event detection is
quite hard and has not been well-solved yet.

To tackle the above challenges, in this work, we design a Quality-
aware Self-improving Graph Neural Network (QSGNN) which
extends the knowledge from known to unknown by leveraging
the best of the known samples and reliable knowledge transfer.
Specifically, to fully explore the discriminative knowledge from the
already-known data, we propose a novel pairwise learning method
which has a stricter demand on the distances between intra-class
samples and inter-class ones to train our backbone GNN encoder.
In addition to differentiating the known events by the distances in
the latent space, we also add an orthogonal inter-class constraint to
force the known events to scatter in different directions. In this way,
those known events are fully explored and become strong reference
bases for unknown events. To ensure the effectiveness and reliabil-
ity of the knowledge transferring process, we propose to utilize the
Reference Similarity Distribution (RSD) vector, which is obtained
by computing the similarity distribution over a set of known ref-
erence events, for pseudo pairwise label generation, selection and
quality assessment. Particularly, we follow the principle of diversity
in active learning [36] to make unbalanced sample selection, and
assess the quality of the pseudo labels by their consistencies. To
further resist the noise of the pseudo labels, we adopt a quality-
guided optimization in which the contributions of the the pseudo
labels are weighted. We continuously fine-tune the backbone GNN
encoder to adapt to the incremental, unseen events in the open
world. Note that our model provides a principled way to obtain
pairwise pseudo labels with high quality for unlabelled data, thus
enabling effective and reliable knowledge transfer.

Experimental results on two large and publicly available Twitter
datasets show that our method achieves state-of-the-art perfor-
mance in closed set event detection and maintains high performance
in the open set setting. The source code and data are available at
GitHub!. Our main contributions are summarized as follows: 1)
We propose a Quality-aware Self-improving Graph Neural Net-
work (QSGNN) which extends knowledge from known to unknown
by leveraging the best of known samples and reliable knowledge
transfer. It successfully solves the open set social event detection
problem. 2) We propose a novel pairwise learning method with
an orthogonal inter-class constraint. Our method demands stricter
distance distinctions as well as direction distinctions in the latent
space, thus fully exploits the knowledge contained in the labeled
data. 3) We ensure effective and reliable knowledge transfer from

!https://github.com/RingBDStack/open- set-social-event-detection
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known to unknown by a selection strategy based on diversity as
well as a quality assessment strategy based on consistency. The
effectiveness comes from the unbalanced sample selection, and the
reliability is guaranteed by the quality-guided optimization process.

2 RELATED WORK

2.1 Social Event Detection

The task of SED has attracted many studies [14]. Based on existing
techniques, social event detection methods can be divided into in-
cremental clustering ones [1, 29], community detection ones [8, 20],
and topic modeling ones [46-49]. Though the incremental cluster-
ing methods can be easily adapted to open set social event detection
tasks, they fail to fully explore the knowledge contained in the social
streams. This problem also exists in the community detection meth-
ods and the topic modelling methods. Based on the information
they exploit, social event detection methods can be split into three
types: content-based [2, 27, 38, 44, 48, 49], attribute-based [9, 46, 47],
and combined methods [5, 6, 23, 30-32, 43]. Among the combined
methods, the GNN-based ones [5, 6, 30-32, 34, 35] perform greatly
due to their powerful expressive ability in building social graphs to
effectively combine contents and attributes. However, most GNN-
based studies hold the closed-set assumption in which the training
set and test set share the same events thus cannot be directly ap-
plied in the open world. Few exceptions [5, 31, 32] do consider the
incremental events setting but still need annotated data for contin-
uous training, which is costly. Considering the limited ability of
neural networks in handling previously unknown data, adapting
GNN-based methods to the open world setting remains challenging.

2.2 Active Learning

Active learning assumes that different samples in the dataset have
different values for the model training, and tries to select a small
quantity of data to achieve high performance gains [36]. Based
on the query principle they employ, active learning methods can
be split into three categories: uncertainty-based methods [3, 22,
33, 41], diversity-based methods [4, 15, 28, 45? ], and expected
model change-based ones [10, 13, 37, 40]. In this work we follow
the principle of diversity and propose an unbalanced sampling
strategy.

2.3 Novel Class Discovery

The task of novel class discovery is proposed recently aiming at
detecting novel classes in unlabeled data [17], which is similar to
our open set event detection task. This task differs from the conven-
tional unsupervised learning as they leverage some already-known
data. Existing methods [16-19, 50, 51] usually follow a two-step
strategy: 1) using the labeled data for model initialization, 2) per-
forming unsupervised clustering or pairwise determination on un-
labeled data to fine-tune the model. For example, to recognize open
set images, authors in [18] propose a constrained clustering net-
work. They first measure the pairwise similarities between images
by training a classification model on labeled data, then adopt a
clustering model on unlabeled data with those pairwise predictions.
Later, authors in [16] directly utilize rank statistics to calculate the
pairwise similarity. Though these approaches which use pseudo la-
bels to achieve model adaption to the unlabelled data have achieved
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promising results, they fail to consider the noise contained in the
obtained pseudo-labels. Therefore, the training process is unreli-
able. What’s more, they have not given a sample selection strategy.
Considering the large amount of unlabeled data, how to prompt
performance with a small number of samples becomes an important
problem.

