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Abstract—Effectively identifying compound-protein interactions (CPIs) is crucial for new drug design, which is an important step in
silico drug discovery. Current machine learning methods for CP1 prediction mainly use one-demensional (1D) compound/protein strings
and/or the specific descriptors. However, they often ignore the fact that molecules are essentially modeled by the molecular graph.

We observe that in real-world scenarios, the topological structure information of the molecular graph usually provides an overview of
how the atoms are connected, and the local chemical context reveals the functionality of the protein sequence in CPIl. These two types
of information are complementary to each other and they are both significant for modeling compound-protein pairs. Motivated by this,
we propose an end-to-end deep learning framework named GraphCPI, which captures the structural information of compounds and
leverages the chemical context of protein sequences for solving the CP | prediction task. Our framework can integrate any popular
graph neural networks for learning compounds, and it combines with a convolutional neural network for embedding sequences.

To compare our method with classic and state-of-the-art deep learning methods, we conduct extensive experiments based on several
widely-used CPI datasets. The experimental results show the feasibility and competitiveness of our proposed method.

Index Terms—Graph neural networks, machine learning, compound-protein interaction

1 INTRODUCTION

FFECTIVELY identifying compound-protein interactions

(CPIs) is a key task in pharmacology and drug discov-
ery [2]. In the CPIs task, compound refers to molecular com-
pounds (instead of ionic compounds), which can be
represented by a molecule graph with atoms as nodes and
chemical bonds as edges; while proteins are sequences of
amino acids. CPI prediction is to find the potential com-
pound-protein pairs where a protein is targeted by at least a
compound. However, the predicted CPI does not mean that
a positive or negative influence on functions triggered by
proteins. This may affect the disease conditions[3], [4].
Fig. 1 shows a CPI example with compound-protein pair
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(Aspirin-Phospholipase). In the figure, the dotted line indi-
cates the Hydrophobic interaction.

By understanding the CPI task, it can help users find out
candidate compounds that are able to inhibit the protein,
and it benefits many other bioinformatic applications such
as drug resistance [5], and cancer research [6]. As a result,
CPI prediction has received much attention in recent years
[71, [8], [9]. Traditional machine learning approaches for
CPI prediction can be roughly classified into feature-based
and similarity-based methods. Generally speaking, feature-
based methods construct input vector from descriptors of
compounds and proteins, such as molecular docking [10]
and the 3D structure-embedded of protein[11], which are
often difficult to obtain. On the other hand, similarity-based
methods rely on hypothesis that compounds with similar
structures should have similar properties [12]. The repre-
sentative works of this line of methods are like[13], [14], etc.
Recently, owing to the remarkable success in various
machine learning tasks (e.g., image recognition[15], natural
language processing [16], [17]), deep learning methods are
also exploited for CPI prediction [18], [19], [20]. In this
branch, existing methods consider either label/one-hot
encodings or the fingerprint of molecules. However, they
have not considered the chemical bond of atoms and the
local chemical context of amino acids. We observe that, in
real-world scenarios, the topological structure information
usually provides an overview of how the atoms are con-
nected, and the local chemical context reveals the function-
ality of the protein sequence in CPI, which is just like the
semantic meaning of a word in a sentence. These two types
of information are complementary to each other and they
are both important for modeling compounds and proteins.

Inspired by the aforementioned facts, in this paper we
attempt to develop an end-to-end deep learning framework
that combines the local chemical context for sequences and
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Fig. 1. Example for visualization of CPI: Aspirin-Phospholipase (PDB
ID:6MQF).

the topological structure for molecules to learn the interac-
tion between compounds and proteins. To this end, we pro-
pose a graph neural representation framework for CPI
prediction, and we refer to it as GraphCPI. Our framework
consists of two major building blocks: One of the major
building blocks learns low-dimension vector representations
for protein sequences using a convolutional neural network
(CNN), while the other building block learns graph repre-
sentations for compounds using graph neural network
(GNN), respectively. Specifically, the CNN building block
extracts the local chemical context information for amino
acids in proteins; in the process of extracting, we propose to
incorporate Prot2Vec [21], which was previously used for
representation and feature extraction for biological sequen-
ces, to encode the amino acids to a distributed representa-
tion. In this way, we can efficiently avoid the limitation of the
label/one-hot encodings of amino acids, since it often
ignores the context information. Meanwhile, the GNN build-
ing block extracts the topological features for compounds by
constructing a molecular graph. The GNN building block is
pretty flexible, which can be replaced by any popular graph-
based neural networks. The learned representations for both
compounds and proteins are then passed to a dense neural
network for predicting the interaction. Different from the
existing feature-based and similarity-based methods, our
framework needs neither molecular docking nor 3D struc-
ture-embedding of the proteins. Additionally, the proposed
framework takes advantage of the topological information of
atoms encoded in the graph neural representation, which
differs our framework from the existing deep learning meth-
ods such as DeepCPI [22]. In a nutshell, the novelty and main
contributions of this paper are as follows:

We propose a framework that incorporates the
advanced graph neural representation for com-
pound and pre-trained embedding techniques for
protein sequences together. To the best of our knowl-
edge, in the CPI field this paper is the first to com-
bine the local chemical context and topological
structure to learn the interaction between com-
pound-protein pairs.

We conduct extensive experiments based on several
widely-used CPI datasets with various imbalance
ratios. The experimental results demonstrate the feasi-
bility and competitiveness of our proposed framework,
compared against the classic and state-of-the-art
methods.
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The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 introduces the proposed
framework for CPI prediction task; Section 4 covers and
analyzes the experimental results. Finally, we conclude the
paper in Section 5.

