HAAGERUP’S PHASE TRANSITION AT POLYDISC SLICING

GIORGOS CHASAPIS, SALIL SINGH, AND TOMASZ TKOCZ

ABSTRACT. We establish a sharp comparison inequality between the negative
moments and the second moment of the magnitude of sums of independent
random vectors uniform on three-dimensional Euclidean spheres. This provides
a probabilistic extension of the Oleszkiewicz-Pelczyriski polydisc slicing result.
The Haagerup-type phase transition occurs exactly when the p-norm recovers
volume, in contrast to the real case. We also obtain partial results in higher
dimensions.

2010 Mathematics Subject Classification. Primary 60E15; Secondary 52A20, 33C10.

Key words. polydisc slicing, Bessel function, negative moments, Khinchin inequality, sharp mo-
ment comparison, sums of independent random vectors, uniform spherically symmetric random

vectors.

1. INTRODUCTION

Khinchin-type inequalities concern estimates on L, norms of (weighted) sums of
independent random variables, typically involving a norm which is easily under-
stood (or explicit in given parameters) such as the Ly norm. They can be traced
back to Khinchin’s work [25] on the law of the iterated logarithm, where he es-
tablished such bounds for Rademacher random variables (random signs). Beyond
their original use, most notably, such inequalities have played an important role
in Banach space theory (in connection with topics such as unconditional conver-
gence or type and cotype), see [13, 22, 34, 50]. Considerable work has been devoted
to the pursuit of sharp constants in Khinichin-type inequalities, see for instance
[3, 6, 15, 16, 19, 21, 31, 32, 33, 37, 38, 39, 40, 41, 42, 44, 46, 49, 51], in particular
for sums of random vectors uniform on Euclidean spheres [4, 9, 10, 26, 29] (as a
natural generalisation of Rademacher and Steinhaus random variables, intimately
related to uniform convergence in real and complex Banach spaces, respectively).
This paper continues that line of research.

Throughout, |- | denotes the standard Euclidean norm on R?, inherited from the
standard inner product (-,-). For a random vector X in R? and a real parameter
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p, we write || X||, = (E|X|?)/? for the L,-norm (p-th moment) of the magnitude
of X (whenever the expectation exists, with p = 0 understood as usual as | X||o =
eBlog X1 " arising from taking the limit as p — 0).

Let &1,&9, ... be independent random vectors, each uniform on the unit Euclidean
sphere S?~! in RY. In particular, when d = 1, these are Rademacher random
variables, that is symmetric random signs in R, whereas when d = 2, they are often
referred to as Steinhaus random variables (especially when R? is treated as C).
For ¢ > —(d — 1), let c4(q) be the best positive constant such that the following
Khinchin-type inequality holds: for every n > 1 and real scalars ay,...,a,, we have

n n
Z aréy Z arék
k=1 q k=1 2

In other words, thanks to homogeneity, ¢(q) is the infimal value of ||>"7_; arrll,
over allm > 1 and aq,...,a, € R with Za% = 1. We stress that when d > 1 and
g > —(d —1), this L, norm exists regardless of the coefficients, e.g. seen by noting
that then E|&; + 2|7 = E(|z|? 42 (x, &) +1)%/2 is finite for every z € R?, using that
(,&1) has density proportional to (1 — (u/|a:|)2)% on —|z| < u < |z| (of course,
for a given sequence of coefficients a;, the range of ¢ may be larger, for instance
when d =1, it is all ¢ € R as long as 2?21 +a; never vanishes).

(1)

> cq(q)

Plainly, cq(g) = 1 for ¢ > 2 (by the monotonicity of p — || - ||,). When ¢ > 2, the
reverse inequality to (1) is nontrivial and interesting, but we do not discuss it here
at all, referring instead to, for instance [4, 20, 38] for a comprehensive account of
known as well as recent results.

From now on we consider —(d — 1) < ¢ < 2. We define two constants arising

from two particular choices of weights in (1): a3 = ag = % with n = 2 and
a1:~--:an:ﬁwithn—>oo,
d 1/aq
&1+ & 1 (5)Td+q-1)

® sl =

V2

e

7 (T (%))
T

where Z is a standard Gaussian random vector in R? (emerging by the central
limit theorem). The expression for cg2(g) will be justified later (see Corollary
14), whereas the expression for c¢4.(g) follows by a simple integration in polar
coordinates. Note that

(4) ca(q)<min{cq2(q), cd,00(q)}-
It can be checked that in fact

- -1 < *a
(5) min{cas(q), can (@)} = {Cd,2(Q)7 (d-1)<qg<gq

Cdoo(q); Q7 <q<2,
2

&+
7\f

(3) Cd,oo(q) = lim

n—oo




where ¢ is the unique solution of the equation cq2(q) = ¢4,00(¢) in (—(d — 1), 2).
We have included a sketch of the proof of this fact in the appendix. In Table 1
below we list some numerical values of ¢j. We are grateful to Hermann Koénig for
sharing his notes on these topics, [27].