3 METHODOLOGY

In this section, we begin by presenting the problem definition of the
open set social event detection task in Sec. 3.1, and then introduce
the details of our model. Fig. 2 shows an overview of our proposed
QSGNN, which includes the supervised pre-training stage (Sec. 3.3)
and the self-improving fine-tuning stage (Sec. 3.4).

3.1 Problem Definition

Here we give the definition of the open set social event detection
task in this work. The goal of our work is to identify newly emerging
events in unlabelled incremental social streams with the support of
knowledge learnt from the existing known events.

Formally, the open set event data comes as incremental social
stream [5]. The social stream, denoted as S = My, My, ..., Mj_1, M;
is actually a temporal sequence of blocks of social messages, where
each message block Mj, j € {0, 1, ..., i} contains all the messages that
arrive during the split time period. Different from [5], in this work
we impose the constraint that only the messages in the initial block
(i.e., Mp) are provided with labels. The later blocks remain unlabeled
during the whole training process. The objective is two-fold: 1) In
the pre-training stage, from the labeled message block My, we learn
an initial detection encoder, (Mo, 6p), that extracts discriminative
features and detects events. 6y denotes the parameter of f(Mo, 6p)
and is trained from Mj. 2) To detect events from the unlabeled
message blocks, we extend knowledge from known to unknown
by consistently updating the detection encoder. That is, we learn a
sequence of detection encoders f(Mj, 6o, 0;), j € {1, ..., i}. Each of
them is fine-tuned on the corresponding unlabeled message block
to achieve knowledge transferring.

3.2 Overall Framework

Our work contains two stages: 1) the model pre-training stage
with supervised pairwise contrastive learning (Eq. (3)), and 2) the
model fine-tuning stage with quality-aware self-improving learning
(Eq: (8)). As mentioned in Sec. 3.1, we split the whole dataset into
an incremental social stream. In the pre-training stage, an initial
message graph is constructed. We assume those messages are all
labeled and utilize them to train our backbone GNN encoder. In
the fine-tuning stage, messages are all assumed to be unlabeled.
For each message block, we construct a new graph. We directly
input each coming block to the already trained backbone model to
get initial representations for pseudo labels generation, selection,
and quality assessment. Note that for each unlabeled block, we
consistently update the model with the generated pseudo labels
and re-generate new pseudo labels for three times. In this way,
the model adapts to the incoming data. Besides, utilizing only the
current message block for fine-tuning, our procedure maintains a
light training scheme.
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Figure 2: The architecture of QSGNN. (a) shows the pre-training stage, in which we fully explore the discriminative knowledge
from the labeled data by utilizing both distance and direction information. (b) demonstrates the fine-tuning stage, in which we
utilize the Reference Similarity Distribution vector for pseudo pairwise label generation, selection and quality assessment.

3.3 Supervised Pre-training of Backbone GNN
Encoder

3.3.1 Construction of message graph. Here we give a brief intro-
duction to the message graph construction process. The message
graph, which only contains message nodes, is used to express the
complicated internal relations of messages in the social stream. To
fully explore all kinds of important information contained in the
social stream, we build edges between messages based on three
types of elements including users, hashtags, and entities. Messages
share any of these three elements are linked together. As for the
initial message features, we follow the way in [5] which combines
the language semantics with temporal information together. Specif-
ically, the semantic feature of a message is obtained by averaging
the pre-trained embeddings [26] of its words. The 2-d temporal
feature is obtained by converting the timestamp to the OLE date.
The initial message feature is the concatenation of these two parts.

3.3.2  Backbone GNN encoder. After constructing the message graph,
we apply a GNN encoder on it to learn comprehensive message
representations. To fully incorporate the rich semantics and rela-
tions, the GNN encoder learns node representations by iteratively
combining information from their one-hop neighbours. Formally,
for message m;, whose representation in the I-th layer is denoted
as hini, its updated representation in the (I + 1)-th layer becomes:

heads
hg,l:l) — | h,(,llg @ Aggregator
Vm;eN(m;)

(Extractor (hf,llz))), (1)

where N (m;) denotes the one-hop neighbours of message m;. ®
heads
stands for an aggregation, and || represents concatenation of

multiple heads. Aggregator and Extractor strategies differ in differ-
ent GNN models. In this paper we adopt the strategies in GAT [42].
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3.3.3  Supervised pairwise contrastive learning. As new events con-
tinuously arrive in the open world, the total number of events is
hard to know in advance. Thus, cross-entropy loss functions that
are widely used in the closed set are not suitable anymore. To cope
with the discrepancies between the closed and the open set settings,
we need to design a training method which can perform well under
supervision as well as be easily generalized to unknown samples.
Accordingly, we propose a novel pairwise learning method, which
is inspired by the triplet loss in [39], but different in the removal of
anchors. The essence of our pairwise learning is the idea that the
distance between an intra-class pair should be smaller than any of
the inter-class pairs, no matter whether they share a common node
or not.

