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ABSTRACT 

Self-supervised sequential recommendation signifcantly improves 
recommendation performance by maximizing mutual information 
with well-designed data augmentations. However, the mutual infor-
mation estimation is based on the calculation of KullbackśLeibler 
divergence with several limitations, including asymmetrical estima-

tion, the exponential need of the sample size, and training instability. 
Also, existing data augmentations are mostly stochastic and can po-
tentially break sequential correlations with random modifcations. 
These two issues motivate us to investigate an alternative robust 
mutual information measurement capable of modeling uncertainty 
and alleviating KL divergence’s limitations. 

To this end, we propose a novel self-supervised learning frame-

work based on the Mutual WasserStein discrepancy minimiza-

tion (MStein) for the sequential recommendation. We propose the 
Wasserstein Discrepancy Measurement to measure the mutual in-
formation between augmented sequences. Wasserstein Discrep-
ancy Measurement builds upon the 2-Wasserstein distance, which 
is more robust, more efcient in small batch sizes, and able to 
model the uncertainty of stochastic augmentation processes. We 
also propose a novel contrastive learning loss based on Wasser-

stein Discrepancy Measurement. Extensive experiments on four 
benchmark datasets demonstrate the efectiveness of MStein over 
baselines. More quantitative analyses show the robustness against 
perturbations and training efciency in batch size. Finally, im-

provements analysis indicates better representations of popular 
users/items with signifcant uncertainty. The source code is in 
https://github.com/zfan20/MStein. 

CCS CONCEPTS 

• Information systems → Recommender systems. 
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1 INTRODUCTION 

Recommender systems have been a prevalent and crucial compo-

nent in several application scenarios [24, 25, 40]. Among existing 
personalized recommendations, sequential recommendation (SR) 
attracts increasing interest for its scalability and performance. SR 
predicts the next preferred item for each user by modeling the se-
quential behaviors of the user and capturing item-item transition 
correlations. 

Existing works of SR include Markovian approaches [16, 40], 
convolution-based approaches [43, 51], RNN-based approaches [18, 
54], and Transformer-based methods [20, 23, 42]. The recent success 
of Self-Supervised Learning (SSL) further improves SR [26, 50, 56] 
by alleviating the data sparsity issue and improving robustness 
with novel data augmentations and contrastive loss, i.e., InfoNCE. 
As the widely used SSL framework, contrastive learning (CL) con-
structs positive and negative pairs via data augmentation strategies. 
The commonly adopted CL loss InfoNCE maximizes the mutual 
information of positive pairs among all pairs. With data augmenta-

tions and mutual information maximization, SSL-based SR methods 
capture more robust user preferences. 

Despite the efectiveness of SSL for SR, we argue that existing 
SSL for SR methods still sufer critical issues in both data augmen-

tations and the mutual information maximization CL loss due to 
the following reasons: 

• Stochasticity of Data Augmentations: Most data augmenta-

tion techniques are random augmentations, such as the random 
sequence crop from CL4Rec and dropout augmentation from 
DuoRec. Diferent random augmentations can be viewed as aug-
mentation distributions, and the perturbed sequences are realized 
samples from augmentation distributions. However, existing CL 
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Figure 1: Motivation Examples. We only show the random 
mask and crop as examples but other data augmentations can 
also be viewed as sampling from augmentation distributions. 

methods only measure the similarities between realized sam-

ples without considering the uncertainty of augmentation dis-
tributions. Ignoring uncertain information afects the stability 
of training and robustness of item embeddings learning against 
noises. 

• Limitations of KL-divergence-based Mutual Information 
Measurement: Existing methods mainly adopt the InfoNCE as 
CL loss, which is building upon mutual information maximiza-

tion. Although DuoRec [37] adopts the alignment and uniformity 
losses, it still follows [47] to interpret InfoNCE as the combination 
of alignment and uniformity. We argue that mutual information 
measurement has several limitations, which originate from KL-
divergence, including asymmetrical estimation, the exponential 
need for sample size, and instability against small perturbations. 
All these issues might signifcantly afect the modeling in CL, 
especially when augmentations are stochastic and potentially 
destroy the sequential correlations. 

As shown in Fig. (1), each data augmentation strategy has user-
specifc augmentation distributions. In Fig. (1), user�1 has a smoother 
distribution than the user �2. Diferent augmentation strategies in-
troduce diferent levels of uncertainty and the possibility of break-
ing the sequential correlations. In this example, the random crop is 
more likely to break the user �2’s sequential correlations. Therefore, 
depending on users, diferent data augmentations follow augmen-

tation distributions with varying uncertainties, and modeling this 
stochasticity becomes crucial for learning more robust embeddings. 
Moreover, distributions of users �1 and �2 have limited overlapping. 
In this case, the calculation of KL-divergence becomes unstable. 

These issues motivate us to model the stochasticity of data aug-
mentations and address the limitations of KL-divergence-based 
mutual information measurement. However, developing a frame-

work that achieves these two goals simultaneously is nontrivial 
because it demands the framework to: (1) consider uncertainty infor-
mation in modeling stochasticity data augmentations; (2) measure 
mutual information with uncertainty signals while still bypassing 
the limitations of KL-divergence. 

In this research, we frst theoretically analyze the limitations of 
KL-divergence in mutual information measurement and demon-

strate the necessity of proposing the alternative. Then, based on the 

theoretical analysis, we propose the Wasserstein Discrepancy Mea-

surement, which measures mutual information with a 2-Wasserstein 
distance between distributions. Furthermore, we introduce how to 
adapt Wasserstein Discrepancy Measurement to the contrastive 
learning framework by proposing the Mutual WasserStein discrep-
ancy minimization (MStein). Finally, we build the proposed MStein 
with a novel contrastive learning loss based on Wasserstein discrep-
ancy measurement, which greatly advances both STOSA [10] for 
stochastic embeddings and CoSeRec [26] for data augmentation in 
sequential recommendation. 