1.1. Known results. The pursuit of the value of ¢4(g) has a rich history which can
be summarised in one simple statement that in all known cases the trivial bound (4)
is tight. Of course, the history begins with the one dimensional case of Rademacher
random variables. In his study [35] on bilinear forms, Littlewood conjectured that
a(l) =cap0) = %, which was confirmed by Szarek in [46] (see also [32] and [47]).
Haagerup’s pivotal work [19] addressed the entire range 0 < ¢ < 2, showing the
following phase transition in the behaviour of ¢;(g):

c (q _ Cl,2(‘]>7 O<Q<QT7
1 =
Cl,oo(q), q>1k < q < 2>

where ¢} = 1.84.. is the unique solution of the equation ¢y ,2(q) = ¢1,00(¢q) in (0, 2);
in particular, when d = 1, we have equality in (4). We also refer to Nazarov and
Podkorytov’s paper [39] which offered great simplifications. Haagerup devised a
very efficient argument, crucially relying on Fourier-analytic formulae for L,-norms,
which together with [39] paved the path for many further results.

That a similar behaviour occurs in the case d = 2 (Steinhaus variables) was con-
jectured by Haagerup, later confirmed by Konig in [26]: when d = 2, 0 < g < 2,
we have equality in (4) and the phase transition occurs now at ¢5 = 0.47... The
range 1 < ¢ < 2 was in fact earlier dealt with by Konig and Kwapieni in [29] (with
¢ = 1 handled even earlier by Sawa in [45]), whereas —1 < g < 0 (to the best of our
knowledge) appears to be left open, with a natural conjecture that c(q) = c2,2(g).

For the case d = 3: Latala and Oleszkiewicz showed in [33] that c3(q) = ¢3,00(g) for
1 € ¢ < 2 which was extended to 0 < ¢ < 1 in our joint work [9] with Gurushankar
(see Proposition 3 below for a connection to uniform distribution on intervals). The
phase transition occurs in the range —1 < ¢ < 0 at g5 = —0.79.., as established
in our joint work [10] with Ko6nig, so when d = 3 and —1 < ¢ < 2, (4) holds with
equality. Again, —2 < ¢ < —1 appears to be open with a natural conjecture that

c(q) = cs,2(q)-

In higher dimensions d > 4, there are precise Schur-convexity results available for
positive moments due to Baerstein II and Culverhouse from [4] and, independently
Konig and Kwapien from [29]: when 0 < ¢ < 2, it follows in particular that
cd(q) = ¢d,00(q). However, nothing seems to be known about the value of c4(q) for
negative g, except it being (nontrivially) finite, as shown by Gorin and Favorov in
[18] (in a much more general setting). This paper partially fills out this gap.

1.2. Our contribution. Our first result concerns the best constant cg4(g) in the
inequality (1) when ¢ > —(d — 4). It turns out that this is a consequence of a
Schur-concavity type statement that follows directly from the main result of [4]
(see Theorem 6 below).



Theorem 1. For every d > 5 and —(d — 4) < ¢ <0, we have cq(q) = ¢4,00(q)-

Note that the restriction —(d—4) < ¢ < 0 already makes the statement of Theorem 1
meaningful only for dimensions d > 5. Our second result covers the entire range
—3 < g < 0 for dimension d = 4, which exhibits Haagerup’s phase transition at
exactly gf = —2 (see also Table 1 for other values of ¢} and a summary of known
results and open questions).

Theorem 2. For —3 < ¢ < 0, we have

ca2(q), —3<q< -2,
C4(Q =
C100(q), —2<¢<0.

TABLE 1. Numerical values of ¢} (see (38) for its asymptotics),
known results and open questions about the best constant in
Khinchin inequality (1).

d|q; Range where ¢(q) known Phase Left open
transition

1]1.82.. 0<q<2([19]) [19]

21 0.47.. 0<gq<2([4,26,29]) [26] -1<g¢<0

3| —0.79.. —1<q<2([9,10, 33) [10] —2<qg< -1

4] -2 —3<g<2(Thm. 2) Thm. 2 -

5| —3.16.. “1<q<2 (429, Thm. 1) ? “I<q<-1

d| —=(d—=1)40(1) | —(d—4) <g<2([4,29], Thm. 1) ? —(d-1)<qg< —(d—4)

1.3. Relation to volume. It can perhaps be traced back to Kalton and Koldob-
sky’s paper [24] that the volume of hyperplane sections of convex bodies can be
expressed in terms of negative moments (of linear forms in vectors uniform on the
body). Brzezinski’s work [8] makes the same connection for sections of products of
Euclidean balls by block subspaces and our recent work with Nayar [11] explores
this further. In particular, as [10] extends Ball’s cube slicing result from [5] (in the
form of sharp Khinchin inequality (1) when d = 3), Theorem 2 can be viewed as a
probabilistic extension of Oleszkiewicz and Pelezyniski’s polydisc slicing from [43].
In fact, this connection was the main motivation of this work. It is very intriguing
that the phase transition occurs exactly at ¢ = —2 which is when (1) recovers the
result for volume from [43].

