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ABSTRACT

Since group activities have become very common in daily life, there
is an urgent demand for generating recommendations for a group
of users, referred to as group recommendation task. Existing group
recommendation methods usually infer groups’ preferences via
aggregating diverse members’ interests. Actually, groups’ ultimate
choice involves compromises between members, and finally, an
agreement can be reached. However, existing individual informa-
tion aggregation lacks a holistic group-level consideration, failing
to capture the consensus information. Besides, their specific ag-
gregation strategies either suffer from high computational costs or
become too coarse-grained to make precise predictions.

To solve the aforementioned limitations, in this paper, we focus
on exploring consensus behind group behavior data. To comprehen-
sively capture the group consensus, we innovatively design three
distinct views which provide mutually complementary information
to enable multi-view learning, including member-level aggregation,
item-level tastes, and group-level inherent preferences. To integrate
and balance the multi-view information, an adaptive fusion compo-
nent is further proposed. As to member-level aggregation, different
from existing linear or attentive strategies, we design a novel hyper-
graph neural network that allows for efficient hypergraph convolu-
tional operations to generate expressive member-level aggregation.
We evaluate our ConsRec on two real-world datasets and experi-
mental results show that our model outperforms state-of-the-art

“Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 23, April 30-May 04, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04...$15.00
https://doi.org/10.1145/3543507.3583277

240

methods. An extensive case study also verifies the effectiveness of
consensus modeling.
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1 INTRODUCTION

Owing to the prevalence of social media [24, 25], online group
activities have become very common. Various existing online so-
cial media sites can provide group-related services for users. For
example, travel enthusiasts can plan group trips on Mafengwo!,
and young people can also organize group parties on Meetup?. As
traditional recommendation methods only target suggesting rele-
vant items to individuals, there is an urgent demand in generating
recommendations for a group of users, referred to as the group
recommendation task [4, 5]. Formally, group recommendation aims
to reach an agreement among group members to provide contents
that can satisfy most members [39].

Previous works [1-6, 11,12, 15, 16, 20, 29-31, 38, 39] on group rec-
ommendation usually focus on aggregating diverse members’ pref-
erences to predict group interests. Traditional aggregation methods
are based on pre-defined heuristic rules, including the average [3],

!https://www.mafengwo.cn
Zhttps://www.meetup.com
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Figure 1: An illustrative example of the gap between aggre-
gated result and group’s consensus. Merely aggregating di-
verse members’ interests lacks the holistic consideration of

the group’s overall taste, failing to capture the consensus.

the least misery [1], and the maximum satisfaction [2]. There also
exist several deep-learning based models [4, 5, 12, 15, 31] that incor-
porate the attention mechanism to realize a learnable aggregation
instead. Recently, CubeRec [6] utilizes the geometric expressive-
ness of hypercubes [26, 40] to aggregate multi-faceted member
preferences, achieving state-of-the-art performance.

Despite their effectiveness, we argue that current group recom-
mendation methods fall short in modeling two factors: (1) Consen-
sus. An important fact has been neglected: groups’ ultimate choice
involves compromises between members, and finally, an agreement
need to be reached [6, 12]. The consensus drives the group to make
the final decision while existing individual information aggregation
lacks a holistic group-level consideration, failing to capture the
consensus. Taking Figure 1 as an example, the group consists of a
couple where the man prefers action films while the lady enjoys
comedies. When they plan to watch a movie together, the consensus
may be a romantic movie rather than the aggregated action-comedy.
Such situations are quite common in real scenes but are largely
overlooked by the aforementioned methods. (2) Member-level
Aggregation. A typical strategy for group interests aggregation
is the attentive mechanism [4, 5, 12, 15, 16, 31] that calculates dif-
ferent attention weights for different candidate items. Considering
the huge amount of candidate products in real-world scenarios,
such methods are hardly applicable. Besides, this approach tends to
favor members with frequent interactions since they are likely to
obtain higher attention weights [23]. Though CubeRec [6] resorts
to hypercubes for a better solution, the obtained hypercube may
be too large due to diversity of member interests to make precise
predictions. Therefore, an appropriate aggregation strategy that
realizes both efficiency and effectiveness is also demanded.

In this paper, we focus on exploring group consensus behind
group-item and user-item interactions, so as to improve the per-
formance and meaningfulness of recommendation. We propose
a new model, ConsRec, to solve the foregoing limitations corre-
spondingly: (1) Group Consensus Modeling. To comprehensively
capture the group consensus, we innovatively design three dis-
tinct views which provide complementary information. Besides
the member-level view that provides fine-grained explanation for
group consensus, we argue that sometimes the consensus of groups
can be captured from the characteristics of interacted items as well
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as their inherent attributes. For example, a group formed by a fam-
ily is more inclined to watch family-style comedies. Therefore, we
suggest the novel item-level and group-level views to obtain groups’
item-level tastes and inherent interests, respectively. For each data
view, we design a specific graph structure to encode the behavior
data and utilize graph representation learning techniques to gener-
ate representations for groups. To integrate and balance multi-view
information, an adaptive fusion component is further proposed to
synthesize the final group consensus. During optimization, recom-
mendation predictions can supervise the learning process to adap-
tively adjust the contributions of different views to extract the most
discriminative consensus information. (2) Effective Member-level
Aggregation. We propose a novel hypergraph learning architec-
ture to obtain member-level aggregation. Compared with existing
attentive aggregation, our schema wins in efficiency as obtaining
aggregation via hypergraph convolutional operations, fairness as
designing meaningful side information for balancing the favor of
some members, and expressiveness as incorporating high-order
collaborative information. Extensive experiments on two public
datasets show the effectiveness as well as efficiency of our proposal.
To summarize, the contributions of our work are as follows:

e We study the group recommendation task and reveal the consen-
sus behind groups’ decision-making. To comprehensively capture
the consensus, we design three novel and complementary views,
including member-level aggregation, item-level tastes, and group-
level inherent interests.

o We propose anovel hypergraph neural network to obtain member-
level aggregation. Compared with existing attentive aggregation,
our method wins in efficiency, fairness, and expressiveness.

o Extensive experiments on two public datasets show the effective-
ness as well as efficiency of our proposal.