We summarize our four major contributions as follows: 

• We propose the Wasserstein Discrepancy Measurement as the 
alternative to existing mutual information measurement based on 
KL-divergence, which has several theoretically proven limitations 
as the core component of InfoNCE contrastive loss. 

• On top of the proposed Wasserstein Discrepancy Measurement, 
we propose the mutual Wasserstein discrepancy minimization as 
a novel contrastive learning loss and demonstrate its superiority 
in modeling augmentation stochasticity and robust representa-
tion learning against perturbations. 

• We show that alignment and uniformity properties are exactly op-
timized in the proposed Wasserstein Discrepancy Measurement, 
and the original version of alignment and uniformity optimiza-

tions is a version of Wasserstein Discrepancy Measurement. 
• Extensive experiments frst demonstrate the efectiveness of 
MStein in generating recommendations over state-of-the-art 
baselines DuoRec, CL4Rec, and CoSeRec with improvements 
on all standard metrics from 2.24% to 20.10%. Further analysis 
in robustness and batch sizes show the advantages of adopting 
Wasserstein Discrepancy Measurement in mutual information 
measurement. 

2 RELATED WORK 

Several topics are related to this paper, including sequential and self-
supervised recommendations. We frst introduce relevant work in 
the sequential recommendation, which is the problem setting in our 
paper. Then we discuss some related works in the self-supervised 
recommendation. Lastly, we discuss existing works on uncertainty 
modeling and distinguish our proposed framework from them. 

2.1 Sequential Recommendation 

Sequential Recommendation (SR) [10, 11, 27, 35] formats each user’s 
temporal interactions as a sequence and encodes the sequential 
behaviors as the user preference. The fundamental idea of SR is 
modeling item-item transitions within sequences and inferring 
user preferences from transitions. The earliest work is Markovian 
approaches, including most notable works FPMC [40] and Fos-
sil [16]. Based on the Markov Chain’s ability to learn orders of 
transitions, FPMC learns frst-order item-item transitions, assum-

ing that the next item depends on only the previous item. Fossil 
further combines FPMC and matrix factorization by additional item 
similarities information. With the perspective of viewing the se-
quence as an image, another line of works based on Convolution 
Neural Network (CNN) emerges, such as Caser [43], CosRec [51], 
and NextItNet [53]. Caser proposes vertical/horizontal convolu-
tion operations on the sequence embedding. CosRec interprets the 

1376



Mutual Wasserstein Discrepancy Minimization for Sequential Recommendation WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

sequence as a tensor and adopts the 2d convolution. NextItNet uti-
lizes 1D dilated convolution in the sequence embedding. Recurrent 
Neural Network (RNN) has shown remarkable performance in the 
recommendation to utilize sequential information further. The rel-
evant works based on RNN include GRU4Rec [18], HGN [28, 36], 
HRNN [38], and RRN [48]. These methods adopt diferent RNN 
frameworks for SR. HGN and HRNN both propose hierarchical 
RNNs for SR. With the inspiration of the recent success of the self-
attention mechanism, Transformer-based approaches increasingly 
attract interest in SR. SASRec [20] frstly adopts Transformer in SR. 
BERT4Rec [42] extends SASRec with bi-directional self-attention 
module. Multiple following works [8, 9, 23, 27, 49] build upon SAS-
Rec and further enhance SR. The advantage of self-attention for SR 
is its ability to model long-term dependency within the sequence. 

2.2 Self-Supervised Contrastive Learning 

Self-Supervised Learning (SSL) [33] advances the representation 
learning in multiple areas, including computer vision [4, 14, 15], 
NLP [13, 32], graph learning [52, 58] and recommender systems [12, 
26, 37, 50, 56]. Contrastive learning (CL), as the most widely adopted 
approach in SSL, improves the model encoder with data augmenta-

tions and contrastive loss. Data augmentation strategies generate 
perturbed views of original input data. Then, contrastive learn-
ing pulls embeddings of views from the same input closer while 
pushing away embeddings of views from diferent inputs. Both 
data augmentations and contrastive loss are crucial components in 
CL. The most used contrastive loss is InfoNCE [33], which adopts 
the categorical cross-entropy loss and aims to maximize mutual 
information of two variables (in CL, two perturbed views). [34] 
proposes a contrastive learning loss based on Euclidean distance to 
generalize contrastive predictive coding. 

Depending on application scenarios, several data augmentation 
strategies are proposed, and most are stochastic processes for per-
turbing the original input. In computer vision, SimCLR [4] pro-
poses several simple stochastic data augmentations for images in 
the contrastive learning framework, including distortion, crop, and 
blurring. For recommendation, most existing works in CL for SR 
propose reorder, mask, and crop as augmentations [50]. S3-Rec [56] 
utilizes items’ attributes and develops a self-supervised pre-training 
framework for SR. ICLRec [6] applies intent learning into the CL 
framework. EC4SRec [46] extends CoSeRec [26] with contrastive 
signals selected by explanation methods. DuoRec [37] proposes 
supervised contrastive signals and dropout as unsupervised signals 
in CL for SR. Existing works commonly propose augmentation 
methods specifc to the application, and most augmentations are 
stochastic. 

2.3 Uncertainty Modeling 

Modeling uncertainty information has been attracting interest from 
the research community [2, 17, 41, 44]. The uncertainty informa-

tion is categorized into aleatoric and epistemic uncertainty [19]. 
Aleatoric uncertainty describes the stochastic uncertainty that is 
unavailable to be known, while epistemic uncertainty describes 
the systematic uncertainty that is known but hard to measure. The 
most common approach to consider uncertainty information mod-

eling is adopting the Gaussian embedding. For example, DVNE [57] 

represents nodes as distributions. DDN [55] and PMLAM [29] inter-
pret users/items as distributions for recommendation. DT4SR [9] 
and STOSA [10] both represent items as Gaussian and develop self-
attention adaptive to Gaussian embeddings for SR. Moreover, [45] 
proposes the AUR framework for modeling interactions’ aleatoric 
uncertainty. 