2 RELATED WORK

Compound-protein interactions (CPIs) prediction has been
an interesting topic in drug discovery. Existing methods for
CPI prediction can be roughly classified into two categories:
(i) traditional methods, and (ii) deep learning-based meth-
ods. Next, we review these works, respectively.

2.1 Traditional Methods

Traditional methods focused either on simulation-based
methods (e.g., descriptors), or on machine learning based
models, which heavily rely on domain similarity [23]. For
example, Jaroch et al. [24] integrated the chemical attributes
of compounds, the genomic attributes of proteins and the
known CPIs into a unified mathematical framework. With a
variety of similarity information, Bleakley et al. [25] pre-
sented the bipartite local model (BLM) to predict CPIs, and
they trained local support vector machine (SVM) classifiers
with the help of known interactions. Later, Mei et al. [19]
improved BLM by exploiting the already known interactions
of neighbors, which compensates the lack of BLM. To predict
the drug-target interaction (DTI) involving new drugs or tar-
gets for unknown interactions, Ezzat et al. [26] proposed the
matrix factorization method that combines with graph regu-
larization. Additionally, Cheng et al. [27] presented a
method named PUCPI that employs biased-SVM to predict
CPIs using positive and unlabeled examples.

Although classic methods show reasonable performance
in CPI prediction, they are often computational expensive,
require additional expert knowledge, or the 3D structure-
embedded of protein, which are often difficult to obtain.
Different from these classic methods, the proposed frame-
work is able to automatically extract features from the data,
and requires neither domain knowledge nor 3D structure of
the target/protein. These main features make our proposed
framework applicable to large scale CPI datasets.

2.2 Deep Learning-Based Methods

In recent years, much attention has been devoted to apply-
ing deep learning techniques for DTI prediction (which is
an alternative name of CPI prediction). For example, Gao
et al. [28] proposed an end-to-end neural network model to
predict DTIs directly from low level representations, and
they provided biological interpretation by using two-way
attention mechanism. Moreover, Wan et al. [29] developed
a nonlinear end-to-end learning model named NeoDTI that
integrates diverse information from heterogeneous network
data, and it automatically learned topology-preserving rep-
resentations of drug-target pair to facilitate DTI prediction.
Moreover, Karimi et al. [20] presented a DTI model named
DeepAffinity that represents protein and SMILES sequences
based on a recurrent neural network (RNN) , and note that
SMILES (Simplified Molecular-Input Line Entry System) is
a single-line text representation to encode the chemical

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on April 04,2023 at 20:44:31 UTC from IEEE Xplore. Restrictions apply.



934

Phospholipase (a}

Proit2Vec

MRTLQGWL...

= CI=CO=C..ONC(C)=0

—

-4 {}
Aspirin
ﬁ ‘ Phaspholipase (b}

& RDKit |

N

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 2, MARCH/APRIL 2023

~
L]
ER
2= )
O = L]
=2 o
2 > =
g o
= -
C'). -
g =
‘ o
: o
1 2N
: o =
i ~ o
i %n. ~
1.-:0 )
: o3 Iz
| -
=82 >
L =
w =

Fig. 2. An overview of GraphCPIl. Note that, Phospholipase (a) and (b) refer to two residues of Phospholipase. In fact, Phospholipase has many resi-
dues, we only plot two residues, due to space limit. The top partillustrates a 3-layer CNN that learns representation for proteins, while the bottom part

illustrates a 3-layer GNN that learns representation for compound. In the figure, D;, E;,
the number of filter and weight matrix, respectively. N denotes the batch size.

stant bias to compute the output feature map.

context of molecule [30]. Recently, a model called DeepCPI
was proposed for CPI prediction [22].

Among the studies in this line branch, DeepCPI [22]
could be the one most relevant to our work, since it
addresses the problem same to ours, and uses also GNN
and CNN. Specifically, DeepCPI uses a traditional GNN,
based on representation of r-radius fingerprints, to encode
the molecular structure of compounds; and it uses a CNN
to encode protein sequences without pre-trained embed-
ding. Compared with DeepCPI, for compound representa-
tion our proposed deep learning framework incorporates
the topological information obtained from GNNs to encode
the atoms, and it uses pre-trained embedding (e.g., Prot2-
Vec) to encode the amino acids to boost the representation
learning of proteins. Moreover, our framework could be
much more flexible, since it allows us to integrate any popu-
lar GNN model.

3 THE GRAPHCPI FRAMEWORK

In this section, we first describe an overview of the pro-
posed framework called GraphCPI (Section 3.1), and then
we present the representation learning for compounds and
for proteins, respectively (Sections 3.2 and 3.3). Finally, we
present the detail of CPI task prediction (Section 3.4).

3.1 Overview of GraphCPI

Fig. 2 gives an overview of our proposed framework,
named GraphCPI, for the compound-protein pair task. Gen-
erally, GraphCPI takes the molecular structure of the compound
and the symbolic sequences of the protein as the inputs. Then,
the molecular structure of the compound in SMILES [30]
string is encoded into a molecular graph, while the
sequence of the protein is encoded into a distributed repre-
sentation (like Word2Vec [16]), forming a matrix. Later, the
molecular graph is fed into graph neural networks (GNNs)
for capturing the structural information of the compound,

i and W; (i 2 f1; 2g) denote the input feature, output feature,
means sum up the D convolution results and adds a con-

while the matrix is fed into convolutional neural networks
(CNNSs) to obtain local chemical context of the protein. As a
result, we obtain two latent representations for compound
and protein, respectively. After that, we further feed the
concatenation of two latent representations into a stack of
fully connected layers, and finally GraphCPI outputs a
binary value for the compound-protein pair (1 means inter-
action, and 0 means otherwise).