2 RELATED WORK
2.1 Preference Aggregation

Existing group recommendation techniques usually follow the ag-
gregation strategy, which first learns members’ preferences from
user-item interactions, and then performs preferences aggregation
to infer the overall interest of a group [6]. Sometimes, group’s ul-
timate choice is determined by group-level consensus. However,
existing methods lack the holistic consideration of the group’s over-
all taste, failing to capture the consensus.

2.1.1  Score Aggregation. The approaches of this category generate
the scores of all members in a group for a candidate item and then
aggregate individual scores to obtain the preference score of the
group through some hand-crafted heuristics, such as the average
[3], the least misery [1], and the maximum satisfaction [2]. For
example, the average [3] strategy takes the average score across
members as the final recommendation score. Though intuitive,
these pre-defined aggregation rules are inflexible to reflect diverse
member intentions [16].

2.1.2  Neural Aggregation. For better performance, some researchers
propose to aggregate different members’ intentions in a learnable
way [4-6, 12, 15, 30, 31, 38]. Technically, these methods firstly
represent each member as an implicit embedding based on user
interactions, and then calculate the group embedding by summing
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the embeddings of all members with the learned weights. For ex-
ample, attentive neural networks are proposed in [4] to selectively
aggregate user representations within a group, and [31] further
captures the fine-grained interactions between group members via
a sub-attention network. Recently, CubeRec [6] utilizes the geo-
metric expressiveness of hypercubes to adaptively aggregate the
multi-faceted user preferences, achieving better performance.

2.2 Recent Directions

For better representation, recent studies on group recommendation
resort to more complex structures, such as hypergraphs [11, 16, 39]
and hypercubes [6]. Besides, self-supervised learning techniques
are also adopted to counteract the data-sparsity issue [29, 39].

2.2.1 Hypergraph Learning. As a more general topological struc-
ture that preserves the tuple-wise relationship, hypergraph nat-
urally fits group profiling. Therefore, recent works [11, 16, 39]
represent the group as a hyperedge and employ hypergraph neural
networks to generate more expressive vectors. We point out that
these methods mainly utilize hypergraph structures to propagate
user-level collaborative signals, and exhaustively employ the atten-
tive aggregation [32] for group-level prediction. In fact, expressive
member-level aggregation can be obtained more efficiently from
hypergraph networks, which is neglected by these methods.

2.2.2  Self-supervised Learning. As self-supervised learning (SSL)
has shown its effectiveness in general recommendation tasks [35, 37,
41], attempts are also made to design SSL objectives to counteract
the data sparsity issue for group recommendation task [6, 29, 39].
For example, GroupIM [29] proposes a user-group mutual infor-
mation maximization scheme to jointly learn informative user and
group representations.

3 PRELIMINARY

In this section, we present the definition of group recommendation
task and the concepts of hypergraph to facilitate comprehension.
Formally, we use bold capital letters (e.g., X) and bold lowercase
letters (e.g., x) to represent matrices and vectors, respectively. We
employ non-bold letters (e.g., x) to denote scalars, and calligraphic
letters (e.g., X) to denote sets. Notations are summarized in Table 6
in the Appendix.

3.1 Task Definition

Let U = {uy,ug, ... up}, I ={i1,i2, .., in}, and G = {91, 92, .-, gx }
be the sets of users, items, and groups, respectively, where M, N, and
K are the sizes of these three sets. There are two types of observed
interactions among U, 7, and G, namely, group-item interactions
and user-item interactions. We use Y € RKXN to denote the group-
item interactions where the element Y(t, j) = 1 if group g; has
interacted with item i; otherwise Y(t, j) = 0. Likewise, we use
R € RMXN t denote the user-item interactions. The t-th group g; €
G consists of a set of user members G = {u1, uz, ..., Us, .-, U g, | }
where us € U and |G;| is the size of G;. We denote the interaction
set of g¢ as Y = {i1, iz, .., i}, ... )| yy,| } Where i; € T and |Y;] is the
size of ¥;. Then, given a target group g, the group recommendation
task is defined as recommending items that g; may be interested in.
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3.2 Hypergraph

Different from simple graphs, a hypergraph is a more general topo-
logical structure where the edge (namely hyperedge in the hyper-
graph) could connect two or more nodes [7, 33, 37]. Formally, we
define the hypergraph as G = (V, &, H) where V is the vertex set,
& is the hyperedge set, and H € RIVIxI&l depicts the connectiv-
ity of the hypergraph as H(v, e) = 1 if the hyperedge e connects
the vertex v, otherwise H(v, e) = 0. On this basis, we further give
some notations in G. Let &, denote a set of related hyperedges
that connect to the node v(i.e.,&E, = {e € E|H(v,e) = 1}) and
Ve denote a set of nodes to which the hyperedge e connects (i.e.,
Ve ={v € VIH(v,e) = 1}).

