Check for
Updates

Mutual Wasserstein Discrepancy Minimization for Sequential

Recommendation
Ziwei Fan Zhiwei Liu
University of Illinois at Chicago Salesforce AI Research
USA USA
zfan20@uic.edu zhiweiliu@salesforce.com
Hao Peng” Philip S. Yu
Beihang University University of Illinois at Chicago

China USA

penghao@act.buaa.edu.cn psyu@uic.edu

ABSTRACT

Self-supervised sequential recommendation significantly improves
recommendation performance by maximizing mutual information
with well-designed data augmentations. However, the mutual infor-
mation estimation is based on the calculation of Kullback-Leibler
divergence with several limitations, including asymmetrical estima-
tion, the exponential need of the sample size, and training instability.
Also, existing data augmentations are mostly stochastic and can po-
tentially break sequential correlations with random modifications.
These two issues motivate us to investigate an alternative robust
mutual information measurement capable of modeling uncertainty
and alleviating KL divergence’s limitations.

To this end, we propose a novel self-supervised learning frame-
work based on the Mutual WasserStein discrepancy minimiza-
tion (MStein) for the sequential recommendation. We propose the
Wasserstein Discrepancy Measurement to measure the mutual in-
formation between augmented sequences. Wasserstein Discrep-
ancy Measurement builds upon the 2-Wasserstein distance, which
is more robust, more efficient in small batch sizes, and able to
model the uncertainty of stochastic augmentation processes. We
also propose a novel contrastive learning loss based on Wasser-
stein Discrepancy Measurement. Extensive experiments on four
benchmark datasets demonstrate the effectiveness of MStein over
baselines. More quantitative analyses show the robustness against
perturbations and training efficiency in batch size. Finally, im-
provements analysis indicates better representations of popular
users/items with significant uncertainty. The source code is in
https://github.com/zfan20/MStein.
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1 INTRODUCTION

Recommender systems have been a prevalent and crucial compo-
nent in several application scenarios [24, 25, 40]. Among existing
personalized recommendations, sequential recommendation (SR)
attracts increasing interest for its scalability and performance. SR
predicts the next preferred item for each user by modeling the se-
quential behaviors of the user and capturing item-item transition
correlations.

Existing works of SR include Markovian approaches [16, 40],
convolution-based approaches [43, 51], RNN-based approaches [18,
54], and Transformer-based methods [20, 23, 42]. The recent success
of Self-Supervised Learning (SSL) further improves SR [26, 50, 56]
by alleviating the data sparsity issue and improving robustness
with novel data augmentations and contrastive loss, i.e., InfoNCE.
As the widely used SSL framework, contrastive learning (CL) con-
structs positive and negative pairs via data augmentation strategies.
The commonly adopted CL loss InfoNCE maximizes the mutual
information of positive pairs among all pairs. With data augmenta-
tions and mutual information maximization, SSL-based SR methods
capture more robust user preferences.

Despite the effectiveness of SSL for SR, we argue that existing
SSL for SR methods still suffer critical issues in both data augmen-
tations and the mutual information maximization CL loss due to
the following reasons:

o Stochasticity of Data Augmentations: Most data augmenta-
tion techniques are random augmentations, such as the random
sequence crop from CL4Rec and dropout augmentation from
DuoRec. Different random augmentations can be viewed as aug-
mentation distributions, and the perturbed sequences are realized
samples from augmentation distributions. However, existing CL
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Figure 1: Motivation Examples. We only show the random
mask and crop as examples but other data augmentations can
also be viewed as sampling from augmentation distributions.

methods only measure the similarities between realized sam-
ples without considering the uncertainty of augmentation dis-
tributions. Ignoring uncertain information affects the stability
of training and robustness of item embeddings learning against
noises.

o Limitations of KL-divergence-based Mutual Information
Measurement: Existing methods mainly adopt the InfoNCE as
CL loss, which is building upon mutual information maximiza-
tion. Although DuoRec [37] adopts the alignment and uniformity
losses, it still follows [47] to interpret InfoNCE as the combination
of alignment and uniformity. We argue that mutual information
measurement has several limitations, which originate from KL-
divergence, including asymmetrical estimation, the exponential
need for sample size, and instability against small perturbations.
All these issues might significantly affect the modeling in CL,
especially when augmentations are stochastic and potentially
destroy the sequential correlations.

As shown in Fig. (1), each data augmentation strategy has user-
specific augmentation distributions. In Fig. (1), user u; has a smoother
distribution than the user uy. Different augmentation strategies in-
troduce different levels of uncertainty and the possibility of break-
ing the sequential correlations. In this example, the random crop is
more likely to break the user uy’s sequential correlations. Therefore,
depending on users, different data augmentations follow augmen-
tation distributions with varying uncertainties, and modeling this
stochasticity becomes crucial for learning more robust embeddings.
Moreover, distributions of users u; and u have limited overlapping.
In this case, the calculation of KL-divergence becomes unstable.

These issues motivate us to model the stochasticity of data aug-
mentations and address the limitations of KL-divergence-based
mutual information measurement. However, developing a frame-
work that achieves these two goals simultaneously is nontrivial
because it demands the framework to: (1) consider uncertainty infor-
mation in modeling stochasticity data augmentations; (2) measure
mutual information with uncertainty signals while still bypassing
the limitations of KL-divergence.