3.2 Graph Representation for Compounds

As we know, compounds are often represented in the for-
mat of SMILES provided by many database (e.g, ZINC, Pub-
Chem). The molecular structure is a significant part in graph
neural representation learning for compounds. To represent
such a structure efficiently, most of existing methods either
use similarity-based manner/strategy to infer the unknown
CPIL, or use molecular fingerprints and protein family data-
bases to represent compound-protein pairs. These methods
usually have fixed features, while they cannot learn more
features for compound and protein representation. To alle-
viate such dilemmas, in this paper we propose to use the
end-to-end representation learning that combines with the
advanced embedding techniques for compounds and pro-
teins. Specifically, for each input SMILES string of a chemi-
cal compound, we use RDK:it [31] tool to transform it into a
molecular graph, which is represented as G = (V, E), where
V denotes the atomic feature and E denotes the chemical
bond value between adjacent atoms. For ease of under-
standing, we take Aspirin (O=C(C)Oclccccc1C(=0)0) as an
example, as shown in Fig. 3. First, it is transformed into its
2D structures by using RDKit tool. Then predefined atomic
features are assigned to each node based on its atomic num-
ber. In this paper, we adopt multi-dimensional binary fea-
ture vector to encode 5 types of atomic features, including
atomic symbol, adjacent atoms, adjacent hydrogens, implicit
value and aromaticity. Specifically, we use a binary vector
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Fig. 3. An example of the molecular graph representation of Aspirin by using RDKit.

TABLE 1
The List of Initial Atom Features

Atom Feature Size Description

Atomic symbol 44 [C,N,O,S,F, Si, P, Cl, Br, Mg, Na, Ca, Fe, As, AL, 1, B, V, K, Tl, Yb, Sb, Sn, Ag, Pd, Co, Se, Ti, Zn,
H, Li, Ge, Cu, Au, Ni, Cd, In, Mn, Zr, Cr, Pt, Hg, Pb, Unknow] (One-hot)

Adjacent atoms 11 number of atoms in the molecules of an element [0, 1, 2, 3,4, 5, 6, 7, 8, 9, 10] (One-hot)

Adjacent hydrogens 11 total number of hydrogen [0, 1, 2, 3,4, 5, 6,7, 8,9, 10] (One-hot)

Implicit value 11 the implied value of atoms [0, 1,2, 3,4, 5, 6,7, 8,9, 10] (One-hot)

Aromaticity 1 whether atoms are aromatic [0/1]

of size 44, denoted by A; (i.e., green), to encode the atomic
symbol. For example, the 12th atom 'O’ is encoded by one-
hot encoding as (01... 00) while (10... 00) for the 2nd atom
’C,” and 'unknow’ represents the unknown atom symbol in
the rare case. Then we adopt A, (i.e., blue) of size 11 to rep-
resent the adjacent atoms of each atom in the molecule, and
A, is defined to be its number of directly-bonded neighbors
(i.e., degree). For example, the Ist atom has 3 directly-
bonded neighbors, so we have its A, as (00010...0). Next, the
adjacent hydrogens is denoted by A3z (i.e., orange) with a
size of 11 to describe the total number of Hs (explicit and
implicit) on the atom. Here “explicit” refers to atoms in the
graph while “implicit” refers to atoms that are not in the
graph (i.e., Hydrogens). For example, the adjacent hydro-
gens of atoms on the benzene ring is 1, so we encode its Az
by (10...0), while the adjacent hydrogens of 3 rd atoms is 3,
then its Az is encoded by (00010...0). Meanwhile, we repre-
sent the implicit value of each atom as A4 of size 11 to record
the number of implicit Hs on the atom. For example, the
implicit value of 12th atom is 1, so we encode its A; by
(010...0). And we use a bool vector As to encode the aroma-
ticity that means whether the current atom is in an aromatic
structure. For example, the 4th atom is in an aromatic struc-
ture so we encode its As by 1 while As of the 1st atom is
encoded by 0. All processings can be implemented by the
corresponding functions of RDKit tool.! Finally, we obtain
the molecular graph representation of Aspirin that consists
of atom number (i.e., total number of atoms), atomic fea-
tures and edge features (i.e., edge list), so we can extract the
structural information from a molecular graph. The list of
the initial atom features is summarized in Table 1.

Once such a molecular graph is obtained, one can fed it
into any popular graph neural network model (e.g.,
GCN [32], GAT [33], GIN [34]) to obtain the structural infor-
mation of the compound. As we will show later, although

1. https://www.rdkit.org/docs/source/rdkit. Chem.rdchem.html

different graph neural network models may exhibit their
own advantages for different evaluation metrics, but their
performance gaps are small.

3.3 Sequence Representation for Proteins

Proteins are generally represented as a string of ASCII char-
acters that represent 25 types of amino acids. In this paper,
we propose to first encode the amino acids into d-dimen-
sional vector using Prot2Vec [21]. Different from the previ-
ous methods used one-hot or label encoding to represent
the protein sequence, each amino acid type is simply repre-
sented by label encoding (i.e., integer) according to its corre-
sponding alphabetical symbol. For example, we denote
Alanine (A) by 1, Glutamine (G) by 7, Threonine (T) by 19 and
so on, respectively. And Alanine (A) can be also encoded by
one-hot encoding as (10...00), each bit represents one type of
25 amino acid sequences. However, a single amino acid
often makes no sense, we adopt a fixed length N-gram split-
ting method to split the sequence into meaningful biological
words. Compared with the commonly used label encoding
methods, the fixed-length N-gram divides the sequence into
a sequence of N-grams. Thus, each N-gram can be regarded
as ”biological word”. Intuitively, it can generate more
”word context” than the commonly used label encoding. To
balance the trade-off between the computation complex
(i.e., 20N) and biological significance, here we set N as 3.
Specifically, the protein sequence is divided into the first
three amino acids as the initial position in order to obtain 3
group of subsequences, and then remove the duplicated
subsequences among them to obtain the final subsequences.
We take HTR1D (Human) Recombinant Protein as an exam-
ple. As shown in Fig. 4, the protein sequence totally consists
of 377 amino acids. The first group of subsequences are gen-
erated with "M’ in red as the starting amino acid, while ’S’
in blue as the starting point of the second group of subse-
quences. And the duplicated subsequences among three
groups are removed (e.g., 'LIT’). Finally, we concatenate the
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377 amino acids Fixed-length N-gram Split
[ 3gram Split ]
(1) MSP, LNQ, SAF, »+ IVP. FRK
(2) SPI, NOS, AEG, -+, VPF, RKA