4 METHODOLOGY

In this section, we first elaborate on the multi-view modeling of
group consensus. Then, we introduce their specific encoding pro-
cess enhanced by graph neural networks. We move on to introduce
the adaptive fusion mechanism for integrating multi-view infor-
mation. Finally, we demonstrate our optimization approach. The
overall architecture of ConsRec is shown in Figure 2. Notations
used in this section are also summarized in Table 6 in the Appendix.

4.1 Multi-view Modeling of Consensus

To effectively exploit the group behavior data for capturing group
consensus, we design three novel views which provide complemen-
tary information to enable multi-view learning. The illustrative
example is shown in the left part of Figure 2.

4.1.1  Member-level. Since groups consist of diverse members, we
first analyze each group from a member constitution view, which
provides a fine-grained explanation for group decisions. However,
conventional graph structure only supports pairwise relationship
that reflects one-to-one relation. Therefore, we propose to model
the tuplewise relationship between groups and members with a
hypergraph. Formally, we construct the member view with a hyper-
graph G™ = (V™ ,E™ H™) where V™ = U U I denotes the node
set, &™ = G denotes the hyperedge set, and the adjacency matrix
H™ € RIV"IXIE™] denotes the affiliations among nodes and edges.
For the ¢-th group g;, we represent it as the t-th hyperedge e; € &™
and connect it to corresponding member nodes as well as item
nodes, i.e., H™ (s, t) = 1 if node vs € G; UY; where G; and Y; refer
to g;’s member set and interaction set, respectively. For example,
in Figure 2, as group g; consists of u; and up, and have interacted
with i and iz, we would represent group g; with the hyperedge e;
that connects to its member and item nodes.

4.1.2  Item-level. Sometimes, the consensus of groups can be in-
ferred from their interacted items. For example, in Figure 1, we can
conclude the group’s agreement towards romantic films based on
its interaction history. Therefore, to capture the groups’ item-level
tastes, we construct the item-level view where groups and their
interacted items form a bipartite graph. Specifically, we design the
item view with the graph G' = (V! &}, Al) where Vi = gU T
denotes the node set, &' denotes the edge set as & = {(gs, ij)lgr €
G.ij € I,Y(t,j) = 1}, and Al € RKFN)X(K+N) o the adjacency
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Figure 2: ConsRec Overview. We construct three distinct views for consensus modeling and adopt specific graph neural networks
for representation learning. We further integrate these view-specific representations for group-item prediction.

matrix as A’ = . As shown in Figure 2, we connect node g,

YT o
and i3 since group g has watched the movie is.

4.1.3  Group-level. In real-world scenarios, groups may have their
inherent preferences. For example, a group formed by a family tend
to watch family-style comedies. To capture and propagate such
signals among similar groups, we devise the group-level view where
otherwise isolated groups are connected. Specifically, each group is
modeled as a single node and different groups are connected if they
share at least a common member or item. Formally, the group-level
graph is represented as G9 = (V9,89,A9) where V9 = G and
&9 = ((9p.9)\dp:dq € G.1Gp N Gyl > Tor Yy N Yyl > 1). We
utilize the adjacency matrix A9 to discriminate relevance between
groups as assigning each edge (gp,gq) with a weight A9(p, q) =

|GpNGql+1 YpnYy| . . . .
160G, 1Y, 05,] For example, as depicted in Figure 2, since g;

and go share a common member, we connect these two groups and

compute the weight as % = %.

4.1.4  Multi-view Modeling. In this paper, we aim to embed users,
items, and groups to a lower-dimension vector representation.
Based on the above multi-view modeling of group consensus, we
can represent the learned d-dimensional embedding vectors of
users, items, and groups as matrices U € RMxd 1 ¢ RNXd and
G € RKxd, respectively. Such matrices can be learned from the
following graph representation learning techniques.

4.2 Member-level Hypergraph Networks

In this subsection, we introduce the member-level view where we
aim to obtain a meaningful member-level aggregation for estimat-
ing the consensus. Specifically, we devise a novel preference-aware
hypergraph neural network that realizes an efficient, fair, and ex-
pressive aggregation schema.

4.2.1 Preference-aware hypergraph neural network (P-HGNN). We
feed user embeddings U € RM*d and item embeddings I € RNxd
to the hypergraph neural network. Meanwhile, since we represent
each group as a hyperedge e, its embedding can be retrieved from
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the group embedding table G as g, = G(e, :). Technically, our goal
is to obtain refined item embeddings I and groups’ member-level
representations G" via hypergraph propagation. We move on to
introduce the specific design of this hypergraph neural network
with the illustrative process shown in Figure 3.
Efficiency. In hypergraph neural networks [9, 36], hyperedges
serve as mediums for processing and transferring information. Re-
call that we represent each group as a hyperedge in the member-
level hypergraph, it is straightforward to regard the carried mes-
sages of hyperedges during convolution as the member-level ag-
gregation. In this way, member-level aggregation can be acquired
much more efficiently compared with the exhaustive and candidate-
reliant attentive aggregation adopted by [4, 5, 15, 16, 39].
Formally, a hyperedge e € E™ connects both member nodes
and item nodes which preserve different semantic information.
Therefore, we separate the item aggregation and user aggrega-
tion to maintain their distinction. Specifically, for hyperedge e, we
compute its member aggregated message me, within its mem-
ber set G, as mey, = AGGppge ({Us|us € Ge}). Here AGG04,(+)
denotes a specific node-aggregation function and us € R? de-
notes the embedding of s-th user as ug = U(s,:). Likewise, we
obtain e’s item-side message m; within its interaction set Y, as
me; = AGG,,4.({ijlij € Ye}) where ij denotes the embedding of
j-thitemasi; = 1(j,:). Then, it is intuitive to utilize these messages
to synthesize the hyperedge e’s representation m,.
Fairness. As shown in Figure 3, the commonly adopted attentive ag-
gregation assigns more weights to active members and thus obtain
an unfair aggregation [23]. Hopefully, this problem can be allevi-
ated as we introduce the item-side messages as a supplementary.
Furthermore, we utilize the hyperedge e’s independent representa-
tion g to interact with the item messages m. ; for generating extra
collaborative signals. Then, we fuse these different information via
linear transformation as follows:

m, = CONCAT(m¢y , me;, me; © ge)Wf, (1)

where m, denotes the synthesized messages carried by e, © stands
for element-wise product, and W/ e R39%d denotes the trainable
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Figure 3: Comparison between our hypergraph learning-based aggregation (left) and the commonly adopted attentive aggrega-
tion (right). Ours wins in efficiency, fairness, and expressiveness with details explained in Section 4.2.2.

weight matrix for messages fusion. After applying this operation,
the messages contained by hyperedges are more meaningful and
unbiased as revealing the common information between members
and groups. Finally, we can refine the representations of node v by
collecting the messages from its related hyperedges. Formally, for
a target item node i}, its representation is updated as:

ij = AGGp ({mele € aj}), (2)

where ij denotes the refined embedding of node i;, AGGp, (-) de-
notes a specific hyperedge-aggregation function, and &; is the
set of hyperedges that connect to node i;. So far, we have accom-
plished the goal of obtaining refined item embeddings I and groups’
member-level representations G" by stacking all i i (j=1,..,N)
and m, (e = 1,..., K), respectively.

Expressiveness. To improve expressiveness, we further stack afore-
mentioned propagation module for multiple layers so that both
nodes’ representations and hyperedges’ messages can benefit from
high-order neighbors. Finally, we average the embedding obtained
at each layer to generate the final representation for node i; as:

where L is the total number of convolutional layers, il is the
:(0)

representation of node i; in the [-th layer (we have = and
the calculation of subsequent layers can follow Equations 1 and 2).
Similarly, we average the aggregated messages during each layer

to generate the final representation for hyperedge (group) e as:

where g/' denotes the member-level preferences of group e, and

mgl) denotes the messages contained by e in the I-th layer which
can be calculated by Equation 1. By stacking all the g." (e = 1,...,K),
we can get the groups’ member-level representations G Besides,
we implement AGG,,, 4. (-) and AGGy, (-) with the average pooling
due to its simplicity and effectiveness.

4.2.2  Discussions. We compare our aggregation with existing at-
tentive aggregation adopted by [4, 5, 11, 15, 16, 39]. The illustrative
example is shown in Figure 3. Given a candidate item, the atten-
tive method first computes the attention weights by feeding the
concatenation of member and item representations to an attention
network, then sums over members based on the weights to obtain
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the group’s representation. Considering the huge amount of can-
didate items in real-world scenes, this candidate-reliant method
is infeasible. Besides, this mode is prone to assigning active mem-
bers with more weights, leading to a biased aggregation. On the
contrary, our aggregation schema wins in efficiency as obtaining
aggregation via hypergraph convolutional operations, fairness as in-
troducing side information for supplementary, and expressiveness
as incorporating high-order collaborative information.

4.3 TItem-level Graph Networks

Recall that we design the group-item bipartite graph G* to model the
consensus from item-level interests. In this subsection, we aim to
employ the graph neural networks [13, 17] to capture collaborative
signals between groups and items, finally obtaining the groups’
discriminative representations at the item-level.

We feed the concatenation of group embeddings G € RX*4 and
item embeddings I € RN*9 to the graph convolutional network,
G
Il Referring to the spectral graph convolution
[13, 17, 34], we define our graph convolution in the [-th layer as:

denoted as E =

E*) = piAID2ED), 3)

where E(!) denotes the node representations in the [-th layer and
D is the diagonal node degree matrix of adjacency matrix A’, We
passE(®) = E through L convolutional layers, and then average the
embeddings obtained at each layer to get the final embeddings as

—i
= G
E= ﬁ ZIL—O ED = _; |- Therefore, group e’s item-level consen-
- I

sus can be obtained as Eé =G (e,:). As shown in Figure 2, during
propagation, interacted items’ information has been explicitly in-
jected to groups’ item-level representations, and thus the obtained

G is expressive enough to reflect item-level tastes.

4.4 Group-level Graph Networks

Since the constructed group-level graph GY depicts the connec-
tivity between groups, we still apply graph neural networks to
encode the high-order relations among different groups. Note that
we distinguish the relevance between groups by computing dif-
ferent weights, allowing each group to enrich its expressivity by
absorbing information from the most relevant neighbors.
Specifically, we feed the group embeddings G € REXd 14 the
graph convolutional network, denoted as G® = G. Then the prop-
agation mechanism at each layer is similar to Equation 3. Therefore,
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after passing G through L convolutional layers, we can obtain
Ele final group-level embeddings as G’ = ﬁ ZZL:O G We regard
G’ as group-level inherent preferences as it explores and preserves
the group-level proximity.

4.5 Adaptive Fusion & Optimization

As mentioned before, we have modeled the groups’ consensus
from three different views, including member-level aggregation

G, item-level interests G , and group-level inherent preferences
G’. Then the core problem takes down to fuse them to obtain the
final representations of group consensus. To adaptively control
the combination of three view-specific group representations, we
propose to employ three different gates as:

G=aG" +pG +yG’, (4)
where o = a(Emwm), B = O'(GZWi), andy = a(G"Wg). Here,
W™ Wi and W9 € R? are three different trainable weights and
o is the activation function. The o, B, and y denote the learned
weights to balance the contributions of member-level, item-level,
and group-level information, respectively. On this basis, we can ob-
tain the final group representations G. During optimization, based
on the abundant supervision signals, our model can automatically
discriminate the importance of different views.