3 PRELIMINARIES 

3.1 Problem Defnition 

In SR, we have a set of users U and items V and the associated 
interactions. We can sort interacted items of each user � ∈ U based 
on timestamps in a sequence as S� 

= [�� 
1 , �

� 
2 , . . . , �

� 
|S� |

], where 

�� ∈ V is the �-th interacted item in the sequence. For each user, SR �
generates a top-N recommendation list of items as the most likely 
preferred items in the next action. Formally, we predict the score� � 
� � 

| S
(� 

�

) 
|+1 

= � |S� and rank scores of all items to generate top-N 

list. The core challenge in SR lies in how to model the user’s action 
sequence S� . 

3.2 Stochastic Transformer for SR 

Transformer has been the successful backbone model for SR [20, 42] 
because of its self-attention module for modeling weights from all 
items in the sequence. However, the original Transformer architec-
ture fails to model uncertainty information in sequences. Among 
existing Transformer variants, STOSA [10] extends the Transformer 
to introduce stochastic embeddings and a Wasserstein self-attention 
module for modeling uncertainty information in SR. In this research, 
we build on STOSA to model uncertainty information. Specifcally, 
STOSA represents items as Gaussian distributions with mean and 
covariance embeddings, which together are defned as stochastic 
embeddings as follows: 

E
� 
= Emb� (S

� ), EΣ 
= EmbΣ (S

� ). (1) 

For the item �� in S� , its stochastic embeddings proposed by STOSA 
includes E

� 
and EΣ and parameterizes the Gaussian distribution �� �� 

N(E
� 
, diag(EΣ )). To calculate the self-attention values on a spe-�� ��

cifc pair of items (�� , � � ), the Wasserstein self-attention adopts the 
negative 2-Wasserstence distance as follows: 

� 
1/2 1/2 

� 
A� � = −(�2 (�� , � � )), = − | |��� − ��� | |2

2 + | |Σ�� − Σ�� | |
2
F , (2) 

= E
� � 

where �2 (·, ·) denotes the 2-Wasserstence distance, ��� � ,�� � � � � � 

Σ�� = ELU diag(Ê Σ � Σ) + 1, Σ�� = ELU diag(Ê Σ � Σ) + 1,�� � �� � 

E
� � 

��� = � , and ELU is the Exponential Linear Unit activation �� � 
� � 

function, � , � Σ, � , and � Σ are linear mappings for stochas-
� � � � 

tic embeddings. STOSA also has Feed-forward Neural Networks, 
Residual Connection, and Layer Normalization modules, similar to 
original Transformer. Hence, we formulate the STOSA sequence 
encoder as: 

(h
� 

h� = � , h� 
Σ) = StosaEnc(S� ), (3) 

1377



WWW ’23, April 30–May 04, 2023, Austin, TX, USA Fan et al. 

where h�
� 
and h� 

Σ are stochastic sequence embeddings of S� , and 

(h
� 

hΣfor each timestep � , h�,� = �,� ) encodes the next-item repre-�,�
sentation. The overall optimization loss is defned as follows: 

∑ |S∑� |

Lrec = − log(� (�2 (h�,� , �� 
−) − �2 (h�,� , �� 

+))) + �ℓ���, 

S� ∈S � =1 
(4) 

where �+ is the ground truth next item stochastic embedding, �− 
� � 

denotes the negative sampled item embedding, � (·) denotes the 
sigmoid activation function, the stochastic embedding tables (�, Σ) 
are optimized simultaneously, ℓ��� is the positive-vs-negative loss 
proposed by STOSA. 

3.3 InfoNCE for Contrastive Learning 

Contrastive loss is the core component of Contrastive Learning (CL). 
InfoNCE [33] is the most widely used contrastive loss. Minimizing 
the InfoNCE is equivalent to maximizing the lower bound of mutual 
information. Specifcally, given a batch of � user sequences, ran-
dom data augmentations generate two perturbed views of each se-
quence, concluding that there are 2� sequences, � positive pairs of 
sequences, and 4� 2 − 2� negative pairs in the InfoNCE calculation. 
We introduce contrastive loss based on the original Transformer 
encoder. For the batch of � user sequences B, the augmentated 
pairs �B are: 

, S�1 , S�2 , S�2�B = {S�1 , · · · , S�� , S�� }, (5)� � � � � � 

where subscripts � and � denote two perturbed versions of S� . The 
InfoNCE for a pair of augmented sequences (S�� , S�� ) is calculated � 

as follows: 
� 

exp(sim(h�� 
� , h�� )) 

� L�� (h
�
� 
� , h�� ) = − log 

� , h
�� Í ,

� exp(sim(h�� )) + exp(sim(h�� 
� , h� )) � ∈� − 

� B 

(6) 

where h�� and h�� are sequence embeddings of two perturbed � � 
sequences versions learned from the encoder, � − 

= �B −{S
�� , S�� }� B � 

denotes the negative augmented sequence pairs, and the sim(·) 
denotes the cosine similarity. 

4 WASSERSTEIN DISCREPANCY 
MEASUREMENT 

In this section, we frst recall the defnition of mutual informa-

tion and its connection with InfoNCE in the setting of contrastive 
learning. Then we discuss the disadvantages of KL-divergence-
based mutual information measurement. Finally, we introduce the 
proposed Wasserstein Discrepancy Measurement in mutual infor-
mation measurement to alleviate these disadvantages. 