In [39], to compute the triplet loss, one must construct a set of
triplets {T} first. Each triplet is composed of an anchor, a positive
sample to the anchor (i.e., a sample within the same class), and a
negative sample to the anchor (i.e., a sample from a different class).
Suppose the anchor message is m;. m;+ and m;— denote the positive
and the negative samples, respectively. The triplet loss is as follows:

L= max {Z) (hm,->hmi+) -D (hmi,hm,-—) +a, 0},
(m,mi+m;—)e{T}

@)
where a is a hyper-parameter which represents the margin distance.
D(-,-) computes the Euclidean distance.

Carefully analysing the triplet loss computation process men-
tioned above, we find two deficiencies: 1) Its sampling strategy is
complicated, which hampers its generalization from the known
set to the unknown set. When the labels are provided, one can
easily obtain triplets by constructing all possible positive pairs in
a specific class and adding the same number of random negative
samples from the other classes. However, for unknown data, the
triplets are much harder to construct. Specifically, all node pairs
need to be classified before we can combine the positive ones with
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Figure 3: (a) and (b) illustrate the representation distributions
learnt by the triplet loss vs. the pairwise loss (ours). Our
pairwise loss guarantees that the intra-class distances are
always smaller than the inter-class ones, e.g., D(A4;,Aj) <
D(B;, Cj).

other samples to form triplets. 2) The triplet loss which trains the
model based on the relative distances between positive and negative
pairs w.r.t. the same anchor is a relaxed constraint. As shown in
Fig. 3(a), after training, the intra-class distance in event A may be
larger than the inter-class distance between event B and event C.
E.g., D(B;, Cj) is smaller than D(A;,Aj), which creates difficulties
for the correct clustering of events.

To simplify the sampling process and make the intra-class distri-
butions more distinguishable from the inter-class ones, our pairwise
loss introduces a stricter constraint which pushes away negative
pairs from positive pairs despite the anchors. The loss is as follows:

‘EP = Z ma.x{i)(hm,-, hmﬁ—) - D(hmj, hmj—) +a, 0}:
(mj.mj+)e{Pos}
[mj,mj_JG[Neg)

(3)
where {Pos} denotes the positive pairs and {Neg} denotes the
negative ones. Obviously, with the help of this loss, the minimum
inter-class distance in the whole batch should be larger than the
maximum intra-class distance, as shown in Fig. 3(b). This helps
differentiate the intra-class representations from the inter-class
ones thus improves the events clustering results.

3.3.4 Orthogonal inter-class relation constraint. The pairwise loss
distinguishes the events by solely controlling the distances between
messages in the latent space. There is no utilization of the direction
information. Therefore, the learnt representations of messages be-
longing to different events may concentrate in one direction and
results in a certain dimension "waste". As shown in Fig. 2(a), to fully
leverage the latent space and maximally differentiate the known
events, we force the learnt features of events in different classes to
be scattered in different directions by adding an orthogonal con-
straint. Specifically, we build a target pairwise similarity matrix
based on the ground-truth events labels and demand the cosine sim-
ilarity of the learnt message representations be close to it. Suppose
we have Nj, nodes in a batch, the target pairwise similarity matrix
is P € RN#»*Np, P;; is 1 if message m; and message m; belong to
the same event; otherwise, the value is 0. The cosine similarities of
the learnt message representations are computed as H - ET, where
H e RNv*d denotes the normalized message representations. The
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additional orthogonal loss is:

Lo=Sum((P-HxH")?), (4)

where Sum(-) represents the sum of the elements in the matrix.

Obviously, with the orthogonal inter-class relation constraint,
directions are also utilized to train the message representations,
which further differentiates the events in the latent space. Besides,
with the orthogonal constraint, the known events become strong
reference bases for those unknown samples thus greatly prompts
knowledge transfer.

3.4 Self-improving Fine-tuning of GNN Encoder

3.4.1 Pseudo Pairwise Labels Generation. Previous works [16, 18]
often use the trained model to get the initial representations of
unknown data and generate pseudo labels based on their similarities.
However, for those newly emerging events, it is very challenging to
obtain discriminative representations due to their absence during
the training process. Therefore, labels learnt from capturing merely
the local data similarities are often of low quality.

As illustrated in Fig. 2(b), to overcome this problem, we propose
to utilize the Reference Similarity Distribution (RSD) vectors to
generate pseudo labels. The idea is to learn soft multilabel vectors
(real-valued label likelihood vectors) for those unknown samples
by computing their similarities to a set of known reference events.
Specifically, assume that R= {Fel.Fe2,..Fek } € RE*%d denotes a
matrix which stores the normalized representations of K known
reference events, with each row denoting a reference event. For
example, 7. € R is the normalized cluster center of the k-th event.
Suppose the normalized representation of a message sample m;
from unknown data is denoted as Em,., its RSD vector Pm, € BK is
calculated as:

P, = Softmax(m, - R ). 5)

The RSD vector, p,, . captures the global similarities between
m; and those known events. It contains much more knowledge
compared to hy,. the originally learnt representation and thus has
stronger discriminative power. Meanwhile, it is worth noting that
those reference events are mutually discriminated from each other
under the orthogonal constraint. This guarantees the effectiveness
of them as strong reference bases.