In this research, we first theoretically analyze the limitations of
KL-divergence in mutual information measurement and demon-
strate the necessity of proposing the alternative. Then, based on the
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theoretical analysis, we propose the Wasserstein Discrepancy Mea-
surement, which measures mutual information with a 2-Wasserstein
distance between distributions. Furthermore, we introduce how to
adapt Wasserstein Discrepancy Measurement to the contrastive
learning framework by proposing the Mutual WasserStein discrep-
ancy minimization (MStein). Finally, we build the proposed MStein
with a novel contrastive learning loss based on Wasserstein discrep-
ancy measurement, which greatly advances both STOSA [10] for
stochastic embeddings and CoSeRec [26] for data augmentation in
sequential recommendation.
We summarize our four major contributions as follows:

e We propose the Wasserstein Discrepancy Measurement as the
alternative to existing mutual information measurement based on
KL-divergence, which has several theoretically proven limitations
as the core component of InfoNCE contrastive loss.

On top of the proposed Wasserstein Discrepancy Measurement,

we propose the mutual Wasserstein discrepancy minimization as

a novel contrastive learning loss and demonstrate its superiority

in modeling augmentation stochasticity and robust representa-

tion learning against perturbations.

We show that alignment and uniformity properties are exactly op-

timized in the proposed Wasserstein Discrepancy Measurement,

and the original version of alignment and uniformity optimiza-
tions is a version of Wasserstein Discrepancy Measurement.

e Extensive experiments first demonstrate the effectiveness of
MStein in generating recommendations over state-of-the-art
baselines DuoRec, CL4Rec, and CoSeRec with improvements
on all standard metrics from 2.24% to 20.10%. Further analysis
in robustness and batch sizes show the advantages of adopting
Wasserstein Discrepancy Measurement in mutual information

measurement.

2 RELATED WORK

Several topics are related to this paper, including sequential and self-
supervised recommendations. We first introduce relevant work in
the sequential recommendation, which is the problem setting in our
paper. Then we discuss some related works in the self-supervised
recommendation. Lastly, we discuss existing works on uncertainty
modeling and distinguish our proposed framework from them.

2.1 Sequential Recommendation

Sequential Recommendation (SR) [10, 11, 27, 35] formats each user’s
temporal interactions as a sequence and encodes the sequential
behaviors as the user preference. The fundamental idea of SR is
modeling item-item transitions within sequences and inferring
user preferences from transitions. The earliest work is Markovian
approaches, including most notable works FPMC [40] and Fos-
sil [16]. Based on the Markov Chain’s ability to learn orders of
transitions, FPMC learns first-order item-item transitions, assum-
ing that the next item depends on only the previous item. Fossil
further combines FPMC and matrix factorization by additional item
similarities information. With the perspective of viewing the se-
quence as an image, another line of works based on Convolution
Neural Network (CNN) emerges, such as Caser [43], CosRec [51],
and NextItNet [53]. Caser proposes vertical/horizontal convolu-
tion operations on the sequence embedding. CosRec interprets the
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sequence as a tensor and adopts the 2d convolution. NextItNet uti-
lizes 1D dilated convolution in the sequence embedding. Recurrent
Neural Network (RNN) has shown remarkable performance in the
recommendation to utilize sequential information further. The rel-
evant works based on RNN include GRU4Rec [18], HGN [28, 36],
HRNN [38], and RRN [48]. These methods adopt different RNN
frameworks for SR. HGN and HRNN both propose hierarchical
RNNs for SR. With the inspiration of the recent success of the self-
attention mechanism, Transformer-based approaches increasingly
attract interest in SR. SASRec [20] firstly adopts Transformer in SR.
BERT4Rec [42] extends SASRec with bi-directional self-attention
module. Multiple following works [8, 9, 23, 27, 49] build upon SAS-
Rec and further enhance SR. The advantage of self-attention for SR
is its ability to model long-term dependency within the sequence.

2.2 Self-Supervised Contrastive Learning

Self-Supervised Learning (SSL) [33] advances the representation
learning in multiple areas, including computer vision [4, 14, 15],
NLP [13, 32], graph learning [52, 58] and recommender systems [12,
26,37, 50, 56]. Contrastive learning (CL), as the most widely adopted
approach in SSL, improves the model encoder with data augmenta-
tions and contrastive loss. Data augmentation strategies generate
perturbed views of original input data. Then, contrastive learn-
ing pulls embeddings of views from the same input closer while
pushing away embeddings of views from different inputs. Both
data augmentations and contrastive loss are crucial components in
CL. The most used contrastive loss is InfoNCE [33], which adopts
the categorical cross-entropy loss and aims to maximize mutual
information of two variables (in CL, two perturbed views). [34]
proposes a contrastive learning loss based on Euclidean distance to
generalize contrastive predictive coding.

Depending on application scenarios, several data augmentation
strategies are proposed, and most are stochastic processes for per-
turbing the original input. In computer vision, SimCLR [4] pro-
poses several simple stochastic data augmentations for images in
the contrastive learning framework, including distortion, crop, and
blurring. For recommendation, most existing works in CL for SR
propose reorder, mask, and crop as augmentations [50]. S3-Rec [56]
utilizes items’ attributes and develops a self-supervised pre-training
framework for SR. ICLRec [6] applies intent learning into the CL
framework. EC4SRec [46] extends CoSeRec [26] with contrastive
signals selected by explanation methods. DuoRec [37] proposes
supervised contrastive signals and dropout as unsupervised signals
in CL for SR. Existing works commonly propose augmentation
methods specific to the application, and most augmentations are
stochastic.