4.1 InfoNCE and Mutual Information 

InfoNCE in contrastive learning is frst adopted in Contrastive 
Predictive Coding (CPC) [33]. The mutual information is maxi-

mized when InfoNCE is optimized. Formally, in contrastive learn-
ing, we denote the randomly augmented sequences of the user �� as 
(�
�� 

= S�
�� , ��� = S�� ) and (��

�� , ��� ) are random variables follow-� � � �
ing random augmentation distributions. The connection between 

InfoNCE and mutual information of (��
�� , ��� ) is given as: 

� 

�� ��  � (� |� )  � � 
��  � (� )  
� L�� = −ES�� ∈B log  �� �� ��  � �  

  
� (� |� ) Í � (� |� − )

+ � (�
�� )

"  � 

� (��� )
� ≈ ES�� ∈B log 1 + 

� (��� |��� )� � " 
� (��� )

� 
= ES�� ∈B log 1 + 

� (��� |��� )� � " 
� (��� )

� 

� 
� −∈�

B
− 

� (� − )  # 
� (��� |� −)� 

(2� − 1)E� −∈� − 
B � (� −)

# 

(2� − 1) 

# 

≥ ES�� ∈B log (2� − 1)
� (��� |��� )� 
" � # 
� (��� |��� )� � 

= −ES�� ∈B log + log(2� − 1)
� (��� )

� � � 
= ES�� ∈B − �KL � (��

�� ), � (�
�
�� ) + log(2� − 1)

� � 
= ES�� ∈B − � ��

�� , ��� + log(2� − 1), (7)
� 

where �(��) denotes the KL-divergence, � (�,�) is the mutual in-
formation between random variables � and �. 

Eq. (7) proves that optimizing L�� simultaneously maximizes � � 
mutual information as � ��

�� , ��� ≥ log(2� −1)−L�� . It also shows 
� 

that when the batch size � grows larger, we can better approximate 
the mutual information, which has been demonstrated in related 
works [26, 50]. We argue that the existing InfoNCE relies on KL-
divergence to measure the mutual information between variables 
of data augmentations. Several defciencies from KL-divergence 
limit the representation learning by InfoNCE. 

4.2 Limitations of KL Divergence 

As mutual information estimation utilizes KL-divergence to mea-

sure the similarity of distribution, mutual information estimation 
shares the limitations of KL-divergence. We argue that there are 
three limitations to KL-divergence, including asymmetrical estima-

tion, the exponential need for sample size, and training instability. 

4.2.1 Assymetrical Estimation. As given in Eq. (7), the KL-divergence 
between (��

�� , ��� ) is calculated as: 
� 

" #� � � (��� |��� � � �KL � (��
�� ), � (�

�
�� ) = EB log 

� (��� 

) 

)
� � � 

≠ �KL � (�
�
�� ), � (��

�� ) . (8) 

We can conclude that the estimation from KL-divergence is asym-

metric. However, the goal of contrastive learning in InfoNCE is 
to maximize the similarity between augmented pairs from the 
same user, i.e., (��

�� , ��� ), and minimize the similarity between 
� 

� � � � pairs from other users, i.e., (� , � , · · · ). The KL-divergence re-� � � � � � 
quires both �KL � (��

�� ), � (��� ) and �KL � (��� ), � (��
�� ) to be 

� � 
small. We need to calculate more when we consider KL-divergence 
in negative pairs. In such cases, it requires more data and considers 
more pairs in InfoNCE to accurately estimate mutual information. 
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4.2.2 Exponential Need of Sample Size. As derived by [31, 34], the 
mutual information estimation based on KL-divergence has the 
high-confdence lower bound on � samples that cannot be larger 
than � (ln � ). With the application in contrastive learning InfoNCE, 
we have a similar theorem for mutual information estimation. 

Theorem 1. Let � (��) and � (�� ) be two user sequence augmented 
distributions, and � denotes the set of augmented sequences with sam-

ple size � from � (��), and � denotes the set of augmented sequences 
with sample size � from � (�� ), respectively. Let � be the confdence 
bound and let � (�, �, �) be a real-valued function with augmented 
sets �, �, and the confdence parameter � . With probability 1 − � , we 
have 

�KL (� (�� ), � (�� )) ≥ � (�, �, �), (9) 

then with at least 1 − 4� probability that 

ln � ≥ � (�, �, �). (10) 

As mutual information is measured by KL-divergence, from [31, 
34], we can conclude that the mutual information bound is � = 
exp(� (��, �� )). The � in contrastive learning denotes the batch size. 
Therefore, the high-confdence mutual information lower bound 
estimation requires exponential sample sizes, which also matches 
with the derivation from Eq. (7). 

4.2.3 Training Instability. As demonstrated in analysis in WGAN [1], 
KL-divergence and Jensen-Shannon divergence both encounter un-
stable vanishing gradients when distributions are non-overlapping. 
KL-divergence can be infnite when sampled data have small prob-
abilities close to 0. As defned in Eq. (7), when � (��� ) has sampled 

� 
points with probabilities � (��� ) ≈ 0, the infnite KL-divergence 

�
happens. This case happens when the randomness of augmenta-

tions is large or user sequences are easily broken. Thus, it might 
cause training instability in mutual information estimation. 

4.3 Wasserstein Discrepancy Measurement 

With these three limitations of KL-divergence, it is desirable to 
propose an alternative to KL-divergence in mutual information 
estimation. In this research, we propose Wasserstein Discrepancy 
Measurement in mutual information estimation. Formally, we de-
fne the Wasserstein Discrepancy Measurement with the negative 
2-Wasserstein distance as follows: 

� 
�
�� 

� 
def 

−�2 (�
�� 

� (��
�� |�

�
�� )

��2 � , �
�� 

= � , �
�� ) ∝ , (11)

� � � (��� )
� 

where −�2 (��
�� , ��� ) measures the negative 2-Wasserstein distribu-

� 
tion distance between N(E

� 
, diag(EΣ )) and N(E

� 
, diag(EΣ )).�� �� �� �� � � � � � � � � 

2-Wasserstein distribution distance measures information gain 
from the metric learning perspective. Wasserstein Discrepancy 
Measurement measures the negative optimal transport cost [3] 
between augmentation distributions, which helps stabilize the gra-
dient calculation and alleviates the training instability limitation. 
Moreover, 2-Wasserstein distance is symmetric, which indicates 
�2 (��

�� , ��� ) = �2 (�
�� , ��

�� ), and further demonstrates less need 
� �

of batch size in estimating mutual information, compared with 
KL-divergence. 