We use the cosine similarity between the RSD vectors of two
messages to measure their consistency and generate the pseudo
label for the pair. Suppose there is a pair of messages (m;, m;), the
consistency value C(m;, m;) is calculated as:

_ Pm; (pmj)T
P, 2 - 1€ )T 12

where || - ||2 denotes the £ norm. If C(m;i, mj) > 0.5, we set the
pseudo label to 1 (positive); otherwise, we set it to 0 (negative).

C(mj, mj)

(6)

3.4.2 Pseudo Pairwise Labels Selection. According to the pseudo
pairwise label generation strategy described above, we get can-
didate pseudo labels of all possible pairs in a batch. Using all of
them to fine-tune the model is both inefficient and unnecessary,
because there are unavoidably numerous misclassified labels. How
to select a small number of informative samples to achieve effec-
tive and efficient event knowledge transfer becomes an important
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problem. Inspired by the active learning [45] which uses diversity
as an indicator of sampling, we actively select a small number of
pairs which are most different from the known data. In this way,
the generalization ability of the learned model can be significantly
strengthened with a limited training cost.

In the unknown data, there are some samples which belong to
the known events and some which are previously unseen. We have
observed from experiments (Sec. 4.3.3) that the RSD vectors of sam-
ples in new events have higher information entropy compared to
those within the known events. That’s because a RSD vector, in
its essence, is a soft multilabel probability vector. For those mes-
sages that belong to the known events, their RSD vectors tend to
be one-hot vectors whose information entropy values are close to
0. However, for messages within the new events, their distributions
may concentrate in the space between several events, and thus the
entropy is relatively large. Based on this observation, we propose
to exploit the entropy to estimate the diversity of a message sample.
Here, diversity refers to the degree of difference from the known
events used to train the backbone model. To ensure effective knowl-
edge transfer, we focus on the samples that are different from the
known events during the fine-tuning stage. Therefore, for each
message, we use the entropy of its RSD vector to determine the
number of its pairing messages. Formally, for message m;, whose
RSD vector is p,,, , the entropy is:

K
H(Pm,-) = _me,—jlogZ (Pmij) :
j=1

™)

We employ an unbalanced sampling strategy and split the messages
into two groups based on their entropy values. In experiments, for
half of messages with larger entropy values, we sample 20 negative
pairs and 20 positive pairs for model fine-tuning. For the other half,
we sample 10 negative and 10 positive pairs.

3.4.3 Pseudo Pairwise Labels Quality Assessment. The quality as-
sessment of those selected pseudo labels is also important. Without
proper assessment and selection, the noisy pseudo-labels will grad-
ually undermine the model. We have observed from experiments
(Sec. 4.3.4) that the consistency values (i.e. the cosine similarities
between the RSD vectors) of pairs with wrong pseudo-labels are
closer to the dividing threshold 0.5. Based on this observation, we
simply exploit the consistency value to estimate the quality of the
pseudo labels. For positive pairs whose values are larger than 0.5,
the quality is positively correlated with consistency. On the con-
trary, for negative pairs whose values are smaller than 0.5, the
quality is negatively correlated with consistency. For simplicity, we
directly assign the consistency value, C(Pos), of those pseudo posi-
tive pairs (consistency > 0.5) as the quality, and assign 1 — C(Neg)
as the quality of those pseudo negative ones, where Pos and Neg
stand for a positive or negative message pair.

3.4.4 Quality-guided Optimization. To make the self-training (fine-
tuning) process focus more on pair samples that the model is more
confident on, we re-weight the importance of the pairs based on

1701

Jiagian Ren, et al.

their quality. The quality-guided pairwise contrastive loss becomes:

Lgp = Z

(mj,m;+)€{Pos}
(mj,mj_)e{Neg}

max{D (hm;, hm;+) — D(hm; hm;-) + a,0}.

(C(miymi+) + 1= C(mj, mj—))-
8)

During the fine-tuning process, we leverage the quality-guided
pairwise contrastive loss computed from those selected pair samples
to update the model.

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Datasets. We evaluate QSGNN on two large publicly avail-
able social event datasets: Events2012 [25] and Events2018 [24]. We
crawl the tweets via the Twitter API based on the provided IDs.
After filtering out unavailable tweets, Events2012 contains 68,841
annotated tweets belonging to 503 event classes, and spreads over
a period of 4 weeks. As for Events2018, it has 64,516 labeled tweets
belonging to 257 event classes within 4 weeks.

4.1.2 Baselines. We compare QSGNN to both non-GNN-based
methods and GNN-based methods. For the former, the baselines
are: (1) TwitterLDA [49] which leverages the topic model LDA
for event detection; (2) Word2Vec [26], which utilizes the pre-
trained word embeddings to obtain the message representations;
(3) BERT [7], which uses the 768-d sentence embeddings of BERT
as the message representations; (4) EventX [20], which detects
events based on community detection. For GNN-based methods,
we select (5) PP-GCN [30] which distinguishs events based on
GCN. (6) KPGNN [5] which leverages triplet loss to train GAT and
gets message representations.

