
ConsRec: Learning Consensus Behind Interactions for Group 
Recommendation 

Xixi Wu Yun Xiong∗ Yao Zhang Yizhu Jiao 
21210240043@m.fudan.edu.cn yunx@fudan.edu.cn yaozhang@fudan.edu.cn yizhuj2@illinois.edu 
Shanghai Key Laboratory Shanghai Key Laboratory Shanghai Key Laboratory University of Illinois at 
of Data Science, School of of Data Science, School of of Data Science, School of Urbana-Champaign 
Computer Science, Fudan Computer Science, Fudan Computer Science, Fudan IL, USA 

University University University 
Shanghai, China Shanghai, China Shanghai, China 

Jiawei Zhang Yangyong Zhu Philip S. Yu 
jiawei@ifmlab.org yyzhu@fudan.edu.cn psyu@uic.edu 

IFM Lab, Department of Shanghai Key Laboratory University of Illinois at 
Computer Science, of Data Science, School of Chicago 

University of California, Computer Science, Fudan IL, USA 
Davis University 

CA, USA Shanghai, China 

ABSTRACT 

Since group activities have become very common in daily life, there 
is an urgent demand for generating recommendations for a group 
of users, referred to as group recommendation task. Existing group 
recommendation methods usually infer groups’ preferences via 
aggregating diverse members’ interests. Actually, groups’ ultimate 
choice involves compromises between members, and fnally, an 
agreement can be reached. However, existing individual informa-

tion aggregation lacks a holistic group-level consideration, failing 
to capture the consensus information. Besides, their specifc ag-
gregation strategies either sufer from high computational costs or 
become too coarse-grained to make precise predictions. 

To solve the aforementioned limitations, in this paper, we focus 
on exploring consensus behind group behavior data. To comprehen-

sively capture the group consensus, we innovatively design three 
distinct views which provide mutually complementary information 
to enable multi-view learning, including member-level aggregation, 
item-level tastes, and group-level inherent preferences. To integrate 
and balance the multi-view information, an adaptive fusion compo-

nent is further proposed. As to member-level aggregation, diferent 
from existing linear or attentive strategies, we design a novel hyper-
graph neural network that allows for efcient hypergraph convolu-
tional operations to generate expressive member-level aggregation. 
We evaluate our ConsRec on two real-world datasets and experi-
mental results show that our model outperforms state-of-the-art 
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methods. An extensive case study also verifes the efectiveness of 
consensus modeling. 
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1 INTRODUCTION 

Owing to the prevalence of social media [24, 25], online group 
activities have become very common. Various existing online so-
cial media sites can provide group-related services for users. For 
example, travel enthusiasts can plan group trips on Mafengwo1, 
and young people can also organize group parties on Meetup2. As 
traditional recommendation methods only target suggesting rele-
vant items to individuals, there is an urgent demand in generating 
recommendations for a group of users, referred to as the group 
recommendation task [4, 5]. Formally, group recommendation aims 
to reach an agreement among group members to provide contents 
that can satisfy most members [39]. 

Previous works [1ś6, 11, 12, 15, 16, 20, 29ś31, 38, 39] on group rec-
ommendation usually focus on aggregating diverse members’ pref-
erences to predict group interests. Traditional aggregation methods 
are based on pre-defned heuristic rules, including the average [3], 

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
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Figure 1: An illustrative example of the gap between aggre-

gated result and group’s consensus. Merely aggregating di-

verse members’ interests lacks the holistic consideration of

the group’s overall taste, failing to capture the consensus.

the least misery [1], and the maximum satisfaction [2]. There also

exist several deep-learning based models [4, 5, 12, 15, 31] that incor-

porate the attention mechanism to realize a learnable aggregation

instead. Recently, CubeRec [6] utilizes the geometric expressive-

ness of hypercubes [26, 40] to aggregate multi-faceted member

preferences, achieving state-of-the-art performance.

Despite their effectiveness, we argue that current group recom-

mendation methods fall short in modeling two factors: (1) Consen-

sus. An important fact has been neglected: groups’ ultimate choice

involves compromises between members, and finally, an agreement

need to be reached [6, 12]. The consensus drives the group to make

the final decision while existing individual information aggregation

lacks a holistic group-level consideration, failing to capture the

consensus. Taking Figure 1 as an example, the group consists of a

couple where the man prefers action films while the lady enjoys

comedies. When they plan to watch a movie together, the consensus

may be a romantic movie rather than the aggregated action-comedy.

Such situations are quite common in real scenes but are largely

overlooked by the aforementioned methods. (2) Member-level

Aggregation. A typical strategy for group interests aggregation

is the attentive mechanism [4, 5, 12, 15, 16, 31] that calculates dif-

ferent attention weights for different candidate items. Considering

the huge amount of candidate products in real-world scenarios,

such methods are hardly applicable. Besides, this approach tends to

favor members with frequent interactions since they are likely to

obtain higher attention weights [23]. Though CubeRec [6] resorts

to hypercubes for a better solution, the obtained hypercube may

be too large due to diversity of member interests to make precise

predictions. Therefore, an appropriate aggregation strategy that

realizes both efficiency and effectiveness is also demanded.

In this paper, we focus on exploring group consensus behind

group-item and user-item interactions, so as to improve the per-

formance and meaningfulness of recommendation. We propose

a new model, ConsRec, to solve the foregoing limitations corre-

spondingly: (1)Group Consensus Modeling. To comprehensively

capture the group consensus, we innovatively design three dis-

tinct views which provide complementary information. Besides

the member-level view that provides fine-grained explanation for

group consensus, we argue that sometimes the consensus of groups

can be captured from the characteristics of interacted items as well

as their inherent attributes. For example, a group formed by a fam-

ily is more inclined to watch family-style comedies. Therefore, we

suggest the novel item-level and group-level views to obtain groups’

item-level tastes and inherent interests, respectively. For each data

view, we design a specific graph structure to encode the behavior

data and utilize graph representation learning techniques to gener-

ate representations for groups. To integrate and balance multi-view

information, an adaptive fusion component is further proposed to

synthesize the final group consensus. During optimization, recom-

mendation predictions can supervise the learning process to adap-

tively adjust the contributions of different views to extract the most

discriminative consensus information. (2) EffectiveMember-level

Aggregation. We propose a novel hypergraph learning architec-

ture to obtain member-level aggregation. Compared with existing

attentive aggregation, our schema wins in efficiency as obtaining

aggregation via hypergraph convolutional operations, fairness as

designing meaningful side information for balancing the favor of

some members, and expressiveness as incorporating high-order

collaborative information. Extensive experiments on two public

datasets show the effectiveness as well as efficiency of our proposal.