LN, G854, EGL, -~ PFR, KAS

MSPLNQSABGLPOEASNRSLNATETSEAWDPRT
LOALKISLAVVLSVITLATVLSNAFVLTTILLTRK
THTPANYLIGSIATTDULYSILVMPISIAYTITIIT
WNFGOILCRDIWLSSDITCC TASILHLO VIALDRY
WAITDALEY SKRRTAGHAATMIAIVWAISICISIP
PLFWRQAKAQEEMSDULYNITSQISYTIYSTCGAF
YIPSVLLILYGRIVRAARNRILNPPSLY GKRFTTA
HLITGSAGSSLCSLNSSLHEGHSHSAGSPLFFNHV
KIKLADSALERKRISAARERKATKILGIILGAFIIC
WLPFFVVSLVLPICRDSCWIHPALFDFFTWLGYL
NSLINPIIYTVFNEEFRQAFQKIVPFRKAS

Conealenale & Duplicate Removal
MSP, LNQ, SAE, ~+| LITFRK;
SPLNQS, ARG, - [TH RKA;

LN, OS4, EGL, -+~ PFR, KAS

Fig. 4. Example of 3-gram split protein sequence.

remaining three groups to obtain the finally 3-gram
subsequences.

After we obtain the meaningful “biological words,” then
for each such a word we map it to an embedding vector by
looking up a pre-trained embedding dictionary that has
9048 words and a 100-dimension vector per word, which is
obtained from Swiss-Prot.? One can set the fixed length to a
specific value (e.g., 1,000), and then the sequence will be
truncated when its length is over the default value (e.g.,
1,000); otherwise, it will be padded with 0. As a result, we
transform each sequence of amino acids to a matrix, where
each row is the embedding of a biological word. Algorithm
1 shows the detailed steps of the embedding process. In
general, a protein sequence with fixed length 1is split into a
set of subsequence or “’biological word” (Line 1). Then it
maps subsequence by looking up each of the sequence
embedding from the pretrained dictionary D, while it ran-
domly generates values if it is not in D (Line 2-6). Finally, it
constructs a protein matrix A by aggregating embedding
vectors (Line 7), where each line represents the pretrained
vector of subsequence. The matrix shall be fed into a CNN to
obtain the local chemical context of the protein.

Algorithm 1. Prot2Vec Embedding

Input: a protein sequence P, dictionary D, amino acid x, sub-
sequence set s, fixed length 1, vector dimension d.
Output: protein matrix A
I: s% O0x1X2X3; .. .; XjXjp1Xjp2P01 j < Ip splitdPb; 2:
forj=1tol do
3: ifx; 2 dictionary then
4: embedding a; 2 <¢
a; M x; // byusing DP;
6: protein matrix A ]"}1 aj;
7: return A 2 <'d;

randomgeneratedx;b; 5:

3.4 Compound-Protein Interaction Prediction

It is easy to understand that, one can view the compound-
protein pair prediction as a binary classification problem by
predicting the interaction value. With the representation
learned from the previous subsections, in what follows, we
are ready to integrate all features from compounds and pro-
teins to predict the interaction.

Generally, we concatenate two kinds of representations,
and feed them to two fully-connected layers to output the
interaction value. Fig. 5 shows the workflow for CPI predic-
tion and the main building blocks. More precisely, for the

2. https://www.uniprot.org/
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Fig. 5. Workflow for CPI prediction and main building blocks.

compound SMILES, we first convert it to a molecular graph
by RDK:it tool. And we use GCN model [32] for learning on
graph representation of compound, we use 78-dimensional
atomic features as the node feature of molecular graph. In our
GCN model, we adopt three consecutive GCN layers, each
followed by a ReLU activation function. Then a global max
pooling layer is applied to obtain the final graph representa-
tion vector. For the protein sequence, we use a string of amino
acid sequences and adopt 1D CNN layers to learn a sequence
representation vector. Specifically, the protein sequence is
first split by fixed length 3-gram splitting method, then an
embedding layer is applied to the generated subsequences
where each 3-gram subsequences is represented by a
100-dimensional pre-trained word vector. Next, three 1D
convolutional layers are adopted to learn different levels
of features. Finally, a max pooling layer is used to get a
final representation vector of the protein sequence. Here
the Rectified Linear Unit (ReLU) [35] is selected as the
activation function. Then, given a set of compound-pro-
tein pairs and the ground-truth interaction values in the
training set, its objective is essentially to minimize the
loss function L[22] as follows:

L6QP % logPy, b Eka%; (1)

inl

where Q denotes the set of all weight matrices, bias vectors
in our framework (e.g., GCN and CNN), and the embed-
dings of N-gram words; K is the total number of com-
pound-protein pairs, t; is the ith label, and represents an L2
regularization hyper-parameter. Here, we adopt back-
propagation to train Q.