5 MUTUAL WASSERSTEIN DISCREPANCY 
MINIMIZATION 

Considering the stochasticity of data augmentations with stochastic 
modeling, we propose Wasserstein Discrepancy Measurement in 
the InfoNCE framework. We minimize Wasserstein discrepancy 
measurement LMStein (equivalent to maximizing the mutual infor-� � 
mation ��2 ��

�� , ��� ) as follows: 
� 

� � � � 
ES�� ∈B��2 ��

�� , �
�
�� ≥ ES�� ∈B − LMStein h�� 

� , h�
� 
� 

� � 
exp −�2 (h

�
� 
� , h�� )

� 
= ES�� ∈B log � � � � , 

exp −�2 (h
�
� 
� , h�� ) + 

Í 
exp −�2 (h

�
� 
� , h� )� ∈� − 

� B 

(12) 
� � 

where h�� 
� , h�� = StosaEnc(S�� ) are encoded stochastic output 

Σ 

representations, and the 2-Wasserstein distance on encoded distri-� � 
1/2 1/2

bution is −�2 (h
�
� 
� , h�� ) = − | |� �� − � �� | |22 + | |Σ − Σ | |2 ,�� �� � �� �

� �� � F 
� 

which is the sum of two �2-errors on both mean embeddings and 
the square root of covariance embeddings. We measure the Wasser-

stein discrepancy of all augmented sequence pairs. The discrepancy 
is minimized for positive pairs, while the discrepancy is maximized 
for negative pairs. With LMStein, both stochasticities of augmenta-

tions and sequential behaviors are modeled. Moreover, adopting the 
2-Wasserstein distance to measure the mutual information requires 
less batch size with symmetric estimation and more stable training. 

5.1 Approixmating Lipschitz Continuity for 
Robustness 

The stable training stability originates from the approximating 
Lipschitz continuity of STOSA and MStein. Intuitively, a model 
is Lipschitz continuous when a certain amount of inputs bounds 
its embedding output with no more than Lipschitz constant times 
that amount [21]. Lipschitz continuity is closely related to the ro-
bustness of the model against perturbations, which is also a nec-
essary component in contrastive learning robustness. We utilize 
the demonstration from [21] that the dot-product self-attention 
module is not Lipschitz, but the self-attention based on the �2 norm 
is Lipschitz instead. The 2-Wasserstein distance with the diagonal 
covariance is the sum of two �2 errors on both mean embeddings 
and the square root of covariance embeddings. The Wasserstein 
self-attention proposed by STOSA approximates Lipschitz. More-

over, the approximated Lipschitz continuity of the encoder further 
derives the Lipschitz approximation of the proposed LMStein, which 
improves the robustness. We empirically demonstrate the robust-
ness of MStein in experiment Section 6.3. In the actual implemen-

tation, we relax the requirement that �� = �� in the Wasserstein 
self-attention module to approximate Lipschitz continuity for better 
fexibility and better performances. 

5.2 Exact Optimization of Alignment and 
Uniformity 

We further show that mutual Wasserstein discrepancy minimization 
exactly optimizes two important properties, alignment and unifor-
mity [47]. Specifcally, by decomposing the LMStein (h

�
� 
� , h�� ), we 

� 
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obtain the alignment component from the nominator of Eq. (12) as: 

1/2 1/2
| |���� �� | |2

2 + | |Σ − Σ | |2F, (13)− �� �� �� � � � �
� � 

and the uniformity component from the denominator of Eq. (12) as:
∑ � � 

− log exp −�2 (h
�
� 
� , h

� � 
)

� 
� 

� � �∑ 
1/2 1/2 

= log exp | |���� − � �� | |
2 · exp | |Σ − Σ | |2 

� � 2 ��
�� 

� 
�� F 
� � 

� 
� � �∑ ∑ 

1/2 1/2 
= log exp | |� �� − � �� | |

2 + log exp | |Σ − Σ | |2 
�� �� �� �

� 
2 �� �

� 
F 

(14) 

Commonality: Both Eq. (13) and Eq. (14) have similar forms 
as the original alignment and uniformity as defned in [37, 47]. The 
Eq. (13) also adopts the Euclidean distance between embeddings 
(alignment on representations) and the Eq. (14) also adopts the 
exponential Euclidean distance on all pairs of augmented sequences 
(uniformity on representations). 

Diferences and Novelty: The diferences between our pro-
posed LMStein (h

�
� 
� , h�� ) and [37, 47] from two perspectives: (1). We 

�
introduce the alignment and uniformity optimizations also on the 
covariance embeddings, with the advantage of pulling similar users’ 
augmentation distributions together (i.e., distribution alignment) 
and enforcing the distributions to be as distinguishable as possible 
(i.e., distribution uniformity); (2). the alignment and uniformity 
terms proposed in [47] are asymptotically optimized by the con-
trastive loss and are not induced from the original formulation 
of the contrastive loss. However, our proposed LMStein (h

�
� 
� , h�� )

� 
induces and optimizes exactly the alignment and uniformity terms. 
In other words, the alignment and uniformity optimizations pro-
posed in [47] and the Euclidean metric used in CL by [34] can be 
viewed as a special case of our LMStein (h

�
� 
� , h�� ), which adopts 

�
Euclidean distance instead of Wasserstein distance. 

5.3 Optimization and Prediction 

With mutual Wasserstein discrepancy minimization LMStein, we 
fnalize the optimization loss with the recommendation loss from 
Eq. (4) as follows: 

L = L��� + �LMStein, (15) 

where � is the hyper-parameter for adjusting the contribution of 
contrastive loss with mutual Wasserstein discrepancy minimiza-

tion. The fnal recommendation list is generated by calculating the 
Wasserstein distance of the sequence encoded distribution embed-

dings (h�
� 
, h� 

Σ) and all items’ stochastic embeddings. The distances 
on all items are sorted in the ascending order to produce the top-N. 

6 EXPERIMENTS 

In this section, we demonstrate the efectiveness of the proposed 
MStein in multiple aspects, including performances over baselines, 
robustness against perturbations, and analysis of performances 
over diferent batch sizes. We answer the following research ques-
tions (RQs) in experiments: 

• RQ1: Is MStein generating better recommendations than state-
of-the-art baselines? 