Then, we introduce our optimization strategy that jointly learns
user-item and group-item interactions. Detailed training proce-
dure is shown in Algorithm 1. For the group-item pair (gz,i;),
we feed their corresponding representations to a Multi-layer Per-
ceptron (MLP) [28] to compute the final prediction score §; ; as
j:j = MLP(g, © ij), where g, = G(t,:) denotes the final group
representation of the target group gy, i; = 1(j,:) denotes the re-
fined embedding of the candidate item ij, and MLP(-) is designed
with input dimension set as d and output dimension as 1. With the
group-item interaction data, we utilize the Bayesian Personalized
Ranking (BPR) loss [27] for optimization as follows:

Lgroup == Z ﬁ Z In U(ytj - gtj’)» (5)
9:€G I (j.j) €Dy,
where Dy, denotes the group-item training set sampled for group
g, in which each instance is a pair (j, j*) meaning that group g
has interacted with item ij, but has not interacted with item ij.
To further utilize supervision signals, we propose to incorporate
the user-item interaction data to optimize the group-item and user-
item tasks simultaneously. Similarly, for the user-item pair (us, i5),
we compute the prediction score 7s; = MLP(us © ij), where the
MLP() is shared with the group-item MLP network, and u; and i;
denote the corresponding user and item embedding. We utilize the
same pairwise loss function for optimization as follows:

Luser:_z |l Z

D
useU us | (juj') € Dug

In U(fsj - ’:sj’): (6)

where D, denotes the user-item training set sampled for user
us and (j, j') represents user u; prefers observed item i; over un-
observed item ij. We jointly train Lgroup and Lyser on all the
group-item and user-item interactions as L = Lgroup + Luser-
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Table 1: Statistics of datasets.
#U-1 #G-1
Dataset #Users  #Items #Groups . . . .
interactions interactions
Mafengwo 5,275 1,513 995 39,761 3,595
CAMRa2011 602 7,710 290 116,344 145,068

5 EXPERIMENT

In this section, we present our experimental setup and empirical

results. Our experiments are designed to answer the following

research questions (RQs):

e RQ1: How does our proposed ConsRec perform compared with
various group recommendation methods?

o RQ2: Whether the proposed different views capture the consen-
sus information and provide better recommendation?

e RQ3: How efficient is our method compared with other group
recommendation techniques?

e RQ4: How do our preference-aware hypergraph neural network
(P-HGNN) work?

e RQ5: How do different settings of hyperparameters affect the
model performance?

Due to space limitation, we move the RQ4 and 5 to the Appendix.

5.1 Experimental Settings

5.1.1 Datasets. We conduct experiments on two real-world public
datasets, Mafengwo and CAMRa2011 [4]. Specifically, Mafengwo
is a tourism website where users can record their traveled venues,
create or join a group travel. CAMRa2011 is a real-world dataset con-
taining the movie rating records of individual users and households.
Table 1 reports the detailed statistics of experimental datasets.

5.1.2 Baselines. To evaluate the effectiveness of ConsRec, we com-
pare it with the following representative approaches. Due to space
limitation, we only show their belonging categories and move the
details to Appendix B.3. Note that these categories have overlaps.
For example, the baseline S2-HHGR [39] integrates both hypergraph
learning and self-supervised learning.

e Non-personalized method: Popularity (Pop) [8]

Classical neural network based method: NCF [14]
Attentive aggregation method: AGREE [4]

Hypergraph learning-enhanced: HyperGroup [11], HCR [16]
Self-supervised learning-enhanced: GroupIM [29], S-HHGR
[39], and CubeRec [6]

5.1.3  Evaluation Metrics. Following previous settings [4, 5, 16],
we adopt two widely used evaluation metrics in terms of top-K
recommendation, i.e., Hit Ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG). Higher HR and NDCG indicate better
performance. To alleviate the heavy computation with all items
serving as the candidates, we randomly sample 100 negative items
for each ground-truth item and rank them according to the calcu-
lated interaction probabilities [4, 16]. We evaluate the performance
of all methods over the same metrics and test data. Due to space lim-
itation, data pre-processing and implementation details are moved
to Appendix B.2.
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Table 2: Performance comparison of all methods on group recommendation task in terms of HR@K and NDCG@K.

Dataset ‘ Metric ‘ Pop NCF  AGREE HyperGroup HCR GroupIM S?-HHGR CubeRec ConsRec
HR@5 0.3115 0.4701  0.4729 0.5739 0.7759 0.7377 0.7568 0.8613 0.8844
HR@10 0.4251  0.6269  0.6321 0.6482 0.8503 0.8161 0.7779 0.9025 0.9156
Mafengwo 0.7574
NDCG@5 | 0.2169 0.3657  0.3694 0.4777 0.6611 0.6078 0.7322 0.7574 0.7692
NDCG@10 | 0.2537 0.4141  0.4203 0.5018 0.6852 0.6330 0.7391 0.7708 0.7794
HR@5 0.4324 0.5803  0.5879 0.5890 0.5883 0.6552 0.6062 0.6400 0.6407
HR@10 0.5793  0.7693  0.7789 0.7986 0.7821  0.8407 0.7903 0.8207 0.8248
CAMRa2011
NDCG@5 | 0.2825 0.3896  0.3933 0.3856 0.4044 0.4310 0.3853 0.4346 0.4358
NDCG@10 | 0.3302 0.4448  0.4530 0.4538 0.4670 0.4914 0.4453 0.4935 0.4945

Table 3: Performance comparison of all methods on user recommendation task in terms of HR@K and NDCG@K.