4 EXPERIMENT

In this section, we first describe the experimental settings
including datasets, evaluation metrics and baseline approaches
(Section 4.1). Then, we examine the stability of our framework
by using various graph neural networks (Section 4.2). After-
wards, we compare our proposed framework GraphCPI with
classic and state-of-the-art methods (Sections 4.3 and 4.4).
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Finally, we demonstrate the impact of different parts integrated
in our proposed framework (Section 4.5).

4.1 Experimental Setup

Dataset. Following prior work [36], in our experiments we
used several publicly available datasets called human, C.ele-
gans and DUD-E for compound-protein interaction
prediction.

The human dataset contains 3,369 positive interac-
tions between 1,052 unique compounds and 852
unique proteins.

The C.elegans dataset contains 4,000 positive interac-
tions between 1,434 unique compounds and 2,504
unique proteins.

The DUD-E dataset consists of 102 targets, 22,886
active compounds and their affinities against 102 tar-
gets. On average, each target has approximately 224
ligands.

Evaluation Metrics. We adopted three kinds of metrics,
widely used in CPI task, to evaluate the performance. They
are precision, recall and AUC [36]. The precision indicates
how many of the samples predicted to be positive are cor-
rect. It is computed as

TP

S .
precision % TP pFP

2
where TP (true positive) means the model correctly predict
a positive class, FP (false positive) means the model incor-
rectly predict a negative class.

The recall indicates how many positive samples are cor-
rectly predicted by the model. It is can be computed as

TP
v 0 . 3
recaIIATPbFN, 3)
where FN (false negative) means the model incorrectly pre-
dict a positive class.
The AUC refers to the probability that a randomly cho-
sen positive sample is ranked higher than a negative

one [36]. It is computed as

P
AUC % 18Ppos; PregP .
P N ’

4)

where P and N denote the number of positive and negative
samples, respectively; Ppos and Pneg are the probability of
obtaining positive and negative samples by the prediction
model, respectively; and 18Ppos; PnegP is computed as

8
2 1, Ppos > Pneg
18Ppos; Pregh % S 0:5; Ppos % Preg :

0; Ppos < Pneg

®)

Baseline Methods. We compared our proposed framework®
against both classic and state-of-the-art methods. As for
classic models, in our experiments we compared four tradi-
tional machine learning models,* including k-NN, random

3. https://github.com/jacklin18/GraphCPI
4. These models were obtained from http://admis.fudan.edu.cn/
negative-cpi/.
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TABLE 2
The Detailed Description of Datasets

negative ratio compounds proteins positive negative

1 1052 852 3369 3369
human 3 1052 852 3369 10107
5 1052 852 3369 16845
1 1434 2504 4000 4000
C.elegans 3 1434 2504 4000 12000
5 1434 2504 4000 20000

forest (RF), L2-logistic (L2), and SVM. The results of these
models are obtained in [22]. They take multiple similarity
measures from different features for both drugs and pro-
teins as the input of classifier. Specifically, the drug similar-
ity is computed from features of chemical structure and
side effect, respectively, and the protein similarity is
derived from sequence similarity, functional annotation
semantic similarity and protein domain similarity, respec-
tively. As for the state-of-the-art model, we directly com-
pared a recently published model called DeepCPI° [22]. In
brief, this method uses the representation of r-radius finger-
print to encode the structural information in a chemical
compound, and learns node and edge features using a
graph neural network (GNN). Meanwhile, it uses the no
pre-trained embedding of amino acids to encode protein
sequences, and learns the chemical context using a convolu-
tional neural network (CNN). The results of DeepCPI are
reported from the original paper. The performance is
achieved with the following experimental setting: r-radius
is 2, n-gram is 3, window size is 11, vector dimensionality is
10, number of time steps in GNN is 3, and the number of
layers in CNN is 3. In contrast, DeepCPI leverages a GNN
to map a graph G % 8V;EP to a vector y 2 RY, by using two
transition functions: (1) vertex transition (Eq. (6)), and (2)
edge transition (Eq. (7)).
X
v % 8 b htrp; (6)
i
e’ % soet b gip; 7)
j i P Sij

is the element-wise sigmoid function (e.g.,

1=01p e*p), f is a non-linear activation function, vatti’ and e .

denote the node and edge embeddings between the ith and
jth nodes at iteration t respectively, hia.tp denotes the hidden
vector, which is obtained by combining node v;dj 2
neighbordvipp with edge ejj, and b, 2 RY is the bias vector, as
shown in Eq. (8). The parameter g' is updated by node V!
and vjt, and bg 2 R¢ is the bias vector, as shown in Eq. (9). '

where s

2 3
v
hi” % W4 5 b byb; ®)
& fold
gt % foWav’® b v "Pb beb: )

For ease of comparison, we report the main results of four
classic and DeepCPI models from Table 1 (resp. Table 2) for
human (resp. C.elegans) dataset in [22]. As for human and

5. https://github.com/masashitsubaki
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C.elegans dataset, an 8/1/1 training/validation/testing
random split is adopted by DeepCPI. As for DUD-E dataset,
we followed the same training and evaluating strategies as
DeepCPI [22]. Specifically, we retrain DeepCPI model with
the same parameter settings as in the original paper, where
detailed pre-processing on DUD-E dataset refers to the fol-
lowing part (i.e., Other Experimental Details).

Implementation of Our Framework. As mentioned in Sec-
tion 3.2, once the molecular graph is obtained, one can feed
it into any popular graph neural network model to obtain
the topological information of compounds. In order to
examine the robustness of our proposed framework, we
employed respectively three kinds of popular graph neural
networks, and used each of them as the building block of
the proposed framework. Specifically, these three types of
graph neural networks are described as follows.