2.3 Uncertainty Modeling

Modeling uncertainty information has been attracting interest from
the research community [2, 17, 41, 44]. The uncertainty informa-
tion is categorized into aleatoric and epistemic uncertainty [19].
Aleatoric uncertainty describes the stochastic uncertainty that is
unavailable to be known, while epistemic uncertainty describes
the systematic uncertainty that is known but hard to measure. The
most common approach to consider uncertainty information mod-
eling is adopting the Gaussian embedding. For example, DVNE [57]
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represents nodes as distributions. DDN [55] and PMLAM [29] inter-
pret users/items as distributions for recommendation. DT4SR [9]
and STOSA [10] both represent items as Gaussian and develop self-
attention adaptive to Gaussian embeddings for SR. Moreover, [45]
proposes the AUR framework for modeling interactions’ aleatoric
uncertainty.

3 PRELIMINARIES
3.1 Problem Definition

In SR, we have a set of users U and items V and the associated
interactions. We can sort interacted items of each user u € U based
on timestamps in a sequence as S¥ = [Ui‘,vé‘, e v"“’sul], where
v:.‘ € V is the i-th interacted item in the sequence. For each user, SR
generates a top-N recommendation list of items as the most likely
preferred items in the next action. Formally, we predict the score

p (UI(;')‘IH =u|S% ) and rank scores of all items to generate top-N
list. The core challenge in SR lies in how to model the user’s action

sequence S*.

3.2 Stochastic Transformer for SR

Transformer has been the successful backbone model for SR [20, 42]
because of its self-attention module for modeling weights from all
items in the sequence. However, the original Transformer architec-
ture fails to model uncertainty information in sequences. Among
existing Transformer variants, STOSA [10] extends the Transformer
to introduce stochastic embeddings and a Wasserstein self-attention
module for modeling uncertainty information in SR. In this research,
we build on STOSA to model uncertainty information. Specifically,
STOSA represents items as Gaussian distributions with mean and
covariance embeddings, which together are defined as stochastic
embeddings as follows:

EV = Emb,,(S*), E* = Emby (SY). (1)

For the item v; in S¥, its stochastic embeddings proposed by STOSA
includes Eﬁi and Ei and parameterizes the Gaussian distribution

N (E’U’i, diag(E%i)). To calculate the self-attention values on a spe-
cific pair of items (v;,v;), the Wasserstein self-attention adopts the
negative 2-Wasserstence distance as follows:

1/2 1/2
Aij = =(Wa(01,07)), = = (1l1o, = poy 1§ + 11237 = 25 712), - @)

where Wy (-, ) denotes the 2-Wasserstence distance, y,, = E’{,li W;,
Sy, = ELU (diag(ﬁiw%)) +1, 3, = ELU (diag(ﬁgng)) +1,
Ho; = E‘gj W*, and ELU is the Exponential Linear Unit activation

function, Wg, WI%, WS, and W2 are linear mappings for stochas-
tic embeddings. STOSA also has Feed-forward Neural Networks,
Residual Connection, and Layer Normalization modules, similar to
original Transformer. Hence, we formulate the STOSA sequence
encoder as:

h,, = (h/, h}) = StosaEnc(SY), 3)
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where h, and hZ are stochastic sequence embeddings of S*, and
for each timestep t, hy, ; = (hﬁ,[hit) encodes the next-item repre-
sentation. The overall optimization loss is defined as follows:

|S¥
Lrec = Z Z —10g(0(W2 (hu,t’U;) - W, (hu,t)v;))) +A[pun,
SueS t=1

©

where o is the ground truth next item stochastic embedding, v,
denotes the negative sampled item embedding, o(-) denotes the
sigmoid activation function, the stochastic embedding tables (y, %)
are optimized simultaneously, £,,p, is the positive-vs-negative loss
proposed by STOSA.

3.3 InfoNCE for Contrastive Learning

Contrastive loss is the core component of Contrastive Learning (CL).
InfoNCE [33] is the most widely used contrastive loss. Minimizing
the InfoNCE is equivalent to maximizing the lower bound of mutual
information. Specifically, given a batch of N user sequences, ran-
dom data augmentations generate two perturbed views of each se-
quence, concluding that there are 2N sequences, N positive pairs of
sequences, and 4N? — 2N negative pairs in the InfoNCE calculation.
We introduce contrastive loss based on the original Transformer
encoder. For the batch of N user sequences 8, the augmentated
pairs Sg are:

Sp = (S, SH, S, S, SN, SENY, )

where subscripts a and b denote two perturbed versions of S*. The
InfoNCE for a pair of augmented sequences (Sg’, S;}”) is calculated
as follows:

exp(sim(h%, b))

Lo(hé W) = ~log

(©)

where hj’ and hZi are sequence embeddings of two perturbed
sequences versions learned from the encoder, S = Sg - {84, S;”}
denotes the negative augmented sequence pairs, and the sim(-)
denotes the cosine similarity.

4 WASSERSTEIN DISCREPANCY
MEASUREMENT

In this section, we first recall the definition of mutual informa-
tion and its connection with InfoNCE in the setting of contrastive
learning. Then we discuss the disadvantages of KL-divergence-
based mutual information measurement. Finally, we introduce the
proposed Wasserstein Discrepancy Measurement in mutual infor-
mation measurement to alleviate these disadvantages.