Dataset ‘ Metric ‘ Pop NCF  AGREE HyperGroup HCR  GroupIM S?-HHGR CubeRec ConsRec
HR@5 0.4047 0.6363  0.6357 0.7235 0.7571 0.1608 0.6380 0.1847 0.7725
Mafenewo HR@10 0.4971  0.7417 0.7403 0.7759 0.8290 0.2497 0.7520 0.3734 0.8404
EW NDCG@5 | 0.2876 0.5432  0.5481 0.6722 0.6703 0.1134 0.4637 0.1099 0.6884
NDCG@10 | 0.3172 0.5733 0.5738 0.6894 0.6937 0.1420 0.5006 0.1708 0.7107
HR@5 0.4624 0.6119  0.6196 0.5728 0.6262 0.6113 0.6153 0.5754 0.6774
CAMRa2011 HR@10 0.6026  0.7894  0.7897 0.7601 0.7924 0.7771 0.8173 0.7827 0.8412
NDCG@5 | 0.3104 0.4018  0.4098 0.4410 0.4195 0.4064 0.3978 0.3751 0.4568
NDCG@10 | 0.3560 0.4535 0.4627 0.5016 0.4734 0.4606 0.4641 0.4428 0.5104

5.2 Overall Performance (RQ1)

We compare the performance of ConsRec with all baselines. Tables
2 and 3 show the experimental performance on group recommen-
dation task and user recommendation task, respectively. According
to the results, we note the following key observations:

e For the group recommendation task shown in Table 2, ConsRec
outperforms all baselines under most evaluation metrics on two
benchmark datasets. We own our superiority to the proposed
three novel views of consensus modeling, capturing the prefer-
ences of groups in the most comprehensive manner.

e Among all baselines, hypergraph learning-enhanced models (Hy-
perGroup [11] and HCR [16]) achieve better performance than
classical aggregation method (AGREE [4]), indicating the neces-
sity of capturing high-order collaborative information. Besides,
S2-HHGR [39] and CubeRec [6] achieve further improvement
due to the introduction of self-supervised learning objectives.
Nonetheless, our model realizes the best performance.

e For the user recommendation task shown in Table 3, our model
still has advantages. We attribute this to our optimization strategy
that boosts group and user recommendation simultaneously. It
is worth noting that GroupIM [29] and CubeRec [6], though
achieving ideal performance on group recommendation, perform
poorly on user recommendation. This is because they separate
user-item and group-item training, sacrificing the performance
of user recommendation to overfit the group recommendation.

5.3 Effectiveness of Consensus Learning (RQ2)

5.3.1
novatively devise three views, including member-level aggregation,
item-level interests, and group-level inherent preferences. To verify

Multi-view Modeling. To capture the group consensus, we in-
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Table 4: Ablation study on different views with group recom-
mendation results reported. “w/o. M”, “w/o. I”, and “w/o. G”
refer to the variant that eliminates the member-level, item-
item, and group-level view, respectively.

Dataset ‘ Metric ‘ w/o.M  w/o.I w/o.G ‘ Full
HR@5 0.8201 0.8704 0.8593 | 0.8844
Mafenswo HR@10 0.8724  0.9075 0.9005 | 0.9156
g NDCG@5 0.7021  0.7597 0.7376 | 0.7692
NDCG@10 0.7192 0.7718 0.7510 | 0.7794

whether each view has captured distinct aspect of group informa-
tion, we further conduct ablation study. Technically, at each time,
we remove one single view and only fuse the remaining two views
following the same adaptive fusion mechanism as Equation 4. These
three variants are denoted as “w/0. M”, “w/0.I”, and “w/o. G”, respec-
tively. We report the experimental results in Table 4. Due to space
limitations, we only list the results on Mafengwo as CAMRa2011
shares a similar performance pattern. From this table, we can ob-
serve that removing any view degrades the performance, showing
that each view plays a distinct role in capturing the consensus.

5.3.2 Case Study. We further conduct a case study to explore how
ConsRec captures consensus information on the specific exam-
ple. However, our two experimental datasets do not contain any
semantic information (e.g., item’s name or content) to facilitate in-
terpretability. Therefore, we crawl an extra Mafengwo dataset from
its official website. This dataset is named “Mafengwo-S” where “S”
refers to semantics. We move the detailed crawling process to the
Appendix B.1.2. Finally, we obtain a new dataset that contains 11,027
users, 1,215 groups, and 1,236 items. Besides, each item has distinct
semantic information, ie., the location. For comparison, we only
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Figure 4: Visualization of learned item embeddings. We plot two dimensions of item representations on Mafengwo-S. ConsRec
learns the latent properties of items as geographically similar items are close to each other in the embedding space.
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Figure 5: Case study on Mafengwo-S. Both the group and its
members have visited European cities. ConsRec captures this
consensus and suggests Hungary that hits the ground truth.
On the contrary, HCR, GroupIM, S2-HHGR, and CubeRec
are biased by one member’s interests towards Iceland and
recommend unsatisfying islands or coastal cities.

consider HCR [16], GroupIM [29], S>-HHGR [39], and CubeRec [6]
since other baselines have been shown inferior performance.