(1) GCN® [32]: This approach introduces a graph Lapla-
cian regularization and proposes a 2-layer Graph Convolu-
tional Network (GCN) with the following layer-wise
propagation rule:

HOIPIP % s3B AT ROPW OPp; (10)

where £ % A b Iy is the adjacency matrix 8f the undirected
graph G, Iy is the identity matrix, Di; % | R, WP is a
layer-specific trainable weight matrix; sd:p denotes an acti-
vation function (e.g., ReLU [37]), and H8lP 2 RND is the
matrix of activations in the Ith layer.

(2) GAT’ [33]: This method uses a graph convolution
model based on self-attention mechanism. It adds a graph
attention layer (GAT) in its component. A set of node fea-
tures x 2 RF is regarded as input of GAT layer, and then it
applies a linear transformation to each node based on a
weight matrix W 2 RFF°, where F and F° denote the
dimension of input and output nodes, respectively. Addi-
tionally, attention coefficients between nodes and its 1-hop
neighbors are used to compute the output node. That is,

eij % aéWHi;WHjb; (11)
where ej; denotes the importance degree of node j to node i.
To make coefficients easily comparable across different
nodes, it normalizes them across all choices of j using the
softmax function as follows:

ajj; % softmax;0e;P; (12)

at last, a non-linearity s is applied to compute the output
node A? as follows:

A% s

aijWﬁj
J2N;

(13)

(3) GIN® [34]: This method uses a graph isomorphism
network to achieve the maximum discriminative power
among GNNs. In particular, multi-layer perceptrons
(MLPs) are used in GIN for modelling and parameter
updating. It updates the node representation as follows:

6. https://github.com/tkipf/gcn
7. https://github.com/PetarV-/GAT
7. https://github.com/weihua916/powerful-gnns
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TABLE 3
The Main Parameter Setting

Parameter Setting Parameter Setting
Optimizer Adam Learning rate 0.0005
Epoch 1000 Batch size 512
Kernel size 8 Vector dimension 100
Sequence length 1000
ok ok ok Skibp,.
h% % MLP%®681 b gop h b h9Pp; (14)
u2Ndvb

where is either a learnable parameter or a fixed scalar, h 2 RF
is the node feature vector, and Ndib is the neighbors of node
i

For ease of presentation, we refer to our proposed frame-
work integrating GCN [32] as GraphCPI_GCN. Similarly, we
refer to other three methods integrating GAT [33], GIN [34]
as GraphCPI_GAT, and GraphCPI_GIN, respectively. In what
follows, when we mention a method GraphCPI without any
suffix (e.g., GAT, or _GCN), it refers to GraphCPI_GCN,
unless stated otherwise.

Other Experimental Details. For GNN block, we used an
initial atom vector with size 78 as the input of GNN model.
For Prot2Vec, we used 100-dimension pre-trained embed-
ding representation for N-gram words. We constructed
matrices with (1000100) dimensions for protein, where
1,000 refers to the fixed length of the protein sequence. The
proposed framework was implemented using PyTorch’
with Tensorflow [38] backend. Our experiments were run
on Linux 16.04.10 with Intel(R) Xeon(R) CPU E5-2678
v3@2.50 GHz and GeForce GTX 1080Ti (11 GB). Table 3
shows the main training parameters, while other omitted
parameters were set to default values.

As for imbalanced datasets (e.g., human and C.elegans)
in our experiments, we used a python library called Pub-
ChemPy10 to obtain the SMILES format of compounds, and
we extracted the protein sequence from Uniprot.'" Since the
ratio of positive and negative samples may affect the perfor-
mance, we used three different ratios (1:1, 1:3 and 1:5) to
validate the performance of the proposed method. A more
detailed description is summarized in Table 2. Regarding
the extraction of positive and negative samples, the reader
can refer to [36] for details.

As for DUD-E dataset, the original data were obtained
from the DUD-E site.'? It originally consists of 102 targets
and 22,886 active compounds (an average of 224 actives per
target). We preprocessed the dataset to apply our model.
Specifically, we discarded some compounds that can not be
implemented by RDKit, and we used . ism file to obtain the
SMILES string of ligands and extracted the protein sequence
by the corresponding PDB ID of the target. After prepro-
cessing, we constructed a . csv file including 102 targets and
22,806 active compounds/clustered ligands. In the experi-
ment, we evaluated our proposed model using randomly 72

9. https://github.com/pytorch/pytorch

10. https://github.com/mcs07/PubChemPy
11. https://www.uniprot.org/uploadlists/
12. http://dude.docking.org/
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Fig. 6. Testing the stability of our framework using various GNN models, based on human and C.elegans datasets with various imbalance ratios. Note
that, for short, in this figure the dataset human is shorten as h, and C.elegans is shorten as C; in addition, the method GraphCPI_GAT, GraphCPI_-GIN

and GraphCPI_GCN are shorten as GAT, GIN and GCN, respectively.

targets as the train set and the rest 30 targets as the test set,
we used the balanced dataset for model training. Note that
the number of training samples is 22,806 active (i.e. positive
sample) and 22,806 decoy (i.e., negative sample), and we
randomly chose the active compounds that interact with 30
targets as the test set. Besides, we follow the previous
work [39] to train and evaluate our proposed GraphCPI
model using 3-fold cross-validation. The folds were split
between targets, where all ligands of the same target belong
to the same fold. To avoid the impact of homologous pro-
teins, targets belonging to the same protein families were
strictly kept in the same fold. Other settings are kept the
same as in [22]. The detailed results of chosen 30 target in
DUD-E dataset are as shown in Supplementary, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2022.3198003.