4.1 InfoNCE and Mutual Information

InfoNCE in contrastive learning is first adopted in Contrastive
Predictive Coding (CPC) [33]. The mutual information is maxi-
mized when InfoNCE is optimized. Formally, in contrastive learn-
ing, we denote the randomly augmented sequences of the user u; as
(x4t = 8, xZi = S;’i) and (xzi,x;;") are random variables follow-
ing random augmentation distributions. The connection between
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InfoNCE and mutual information of (x4, xZi) is given as:
plxa’lx,t)
p(x,")
L =-Egsuicglog AT L P
p(xa |xb ) +Z _ P(xal‘x )
P XTESy Tp(x)
P(XZi) p(xat|x™)
~ E qu; log |1+ ————— (2N — 1)E,- a2
S4ieB g P(le le)( ) X ESB p(x’)
p(x,")
= ES”iEBlOg 1+ %(ZN— 1)
PO )
p(x,")
> Esuieglog ﬁ(ZN— 1)
p(xg'lx,")
p(xa'lx,)
= “Eguicglog | ——2= | +1og(2N - 1)
(")

= Bsues - D (p(), pxj)) +log(2N - 1)
=Egucg —I(xgi,x;f) +1log(2N — 1), @)

where D) denotes the KL-divergence, I(x, y) is the mutual in-
formation between random variables x and y.
Eq. (7) proves that optimizing £.; simultaneously maximizes

mutual information as I (xZ", xZi) > log(2N-1)—L,;. It also shows
that when the batch size N grows larger, we can better approximate
the mutual information, which has been demonstrated in related
works [26, 50]. We argue that the existing InfoNCE relies on KL-
divergence to measure the mutual information between variables
of data augmentations. Several deficiencies from KL-divergence

limit the representation learning by InfoNCE.

4.2 Limitations of KL Divergence

As mutual information estimation utilizes KL-divergence to mea-
sure the similarity of distribution, mutual information estimation
shares the limitations of KL-divergence. We argue that there are
three limitations to KL-divergence, including asymmetrical estima-
tion, the exponential need for sample size, and training instability.

4.2.1 Assymetrical Estimation. As given in Eq. (7), the KL-divergence

between (x5’ ,xZi) is calculated as:

Dy, (p (i), p(x)) = Bg log

p(xg'lx,’)
plxy
# Dy (pGg)pGet) . ®)

We can conclude that the estimation from KL-divergence is asym-
metric. However, the goal of contrastive learning in InfoNCE is
to maximize the similarity between augmented pairs from the
same user, i.e., (xgi,xZi), and minimize the similarity between

pairs from other users, i.e., (ij , ij ,-++). The KL-divergence re-
quires both Dgp, (p(xZ"),p(xZi)) and Dy, (p(xZi),p(xZi ) to be
small. We need to calculate more when we consider KL-divergence

in negative pairs. In such cases, it requires more data and considers
more pairs in InfoNCE to accurately estimate mutual information.
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4.2.2  Exponential Need of Sample Size. As derived by [31, 34], the
mutual information estimation based on KL-divergence has the
high-confidence lower bound on N samples that cannot be larger
than O(In N). With the application in contrastive learning InfoNCE,
we have a similar theorem for mutual information estimation.

THEOREM 1. Let p(x4) and p(xy) be two user sequence augmented
distributions, and A denotes the set of augmented sequences with sam-
ple size N from p(x4), and B denotes the set of augmented sequences
with sample size N from p(xp), respectively. Let § be the confidence
bound and let F(A, B, 8) be a real-valued function with augmented
sets A, B, and the confidence parameter 5. With probability 1 — §, we
have

Dkr(p(xa), p(xp)) = F(A, B, ), ©)
then with at least 1 — 46 probability that

InN > F(A,B, ). (10)

As mutual information is measured by KL-divergence, from [31,
34], we can conclude that the mutual information bound is N =
exp(I(xg, xp)). The N in contrastive learning denotes the batch size.
Therefore, the high-confidence mutual information lower bound
estimation requires exponential sample sizes, which also matches
with the derivation from Eq. (7).

4.2.3 Training Instability. As demonstrated in analysisin WGAN [1],
KL-divergence and Jensen-Shannon divergence both encounter un-
stable vanishing gradients when distributions are non-overlapping.
KL-divergence can be infinite when sampled data have small prob-
abilities close to 0. As defined in Eq. (7), when p(xZi) has sampled
points with probabilities p(xZi) ~ 0, the infinite KL-divergence
happens. This case happens when the randomness of augmenta-
tions is large or user sequences are easily broken. Thus, it might
cause training instability in mutual information estimation.

4.3 Wasserstein Discrepancy Measurement

With these three limitations of KL-divergence, it is desirable to
propose an alternative to KL-divergence in mutual information
estimation. In this research, we propose Wasserstein Discrepancy
Measurement in mutual information estimation. Formally, we de-
fine the Wasserstein Discrepancy Measurement with the negative
2-Wasserstein distance as follows:

def

S v w. PG
) vty o P

s 11
p(xy") an

b

where —Wa (x}7, xZi ) measures the negative 2-Wasserstein distribu-
tion distance between N(Eyui, diag(Ezui )) and N(Eyui, diag(EZui ).
Xq Xq x, x,

2-Wasserstein distribution distance measures information gain
from the metric learning perspective. Wasserstein Discrepancy
Measurement measures the negative optimal transport cost [3]
between augmentation distributions, which helps stabilize the gra-
dient calculation and alleviates the training instability limitation.
Moreover, 2-Wasserstein distance is symmetric, which indicates
Wa (x4, xZi) = Wg(xZi,xZi), and further demonstrates less need
of batch size in estimating mutual information, compared with
KL-divergence.
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5 MUTUAL WASSERSTEIN DISCREPANCY
MINIMIZATION