4.1.3 Implementation Details. Our QSGNN is built on the PyTorch
framework and on a machine equipped with seven NVIDIA GeForce
RTX 3090 GPUs. As for the specific GNN encoder adopted in
this work, we set the hyper-parameters as same as the ones in
KPGNN [5]. In the pre-training stage, we set the training epochs to
15. In the fine-tuning stage, we set the training epochs to 3. Besides,
we set the batch size to 2000 and the distance margin a to 10. As
for the evaluation metrics, we select two widely used clustering
metrics: NMI and AMI. We repeat experiments and report the mean
and standard deviation of 5 times. Some baselines (e.g., TwitterLDA,
Bert) require the number of total event classes to be pre-defined.
Thus, to make a fair comparison, we apply the K-means clustering
method with the total number of classes being set to the number of
ground-truth classes. When applied in the real world, the K-means
method can be replaced by DBSCAN, which does not require a
pre-defined class number.

4.2 Evaluation on the Closed Set

Recall that our model contains two stages: the supervised pre-
training stage and the self-improving fine-tuning stage. In the pre-
training stage, we assume the event labels are all available and uti-
lize those known data in the initial block to train the backbone GNN
encoder. While in the fine-tuning stage, messages from the incom-
ing blocks are assumed to be unknown. To validate the effectiveness
of our novel supervised pairwise contrastive learning method with
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(a) Word2Vec (b) KPGNN

(c) (QSGNN w/o Lo) (d) QSGNN

Figure 4: Visualization on Events2018. Each node denotes a message and each color denotes an event class.

Table 1: Evaluation on the Closed Set.

Methods My in Events2012 | Mj in Events2018
TwitterLDA [49] | .26£.00 .17+.00 | .22+.00 .16+.00
Word2Vec [26] 47£.00 .21+.00 | .24+£.00 .20+.00
BERT [7] .63+.01  .44+£.00 | .42£.00 .34+.00
EventX [20] .68+£.00 .29+.00 | .57+.00 .56£.00
PP-GCN [30] 70£.02  .56%.01 | .60£.01 .49+.02
KPGNN [5] 76+.02  .64%£.02 | .66£.03 .60+.02
QSGNN w/o L, | .77+.00 .65+.00 | .68+.02 .61+.01
QSGNN .79+.01 .68+.01 | .71+.02 .64+.02
promotion T3% T 4% T5% T 4%

the orthogonal constraint, we compare the performances in the
closed set situation in which the training set, validation set and the
test set share the same events.

Specifically, for both Events2012 and Events2018 datasets, we
use the data of the first week to form the initial message block M.
We randomly sample 20% of the initial block for testing, 10% for
validation, and use the rest 70% for training.

4.2.1 Comparison with the state-of-the-arts. As shown in Table 1,
QSGNN vyields the best results. That’s because it fully utilizes space
distance as well as direction information to distinguish different
events. Compared to KPGNN, which only uses distance information
to learn event representations, QSGNN achieves 3% and 5% perfor-
mance gains in NMI on Events2012 and Events2018, respectively. It
is worth noting that, even without the direction information, i.e., the
orthogonal inter-class constraint, (QSGNN w/o L) still works bet-
ter than KPGNN. That is due to the more strict distance constraint.
The triplet loss adopted in KPGNN only requires the intra-class
distance to be smaller than the inter-class distance of the same
anchor. However, the pairwise loss proposed in QSGNN demands
the inter-class distance to be smaller than the minimum inter-class
distance. Therefore, the intra-class representations learnt by (QS-
GNN w/o L,) are more distinguishable from the inter-class ones.
Besides, we also notice that GNN-based methods (i.e., PP-GCN,
KPGNN and QSGNN) perform much better than general message
representation learning methods (i.e., Word2Vec and BERT) and
word distribution methods like TwitterLDA. For example, QSGNN
gets a large improvement (53%) in NMI compared to TwitterLDA
in Events2012. We owe this contribution to the effectiveness of
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GNN-based methods in exploring the graph structure contained in
the social network.

4.2.2  Visualization. For a more intuitive comparison and to fur-
ther show the effectiveness of our proposed QSGNN, we conduct
visualization on Events2018 by plotting the representations of the
test set using t-SNE. The results are illustrated in Fig. 4. Obviously,
GNN-based methods which capture both semantics and internal
structure information are capable to learn more distinguishable
representations compared to Word2Vec. Meanwhile, the observa-
tion that intra-class representations learnt by (QSGNN w/o L,)
gather more closely compared to KPGNN verifies the effectiveness
of our novel pairwise contrastive learning loss. Furthermore, the
more concentrated intra-class distribution in QSGNN compared to
(QSGNN w/o L,) demonstrates the effects of adding orthogonal
constraint during training.