As shown in Figure 5, this is a group consisting of three members,
and both members and the group have visited European cities.
ConsRec captures the group’s consensus towards European cities
and suggests Hungary that hits the ground truth. HCR, GroupIM,
S2-HHGR, and CubeRec are biased by one member’s preference
toward Iceland and then recommend unsatisfying islands.

Besides, we also investigate the items’ (travel locations) repre-
sentations learned by different methods. Since GroupIM [29] do not
maintain item embedding tables, we only compare ConsRec with
HCR [16], S?>-HHGR [39], and CubeRec [6]. Specifically, we select
different locations from Southeast Asia (SEA), the USA, Europe,
China, and Australia, and visualize their corresponding embeddings
in Figure 4. It is worth noting that ConsRec can learn the latent
properties of items as geographically similar items are close to each
other in the embedding space. On the contrary, the embeddings
learned by other baselines are not that discriminative.

We also present the overall performance comparison on the
group recommendation task. From Table 5, ConsRec consistently
ourperforms other strong baselines, showing its superiority.

5.4 Efficiency Study (RQ3)

We evaluate the efficiency of ConsRec by directly comparing the
total running time (training plus testing) with all baselines. Figure
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Table 5: Performance comparison on group recommendation
task on Mafengwo-S dataset.

Metric | HCR  GroupIM S2-HHGR CubeRec | ConsRec
HR@5 | 04845 05824 05928  0.6237 | 0.6409
HR@10 | 06099  0.6959  0.6546  0.6873 | 0.6993
NDCG@5 | 0.3947  0.4591 0.5348 05357 | 0.5447
NDCG@10 | 0.4353 04983 0.5545 05567 | 0.5642
o0 * o4 V¥ AGREE HHGR
® HyperGroup CubeRec
B HCR “ ConsRec
0.65 ' . 0.45 ® GroupIM
e
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Figure 6: Efficiency Study

6 shows the performance (NDCG@5) and running time (seconds or
minutes) on two experimental datasets. Notably, our method is quite
efficient among various group recommendation baselines and it
achieves the best performance simultaneously. On CAMRa2011, our
advantages are more obvious. Since CAMRa2011 is much denser
than Mafengwo, this phenomenon illustrates our superiority in
alleviating computational overhead in larger datasets.

6 CONCLUSION

In this paper, we reveal the consensus behind groups’ decision-
making and propose a novel recommender ConsRec. To capture the
consensus information, ConsRec designs three novel views, includ-
ing member-level aggregation, item-level tastes, and group-level
inherent preferences. Especially, in member-level view, we utilize
hypergraph learning to realize an efficient and expressive member-
level aggregation. Extensive experiments on two real-world datasets
show the effectiveness and efficiency of ConsRec.
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A NOTATIONS

We list the important notations used in this paper in Table 6.

Table 6: Important Notations

Symbol Description
Uu, 1,6 Sets of users, items, and groups
M,N, K Numbers of users, items, and groups
Us, ij, s The s-th user, the j-th item, and the #-th group
Y Group-item interaction matrix
R User-item interaction matrix
G Member set of the ¢-th group
Y; Interaction set of the #-th group
ULG Embedding tables of users, items, and groups
G™ = (V™ g™ H™) Member-level hypergraph
er The ¢-th hyperedge in G™
me gy, Aggregated user messages of hyperedge e
me; Aggregated item messages of hyperedge e
mgl) Messages of hyperedge e in the [-th layer
—%n .
G Group’s member-level representations
g = G"(t,2) Member-level representation of the ¢-th group
Gi= (Vi &LAY Item-level bipartite graph
6’_ Group’s item-level representations
g = G'(t.) Item-level representation of the ¢-th group
G9 = (V9,E9,A9) Group-level graph
[ Group-level representations
g = GY(t.:) Group-level representation of the #-th group
I Refined item embeddings
G Final group embeddings

Algorithm 1: Training Procedure of ConsRec

Input: Sets of users U, items 7, and groups G, group-item
interaction matrix Y, and user-item interaction matrix R
Output: All model parameters collectively referred to as ©

1 Randomly initialize ©;
2 while not converge do

3 Randomly draw (g¢, i;) from Y and sample negative examples
for g; to constitute Dy, , and compute the group prediction
loss Lgroup w.r.t. Equation 5;

4 Randomly draw (us, ij) from R and sample negative examples
for us to constitute D, and compute the user prediction
loss Lyser wr.t. Equation 6;

5 Take a gradient step to update ® w.r.t. Lgroup + Lusers

B REPRODUCIBILITY

B.1 Datasets
B.1.1

Pre-processing. Following previous works [4, 5, 16], we filter

out the groups which have at least 2 members and have interacted
with at least 3 items for pre-processing. Since both datasets only
contain positive instances, i.e., observed interactions, we randomly
sample from missing data as negative instances to pair with each
positive instance.
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B.1.2  Crawling Process. For the group page in Mafengwo, the
group’s traveling locations as well as joined members’ information
can be directly extracted. Then each member’s personal visiting
records can be obtained from his/her personal page. In this way, we
can collect the group-level interacted locations and each member’s
visited locations. Repeatedly, a new dataset can be constructed
that contains rich semantic information of items. Finally, we get
a new dataset consisting of 11,027 users, 1,215 groups, and 1,236
items. This dataset is named “Mafengwo-S” with “S” referring to
semantics.

B.2 Implementation

We implement ConsRec in PyTorch and optimize with Adam opti-
mizer. For the initialization of the embedding layer, we apply the
Glorot initialization strategy [10]. For hidden layers, we randomly
initialize their parameters with a Gaussian distribution of a mean
of 0 and a standard deviation of 0.1. For hyperparameters, we tune
the number of convolutional layers L in {1, 2, 3,4} and the number
of negative instances in {2, 4, 6, 8, 10, 12}. We empirically set the em-
bedding dimension of 32. We implement the MLP(-) in prediction
layer with a 3-layer setting and ReLU activation.