To summarize, the contributions of our work are as follows:

• We study the group recommendation task and reveal the consen-

sus behind groups’ decision-making. To comprehensively capture

the consensus, we design three novel and complementary views,

including member-level aggregation, item-level tastes, and group-

level inherent interests.

• Wepropose a novel hypergraph neural network to obtainmember-

level aggregation. Compared with existing attentive aggregation,

our method wins in efficiency, fairness, and expressiveness.

• Extensive experiments on two public datasets show the effective-

ness as well as efficiency of our proposal.

2 RELATED WORK

2.1 Preference Aggregation

Existing group recommendation techniques usually follow the ag-

gregation strategy, which first learns members’ preferences from

user-item interactions, and then performs preferences aggregation

to infer the overall interest of a group [6]. Sometimes, group’s ul-

timate choice is determined by group-level consensus. However,

existing methods lack the holistic consideration of the group’s over-

all taste, failing to capture the consensus.

2.1.1 Score Aggregation. The approaches of this category generate

the scores of all members in a group for a candidate item and then

aggregate individual scores to obtain the preference score of the

group through some hand-crafted heuristics, such as the average

[3], the least misery [1], and the maximum satisfaction [2]. For

example, the average [3] strategy takes the average score across

members as the final recommendation score. Though intuitive,

these pre-defined aggregation rules are inflexible to reflect diverse

member intentions [16].

2.1.2 Neural Aggregation. For better performance, some researchers

propose to aggregate different members’ intentions in a learnable

way [4ś6, 12, 15, 30, 31, 38]. Technically, these methods firstly

represent each member as an implicit embedding based on user

interactions, and then calculate the group embedding by summing
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the embeddings of all members with the learned weights. For ex-
ample, attentive neural networks are proposed in [4] to selectively 
aggregate user representations within a group, and [31] further 
captures the fne-grained interactions between group members via 
a sub-attention network. Recently, CubeRec [6] utilizes the geo-
metric expressiveness of hypercubes to adaptively aggregate the 
multi-faceted user preferences, achieving better performance. 

2.2 Recent Directions 

For better representation, recent studies on group recommendation 
resort to more complex structures, such as hypergraphs [11, 16, 39] 
and hypercubes [6]. Besides, self-supervised learning techniques 
are also adopted to counteract the data-sparsity issue [29, 39]. 

2.2.1 Hypergraph Learning. As a more general topological struc-
ture that preserves the tuple-wise relationship, hypergraph nat-
urally fts group profling. Therefore, recent works [11, 16, 39] 
represent the group as a hyperedge and employ hypergraph neural 
networks to generate more expressive vectors. We point out that 
these methods mainly utilize hypergraph structures to propagate 
user-level collaborative signals, and exhaustively employ the atten-
tive aggregation [32] for group-level prediction. In fact, expressive 
member-level aggregation can be obtained more efciently from 
hypergraph networks, which is neglected by these methods. 

2.2.2 Self-supervised Learning. As self-supervised learning (SSL) 
has shown its efectiveness in general recommendation tasks [35, 37, 
41], attempts are also made to design SSL objectives to counteract 
the data sparsity issue for group recommendation task [6, 29, 39]. 
For example, GroupIM [29] proposes a user-group mutual infor-
mation maximization scheme to jointly learn informative user and 
group representations. 

3 PRELIMINARY 

In this section, we present the defnition of group recommendation 
task and the concepts of hypergraph to facilitate comprehension. 
Formally, we use bold capital letters (e.g., X) and bold lowercase 
letters (e.g., x) to represent matrices and vectors, respectively. We 
employ non-bold letters (e.g., � ) to denote scalars, and calligraphic 
letters (e.g., X) to denote sets. Notations are summarized in Table 6 
in the Appendix. 

3.1 Task Defnition 

Let U = {�1, �2, ..., �� }, I = {�1, �2, ..., �� }, and G = {�1, �2, ..., �� }

be the sets of users, items, and groups, respectively, where � , � , and 
� are the sizes of these three sets. There are two types of observed 
interactions among U, I, and G, namely, group-item interactions 
and user-item interactions. We use Y ∈ R� ×� to denote the group-
item interactions where the element Y(�, �) = 1 if group �� has 
interacted with item � � otherwise Y(�, �) = 0. Likewise, we use 

R ∈ R� ×� to denote the user-item interactions. The �-th group �� ∈ 
G consists of a set of user members G� = {�1, �2, ..., �� , ..., � | G� | }

where �� ∈ U and |G� | is the size of G� . We denote the interaction 
set of �� as Y� = {�1, �2, ..., � � , ..., � |Y� | } where � � ∈ I and |Y� | is the 
size of Y� . Then, given a target group �� , the group recommendation 
task is defned as recommending items that �� may be interested in. 

3.2 Hypergraph 

Diferent from simple graphs, a hypergraph is a more general topo-
logical structure where the edge (namely hyperedge in the hyper-
graph) could connect two or more nodes [7, 33, 37]. Formally, we 
defne the hypergraph as � = (V, E, H) where V is the vertex set, 

E is the hyperedge set, and H ∈ R |V |× | E | depicts the connectiv-
ity of the hypergraph as H(�, �) = 1 if the hyperedge � connects 
the vertex � , otherwise H(�, �) = 0. On this basis, we further give 
some notations in � . Let E� denote a set of related hyperedges 
that connect to the node � (� .� ., E� = {� ∈ E|H(�, �) = 1}) and 
V� denote a set of nodes to which the hyperedge � connects (i.e., 
V� = {� ∈ V|H(�, �) = 1}). 