• RQ2: Is MStein more robust to noisy and limited data? 

• RQ3: Does MStein need smaller batch sizes? 
• RQ4: Where are improvements of MStein from? 

6.1 Baselines 

We compare the proposed MStein with three groups of recommen-

dation methods. The frst group includes static recommendation 
methods. We present BPRMF [39] due to the page limitation. The 
second group of methods include state-of-the-art sequential rec-
ommendation methods without self-supervised module, including 
Caser [43], SASRec [20], BERT4Rec [42], and STOSA [10]. The third 
group contains most recent sequential recommendation methods 
with self-supervised learning, including CL4Rec [50], DuoRec [37], 
and CoSeRec [26]. We also introduce a variant that builds upon 
CL methods with SASRec as base backbone but uses WDM as CL 
loss, which is CoSeRec(WDM) by converting the sequence output 
embeddings as [����_���; ��� (���_���) + 1]. Note that we use 
only one training negative sample for models with the Cross-
Entropy loss (e.g., DuoRec) because we observe that the number of 
negative samples signifcantly afects the recommendation perfor-
mance [5, 7, 30]. 

6.2 Overall Comparisons (RQ1) 

As demonstrated in the overall comparison results Table 1, we can 
conclude the superiority of MStein over all baselines in all metrics. 
We have the following observations: 

• Among all models, the proposed MStein achieves the consistently 
best performance in all metrics over all evaluated datasets. The 
improvements range from 0.9% to 20.10% in all metrics, prov-
ing the efectiveness of MStein in SR. In the most challenging 
task top-1 recommendation, MStein obtains the most signifcant 
improvements. In the entire list ranking metric MRR, MStein 
achieves 2.53% to 9.90% improvements over the best baseline. 
We attribute these improvements to several characteristics of 
MStein: (1). a novel mutual information estimation based on the 
2-Wasserstein distance; (2). the uncertainty modeling for stochas-
tic data augmentation processes in self-supervised learning; (3). 
the robust modeling from WDM. 

• Comparing the self-supervised learning SR methods (CL4Rec, 
DuoRec, and CoSeRec), MStein still achieves signifcant improve-

ments among them. Although MStein adopts the same data aug-
mentations as CoSeRec, the performance improvements stem 
from the stochastic modeling of data augmentations and more 
accurate and robust mutual information estimation. Furthermore, 
CL4Rec and CoSeRec generate better performances among these 
baselines as both provide manually designed data augmentations. 
These observations demonstrate the benefts of modeling the 
uncertainty of data augmentation processes and the proposed 
Wasserstein Discrepancy Measurement. 

• In static models and SR methods, SR methods outperform the 
static models. This observation demonstrates the necessity of 
sequential information in recommendations. STOSA achieves the 
best performance in all SR methods, and the SASRec is the second 
best, showing that the self-attention module benefts SR. STOSA 
frst introduces stochastic embeddings for modeling sequential 
uncertainty and demonstrates its efectiveness over other SR 
methods. 
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Table 1: Overall Performance Comparison Table. The best results are bold and the best baseline results are underlined, 
respectively. ‘Improve.’ indicates the relative improvement against the best baseline performance. 

Dataset Metric BPRMF Caser SASRec BERT4Rec STOSA CL4Rec DuoRec CoSeRec CoSeRec(WDM) MStein Improv. 