4.3 Evaluation on the Open Set

In the self-improving fine-tuning stage, we assume the data is un-
known. To achieve knowledge transferring and make the model
adapt to the incoming new data, our model generates pseudo labels
to update the initial model. However, for most baselines such as
PP-GCN and KPGNN, it is necessary to continuously provide event
data with labels to train the model for the new message blocks.
To compare with them, for those baselines which need supervi-
sion, we still follow the operation in the closed set - sampling 70%
for training, 10% for validation and 20% for testing. Note that our
model is superior to those methods since it does not require external
annotation which is labour-costly.

4.3.1 Comparison with the state-of-the-arts. We demonstrate the
results in Table 2 and Table 3. Generally, QSGNN outperforms the
strongest baseline, KPGNN, in most message blocks (with 1%-4%
performance gains). Note that the proposed QSGNN, unlike KPGNN
and the other baselines, does not require ground-truth labels for
continuous model training or updates. It is impressive that QSGNN,
which gets fine-tuned only by the generated pseudo pairwise la-
bels, performs even better than those supervised baselines. This
varifies the superiority and effectiveness of our model in extending
knowledge from known to unknown.

4.3.2  The consistency values of positive and negative pairs. To demon-
strate the superiority of utilizing the learnt reference distribution
similarity to generate pseudo pairwise labels, we record the average
consistency values (cosine similarities) of real positive pairs and
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Table 2: Open set evaluation on the Events2012.

Jiagian Ren, et al.

Blocks

M

M,

Ms

My

Ms

Ms

My

Metrics

1
NMI AMI

NMI

AMI

NMI

AMI

NMI

AMI

NMI

AMI | NMI

AMI | NMI

AMI

TwitterLDA
Word2Vec
BERT
EventX
PP-GCN
KPGNN

.11+.00
.19+.00
.36+.00
.36+.00
.23+.00
.39+.00

.08+.00
.08+.00
.34+.00
06+.00
.21+.00
.37+.00

.27+.01
.50+.00
.78+.00
.68+.00
.57£.02
.79+.01

.20£.01
.41+.00
.76+.00
29+.00
.55%.02
.78+.01

.28+.00
.39+.00
.75+.00
.63+.00
.55+.01
.76+.00

.22+.01
.31+.00
.73+.00
.18+.00
.52+.01
.74+.00

.25+.00
.34+.00
.60+.00
.63+.00
.46+.01
.67+.00

.17+.00
.24+.00
.55+.00

19+.00

42+.01
.64+.01

.26.00
41+.00
.72+.00
.59+.00
.48+.01
.73+.01

.21+.00
.33+.00
71£.00
14+.00
.46+.01
.71+.01

.32+.00
.53+.00
.78+.00
.70+.00
.57+.01
.82+.01

.20+.00
.40+.00
.74+.00
27+.00
52+.02
.79+.01

.18+.01
.25+.00
.54+.00
.51+.00
.37+.00
.55+.01

.12+.01
.13+.00
.50+.00
13+.00
.34+.00
.51+.01

OSGNN

43+.01

.41+.02

.81+.02

.80+.01

.78+.01

.76+.01

.71+.02

.68+.01

.75+.00

.73+.00

.83+.01

.80+.01

.57+.01

.54+.00

promotion

T4% T4%

T 2%

T2%

T2%

T 2%

T 3%

T3%

T 2%

T2% | T1%

T1% | T2%

T3%

Blocks

Mg

Mo

Mio

My

Mi

M3

Mg

Metrics

NMI AMI

NMI

AMI

NMI

AMI

NMI

AMI

NMI

AMI | NMI

AMI | NMI

AMI

TwitterLDA
Word2Vec
BERT
EventX
PP-GCN
KPGNN

37+.01 24+.01
.46+.00 .33£.00
.79+.00 .75+.00
71£.00 .21+.00
.55+.02 .49+.02

.80+.00 76+.01

.34+.00
.35+.00
.70+.00
.67+£.00
.51+.02
.74+.02

.24+.00
.24+.00
.66+.00
.19+.00
.46+.02
71+.02

.44+.01
.51+.00
.74+.00
.68+.00
.55+.02
.80+.01

.36+.01
.39+.00
.70+.00
.24+.00
51+.02
78+.01

.33+.01
.37+.00
.68+.00
.65+.00
.50+.01
.74+.01

.25+.01
.26%.00
.65+.00
.24+.00
46+.02
.71+.01

.22+.01
.30+.00
.59+.00
.61+.00
45+.01
.68+.01

.16+.01
.23+.00
.56+.00
.16+.00
42+.01
66+.01

.27+.00
.37+.00
.63+.00
.58+.00
47+.01
.69+.01

.19+.00
.23+.00
.59+.00
.16+.00
43+.01
.67+.01

.21+.00
.36+.00
.64+.00
.57+.00
.44+.01
.69+.00

.15+.01
.26+.00
.61+.00
.14+.00
41+.01
.65+.00

OSGNN

.79+.01 .75+.01

77+.02

.75%.02

.82+.02

.80+.03

.75+.01

.72+.01

.70+.00

.68+.00

.68+.02 .