4 METHODOLOGY 

In this section, we frst elaborate on the multi-view modeling of 
group consensus. Then, we introduce their specifc encoding pro-
cess enhanced by graph neural networks. We move on to introduce 
the adaptive fusion mechanism for integrating multi-view infor-
mation. Finally, we demonstrate our optimization approach. The 
overall architecture of ConsRec is shown in Figure 2. Notations 
used in this section are also summarized in Table 6 in the Appendix. 

4.1 Multi-view Modeling of Consensus 

To efectively exploit the group behavior data for capturing group 
consensus, we design three novel views which provide complemen-

tary information to enable multi-view learning. The illustrative 
example is shown in the left part of Figure 2. 

4.1.1 Member-level. Since groups consist of diverse members, we 
frst analyze each group from a member constitution view, which 
provides a fne-grained explanation for group decisions. However, 
conventional graph structure only supports pairwise relationship 
that refects one-to-one relation. Therefore, we propose to model 
the tuplewise relationship between groups and members with a 
hypergraph. Formally, we construct the member view with a hyper-
graph �� 

= (V� , E� , H� ) where V� 
= U ∪I denotes the node 

set, E� 
= G denotes the hyperedge set, and the adjacency matrix 

H� ∈ R |V
� |× | E� | denotes the afliations among nodes and edges. 

For the �-th group �� , we represent it as the �-th hyperedge �� ∈ E� 

and connect it to corresponding member nodes as well as item 
nodes, i.e., H� (�, � ) = 1 if node �� ∈ G� ∪Y� where G� and Y� refer 
to �� ’s member set and interaction set, respectively. For example, 
in Figure 2, as group �1 consists of �1 and �2, and have interacted 
with �1 and �2, we would represent group �1 with the hyperedge �1 

that connects to its member and item nodes. 

4.1.2 Item-level. Sometimes, the consensus of groups can be in-
ferred from their interacted items. For example, in Figure 1, we can 
conclude the group’s agreement towards romantic flms based on 
its interaction history. Therefore, to capture the groups’ item-level 
tastes, we construct the item-level view where groups and their 
interacted items form a bipartite graph. Specifcally, we design the 
item view with the graph �� = (V� , E� , A� ) where V� 

= G ∪ I 
denotes the node set, E� denotes the edge set as E� = {(�� , � � ) |�� ∈ 

G, � � ∈ I, Y(�, �) = 1}, and A� ∈ R(� +� )×(� +� ) is the adjacency 
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Figure 2: ConsRec Overview.We construct three distinct views for consensusmodeling and adopt specific graph neural networks

for representation learning. We further integrate these view-specific representations for group-item prediction.

[ ]

matrix as A� 0 Y
= T . As shown in Figure 2, we connect node �2Y 0

and �3 since group �2 has watched the movie �3.

4.1.3 Group-level. In real-world scenarios, groups may have their

inherent preferences. For example, a group formed by a family tend

to watch family-style comedies. To capture and propagate such

signals among similar groups, we devise the group-level viewwhere

otherwise isolated groups are connected. Specifically, each group is

modeled as a single node and different groups are connected if they

share at least a common member or item. Formally, the group-level

graph is represented as ��
= (V�, E�,A�) where V�

= G and

E�
= {(�� , ��) |�� , �� ∈ G, |G� ∩ G�

�
| ≥ 1or |Y� ∩ Y� | ≥ 1}. We

utilize the adjacency matrix A to discriminate relevance between

groups as assigning each edge (�� , �
�

�) with a weight A (�, �) =
| G�∩G� |+|Y�∩Y� |

. For example, as depicted in Figure 2, since �1| G�∪G� |+|Y�∪Y� |

and �2 share a common member, we connect these two groups and

compute the weight as 1 0 1
=

3

+
+3 6

.

4.1.4 Multi-view Modeling. In this paper, we aim to embed users,

items, and groups to a lower-dimension vector representation.

Based on the above multi-view modeling of group consensus, we

can represent the learned �-dimensional embedding vectors of

users, items, and groups as matrices U ∈ R�×� , I ∈ R�×� , and

G ∈ R�×� , respectively. Such matrices can be learned from the

following graph representation learning techniques.

4.2 Member-level Hypergraph Networks

In this subsection, we introduce the member-level view where we

aim to obtain a meaningful member-level aggregation for estimat-

ing the consensus. Specifically, we devise a novel preference-aware

hypergraph neural network that realizes an efficient, fair, and ex-

pressive aggregation schema.

4.2.1 Preference-aware hypergraph neural network (P-HGNN). We

feed user embeddings U ∈ R�×� and item embeddings I ∈ R�×�

to the hypergraph neural network. Meanwhile, since we represent

each group as a hyperedge � , its embedding can be retrieved from

the group embedding table G as g� = G(�, :). Technically, our goal

is to obtain refined item embeddings I and groups’ member-level

representations
�

G via hypergraph propagation. We move on to

introduce the specific design of this hypergraph neural network

with the illustrative process shown in Figure 3.

Efficiency. In hypergraph neural networks [9, 36], hyperedges

serve as mediums for processing and transferring information. Re-

call that we represent each group as a hyperedge in the member-

level hypergraph, it is straightforward to regard the carried mes-

sages of hyperedges during convolution as the member-level ag-

gregation. In this way, member-level aggregation can be acquired

much more efficiently compared with the exhaustive and candidate-

reliant attentive aggregation adopted by [4, 5, 15, 16, 39].

Formally, a hyperedge � ∈ E� connects both member nodes

and item nodes which preserve different semantic information.

Therefore, we separate the item aggregation and user aggrega-

tion to maintain their distinction. Specifically, for hyperedge � , we

compute its member aggregated message m�,� within its mem-

ber set G� as m�,� = AGG���� ({u� |�� ∈ G� }). Here AGG���� (·)

denotes a specific node-aggregation function and u� ∈ R� de-

notes the embedding of �-th user as u� = U(�, :). Likewise, we

obtain �’s item-side message m�,� within its interaction set Y� as

m�,� = AGG���� ({i� |� � ∈ Y� }) where i� denotes the embedding of

�-th item as i� = I( �, :). Then, it is intuitive to utilize these messages

to synthesize the hyperedge �’s representation m� .