Beauty 

Recall@1 
Recall@5 
NDCG@5 
Recall@10 
NDCG@10 

MRR 

0.0082 
0.0300 
0.0189 
0.0471 
0.0245 
0.0216 

0.0112 
0.0309 
0.0214 
0.0407 
0.0246 
0.0231 

0.0129 
0.0416 
0.0274 
0.0633 
0.0343 
0.0291 

0.0119 
0.0396 
0.0257 
0.0595 
0.0321 
0.0294 

0.0193 
0.0504 
0.0351 
0.0707 
0.0416 
0.0360 

0.0156 
0.0538 
0.0349 
0.0726 
0.0412 
0.0356 

0.0158 
0.0505 
0.0310 
0.0685 
0.0375 
0.0325 

0.0188 
0.0508 
0.0351 
0.0738 
0.0425 
0.0365 

0.0189 
0.0524 
0.0359 
0.0760 
0.0435 
0.0368 

0.0220 
0.0551 
0.0392 
0.0774 
0.0463 
0.0398 

+14.39% 
+2.24% 
+11.69% 
+4.78% 
+9.00% 
+9.11% 

Tools 

Recall@1 
Recall@5 
NDCG@5 
Recall@10 
NDCG@10 

MRR 

0.0062 
0.0216 
0.0139 
0.0334 
0.0177 
0.0154 

0.0056 
0.0129 
0.0091 
0.0193 
0.0112 
0.0106 

0.0103 
0.0284 
0.0194 
0.0427 
0.0240 
0.0207 

0.0059 
0.0189 
0.0123 
0.0319 
0.0165 
0.0160 

0.0120 
0.0312 
0.0217 
0.0468 
0.0267 
0.0226 

0.0112 
0.0314 
0.0208 
0.0404 
0.0226 
0.0212 

0.0108 
0.0304 
0.0201 
0.0401 
0.0234 
0.0202 

0.0112 
0.0318 
0.0216 
0.0453 
0.0260 
0.0223 

0.0114 
0.0344 
0.0230 
0.0487 
0.0276 
0.0234 

0.0144 
0.0334 
0.0242 
0.0472 
0.0286 
0.0248 

+20.10% 
+8.17% 
+11.11% 
+4.06% 
+6.90% 
+9.90% 

Toys 

Recall@1 
Recall@5 
NDCG@5 
Recall@10 
NDCG@10 

MRR 

0.0084 
0.0301 
0.0194 
0.0460 
0.0245 
0.0216 

0.0089 
0.0240 
0.0210 
0.0262 
0.0231 
0.0221 

0.0193 
0.0551 
0.0377 
0.0797 
0.0456 
0.0385 

0.0110 
0.0300 
0.0206 
0.0466 
0.0260 
0.0244 

0.0240 
0.0577 
0.0412 
0.0800 
0.0481 
0.0415 

0.0220 
0.0617 
0.0424 
0.0764 
0.0454 
0.0417 

0.0215 
0.0580 
0.0401 
0.0784 
0.0461 
0.0400 

0.0222 
0.0584 
0.0408 
0.0791 
0.0474 
0.0405 

0.0228 
0.0616 
0.0426 
0.0852 
0.0502 
0.0425 

0.0266 
0.0637 
0.0457 
0.0845 
0.0524 
0.0453 

+10.73% 
+3.17% 
+7.78% 
+6.50% 
+8.91% 
+8.67% 

Ofce 

Recall@1 
Recall@5 
NDCG@5 
Recall@10 
NDCG@10 

MRR 

0.0073 
0.0214 
0.0144 
0.0306 
0.0173 
0.0162 

0.0069 
0.0302 
0.0186 
0.0550 
0.0266 
0.0268 

0.0198 
0.0656 
0.0428 
0.0989 
0.0534 
0.0457 

0.0137 
0.0485 
0.0309 
0.0848 
0.0426 
0.0408 

0.0234 
0.0677 
0.0461 
0.1021 
0.0572 
0.0502 

0.0230 
0.0709 
0.0471 
0.1091 
0.0594 
0.0511 

0.0221 
0.0665 
0.0456 
0.1005 
0.0556 
0.0482 

0.0245 
0.0718 
0.0483 
0.1024 
0.0598 
0.0516 

0.0267 
0.0703 
0.0485 
0.1052 
0.0597 
0.0519 

0.0277 
0.0740 
0.0512 
0.1155 
0.0627 
0.0529 

+13.33% 
+3.13% 
+5.93% 
+5.96% 
+4.90% 
+2.53% 

6.3 Robustness Analysis (RQ2) 

We argue that MStein is more robust with the newly proposed 
mutual Wasserstein discrepancy minimization process. We validate 
the robustness from two perspectives, including the robustness 
against noisy interactions and data sizes. The comparison is con-
ducted in MStein and CoSeRec because both adopt the same data 
augmentation techniques. 

6.3.1 Sensitivity to Noisy Interactions. We show the sensitivity anal-
ysis of MStein against noisy interactions in Fig. (2) in all datasets. 
Fig. (2) shows the MRR performance over diferent noise ratios for 
the CoSeRec and the proposed MStein. We can observe that MStein 
is more robust to noisy interactions than CoSeRec. Specifcally, for 
example, in the Beauty dataset analysis in Fig. (2a), when the noise 
ratio is 0.4 for MStein and 0.3 for CoSeRec, the performances are 
similar. This observation shows the robustness of MStein against 
noisy interaction with Wasserstein discrepancy measurement as 
MStein and CoSeRec adopt the same data augmentation strategies. 
We can also see that the performance of CoSeRec drops signifcantly 
in the Toys dataset when the noise ratio is large (0.9), while MStein 
still achieves satisfactory performance. 

6.3.2 Sensitivity to Data Size. The sensitivity of MStein against the 
data size is shown in Fig. (3). In Fig. (3), we present the performance 
comparison between MStein and CoSeRec in varying data sizes. We 
can observe that MStein consistently outperforms CoSeRec in all 
varying data size ratios, demonstrating the superiority of MStein 
in SR. Moreover, MStein is more stable than CoSeRec, especially in 
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Figure 2: MRR over Diferent Noise Ratios. 

Tools and Ofce datasets, as shown in Fig. (3c) and Fig. (3d) respec-
tively. It demonstrates that MStein is more robust than CoSeRec 
against the dataset size, potentially due to the collaborative transi-
tivity from stochastic embedding modeling and the newly proposed 
Wasserstein discrepancy measurement. 
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(a) Beauty (b) Toys 

(c) Tools (d) Ofce 

Figure 3: MRR over Diferent Training Data Portions. 

6.4 Sensitivity to Batch Size (RQ3) 

As we argue that the proposed Wasserstein discrepancy measure-

ment alleviates the exponential need for the sample size of KL 
divergence in mutual information estimation, we conduct the sen-
sitivity analysis to batch sizes in Fig. (4). We compare the proposed 
MStein with CoSeRec in this analysis as the same set of data aug-
mentations is applied. In contrastive learning, larger batch sizes 
improve the model performance signifcantly [33]. Fig. (4) demon-

strates the benefcial efect of using larger batch sizes. Moreover, 
in all four datasets, MStein achieves comparative performances 
with much smaller batch sizes. For example, in Fig. (4a), MStein ob-
tains MRR as 0.035 when batch size is 16 (24) while CoSeRec needs 
the batch size 128 (27). This observation validates the superiority 
of MStein over CoSeRec in need of sample size, where CoSeRec 
needs exponential sample sizes in InfoNCE measurement due to 
the inherent KL divergence limitation. 

6.5 Improvements Analysis (RQ4) 

We visualize the improvements of users items in Appendix Fig. (5) 
and items in Fig. (6) in on all datasets. We separate users and items 
in groups based on the number of interactions. For each group, we 
average NDCG@5 over the group users/items. We observe that 
the distributions of users/items based on the number of interac-
tions follow the long-tail distributions shown in the bar chart. In 
most datasets, the performance increases as the number of inter-
actions grow. The proposed MStein achieves better performance 
than SASRec, STOSA, and CoSeRec. The improvements come from 
the groups with the longest sequences and the second longest se-
quences. It verifes the strength of MStein for modeling stochastic 
augmentations because data augmentations for long sequences pro-
vide richer perspectives of sequences. For short sequences, data 
augmentations can easily break the sequential correlations. Long 

(a) Beauty (b) Toys 

(c) Tools (d) Ofce 

Figure 4: MRR over Diferent Batch Sizes. 

sequences and popular items have larger uncertainty, and stochas-
tic augmentations provide more informative signals in contrastive 
learning. This observation also happens to the item perspective. 
MStein also achieves better performance in popular items. 