Considering the stochasticity of data augmentations with stochastic
modeling, we propose Wasserstein Discrepancy Measurement in
the InfoNCE framework. We minimize Wasserstein discrepancy
measurement L)stein (equivalent to maximizing the mutual infor-

Ui

b )) as follows:

mation Iy, (xgi, x
Egui e glw, (xZi>XZi) 2 Bguie g — LMtein (hZi, hZi)
exp (—Wz (hy', hZi))

exp (-wz(hgf,hZi)) + Sjes; exp (-wz(h’;i,hf))
(12)
where (hllfi, hgi) = StosaEnc(S%) are encoded stochastic output

representations, and the 2-Wasserstein distance on encoded distri-

=E3“ieBlog

L U 12 1/2
bution is —W;(h ,hz ) = — ||,UxZi —prillg + = 2 _ Zx{“'”%)’
b

Xl
which is the sum of two L2-errors on both mean embeddings and
the square root of covariance embeddings. We measure the Wasser-
stein discrepancy of all augmented sequence pairs. The discrepancy
is minimized for positive pairs, while the discrepancy is maximized
for negative pairs. With Lpistein, both stochasticities of augmenta-
tions and sequential behaviors are modeled. Moreover, adopting the
2-Wasserstein distance to measure the mutual information requires
less batch size with symmetric estimation and more stable training.

5.1 Approixmating Lipschitz Continuity for
Robustness

The stable training stability originates from the approximating
Lipschitz continuity of STOSA and MStein. Intuitively, a model
is Lipschitz continuous when a certain amount of inputs bounds
its embedding output with no more than Lipschitz constant times
that amount [21]. Lipschitz continuity is closely related to the ro-
bustness of the model against perturbations, which is also a nec-
essary component in contrastive learning robustness. We utilize
the demonstration from [21] that the dot-product self-attention
module is not Lipschitz, but the self-attention based on the L2 norm
is Lipschitz instead. The 2-Wasserstein distance with the diagonal
covariance is the sum of two L2 errors on both mean embeddings
and the square root of covariance embeddings. The Wasserstein
self-attention proposed by STOSA approximates Lipschitz. More-
over, the approximated Lipschitz continuity of the encoder further
derives the Lipschitz approximation of the proposed Ljstein, Which
improves the robustness. We empirically demonstrate the robust-
ness of MStein in experiment Section 6.3. In the actual implemen-
tation, we relax the requirement that Wp = Wk in the Wasserstein
self-attention module to approximate Lipschitz continuity for better
flexibility and better performances.

5.2 Exact Optimization of Alignment and
Uniformity

We further show that mutual Wasserstein discrepancy minimization
exactly optimizes two important properties, alignment and unifor-
mity [47]. Specifically, by decomposing the Lyistein (hk', hZi ), we
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obtain the alignment component from the nominator of Eq. (12) as:

2 1/2 1/2,,2
o — o |2 + 1222 = 512112, (13)
a b xb

u
i
Xa

and the uniformity component from the denominator of Eq. (12) as:

~log ) exp (—Wg(hzi, h’;f))

_ AN 2 _51/2 12
—10gZeXp(lluxgz uxbjnz) exp(nzxzi zxu,.nF)

b

_ 2 1/2 1/2 2
tog 3 exp s = 1) + 10w 3 exp 1224 - 2 2]
(19

Commonality: Both Eq. (13) and Eq. (14) have similar forms
as the original alignment and uniformity as defined in [37, 47]. The
Eq. (13) also adopts the Euclidean distance between embeddings
(alignment on representations) and the Eq. (14) also adopts the
exponential Euclidean distance on all pairs of augmented sequences
(uniformity on representations).

Differences and Novelty: The differences between our pro-
posed Listein (hl?, hzi) and [37, 47] from two perspectives: (1). We
introduce the alignment and uniformity optimizations also on the
covariance embeddings, with the advantage of pulling similar users’
augmentation distributions together (i.e., distribution alignment)
and enforcing the distributions to be as distinguishable as possible
(i.e., distribution uniformity); (2). the alignment and uniformity
terms proposed in [47] are asymptotically optimized by the con-
trastive loss and are not induced from the original formulation
of the contrastive loss. However, our proposed Lysiein (hl’, hZi)
induces and optimizes exactly the alignment and uniformity terms.
In other words, the alignment and uniformity optimizations pro-
posed in [47] and the Euclidean metric used in CL by [34] can be
viewed as a special case of our Lysein (hi, hZi), which adopts
Euclidean distance instead of Wasserstein distance.

5.3 Optimization and Prediction

With mutual Wasserstein discrepancy minimization Lfstein, We
finalize the optimization loss with the recommendation loss from
Eq. (4) as follows:

L="Lyec+ ﬁLMSteim (15)

where f is the hyper-parameter for adjusting the contribution of
contrastive loss with mutual Wasserstein discrepancy minimiza-
tion. The final recommendation list is generated by calculating the
Wasserstein distance of the sequence encoded distribution embed-
dings (h/, hg) and all items’ stochastic embeddings. The distances
on all items are sorted in the ascending order to produce the top-N.

6 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed
MStein in multiple aspects, including performances over baselines,
robustness against perturbations, and analysis of performances
over different batch sizes. We answer the following research ques-
tions (RQs) in experiments:

o RQ1: Is MStein generating better recommendations than state-

of-the-art baselines?
e RQ2: Is MStein more robust to noisy and limited data?
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e RQ3: Does MStein need smaller batch sizes?
o RQ4: Where are improvements of MStein from?