Fairness.As shown in Figure 3, the commonly adopted attentive ag-

gregation assigns more weights to active members and thus obtain

an unfair aggregation [23]. Hopefully, this problem can be allevi-

ated as we introduce the item-side messages as a supplementary.

Furthermore, we utilize the hyperedge �’s independent representa-

tion g� to interact with the item messagesm�,� for generating extra

collaborative signals. Then, we fuse these different information via

linear transformation as follows:

m �
� = CONCAT(m�,� , m�,� , m�,� ⊙ g� )W , (1)

where m� denotes the synthesized messages carried by � , stands

for element-wise product, andW� 3

⊙

∈ R �×� denotes the trainable
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Figure 3: Comparison between our hypergraph learning-based aggregation (left) and the commonly adopted attentive aggrega-

tion (right). Ours wins in efficiency, fairness, and expressiveness with details explained in Section 4.2.2.

weight matrix for messages fusion. After applying this operation,

the messages contained by hyperedges are more meaningful and

unbiased as revealing the common information between members

and groups. Finally, we can refine the representations of node � by

collecting the messages from its related hyperedges. Formally, for

a target item node � � , its representation is updated as:

i� = AGGℎ� ({m� |� ∈ E � }), (2)

where i� denotes the refined embedding of node � � , AGGℎ� (·) de-

notes a specific hyperedge-aggregation function, and E � is the

set of hyperedges that connect to node � � . So far, we have accom-

plished the goal of obtaining refined item embeddings I and groups’

member-level representations
�

G by stacking all i� ( � = 1, ..., � )

and m� (� = 1, ..., �), respectively.

Expressiveness.To improve expressiveness, we further stack afore-

mentioned propagation module for multiple layers so that both

nodes’ representations and hyperedges’ messages can benefit from

high-order neighbors. Finally, we average the embedding obtained

at each layer to generate the final representation for node � � as:

1 ∑




i� = i
� + 1 �

(� )
,

�=0

where � is the total number of convolutional layers, i
(
�
� )

is the

representation of node � � in the �-th layer (we have i
(0
�
)
= i� and

the calculation of subsequent layers can follow Equations 1 and 2).

Similarly, we average the aggregated messages during each layer

to generate the final representation for hyperedge (group) � as:

g�
1 ∑



�

� = m
( )

� + 1
� ,

�=0

where g�� denotes the member-level preferences of group � , and

m
(�
�
)
denotes the messages contained by � in the �-th layer which

can be calculated by Equation 1. By stacking all the g�� (� = 1, ..., �),

we can get the groups’ member-level representations
�

G . Besides,

we implementAGG���� (·) andAGGℎ� (·) with the average pooling

due to its simplicity and effectiveness.

4.2.2 Discussions. We compare our aggregation with existing at-

tentive aggregation adopted by [4, 5, 11, 15, 16, 39]. The illustrative

example is shown in Figure 3. Given a candidate item, the atten-

tive method first computes the attention weights by feeding the

concatenation of member and item representations to an attention

network, then sums over members based on the weights to obtain

the group’s representation. Considering the huge amount of can-

didate items in real-world scenes, this candidate-reliant method

is infeasible. Besides, this mode is prone to assigning active mem-

bers with more weights, leading to a biased aggregation. On the

contrary, our aggregation schema wins in efficiency as obtaining

aggregation via hypergraph convolutional operations, fairness as in-

troducing side information for supplementary, and expressiveness

as incorporating high-order collaborative information.

4.3 Item-level Graph Networks

Recall that we design the group-item bipartite graph�� to model the

consensus from item-level interests. In this subsection, we aim to

employ the graph neural networks [13, 17] to capture collaborative

signals between groups and items, finally obtaining the groups’

discriminative representations at the item-level.

We feed the concatenation of group embeddings G ∈ R�×� and

item embeddings I
[ ]

∈ R�×� to the graph convolutional network,

G
denoted as E = . Referring to the spectral graph convolution

I

[13, 17, 34], we define our graph convolution in the �-th layer as:

E(
1 1�+1)

= D− A�
2 D−

2 E(� ) , (3)

where E(� ) denotes the node representations in the �-th layer and

D is the diagonal node degree matrix of adjacency matrix A� . We

pass E(0) = E through � convolutional layers, and then average the

embeddings obtained at each layer to get the final embeddings as
[ ]

1
∑

�

E =




 1
E(�

G)
= � . Therefore, group �’s item-level consen-+ �=0 I

sus can be obtained as � �
g� = G (�, :). As shown in Figure 2, during

propagation, interacted items’ information has been explicitly in-

jected to groups’ item-level representations, and thus the obtained
�

G is expressive enough to reflect item-level tastes.

4.4 Group-level Graph Networks

Since the constructed group-level graph �� depicts the connec-

tivity between groups, we still apply graph neural networks to

encode the high-order relations among different groups. Note that

we distinguish the relevance between groups by computing dif-

ferent weights, allowing each group to enrich its expressivity by

absorbing information from the most relevant neighbors.

Specifically, we feed the group embeddings G ∈ R�×� to the

graph convolutional network, denoted as G(0)
= G. Then the prop-

agation mechanism at each layer is similar to Equation 3. Therefore,
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after passing G(0) through � convolutional layers, we can obtain
� 1 Í� the fnal group-level embeddings as G = 

�=0 
G(� ) . We regard �+1 

G
� 
as group-level inherent preferences as it explores and preserves 

the group-level proximity. 