B.3 Baselines

We compare ConsRec with the following baselines:

e Popularity [8] is a non-personalized method to benchmark the
performance of other personalized methods. It recommends items
to users and groups based on the popularity of items, which is
measured by the number of interactions in the training set.
NCEF [14] is adopted as treating each group as a virtual user for
prediction.

AGREE [4] is a classical attentive aggregation-based group rec-
ommendation solution that selectively aggregates user represen-
tations within a group.

HyperGroup [11] models the group as hyperedge and proposes
a hyperedge embedding-based representation learning method.
HCR [16] is a strong group recommendation baseline that pro-
poses a dual channel hypergraph convolutional network to cap-
ture member-level and group-level preferences.

GroupIM [29] aggregates users’ preferences as group prefer-
ences via the attention mechanism. Particularly, to alleviate the
data sparsity issue, it adds an extra self-supervised learning ob-
jective by maximizing the mutual information between the users
and their belonging groups.

S2-HHGR [39] is another strong baseline that integrates hy-
pergraph learning and self-supervised learning for better group
preferences’ prediction.

CubeRec [6] is the state-of-the-art deep model in group recom-
mendation. It utilizes the geometric expressiveness of hypercubes
to adaptively aggregate members’ interests.

For conducting the performance comparison, we use their official
codes released at Github: NCF?, AGREE*, HCR®, GroupIMé, s2-
HHGR’, and CubeRec?. Since the source codes of HyperGroup [11]

Shttps://github.com/hexiangnan/neural_collaborative_filtering
“https://github.com/LianHaiMiao/Attentive-Group-Recommendation
Shttps://github.com/GroupRec/GroupRec
®https://github.com/CrowdDynamicsLab/GroupIM
"https://github.com/0411tony/HHGR
8https://github.com/jinglong0407/CubeRec
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Figure 7: Ablation study on different hypergraph neural net-
works on Mafengwo with group recommendation results
reported.
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Figure 8: Parameters study on group recommendation task
on Mafengwo.

are unavailable, we implement this method based on its original
paper. Actually, the released codes of some baselines are either
problematic or incomplete, so we refactor their original codes.

To boost the development of group recommendation, we release
ConsRec at https://github.com/FDUDSDE/WWW2023ConsRec. We
also release our implementations of above group recommendation
baselines. For all baseline models, we refer to their best parameter
set-ups reported in the original papers. If we use the same datasets
and evaluation settings, we directly report their results. We conduct
all the experiments on GPU machines of Nvidia Tesla V100 with
32GB memory.

C EXPERIMENTS
C.1 Effectiveness of P-HGNN (RQ4)

Recall that we propose a preference-aware hypergraph neural net-
work to yield a more expressive member-level aggregation. The con-
crete computation mechanism is shown in Figure 3 and Equations

1 and 2. To verify its effectiveness, we conduct the ablation study
by comparing it with two different variants. One is the basic hy-
pergraph neural network (HGNN) [36]. The other variant eliminates
group-item element-wise product as m, = CONCAT (me y, me,i)Wf .
This variant is denoted as “w/o. GI.
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We show the experimental results in Figure 7. From this figure,
“w/o. GI” variant realizes performance improvement compared with
“HGNN”, showing the necessity of preserving the distinct semantics
of users and items. Our P-HGNN outperforms “w/o. GI”, indicating
the effectiveness of the introduction of group-item element-wise

products. In a word, P-HGNN has the advantage of generating
a more meaningful member-level aggregation, thus reinforcing

groups’ representations.

C.2 Parameters Study (RQ5)

In this subsection, we investigate the influence of two key parame-
ters in our model, i.e., the number of (hyper)graph convolutional
layers L and the number of negative samples.

C.2.1  Number of Convolutional Layers. The performance of graph
convolutional network is affected by the number of graph convolu-
tion layers. As the number increases, the convolutional networks
are faced with the problem of over-smoothing [19] where node
representations are not discriminative enough. To illustrate its influ-
ence, we show the performance w.r.t. the number of convolutional
layers in Figure 8. We observe that when the layer is 3, better results
can be obtained on Mafengwo. Therefore, we choose 3 as a default
setting.

C.2.2  Number of Negative Samples. The strategy of negative sam-
pling has been proven rational and effective in [22]. It randomly
samples various numbers of missing data as negative samples to
pair with each positive instance. To illustrate the impact of negative
sampling for our model, we show the performance of ConsRec w.r.t.
different numbers of negative samples in Figure 8. We can observe
that too small negative samples are not enough for optimization.
With the increase of negative samples, the model performance
firstly improves and then becomes stable. Therefore, we choose 8
as a default setting.

D DISCUSSIONS ABOUT CONSENSUS

Though consensus has also been studied in group decision making
(GDM) task [18, 21], here we point out the differences between
GDM task and group recommendation (GR) task to show why
GDM methods can not be directly applied for consensus modeling
in GR scenarios.

o Task setting: GDM necessitates each member’s preferences on all
alternatives (i.e., items) as input, which relies on manual labeling
by domain expertise. Instead, GR task automatically learns user-
level preferences from user historical behaviors.

o Application scenario: Due to the heavy reliance on human efforts,
GDM only works for some specific groups to choose from limited
choices. Differently, GR task can deal with large-scale datasets
that contain huge amounts of items and groups.
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