6.1 Baselines

We compare the proposed MStein with three groups of recommen-
dation methods. The first group includes static recommendation
methods. We present BPRMF [39] due to the page limitation. The
second group of methods include state-of-the-art sequential rec-
ommendation methods without self-supervised module, including
Caser [43], SASRec [20], BERT4Rec [42], and STOSA [10]. The third
group contains most recent sequential recommendation methods
with self-supervised learning, including CL4Rec [50], DuoRec [37],
and CoSeRec [26]. We also introduce a variant that builds upon
CL methods with SASRec as base backbone but uses WDM as CL
loss, which is CoSeRec(WDM) by converting the sequence output
embeddings as [mean_emb; ELU (cov_emb) + 1]. Note that we use
only one training negative sample for models with the Cross-
Entropy loss (e.g., DuoRec) because we observe that the number of
negative samples significantly affects the recommendation perfor-
mance [5, 7, 30].

6.2 Overall Comparisons (RQ1)

As demonstrated in the overall comparison results Table 1, we can
conclude the superiority of MStein over all baselines in all metrics.
We have the following observations:

e Among all models, the proposed MStein achieves the consistently
best performance in all metrics over all evaluated datasets. The
improvements range from 0.9% to 20.10% in all metrics, prov-
ing the effectiveness of MStein in SR. In the most challenging
task top-1 recommendation, MStein obtains the most significant
improvements. In the entire list ranking metric MRR, MStein
achieves 2.53% to 9.90% improvements over the best baseline.
We attribute these improvements to several characteristics of
MStein: (1). a novel mutual information estimation based on the
2-Wasserstein distance; (2). the uncertainty modeling for stochas-
tic data augmentation processes in self-supervised learning; (3).
the robust modeling from WDM.

e Comparing the self-supervised learning SR methods (CL4Rec,
DuoRec, and CoSeRec), MStein still achieves significant improve-
ments among them. Although MStein adopts the same data aug-
mentations as CoSeRec, the performance improvements stem
from the stochastic modeling of data augmentations and more
accurate and robust mutual information estimation. Furthermore,
CL4Rec and CoSeRec generate better performances among these
baselines as both provide manually designed data augmentations.
These observations demonstrate the benefits of modeling the
uncertainty of data augmentation processes and the proposed
Wasserstein Discrepancy Measurement.
In static models and SR methods, SR methods outperform the
static models. This observation demonstrates the necessity of
sequential information in recommendations. STOSA achieves the
best performance in all SR methods, and the SASRec is the second
best, showing that the self-attention module benefits SR. STOSA
first introduces stochastic embeddings for modeling sequential
uncertainty and demonstrates its effectiveness over other SR
methods.
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Table 1: Overall Performance Comparison Table. The best results are bold and the best baseline results are underlined,
respectively. ‘Improve. indicates the relative improvement against the best baseline performance.

Dataset Metric BPRMF Caser SASRec BERT4Rec STOSA CL4Rec DuoRec CoSeRec CoSeRec(WDM) MStein  Improv.
Recall@1 0.0082 0.0112  0.0129 0.0119 0.0193 0.0156 0.0158 0.0188 0.0189 0.0220 +14.39%
Recall@5 0.0300  0.0309  0.0416 0.0396 0.0504 0.0538 0.0505 0.0508 0.0524 0.0551 +2.24%
Beauty NDCG@5 0.0189 0.0214 0.0274 0.0257 0.0351 0.0349 0.0310 0.0351 0.0359 0.0392 +11.69%
Recall@10  0.0471  0.0407  0.0633 0.0595 0.0707 0.0726 0.0685 0.0738 0.0760 0.0774 +4.78%
NDCG@10 0.0245 0.0246  0.0343 0.0321 0.0416 0.0412 0.0375 0.0425 0.0435 0.0463 +9.00%
MRR 0.0216  0.0231  0.0291 0.0294 0.0360 0.0356 0.0325 0.0365 0.0368 0.0398 +9.11%
Recall@1 0.0062  0.0056  0.0103 0.0059 0.0120 0.0112 0.0108 0.0112 0.0114 0.0144 +20.10%
Recall@5 0.0216  0.0129  0.0284 0.0189 0.0312 0.0314 0.0304 0.0318 0.0344 0.0334 +8.17%
Tools NDCG@5 0.0139  0.0091 0.0194 0.0123 0.0217 0.0208 0.0201 0.0216 0.0230 0.0242 +11.11%
Recall@10  0.0334 0.0193  0.0427 0.0319 0.0468 0.0404 0.0401 0.0453 0.0487 0.0472 +4.06%
NDCG@10 0.0177 0.0112  0.0240 0.0165 0.0267 0.0226 0.0234 0.0260 0.0276 0.0286 +6.90%
MRR 0.0154 0.0106  0.0207 0.0160 0.0226 0.0212 0.0202 0.0223 0.0234 0.0248 +9.90%
Recall@1 0.0084 0.0089  0.0193 0.0110 0.0240 0.0220 0.0215 0.0222 0.0228 0.0266 +10.73%
Recall@5 0.0301  0.0240  0.0551 0.0300 0.0577 0.0617 0.0580 0.0584 0.0616 0.0637 +3.17%
Toys NDCG@5 0.0194 0.0210  0.0377 0.0206 0.0412 0.0424 0.0401 0.0408 0.0426 0.0457 +7.78%
Recall@10  0.0460 0.0262  0.0797 0.0466 0.0800 0.0764 0.0784 0.0791 0.0852 0.0845 +6.50%
NDCG@10 0.0245 0.0231  0.0456 0.0260 0.0481 0.0454 0.0461 0.0474 0.0502 0.0524 +8.91%
MRR 0.0216  0.0221  0.0385 0.0244 0.0415 0.0417 0.0400 0.0405 0.0425 0.0453 +8.67%
Recall@1 0.0073  0.0069  0.0198 0.0137 0.0234 0.0230 0.0221 0.0245 0.0267 0.0277 +13.33%
Recall@5 0.0214  0.0302  0.0656 0.0485 0.0677 0.0709 0.0665 0.0718 0.0703 0.0740 +3.13%
Office NDCG@5 0.0144 0.0186  0.0428 0.0309 0.0461 0.0471 0.0456 0.0483 0.0485 0.0512 +5.93%
Recall@10 0.0306  0.0550  0.0989 0.0848 0.1021 0.1091 0.1005 0.1024 0.1052 0.1155 +5.96%
NDCG@10 0.0173  0.0266  0.0534 0.0426 0.0572 0.0594 0.0556 0.0598 0.0597 0.0627 +4.90%
MRR 0.0162  0.0268  0.0457 0.0408 0.0502 0.0511 0.0482 0.0516 0.0519 0.0529 +2.53%
6.3 Robustness Analysis (RQ2) g CoSeRec ol CoSeRec
We argue that MStein is more robust with the newly proposed x *o MStein " h MStein
mutual Wasserstein discrepancy minimization process. We validate x o %..., x 003 o .
the robustness from two perspectives, including the robustness = 0.0 N =0.02 ek
against noisy interactions and data sizes. The comparison is con- 0.020 §on 0.01
ducted in MStein and CoSeRec because both adopt the same data 001 ' S
augmentation techniques. 0.1 02 03 04 05 06 07 08 0.9 05T 02 03 04 05 06 07 08 09
Noise Ratio (%) Noise Ratio (%)
6.3.1 Sensitivity to Noisy Interactions. We show the sensitivity anal-
is of MStein against noisy interactions in Fig. (2) in all datasets. (a) Beauty (b) Toys
ysis o g y g
Fig. (2) shows the MRR performance over different noise ratios for :::j‘: * CoSeRec 0.050{ * CoSeRec
the CoSeRec and the proposed MStein. We can observe that MStein 00201 &% *- MStein 0.015] & e MStein
is more robust to noisy interactions than CoSeRec. Specifically, for o« 0.018 * o 0040 -
example, in the Beauty dataset analysis in Fig. (2a), when the noise S o001 e S0 ¥,
ratio is 0.4 for MStein and 0.3 for CoSeRec, the performances are ::::i -, 0030
similar. This observation shows the robustness of MStein against 0010 & :::j";: * .