4.5 Adaptive Fusion & Optimization 

As mentioned before, we have modeled the groups’ consensus 
from three diferent views, including member-level aggregation 

G
� 
, item-level interests G

� 
, and group-level inherent preferences 

�
G . Then the core problem takes down to fuse them to obtain the 
fnal representations of group consensus. To adaptively control 
the combination of three view-specifc group representations, we 
propose to employ three diferent gates as: 

� � � 
G = � G + �G + � G , (4) 

� � � 
where � = � (G W� ), � = � (G W� ), and � = � (G W�). Here, 

W� , W� , and W� ∈ R� are three diferent trainable weights and 
� is the activation function. The � , � , and � denote the learned 
weights to balance the contributions of member-level, item-level, 
and group-level information, respectively. On this basis, we can ob-

tain the fnal group representations G. During optimization, based 
on the abundant supervision signals, our model can automatically 
discriminate the importance of diferent views. 

Then, we introduce our optimization strategy that jointly learns 
user-item and group-item interactions. Detailed training proce-
dure is shown in Algorithm 1. For the group-item pair (�� , � � ), 
we feed their corresponding representations to a Multi-layer Per-
ceptron (MLP) [28] to compute the fnal prediction score �̂�, � as 

�̂� � = MLP(g� ⊙ i� ), where g� = G(�, :) denotes the fnal group 

representation of the target group �� , i� = I( �, :) denotes the re-
fned embedding of the candidate item � � , and MLP(·) is designed 
with input dimension set as � and output dimension as 1. With the 
group-item interaction data, we utilize the Bayesian Personalized 
Ranking (BPR) loss [27] for optimization as follows: 

∑ ∑ 1 
L����� = − ln � (�̂� � − �̂� � ′ ), (5)

|D�� |�� ∈G ( �, � ′ ) ∈D�� 

where D�� denotes the group-item training set sampled for group 
�� , in which each instance is a pair ( �, � ′) meaning that group �� 
has interacted with item � � , but has not interacted with item � � ′ . 

To further utilize supervision signals, we propose to incorporate 
the user-item interaction data to optimize the group-item and user-
item tasks simultaneously. Similarly, for the user-item pair (�� , � � ), 
we compute the prediction score �̂� � = MLP(u� ⊙ i� ), where the 
MLP(·) is shared with the group-item MLP network, and u� and i� 
denote the corresponding user and item embedding. We utilize the 
same pairwise loss function for optimization as follows: 

∑ ∑ 1 
L���� = − ln � (�̂� � − �̂� � ′ ), (6)

|D�� |�� ∈U ( �, � ′ ) ∈D�� 

where D�� denotes the user-item training set sampled for user 
�� and ( �, � ′) represents user �� prefers observed item � � over un-
observed item � � ′ . We jointly train L����� and L���� on all the 
group-item and user-item interactions as L = L����� + L���� . 

Table 1: Statistics of datasets. 

#U-I #G-I
Dataset #Users #Items #Groups 

interactions interactions 

Mafengwo 5,275 1,513 995 39,761 3,595 
CAMRa2011 602 7,710 290 116,344 145,068 

5 EXPERIMENT 

In this section, we present our experimental setup and empirical 
results. Our experiments are designed to answer the following 
research questions (RQs): 
• RQ1: How does our proposed ConsRec perform compared with 
various group recommendation methods? 

• RQ2: Whether the proposed diferent views capture the consen-
sus information and provide better recommendation? 

• RQ3: How efcient is our method compared with other group 
recommendation techniques? 

• RQ4: How do our preference-aware hypergraph neural network 
(P-HGNN) work? 

• RQ5: How do diferent settings of hyperparameters afect the 
model performance? 

Due to space limitation, we move the RQ4 and 5 to the Appendix. 

5.1 Experimental Settings 

5.1.1 Datasets. We conduct experiments on two real-world public 
datasets, Mafengwo and CAMRa2011 [4]. Specifcally, Mafengwo 
is a tourism website where users can record their traveled venues, 
create or join a group travel. CAMRa2011 is a real-world dataset con-
taining the movie rating records of individual users and households. 
Table 1 reports the detailed statistics of experimental datasets. 

5.1.2 Baselines. To evaluate the efectiveness of ConsRec, we com-

pare it with the following representative approaches. Due to space 
limitation, we only show their belonging categories and move the 
details to Appendix B.3. Note that these categories have overlaps. 
For example, the baseline S2-HHGR [39] integrates both hypergraph 
learning and self-supervised learning. 
• Non-personalized method: Popularity (Pop) [8] 
• Classical neural network based method: NCF [14] 
• Attentive aggregation method: AGREE [4] 
• Hypergraph learning-enhanced: HyperGroup [11], HCR [16] 
• Self-supervised learning-enhanced: GroupIM [29], S2-HHGR 
[39], and CubeRec [6] 

5.1.3 Evaluation Metrics. Following previous settings [4, 5, 16], 
we adopt two widely used evaluation metrics in terms of top-K 
recommendation, i.e., Hit Ratio (HR) and Normalized Discounted 
Cumulative Gain (NDCG). Higher HR and NDCG indicate better 
performance. To alleviate the heavy computation with all items 
serving as the candidates, we randomly sample 100 negative items 
for each ground-truth item and rank them according to the calcu-
lated interaction probabilities [4, 16]. We evaluate the performance 
of all methods over the same metrics and test data. Due to space lim-

itation, data pre-processing and implementation details are moved 
to Appendix B.2. 
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Table 2: Performance comparison of all methods on group recommendation task in terms of HR@K and NDCG@K. 

Dataset Metric Pop NCF AGREE HyperGroup HCR GroupIM S2-HHGR CubeRec ConsRec 

Mafengwo 

HR@5 
HR@10 
NDCG@5 
NDCG@10 

0.3115 
0.4251 
0.2169 
0.2537 

0.4701 
0.6269 
0.3657 
0.4141 

0.4729 
0.6321 
0.3694 
0.4203 

0.5739 
0.6482 
0.4777 
0.5018 

0.7759 
0.8503 
0.6611 
0.6852 

0.7377 
0.8161 
0.6078 
0.6330 

0.7568 
0.7779 
0.7322 
0.7391 

0.8613 
0.9025 
0.7574 
0.7708 

0.8844 
0.9156 
0.7692 
0.7794 

CAMRa2011 

HR@5 
HR@10 
NDCG@5 
NDCG@10 

0.4324 
0.5793 
0.2825 
0.3302 

0.5803 
0.7693 
0.3896 
0.4448 

0.5879 
0.7789 
0.3933 
0.4530 

0.5890 
0.7986 
0.3856 
0.4538 

0.5883 
0.7821 
0.4044 
0.4670 

0.6552 
0.8407 
0.4310 
0.4914 

0.6062 
0.7903 
0.3853 
0.4453 

0.6400 
0.8207 
0.4346 
0.4935 

0.6407 
0.8248 
0.4358 
0.4945 

Table 3: Performance comparison of all methods on user recommendation task in terms of HR@K and NDCG@K. 