More specifically, let D = {z € C, |z| < 1} be the unit disc in the complex plane.
Oleszkiewicz and Pelczynski in [43] proved the following sharp inequality about
extremal-volume (complex) hyperplane sections of the polydics D™ in C": for every
(complex) codimension 1 subspace H in C", we have

(6) voly, 2(D" N H) < vola, _»(D" N (1,1,0,...,0)%),
(7) vola, _o(D™ N H) = voly, (D" N (1,0,...,0)1).
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Here a* = {z € C", {a, z) = 0} is the (codimension 1) hyperplane orthogonal to a

vector a in C™ and (-,-) is the standard inner product in C". If we let Uy,...,U,
be independent random vectors, each uniform on D and let a = (aq,...,a,) be a
unit vector in C™, then
n—1 P
volg, 2 (D™ N aJ‘) = lim (2 —p)E
p—)2—

(such formulae hold for arbitrary origin-symmetric convex sets, and this one follows
immediately from Corollary 11 in [11]). Moreover, the moments of sums of vectors
uniform on balls are proportional to sums of vectors uniform on spheres (in a slightly
higher dimension).

Proposition 3 ([4], [29]). Let d > 3 and let &1,&s,... be independent random

vectors uniform on the unit Euclidean sphere S4=1 in R? and let Uy, Us,... be
independent random vectors uniform on the unit Euclidean ball B4~2 in R4=2. For
every ¢ > —(d —2), n > 1 and scalars ay, . .., ap,, we have
n q d—
E Uk| =
];ak L el S 2+ Zakfk

This identity can be seen in a number of ways, but essentially it follows from the
folklore result that if a random vector & = (£;,. .., &) is uniform on S9!, then its
projection (£1,...,&4_2) onto R4~2 is uniform on B9~2. Specialised to d = 4 and
combined with the previous formula, it yields

VOlQn Q(D”ﬂa = n 1E

Zakﬁk
(see also [28] and [30] for generalisations to noncentral sections). Thus, the upper
bound (6) is Theorem 2 at ¢ = —2, that is c4(—2) = c42(—2). Incidentally, the

lower bound (7) follows immediately from Jensen’s inequality (see, e.g. [8], or [28],
as well as [11] for a stability result).

The sequel is devoted to proofs. First we provide some background and give a brief
summary. Then we move to the proof of Theorem 1 (which is very short) and the
rest is occupied with the proof of Theorem 2.

Acknowledgements. We should very much like to thank Hermann Konig for the
encouraging and helpful correspondence. We are also immensely indebted to an
anonymous referee for their very careful reading of the manuscript and numerous
invaluable suggestions.

2. PROOFS OF THE MAIN RESULTS

2.1. Some background and outline. Theorem 1 will follow easily from the main
result of [4]. As for positive moments, the point is that the range —(d —4) < ¢ <0
5



still warrants enough convexity of the underlying moment functional, specifically
the function |x|? (in fact, its C* regularisation/approximation) is bisubharmonic.

When d = 4, as in Theorem 2, this range is empty, Schur convexity /concavity does
not hold, and more subtle arguments are needed. We will employ a Fourier-analytic
approach (pioneered by Haagerup for random signs in [19]). On its own however,
this does not dispense of all cases. We extend an inductive argument of Nazarov
and Podkorytov from [39] to our multidimensional setting and all negative moments
(building on [10] with new ideas needed to go beyond the —1st moment). The
Fourier-analytic approach relies on the following integral representation of Gorin
and Favorov for negative moments.

Lemma 4 (Lemma 3 in [18]). For a random vector X in R% and 0 < p < d, we
have

(8) BIX| 7 = Ky [ (B0t
Rd

provided that the right hand side integral exists, where

r()
Kyq=2Pr 92 :
PR ()

Of course, the Fourier transform (the characteristic function) goes hand in hand
with independence. The trade-off is that when applied to sums of independent
random vectors uniform on spheres, highly-oscillating integrands appear, more pre-
cisely, the Bessel functions. To recall, for integral £ > 0 and real x, we use the
notation

I(xz+k)

(2), = ) =z(z+1)...(x+k—-1)

for the rising factorial (Pochhammer symbol). Throughout,

RS A
J,,<t>—;om<+u+1><z)

is the Bessel function of the first kind with parameter v > 0. We also introduce the
function

T e A AA S
(9) Ju(t) = 2"T(v + 1)t Jv(t)kz_:k!(wrl)k( > '

2
0
Its importance stems from the fact that for a random vector £ uniform on the unit
Euclidean sphere S¢~! in R? and a vector v in R%, we have
(10) Feiv:€) — jd/271(|U\)

(see, e.g. the proof of Proposition 10 in [29]). This combined with Lemma 4 gives
the following corollary.