Effectively tuning hyper-parameters is a challenging pro-
cess during deep neural network modeling, especially for
complicated model architectures. It is vital to find out the
appropriate sets of hyper-parameters, with respect to its
efficiency and effectiveness. Specifically, for each dataset,
we performed a grid search, in which we optimized the fol-
lowing hyper-parameters simultaneously: n (the number of
”biological word” for protein sequence splitting), k (the
number of convolutional layers for sequence embedding), |
(the number of graph attention layers for molecular embed-
ding), learning rate, and dropout rate.

4.2 Stability of Our Framework

To examine the performance when various graph neural
networks are employed, we conducted extensive experi-
ments based on human and C.elegans datasets with various
imbalance ratios (recall Table 2). Fig. 6 shows the compari-
son results of three methods including GraphCPI_GAT,
GraphCPI_GCN, and GraphCPI_GIN. Note that, as for these
methods, the other parts remain the same, except that they
use various neural networks (GCN, GIN, or GAT).

From this figure, one can see that these methods achieved
good performance in all these three metrics (precision,
AUC, recall) under these benchmark datasets with various
imbalance ratios. These results indicate that (i) our pro-
posed framework is feasible, and (ii) our proposed frame-
work may have competitiveness (notice: more experimental
results reported later also validate this potential). On the
other hand, one can see that the performance gap among
these three methods is very small, which can be understood
from 18 cases (3 metrics 3 imbalance ratios 2 datasets),

as shown in Figs. 6b and 6c. In this regard, it indicates that
the stability or robustness of our framework.

4.3 Comparison With Classic and State-of-The-Art
Methods

Table 4 compares our proposed framework with classical
and state-of-the-art methods. In general, GraphCPI outper-
forms the classic and state-of-the-art deep learning methods
on 10 out of 18 situations (cf., the last column in the table).
Although SVM achieves some good performance in term of
precision and recall on the human dataset (which is a rela-
tively small dataset, recall Table 2), it does not perform well
on the larger dataset C.clegans, and this characteristic is
even more obvious when the number of negative samples
increases. This is because these classic models (e.g., SVM)
heavily rely on fixed hand-crafted features and the similar-
ity matrices of compounds and proteins (e.g., PubChem fin-
gerprints and Pfam domains), which results in poor
stability and relatively poor performance.

On the other hand, when we compared with DeepCPI,
we found that our method has comparable performance to
DeepCPI on human dataset, and particularly it almost fully
dominant in all metrics on the C.elegans dataset. This indi-
cates that our proposed method is much more robust when
the dataset is large, or even when the dataset is imbalanced.
Meanwhile, this also demonstrates the superiority of our
proposed method.

4.4 Other Comparison Results

To further demonstrate the good performance of our pro-
posed method, we also compared it with AutoDock Vina
and Smina as the non-machine learning methods, and
AtomNet, 3D-CNN and DeepCPI as the deep learning mod-
els. AutoDock Vina [40] is an open-source program for
molecular docking and virtual screening, and Smina [41] is
a version of AutoDock Vina specially optimized for high-
throughput scoring. AtomNet [42] is the first structure-
based deep convolutional neural network method designed
to predicting the bioactivity of small molecules, and it com-
bines information about the ligand and the structure of the
target, and requires that the locations of each atom in the
binding site of the target, while 3D-CNN [39] is also a 3D-
structured CNN method, which uses a 3D grid representa-
tion generated by docking, and predicts the protein-ligand
interaction, and the DeepCPI can be recalled in Section 4.1.
Fig. 7 reports the comparison results on the DUD-E dataset
(notice that DeepCPI is also included in the figure, for ease
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TABLE 4
Comparison Results of Proposed Models and Baselines on Human and C.elegans Dataset
Measure Negative ratio k-NN RF L2 SVM DeepCPI GraphCPI
1 0.860 0.940 0911 0.910 0.970 0.973
AUC 3 0.904 0.954 0.920 0.942 0.950 0.983
5 0.913 0.967 0.920 0.951 0.970 0.983
1 0.927 0.897 0.913 0.950 0918 0.890
recall 3 0.882 0.824 0.773 0.883 0913 0.892
5 0.844 0.825 0.666 0.861 0.975 0.856
1 0.798 0.861 0.891 0.966 0.923 0.940
precision 3 0.716 0.847 0.837 0.969 0.949 0.898
5 0.684 0.830 0.804 0.969 0.969 0.886
1 0.858 0.902 0.892 0.894 0.978 0.989
AUC 3 0.892 0.926 0.896 0.901 0.971 0.989
5 0.897 0.928 0.906 0.907 0.971 0.994
1 0.827 0.844 0.877 0.818 0.929 0.955
recall 3 0.743 0.705 0.681 0.576 0.921 0.926
5 0.690 0.639 0.582 0.519 0.836 0.937
1 0.801 0.821 0.890 0.785 0.938 0.937
precision 3 0.787 0.836 0.875 0.837 0916 0914
5 0.774 0.830 0.863 0.896 0.920 0.930

* Note: The top (resp. bottom) part refers to the comparison results on human (resp. C.elegans) dataset. The main results of four classic and DeepCPI models are
obtained from Table 1 (resp. Table 2) for human (resp. C.elegans) dataset in [22]. The above performance of DeepCPI is achieved using 5-fold cross-validation with
the following experimental setting: r-radius is 2, n-gram is 3, window size is 11, vector dimensionality is 10, number of time steps in GNN is 3, and number of layers

in CNN is 3.

of later discussion and analysis). And the AUC scores of
these comparison baselines are reported from Fig. 7 of [22].
Meanwhile, we follow [22] to implement our model on the
same dataset to obtain the AUC values by using 5-fold
cross-validation. One can easily see that our method per-
formed the best among these competitors.