Dataset Metric Pop NCF AGREE HyperGroup HCR GroupIM S2-HHGR CubeRec ConsRec 

Mafengwo 

HR@5 
HR@10 
NDCG@5 
NDCG@10 

0.4047 
0.4971 
0.2876 
0.3172 

0.6363 
0.7417 
0.5432 
0.5733 

0.6357 
0.7403 
0.5481 
0.5738 

0.7235 
0.7759 
0.6722 
0.6894 

0.7571 
0.8290 
0.6703 
0.6937 

0.1608 
0.2497 
0.1134 
0.1420 

0.6380 
0.7520 
0.4637 
0.5006 

0.1847 
0.3734 
0.1099 
0.1708 

0.7725 
0.8404 
0.6884 
0.7107 

CAMRa2011 

HR@5 
HR@10 
NDCG@5 
NDCG@10 

0.4624 
0.6026 
0.3104 
0.3560 

0.6119 
0.7894 
0.4018 
0.4535 

0.6196 
0.7897 
0.4098 
0.4627 

0.5728 
0.7601 
0.4410 
0.5016 

0.6262 
0.7924 
0.4195 
0.4734 

0.6113 
0.7771 
0.4064 
0.4606 

0.6153 
0.8173 
0.3978 
0.4641 

0.5754 
0.7827 
0.3751 
0.4428 

0.6774 
0.8412 
0.4568 
0.5104 

5.2 Overall Performance (RQ1) 

We compare the performance of ConsRec with all baselines. Tables 
2 and 3 show the experimental performance on group recommen-

dation task and user recommendation task, respectively. According 
to the results, we note the following key observations: 

• For the group recommendation task shown in Table 2, ConsRec 
outperforms all baselines under most evaluation metrics on two 
benchmark datasets. We own our superiority to the proposed 
three novel views of consensus modeling, capturing the prefer-
ences of groups in the most comprehensive manner. 

• Among all baselines, hypergraph learning-enhanced models (Hy-
perGroup [11] and HCR [16]) achieve better performance than 
classical aggregation method (AGREE [4]), indicating the neces-
sity of capturing high-order collaborative information. Besides, 
S2-HHGR [39] and CubeRec [6] achieve further improvement 
due to the introduction of self-supervised learning objectives. 
Nonetheless, our model realizes the best performance. 

• For the user recommendation task shown in Table 3, our model 
still has advantages. We attribute this to our optimization strategy 
that boosts group and user recommendation simultaneously. It 
is worth noting that GroupIM [29] and CubeRec [6], though 
achieving ideal performance on group recommendation, perform 
poorly on user recommendation. This is because they separate 
user-item and group-item training, sacrifcing the performance 
of user recommendation to overft the group recommendation. 

5.3 Efectiveness of Consensus Learning (RQ2) 

5.3.1 Multi-view Modeling. To capture the group consensus, we in-
novatively devise three views, including member-level aggregation, 
item-level interests, and group-level inherent preferences. To verify 

Table 4: Ablation study on diferent views with group recom-

mendation results reported. “w/o. M”, “w/o. I”, and “w/o. G” 
refer to the variant that eliminates the member-level, item-

item, and group-level view, respectively. 

Dataset Metric w/o. M w/o. I w/o. G Full 

HR@5 0.8201 0.8704 0.8593 0.8844 

Mafengwo 
HR@10 
NDCG@5 

0.8724 
0.7021 

0.9075 
0.7597 

0.9005 
0.7376 

0.9156 
0.7692 

NDCG@10 0.7192 0.7718 0. 7510 0.7794 

whether each view has captured distinct aspect of group informa-

tion, we further conduct ablation study. Technically, at each time, 
we remove one single view and only fuse the remaining two views 
following the same adaptive fusion mechanism as Equation 4. These 
three variants are denoted as łw/o. Mž, łw/o. Iž, and łw/o. Gž, respec-
tively. We report the experimental results in Table 4. Due to space 
limitations, we only list the results on Mafengwo as CAMRa2011 
shares a similar performance pattern. From this table, we can ob-
serve that removing any view degrades the performance, showing 
that each view plays a distinct role in capturing the consensus. 

5.3.2 Case Study. We further conduct a case study to explore how 
ConsRec captures consensus information on the specifc exam-

ple. However, our two experimental datasets do not contain any 
semantic information (e.g., item’s name or content) to facilitate in-
terpretability. Therefore, we crawl an extra Mafengwo dataset from 
its ofcial website. This dataset is named łMafengwo-Sž where łSž 
refers to semantics. We move the detailed crawling process to the 
Appendix B.1.2. Finally, we obtain a new dataset that contains 11,027 
users, 1,215 groups, and 1,236 items. Besides, each item has distinct 
semantic information, i.e., the location. For comparison, we only 
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Figure 4: Visualization of learned item embeddings. We plot two dimensions of item representations on Mafengwo-S. ConsRec

learns the latent properties of items as geographically similar items are close to each other in the embedding space.
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Figure 5: Case study on Mafengwo-S. Both the group and its

members have visited European cities. ConsRec captures this

consensus and suggests Hungary that hits the ground truth.

On the contrary, HCR, GroupIM, 2S -HHGR, and CubeRec

are biased by one member’s interests towards Iceland and

recommend unsatisfying islands or coastal cities.

consider HCR [16], GroupIM [29], 2S -HHGR [39], and CubeRec [6]

since other baselines have been shown inferior performance.