66+.01[.68+.01

.66+.01

promotion

1% 1%

T3%

T4%

T2%

T2%

T1%

T1%

T2%

T2% | 11%

11% | 11%

T1%

Blocks

Mis

M

My

Mis

Mo

Mo

Mz,

Metrics

NMI AMI

NMI

AMI

NMI

AMI

NMI

AMI

NMI

AMI | NMI

AMI | NMI

AMI

TwitterLDA
Word2Vec
BERT
EventX
PP-GCN
KPGNN

.21£.00 .13£.00
.27+.00 .15+.00
54+.00 .50+.00
.49+.00 07£.00
.39+.01 .35+.01
.58+.00 .54+.00

.35+.01
.49+.00
.75+.00
.62+.00
.55+.01
.79+.01

.27+.01
.36+.00
.72+.00
.19+.00
.52+.01
.77+.01

.19+.00
.33+.00
.63+.00
.58+.00
.48+.00
.70+.01

.13+.00
.24+.00
.60+.00
.18+.00
.45+.00
.68+.01

.18+.00
.29+.00
.57+.00
.59+.00
47+.01
.68+.02

.12+.00
.21+.00
.53+.00
.16+.00
.45+.01
.66+.02

.29+.01
.37+.00
.66+.00
.60+.00
51+.02
.73+.01

.22+.00
.28+.00
.63+.00
.16+.00
.48+.02
.71+.01

.35£.00 .
.38+.00 .
.68+.00 .
.67+.00 .
51+.01 .
72+.02 .

23£.00
24+.00
62£.00
18+.00
45+.02
68+.02

.19+.00
.31+.00
.59+.00
.53+.00
41+.02
.60+.00

.13+.00
.21+.00
57£.00
.10+.00
.38+.02
.57+.00

QSGNN

.59+.01

.55+.01

.78+.01

.76%.02

.71+.01

.69+.01

.70+.01

.68+.01

.73+.00

.70+.01

.73+.02

.69+.02

.61+.01

.58+.00

promotion

T1%2 T1%

11%

11%

T 1%

T1%

T2%

T2%

11% | T1%

T1% | T1%

T1%

Table 3: Open set evaluation on the Events2018.

Blocks

M;

M,

Ms

My

Ms

Mg

My

Ms

Metrics

NMI

AMI

NMI

AMI

NMI

AMI

NMI  AMI

NMI

AMI

NMI AMI

NMI AMI

NMI AMI

TwitterLDA
Word2Vec
BERT
EventX
PP-GCN
KPGNN

.20+.00
.22+.00
.32+.00
.34+.00
.49+.01
.54+.01

19+.00
21£.00
.28+.00
.11+.00
48+.00
.54+.01

.09+.00
.22+.00
.32+.00
.37+.00
.45+.00
.56+.02

21£.0

44+.0

06£.00

.31+.00
.12+.00

.55+.01

.13+.0
.25%.0
.31+.0
.37£.0
.56+.0
.52+.0

0

2

0
0
0
0
3
3

.11+.00
23£.00
.32+.00
.11+.00
.55+.03
.55+.02

.10+.00
.28+.00
.33+.00
.39+.00
.54+.03
.55+.01

.08+.00
27£.00
.30+.00
.14+.00
.54+.04
.55+.01

.24+.0
.48+.0
.47+.0
.53+.0
.54+.0
.58+.0

0
0
0
0
2
2

.20+.00
46+.00
.44+.00
.24+.00
.53+.02
57£.01

.22+.00 .19+£.00
.33+.00 31+.00
.36+.00 .33£.00
.44+.00 .15£.00
.52+.02 .50+£.03
.59+.03 .57+£.02

.12+.00 .10+£.00
.35+.00 .33+£.00
.41+.00 .36£.00
.41+.00 .12+.00
.56+.04 .55+.04
.63+.02 61+.02

.24+.00 .20£.00
.37+.00 34+.00
.44+.00 .38+.00
.54+.00 .21+.00
.56+.03 .55+.02
.38+.02 .57+.02

OSGNN

.37+.01.56+.01

.58+.01.57+.01

.57+.01

.56+.02

.58+.03

.57+.03

.61+.02.59+.01

.60+.01.59+.01

.64+.01.63+.01

.57+.02 .55%.02

promotion

T 2%

T1%

T2%

T 2%

T1%

T1%

T3% T2%

T3%

T 2%

T1% T2%

T1% T2%

12% 12%

Blocks

Mo

Mo

My

Mi

M3

Mg

Mis

Mie

Metrics

NMI

AMI

NMI

AMI

NMI

AMI

NMI AMI

NMI

AMI

NMI AMI

NMI AMI

NMI AMI

TwitterLDA
Word2Vec
BERT
EventX
PP-GCN

.16+.00
.33+.00
.38+.00
.45+.00
.54+.02 .48+.03|.