noisy interaction with Wasserstein discrepancy measurement as
MStein and CoSeRec adopt the same data augmentation strategies.
We can also see that the performance of CoSeRec drops significantly
in the Toys dataset when the noise ratio is large (0.9), while MStein
still achieves satisfactory performance.

6.3.2  Sensitivity to Data Size. The sensitivity of MStein against the
data size is shown in Fig. (3). In Fig. (3), we present the performance
comparison between MStein and CoSeRec in varying data sizes. We
can observe that MStein consistently outperforms CoSeRec in all
varying data size ratios, demonstrating the superiority of MStein
in SR. Moreover, MStein is more stable than CoSeRec, especially in
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Figure 2: MRR over Different Noise Ratios.

Tools and Office datasets, as shown in Fig. (3c) and Fig. (3d) respec-
tively. It demonstrates that MStein is more robust than CoSeRec
against the dataset size, potentially due to the collaborative transi-
tivity from stochastic embedding modeling and the newly proposed
Wasserstein discrepancy measurement.
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Figure 3: MRR over Different Training Data Portions.

6.4 Sensitivity to Batch Size (RQ3)

As we argue that the proposed Wasserstein discrepancy measure-
ment alleviates the exponential need for the sample size of KL
divergence in mutual information estimation, we conduct the sen-
sitivity analysis to batch sizes in Fig. (4). We compare the proposed
MStein with CoSeRec in this analysis as the same set of data aug-
mentations is applied. In contrastive learning, larger batch sizes
improve the model performance significantly [33]. Fig. (4) demon-
strates the beneficial effect of using larger batch sizes. Moreover,
in all four datasets, MStein achieves comparative performances
with much smaller batch sizes. For example, in Fig. (4a), MStein ob-
tains MRR as 0.035 when batch size is 16 (2%) while CoSeRec needs
the batch size 128 (27). This observation validates the superiority
of MStein over CoSeRec in need of sample size, where CoSeRec
needs exponential sample sizes in InfoNCE measurement due to
the inherent KL divergence limitation.

6.5 Improvements Analysis (RQ4)

We visualize the improvements of users items in Appendix Fig. (5)
and items in Fig. (6) in on all datasets. We separate users and items
in groups based on the number of interactions. For each group, we
average NDCG@5 over the group users/items. We observe that
the distributions of users/items based on the number of interac-
tions follow the long-tail distributions shown in the bar chart. In
most datasets, the performance increases as the number of inter-
actions grow. The proposed MStein achieves better performance
than SASRec, STOSA, and CoSeRec. The improvements come from
the groups with the longest sequences and the second longest se-
quences. It verifies the strength of MStein for modeling stochastic
augmentations because data augmentations for long sequences pro-
vide richer perspectives of sequences. For short sequences, data
augmentations can easily break the sequential correlations. Long
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Figure 4: MRR over Different Batch Sizes.

sequences and popular items have larger uncertainty, and stochas-
tic augmentations provide more informative signals in contrastive
learning. This observation also happens to the item perspective.
MStein also achieves better performance in popular items.