As shown in Figure 5, this is a group consisting of three members,

and both members and the group have visited European cities.

ConsRec captures the group’s consensus towards European cities

and suggests Hungary that hits the ground truth. HCR, GroupIM,
2S -HHGR, and CubeRec are biased by one member’s preference

toward Iceland and then recommend unsatisfying islands.

Besides, we also investigate the items’ (travel locations) repre-

sentations learned by different methods. Since GroupIM [29] do not

maintain item embedding tables, we only compare ConsRec with

HCR [16], 2S -HHGR [39], and CubeRec [6]. Specifically, we select

different locations from Southeast Asia (SEA), the USA, Europe,

China, and Australia, and visualize their corresponding embeddings

in Figure 4. It is worth noting that ConsRec can learn the latent

properties of items as geographically similar items are close to each

other in the embedding space. On the contrary, the embeddings

learned by other baselines are not that discriminative.

We also present the overall performance comparison on the

group recommendation task. From Table 5, ConsRec consistently

ourperforms other strong baselines, showing its superiority.

5.4 Efficiency Study (RQ3)

We evaluate the efficiency of ConsRec by directly comparing the

total running time (training plus testing) with all baselines. Figure

Table 5: Performance comparison on group recommendation

task on Mafengwo-S dataset.

Metric HCR GroupIM 2S -HHGR CubeRec ConsRec

HR@5 0.4845 0.5824 0.5928 0.6237 0.6409

HR@10 0.6099 0.6959 0.6546 0.6873 0.6993

NDCG@5 0.3947 0.4591 0.5348 0.5357 0.5447

NDCG@10 0.4353 0.4983 0.5545 0.5567 0.5642
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Figure 6: Efficiency Study

6 shows the performance (NDCG@5) and running time (seconds or

minutes) on two experimental datasets. Notably, our method is quite

efficient among various group recommendation baselines and it

achieves the best performance simultaneously. On CAMRa2011, our

advantages are more obvious. Since CAMRa2011 is much denser

than Mafengwo, this phenomenon illustrates our superiority in

alleviating computational overhead in larger datasets.

6 CONCLUSION

In this paper, we reveal the consensus behind groups’ decision-

making and propose a novel recommender ConsRec. To capture the

consensus information, ConsRec designs three novel views, includ-

ing member-level aggregation, item-level tastes, and group-level

inherent preferences. Especially, in member-level view, we utilize

hypergraph learning to realize an efficient and expressive member-

level aggregation. Extensive experiments on two real-world datasets

show the effectiveness and efficiency of ConsRec.
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A NOTATIONS 

We list the important notations used in this paper in Table 6. 

Table 6: Important Notations 

Symbol 

U, I, G 
�, � , � 
�� , � � , �� 

Y 
R 
G� 

Y� 

U, I, G 

�� (V� , E� , H� )= 
�� 

m�,� 

m�,� 
(� )

m� 
�

G 
� � g = G (�, :)� 

�� 
= (V� , E� , A� )

�
G 
� � g = G (�, :)� 

�� (V� , E� , A� )= 
�

G 
� � 
g = G (�, :)� 

I 

G 

Description 

Sets of users, items, and groups 
Numbers of users, items, and groups 

The �-th user, the � -th item, and the � -th group 
Group-item interaction matrix 
User-item interaction matrix 
Member set of the � -th group 

Interaction set of the �-th group 
Embedding tables of users, items, and groups 

Member-level hypergraph 
The �-th hyperedge in �� 

Aggregated user messages of hyperedge � 
Aggregated item messages of hyperedge � 

Messages of hyperedge � in the �-th layer 

Group’s member-level representations 

Member-level representation of the � -th group 

Item-level bipartite graph 

Group’s item-level representations 

Item-level representation of the � -th group 

Group-level graph 

Group-level representations 

Group-level representation of the � -th group 

Refned item embeddings 

Final group embeddings 

Algorithm 1: Training Procedure of ConsRec 

Input: Sets of users U, items I, and groups G, group-item 
interaction matrix Y, and user-item interaction matrix R 

Output: All model parameters collectively referred to as Θ 
1 Randomly initialize Θ; 

2 while not converge do 
3 

4 

5 

Randomly draw (�� , � � ) from Y and sample negative examples 
for �� to constitute D�� , and compute the group prediction 
loss L����� w.r.t. Equation 5; 

Randomly draw (�� , � � ) from R and sample negative examples 

for �� to constitute D�� , and compute the user prediction 
loss L���� w.r.t. Equation 6; 

Take a gradient step to update Θ w.r.t. L����� + L���� ; 

B REPRODUCIBILITY 

B.1 Datasets 

B.1.1 Pre-processing. Following previous works [4, 5, 16], we flter 
out the groups which have at least 2 members and have interacted 
with at least 3 items for pre-processing. Since both datasets only 
contain positive instances, i.e., observed interactions, we randomly 
sample from missing data as negative instances to pair with each 
positive instance. 

Xixi, et al. 

B.1.2 Crawling Process. For the group page in Mafengwo, the 
group’s traveling locations as well as joined members’ information 
can be directly extracted. Then each member’s personal visiting 
records can be obtained from his/her personal page. In this way, we 
can collect the group-level interacted locations and each member’s 
visited locations. Repeatedly, a new dataset can be constructed 
that contains rich semantic information of items. Finally, we get 
a new dataset consisting of 11,027 users, 1,215 groups, and 1,236 
items. This dataset is named łMafengwo-Sž with łSž referring to 
semantics. 

B.2 Implementation 

We implement ConsRec in PyTorch and optimize with Adam opti-
mizer. For the initialization of the embedding layer, we apply the 
Glorot initialization strategy [10]. For hidden layers, we randomly 
initialize their parameters with a Gaussian distribution of a mean 
of 0 and a standard deviation of 0.1. For hyperparameters, we tune 
the number of convolutional layers � in {1, 2, 3, 4} and the number 
of negative instances in {2, 4, 6, 8, 10, 12}. We empirically set the em-

bedding dimension of 32. We implement the MLP(·) in prediction 
layer with a 3-layer setting and ReLU activation. 