.12+.00
.30+.00
.28+.00
.16+.00

KPGNN

.48+.02

.46+.02

.17+.00
.46+.00
.42+.00
.52+.00
56£.06
.57+.01

.11+.00
.42+.00
.35+.00
.19+.00
.55+.04
.56+.02

.22£.0
.41+.0
.45%.0
.48+.0
.59+.0
.54+.0

0
0
0
0
3
1

.18+.00
38+.00
.34+.00
.18+.00
.57+.02
.53+.01

.28+.00
.40+.00
.48+.00
.51+.00
.60+.02
.55+.04

.25+.00
.37+.00
.44+.00
.20+.00
.58+.02
.56+.02

.19+.0
.22+.0
.31+.0
.44+.0

.60+.0

.61+.01

0
0
0
0

.17+.00
20+£.00
.26+.00
.15+.00
.59+.02

2 .60£.02

.24+.00 .21+£.00
.36£.00 34+.00
.43+.00 .40+.00
.52+.00 .22+.00
.60+.02 .59+.01
.66+.01 .65+.00

.33+.00
.41+.00
.39+.00
.49+.00
.57+.03
.60+.01

.30+.00
38+.00
.39+.00
.22+.00
.55+.03
.58+.02

.07+.00 .02+.0
.28+.00 .25£.00
.34+.00 .27+.00
.39+.00 .10+£.00
.53+.02 .52+.02
.52+.02 .50+.01

OSGNN

.52+.02

.46+.02

.60+.01

.58+.01

.60+.01.59+.02

.61+.02

.39+.02

.59+.0

4 .58+.03

.68+.02.67+.02

.63+.02

.61+.00

.51+.03 .50+.03

promotion

T2%

T2%

T3%

T2%

T1%

T2%

T1% 11%

T2%

T2%

T2% 12%

T3% 13%

12% 12%

real negative pairs calculated from the initially learnt represen-
tations and the RSD vectors, respectively, in Table 4. Obviously,
when calculated from the RSD vectors, the consistency values of
the positive pairs and the negative pairs differ more. Thus we can
give more accurate judgement to the positive/negative pairs. Hence,

the proposed RSD vector is helpful.

4.3.3  Using entropy to measure the diversity of events. We plot the
average entropy of 3 randomly selected events which are previously

seen in the pre-training stage and 3 randomly selected novel events
which have not appeared in the pre-training stage in Fig. 5. Appar-
ently, those novel events have higher information entropy which
means they are more different from the known data. This validates
the effectiveness of using entropy to sample diverse events.

4.3.4 Using consistency value to measure pairwise label quality. We
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plot the distributions of consistency values of real positive pairs and
real negative pairs in Fig. 6. When the consistency value > 0.5, as
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Table 4: Consistency values calculated from the initial repre-
sentations h vs. from RSD vectors.

Events2012 Events2018
label |Consistency|Consistency|Consistency | Consistency
of h of RSD ofh of RSD
Positive 0.7287 0.7644 0.6576 0.8350
Negative 0.1834 0.1002 0.3023 0.3459
difference| 0.5453 0.6642 0.3553 0.4891
15.0 & j ca75
12.5 EIW;ﬁl 6 5ﬁzﬁ ?
210.0 2° ge
E 11IE
g’ lllluﬁ3 e
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(b) Events2018

Figure 5: The diversity of events measured by entropy.
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Figure 6: The distribution of consistency values.
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Figure 7: Results with different selection strategy and loss.
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the value increases, the percentage of positive pairs also increases.
Similarly, when the consistency value < 0.5, as the value decreases,
the percentage of negative pairs gets higher. When the consistency
is at a maximum or minimum, the qualities of the pseudo labels
are highest. However, when the consistency value is close to the
threshold (0.5), the positive and negative labels have the highest
mixing ratio thus are unreliable. Fig. 6 demonstrates the relation
between the consistency value and the label distribution to measure
the label quality.

4.3.5 Ablation study. To validate the usefulness of (1) the selection
strategy based on the diversity principle and (2) the quality-aware
optimization, we perform an ablation study. For (1), we remove
the unbalanced sampling strategy, as mentioned in Sec. 3.4.2, and
adopt a Random strategy to make a comparison. Specifically, we
randomly select 15 negative and 15 positive pairs of each message.
For (2), we remove the quality weight and adopt £; to compute
the loss. We show the results in Fig. 7. When the unbalanced se-
lection strategy is replaced by the Random selection strategy, the
performances drop slightly. This demonstrates the superiority of
the diversity-based sample selection. By selecting more samples
which are different from the known events, the model better adapts
to the newly emerging data. Besides, from Fig. 7, we can see that
when the quality-aware optimization is removed, the results have a
significant decline. This validates the indispensability of the quality
assessment. By measuring the quality of pseudo labels and adjusting
their contributions to the loss, the fine-tuning is more reliable.

5 CONCLUSION

We have presented a quality-aware self-improving GNN frame-
work to tackle the challenging problem of open set social event
detection. First, to make the best of those known events, we extend
the conventional triplet loss to a more strict pairwise loss with
an orthogonal constraint to train the GNN encoder. Next, to gen-
eralize from known to unknown in an effective and reliable way,
we propose to use the reference similarity distribution vectors for
pseudo pairwise label generation, selection and quality assessment.
Specifically, the selection strategy follows the principle of diversity
and the quality is measured by consistency. A quality-aware opti-
mization strategy is proposed to resist the noise by re-weighting
the contributions of different pseudo labels. Experimental results
illustrate that our model achieves state-of-the-art results in both
closed set setting and open set setting.
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