7 CONCLUSIONS 

We study the connection between mutual information and InfoNCE 
and discuss the limitations of mutual information estimation based 
on KL-divergence, including asymmetrical estimation, the exponen-
tial need for sample size, and the training instability. We propose 
an alternative choice of mutual information estimation based on 
Wasserstein distance, which is Wasserstein Discrepancy Measure-

ment. With the proposed Wasserstein Discrepancy Measurement, 
we formulate the mutual Wasserstein discrepancy minimization in 
the InfoNCE framework as MStein. Extensive experiments on four 
benchmark datasets demonstrate the superiority of MStein using 
Wasserstein Discrepancy Measurement in mutual information esti-
mation. Additional robustness analysis proves that MStein is more 
robust against noisy interactions and variants of data sizes. 
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A DATA STATISTICS 

We present the detailed datasets statistics in Table 2. We evaluate 
all models in four benchmark datasets from the public Amazon 
review dataset1. In the Amazon reviews dataset, there are multiple 
categories of product interactions with timestamps from users. We 
choose Beauty, Toys and Games (Toys), Tools and Home (Tools), and 
Ofce Products (Ofce) categories in our experiments as these four 
categories are widely used benchmark datasets [9, 10, 20, 23, 42, 43]. 
We treat the presence of user-item reviews as user-item interactions. 
For each user, we sort the interacted items based on the timestamp 
to form the interaction sequence. In each user sequence, we use the 
last interaction for testing and the second to last one for validation. 
We adopt the standard 5-core pre-processing step on users [9, 10, 
20, 23, 42, 43] to flter out users with less than fve interactions. We 
present detailed datasets statistics in Table 2. 

Table 2: Datasets Statistics. 

Dataset #users #items #interactions density 
avg. 

interactions 
per user 

Beauty 
Toys 
Tools 
Ofce 

22,363 
19,412 
16,638 
4,905 

12,101 
11,924 
10,217 
2,420 

198,502 
167,597 
134,476 
53,258 

0.05% 
0.07% 
0.08% 
0.44% 

8.3 
8.6 
8.1 
10.8 

1http://deepyeti.ucsd.edu/jianmo/amazon/index.html 

B EVALUATION 

We generate the top-N recommendation list for each user based 
on the sequence-item Wasserstein distance in ascending order. We 
rank all items for all models so that no sampling bias is introduced 
in evaluation [22]. The evaluation includes standard top-N ranking 
metrics, Recall@N, NDCG@N, and MRR. We report the average 
results over all test users. The test results are reported based on the 
best validation results. We report metrics in multiple Ns, including 
� = {1, 5, 10}, which are widely adopted in [10, 20, 42]. 

C HYPER-PARAMETERS GRID SEARCH 

We implement MStein with Pytorch. We grid search all parameters 
and report the test performance based on the best validation results. 
For all baselines, we search the embedding dimension in {64, 128}. 
As the proposed model has both mean and covariance embeddings, 
we only search for {32, 64} for MStein for the fair comparison. We 
also search max sequence length from {50, 100}. We tune the learn-
ing rate in {10−3 , 10−4}, search the �2 regularization weight from 
{10−1 , 10−2 , 10−3}, dropout rate from {0.3, 0.5, 0.7}. For sequential 
methods, we search number of layers from {1, 2, 3}, and number of 
heads in {1, 2, 4}. We adopt the early stopping strategy that model 
optimization stops when the validation MRR does not increase for 
50 epochs. The followings are the model specifc hyper-parameters 
search ranges of baselines: The third group consists of sequential 
recommendation methods: 

• BPR2: BPR is the most classical collaborative fltering method 
for personalized ranking with implicit feedbacks. We search the 
learning rate in {10−3 , 10−4} and �2 regularization weight from 
{10−1 , 10−2 , 10−3}. 

• Caser3: A CNN-based sequential recommendation method that 
views the sequence embedding matrix as an image and applies 
convolution operators to it. We search the length � from {5, 10}, 
and � from {1, 3, 5}. 

• SASRec4: The state-of-the-art sequential method that depends 
on the Transformer architecture. We search the dropout rate 
from {0.3, 0.5, 0.7}. 

• BERT4Rec5: This method extends SASRec to model bidirectional 
item transitions with standard Cloze objective. We search the 
mask probability from the range of {0.1, 0.2, 0.3, 0.5, 0.7}. 

• STOSA6: A metric learning-base sequential method that models 
items as distributions and proposes a Wasserstein self-attention 
module. We search the dropout rate from {0.3, 0.5, 0.7}. 

• CL4Rec:7 A sequential recommendation method that introduces 
masking, reorder, and cropping data augmentations in the con-
trastive learning framework. We search the masking rate from 
{0.1, 0.2, 0.3, 0.4, 0.5} and cropping ratio from {0.1, 0.2, 0.3, 0.4, 0.5}. 

• DuoRec:8 This method introduces unsupervised Dropout and 
supervised semantic augmentations in self-supervised learning 
for sequential recommendation. 

2https://github.com/xiangwang1223/neural_graph_collaborative_fltering 
3https://github.com/graytowne/caser_pytorch 
4https://github.com/RUCAIBox/CIKM2020-S3Rec 
5https://github.com/FeiSun/BERT4Rec 
6https://github.com/zfan20/STOSA 
7https://github.com/YChen1993/CoSeRec 
8https://github.com/RuihongQiu/DuoRec 
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• CoSeRec:9 This method extends CL4Rec with additional data 
augmentation techniques. 
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Figure 5: NDCG@5 on diferent sequences based on length. 

9https://github.com/YChen1993/CoSeRec 
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Figure 6: NDCG@5 on diferent items based on popularity. 

D USERS AND ITEMS IMPROVEMENTS 
ANALYSIS ON ALL DATASETS 

Detailed analysis and observations can be found in Section 6.5. 
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