7 CONCLUSIONS

We study the connection between mutual information and InfoNCE
and discuss the limitations of mutual information estimation based
on KL-divergence, including asymmetrical estimation, the exponen-
tial need for sample size, and the training instability. We propose
an alternative choice of mutual information estimation based on
Wasserstein distance, which is Wasserstein Discrepancy Measure-
ment. With the proposed Wasserstein Discrepancy Measurement,
we formulate the mutual Wasserstein discrepancy minimization in
the InfoNCE framework as MStein. Extensive experiments on four
benchmark datasets demonstrate the superiority of MStein using
Wasserstein Discrepancy Measurement in mutual information esti-
mation. Additional robustness analysis proves that MStein is more
robust against noisy interactions and variants of data sizes.
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A DATA STATISTICS

We present the detailed datasets statistics in Table 2. We evaluate
all models in four benchmark datasets from the public Amazon
review dataset!. In the Amazon reviews dataset, there are multiple
categories of product interactions with timestamps from users. We
choose Beauty, Toys and Games (Toys), Tools and Home (Tools), and
Office Products (Office) categories in our experiments as these four
categories are widely used benchmark datasets [9, 10, 20, 23, 42, 43].
We treat the presence of user-item reviews as user-item interactions.
For each user, we sort the interacted items based on the timestamp
to form the interaction sequence. In each user sequence, we use the
last interaction for testing and the second to last one for validation.
We adopt the standard 5-core pre-processing step on users [9, 10,
20, 23, 42, 43] to filter out users with less than five interactions. We
present detailed datasets statistics in Table 2.

Table 2: Datasets Statistics.

avg.
Dataset #users #items #interactions density interactions
per user
Beauty 22,363 12,101 198,502 0.05% 8.3
Toys 19,412 11,924 167,597 0.07% 8.6
Tools 16,638 10,217 134,476 0.08% 8.1
Office 4,905 2,420 53,258 0.44% 10.8

Ihttp://deepyeti.ucsd.edu/jianmo/amazon/index.html
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B EVALUATION

We generate the top-N recommendation list for each user based
on the sequence-item Wasserstein distance in ascending order. We
rank all items for all models so that no sampling bias is introduced
in evaluation [22]. The evaluation includes standard top-N ranking
metrics, Recall@N, NDCG@N, and MRR. We report the average
results over all test users. The test results are reported based on the
best validation results. We report metrics in multiple Ns, including
N = {1, 5,10}, which are widely adopted in [10, 20, 42].

C HYPER-PARAMETERS GRID SEARCH

We implement MStein with Pytorch. We grid search all parameters
and report the test performance based on the best validation results.
For all baselines, we search the embedding dimension in {64, 128}.
As the proposed model has both mean and covariance embeddings,
we only search for {32, 64} for MStein for the fair comparison. We
also search max sequence length from {50, 100}. We tune the learn-
ing rate in {1073, 1074}, search the L2 regularization weight from
{1071,1072,1073}, dropout rate from {0.3,0.5,0.7}. For sequential
methods, we search number of layers from {1, 2, 3}, and number of
heads in {1, 2, 4}. We adopt the early stopping strategy that model
optimization stops when the validation MRR does not increase for
50 epochs. The followings are the model specific hyper-parameters
search ranges of baselines: The third group consists of sequential
recommendation methods:

e BPR?: BPR is the most classical collaborative filtering method
for personalized ranking with implicit feedbacks. We search the
learning rate in {1073,107*} and L2 regularization weight from
{1071,1072,1073}.

Caser>: A CNN-based sequential recommendation method that

views the sequence embedding matrix as an image and applies

convolution operators to it. We search the length L from {5, 10},

and T from {1, 3, 5}.

SASRec*: The state-of-the-art sequential method that depends

on the Transformer architecture. We search the dropout rate

from {0.3,0.5,0.7}.

e BERT4Rec’: This method extends SASRec to model bidirectional
item transitions with standard Cloze objective. We search the
mask probability from the range of {0.1,0.2,0.3,0.5,0.7}.

o STOSA®: A metric learning-base sequential method that models
items as distributions and proposes a Wasserstein self-attention
module. We search the dropout rate from {0.3, 0.5, 0.7}.

e CL4Rec:’ A sequential recommendation method that introduces
masking, reorder, and cropping data augmentations in the con-
trastive learning framework. We search the masking rate from
{0.1,0.2,0.3,0.4, 0.5} and cropping ratio from {0.1, 0.2, 0.3, 0.4, 0.5}.

e DuoRec:® This method introduces unsupervised Dropout and
supervised semantic augmentations in self-supervised learning
for sequential recommendation.

https://github.com/xiangwang1223/neural_graph_collaborative_filtering
Shttps://github.com/graytowne/caser_pytorch
“https://github.com/RUCAIBox/CIKM2020-S3Rec
Shttps://github.com/FeiSun/BERT4Rec
Chttps://github.com/zfan20/STOSA
"https://github.com/YChen1993/CoSeRec
8https://github.com/RuihongQiu/DuoRec
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e CoSeRec:? This method extends CL4Rec with additional data

augmentation techniques.
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Figure 5: NDCG@5 on different sequences based on length.
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Figure 6: NDCG@5 on different items based on popularity.

D USERS AND ITEMS IMPROVEMENTS
ANALYSIS ON ALL DATASETS

Detailed analysis and observations can be found in Section 6.5.
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