B.3 Baselines 

We compare ConsRec with the following baselines: 
• Popularity [8] is a non-personalized method to benchmark the 
performance of other personalized methods. It recommends items 
to users and groups based on the popularity of items, which is 
measured by the number of interactions in the training set. 

• NCF [14] is adopted as treating each group as a virtual user for 
prediction. 

• AGREE [4] is a classical attentive aggregation-based group rec-
ommendation solution that selectively aggregates user represen-
tations within a group. 

• HyperGroup [11] models the group as hyperedge and proposes 
a hyperedge embedding-based representation learning method. 

• HCR [16] is a strong group recommendation baseline that pro-
poses a dual channel hypergraph convolutional network to cap-
ture member-level and group-level preferences. 

• GroupIM [29] aggregates users’ preferences as group prefer-
ences via the attention mechanism. Particularly, to alleviate the 
data sparsity issue, it adds an extra self-supervised learning ob-
jective by maximizing the mutual information between the users 
and their belonging groups. 

• S2-HHGR [39] is another strong baseline that integrates hy-
pergraph learning and self-supervised learning for better group 
preferences’ prediction. 

• CubeRec [6] is the state-of-the-art deep model in group recom-

mendation. It utilizes the geometric expressiveness of hypercubes 
to adaptively aggregate members’ interests. 
For conducting the performance comparison, we use their ofcial 

codes released at Github: NCF3, AGREE4, HCR5, GroupIM6, S2-
HHGR7, and CubeRec8. Since the source codes of HyperGroup [11] 

3https://github.com/hexiangnan/neural_collaborative_fltering 
4https://github.com/LianHaiMiao/Attentive-Group-Recommendation 
5https://github.com/GroupRec/GroupRec 
6https://github.com/CrowdDynamicsLab/GroupIM 
7https://github.com/0411tony/HHGR 
8https://github.com/jinglong0407/CubeRec 
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Figure 7: Ablation study on diferent hypergraph neural net-
works on Mafengwo with group recommendation results 
reported. 

1 2 3 4

# Layers

0.84

0.86

0.88

0.90

H
R

0.74

0.76

0.78

0.80

N
D
C
G

2 4 6 8 10 12

# Negative samples

0.81

0.84

0.87

0.90

0.93

H
R

0.64

0.69

0.74

0.79

0.84

N
D
C
G

HR@5 NDCG@5 HR@5 NDCG@5

Figure 8: Parameters study on group recommendation task 
on Mafengwo. 

are unavailable, we implement this method based on its original 
paper. Actually, the released codes of some baselines are either 
problematic or incomplete, so we refactor their original codes. 

To boost the development of group recommendation, we release 
ConsRec at https://github.com/FDUDSDE/WWW2023ConsRec. We 
also release our implementations of above group recommendation 
baselines. For all baseline models, we refer to their best parameter 
set-ups reported in the original papers. If we use the same datasets 
and evaluation settings, we directly report their results. We conduct 
all the experiments on GPU machines of Nvidia Tesla V100 with 
32GB memory. 

C EXPERIMENTS 

C.1 Efectiveness of P-HGNN (RQ4) 

Recall that we propose a preference-aware hypergraph neural net-
work to yield a more expressive member-level aggregation. The con-
crete computation mechanism is shown in Figure 3 and Equations 
1 and 2. To verify its efectiveness, we conduct the ablation study 
by comparing it with two diferent variants. One is the basic hy-
pergraph neural network (HGNN) [36]. The other variant eliminates 

group-item element-wise product as m� = CONCAT(m�,� , m�,� )W
� . 

This variant is denoted as łw/o. GIž. 
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We show the experimental results in Figure 7. From this fgure, 
łw/o. GIž variant realizes performance improvement compared with 
łHGNNž, showing the necessity of preserving the distinct semantics 
of users and items. Our P-HGNN outperforms łw/o. GIž, indicating 
the efectiveness of the introduction of group-item element-wise 
products. In a word, P-HGNN has the advantage of generating 
a more meaningful member-level aggregation, thus reinforcing 
groups’ representations. 

C.2 Parameters Study (RQ5) 

In this subsection, we investigate the infuence of two key parame-

ters in our model, i.e., the number of (hyper)graph convolutional 
layers � and the number of negative samples. 

C.2.1 Number of Convolutional Layers. The performance of graph 
convolutional network is afected by the number of graph convolu-
tion layers. As the number increases, the convolutional networks 
are faced with the problem of over-smoothing [19] where node 
representations are not discriminative enough. To illustrate its infu-
ence, we show the performance w.r.t. the number of convolutional 
layers in Figure 8. We observe that when the layer is 3, better results 
can be obtained on Mafengwo. Therefore, we choose 3 as a default 
setting. 

C.2.2 Number of Negative Samples. The strategy of negative sam-

pling has been proven rational and efective in [22]. It randomly 
samples various numbers of missing data as negative samples to 
pair with each positive instance. To illustrate the impact of negative 
sampling for our model, we show the performance of ConsRec w.r.t. 
diferent numbers of negative samples in Figure 8. We can observe 
that too small negative samples are not enough for optimization. 
With the increase of negative samples, the model performance 
frstly improves and then becomes stable. Therefore, we choose 8 
as a default setting. 

D DISCUSSIONS ABOUT CONSENSUS 

Though consensus has also been studied in group decision making 
(GDM) task [18, 21], here we point out the diferences between 
GDM task and group recommendation (GR) task to show why 
GDM methods can not be directly applied for consensus modeling 
in GR scenarios. 

• Task setting: GDM necessitates each member’s preferences on all 
alternatives (i.e., items) as input, which relies on manual labeling 
by domain expertise. Instead, GR task automatically learns user-
level preferences from user historical behaviors. 

• Application scenario: Due to the heavy reliance on human eforts, 
GDM only works for some specifc groups to choose from limited 
choices. Diferently, GR task can deal with large-scale datasets 
that contain huge amounts of items and groups. 
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