The reader might argue that, the comparisons in Fig. 7
might not be very fair, since the input features are different.
For example, some methods (e.g., 3D-CNN) used 3D struc-
tured feature of proteins, while others (e.g., DeepCPI and
our method) used only 1D protein sequence. To alleviate
this concern, we conducted a fairer comparison. Specifi-
cally, we made a deeper comparison between DeepCPI and
our method, since both methods used 1D protein sequence.
Fig. 8 reports the comparison results in three metrics. Note
that we trained the DeepCPI network to obtain a model by
using the same processed DUD-E dataset adopted in our
paper. By zooming in these figures, one can easily see that

our method outperforms the competitor (most similar to ;-g:
our method) in all metrics. These results further demon- < neo
strate the superiority of our method. The reason could be o e GraphCPl —— DeepCPl

that (i) our method incorporates GNN model to obtain the
topological information of compound graph, which can
obtain more high-order structures than a traditional GNN
method based on representation of r-radius fingerprints; (ii)
our model jointly considers the pre-trained embedding
(e.g., Prot2Vec) of amino acid sequences, which contributes
positively to the performance improvement. Moreover, our
framework performs much more flexible to integrate any
popular GNN model in terms of CPI prediction. Next, we
shall further verify this observation by ablation study.

4.5 Ablation Study

To better understand the effect of each part in the proposed
framework, we conducted an ablation study for our pro-
posed framework. Specifically, we adopted two variants as
follows. First, to investigate the effect of Prot2Vec, we
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Fig. 7. Comparison of the proposed GraphCPIl model to different types of
baselines on DUD-E dataset. Note: The AUC scores of AutoDock Vina,
Smina, AtomNet, 3D-CNN and DeepCPI model are obtained from Fig. 7 in
[22].
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Fig. 8. The AUC, precision, recall scores of DeepCPIl and GraphCPI on
DUD-E dataset.
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TABLE 5
The Detailed Descriptions of the Variants

Model Compound Representation Protein Representation
GraphCPI RDKit + GNN Prot2Vec+CNN
GraphCPI1 RDKit + GNN One-hot/Label + CNN
GraphCPI2 One-hot/Label + CNN Prot2Vec+CNN

removed the local chemical context information obtained by
Prot2Vec from the framework. This obtains a model named
GraphCPIl. Note that, for the protein representation, we
used the traditional one-hot/label encoding method as the
alternative. Second, we removed the structural information
captured by GNN, obtaining another variant named Graph-
CPI2. Different from GraphCPI, GraphCPI2 uses one-hot/
label encoding for representation learning of compounds.
The detailed configurations of the variants of our model are
listed in Table 5. To speedup the test efficiency, we set the
number of epoch to 100, other experimental settings are the
same as that in Table 3.

Fig. 9 shows the AUC, precision and recall scores of all
the variants on the human dataset with various imbalance
ratios. First, when the imbalance ratio is 1:1 (positive sam-
ples vs. negative samples), we can see from the figure that,
GraphCPI1 performs close to GraphCPI on the AUC metric

(cf.,, Fig. 9a), but it always performs worse than GraphCPI
with regard to precision and recall from 20 to 100 epochs (cf.,
Figs. 9b and 9c). These results imply that, only using the
structural information of the compounds is not effective
enough to learn a good representation for compound-pro-
tein pairs. In other words, without the distributed embed-
dings learned by Prot2Vec, the performance of our
framework could drop a lot. This is because the one-hot/
label encoding lacks the feature engineering on the amino
acids. On the other hand, one can see also from Figs. 9a, 9b
and 9c that, GraphCPI2 performs poorer than GraphCPI on
all metrics; this implies the limitation of one-hot/label
encoding used for compound representation. Meanwhile, it
demonstrates that the structural information obtained from
GNN plays an important role in compound representation
learning. Second, when the imbalance ratio is 1:3 (cf,
Figs. 9d, 9e, and 9f) and or even 1:5 (cf., Figs. 9g, 9h, and 9i),
we can see that GraphCPI1 performs less satisfactorily than
GraphCPI on at least one of the measures, while GraphCPI2
performs less satisfactorily on at least two of the measures.
This further demonstrates the importance of GNN in com-
pound representation learning and of the distributed
embeddings learned by Prot2Vec. Meanwhile, it also indi-
cates that the proposed framework is robust even if the
dataset is imbalanced. In summary, all these results show
us that (i) the main components contained in our framework
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Fig. 9. Ablation study (AUC, precision and recall) for our proposed model on human dataset with various imbalance ratios. (a) GraphCPI1 is the vari-ant
that replaces the Prot2Vec embedding with one-hot/label encoding for the protein; (b) GraphCPI12 is the variant that replaces the GNN block with one-

hot/label encoding for the compound.
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are important and/or effective; and (ii) for the CPI predic-
tion task, our proposed framework GraphCPI is robust for
both balanced and imbalanced data.

5 CONCLUSION

In this paper, we have proposed a new framework named
GraphCPI for Compound Protein Interaction task. Graph-
CPI uses graph neural representation for compounds and
the embedding representation for proteins. Our frame-
work can integrate any popular graph neural networks to
obtain the topological information of compounds, and it
combines with a convolutional neural networks to extract
the chemical context of protein sequences. We have con-
ducted extensive experiments to compare our method and
existing methods, based on several benchmark datasets.
The experimental results consistently demonstrate that
our proposed is not only feasible but also very competi-
tive, compared against the state-of-the-art methods for CPI
tasks.
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