Corollary 5. For independent, rotationally invariant random vectors Xy, ..., X,
in R and 0 < p < d, we have

= Fp.d /000 11 (]E jd/2—1(t‘Xk|))tp71dt7

k=1

-p

(11) E

k=1

provided that the right hand side integral exists, where

r(7)
rETH

Proof. Let &1,...,&, be independent random vectors, each uniform on the unit
Euclidean sphere S?!, chosen independently of the Xj. Then X has the same
distribution as | Xj|&, and (8) together with (10) and integration in polar coordi-
nates give

1—
Kp,d = 2 p

-p

E

n
> X
k=1

n
— Eet I Xkl&r) | [¢lP—dqt
p,d /Rd (H € It]
k=1
= Kp,d/d <HE jd/21(|t||Xk|)> [P~ 4dt
R \g=1

= Kp,d|5d71|/ <H ke jd/2—1(th|)> tP=1dt,
0 k=1

where |S971| = %7{2)2 is the (d—1)-dimensional volume of the unit sphere in R%. [
2

2.2. Proof of Theorem 1. Theorem 1 is a straightforward corollary of the fol-
lowing stronger Schur-concavity result. For background on Schur-majorisation, we
refer for example to [7].

Theorem 6. Let d > 5 and let £1,&3,... be independent random vectors uniform
on the unit Euclidean sphere S*~' in R?. For everyn > 1 and 0 < p < d — 4, the
function

-p

(1,...,2p) = E

> Vg
k=1

is Schur-concave on R} .

Proof. Thanks to Lebesgue’s monotone convergence theorem, it suffices to show
that for every 0 > 0, the theorem holds with |-|~? replaced by the function ¥s(z) =
(|z|> +6)~P/2. The gain is that U5 is C> on R?. In view of the result of Baernstein
IT and Culverhouse from [4], it suffices to show that Us is bisubharmonic, that is
AAVs > 0 on R We approach this directly. Recall that Af(|z|) = % "(Jz|) +

f"(Jz|) for a rotation invariant function f(|z|) on RY, f € C?(R,). We have,

—24

AAs(z) = p(p+2) (|22 + 5)
7

(Alz|* + Blz|* + C),



where A= (p—d+2)(p—d+4), B=26(d+2)(—p+d —4) and C = §2d(d + 2).
For p < d — 4, plainly A > 0 and B? — 4AC = 85%(d+2)(p+4)(p — d +4) < 0.
This shows that Ws is bisubharmonic on R? for every ¢ > 0. (]

Remark 7. The crux of Baernstein II and Culverhouse’s work is the observation
that the bisubharmonicity of a continuous function ¥ on R% on one hand is sufficient
for the Schur-convexity of the corresponding moment functional from Theorem 6,
EV (22:1 ‘/xkfk) (and necessary when ¥ is radial), and on the other hand, it is
equivalent to the convexity of the function

t > EU (v + ViEE)

on R, for every v € R% In the sequel, we will need to examine the behaviour of
this function on (0, 1) for unit vectors v when ¥(x) = |z|~? (see Section 3.1 below).

2.3. Outline of the proof of Theorem 2. Recall that here d =4 and &, &, ...
are independent random vectors uniform on the unit Euclidean sphere S in R%.

For notational convenience, we put ¢ = —p, 0 < p < 3 and set
&+6&6|" 9 (3 —p)
(12) Oy(p) = can(q)? =E |22 =27/ 7
V2 re-5r@E-35)
(1) Culp) =anmle) =E|Z| =2 (2-0)
o] ,00 B) 9 ,

where Z is a standard Gaussian random vector in R* (consult (2) and (3) to justify
the explicit expressions on the right hand sides). Moreover, let C(p) be the best
constant such that the following equivalent form of (1),

n n —p/2
> oa&k| < Clp) (Z ai)
k=1 k=1

holds for every n > 1 and every real scalars aq, ..., a,.

-p

(14) E

Theorem 2 is a consequence of the next two results, where we break it up into two
regimes.

Theorem 8. For 0 < p < 2, we have C(p) = Coo(p).
Theorem 9. For 2 < p < 3, we have C(p) = Ca(p).

As optimality is clear, for the proofs of these theorems, we need to show that (14)
holds with the specified values of C(p).

2.3.1. Outline of the proof of Theorem 8. Thanks to homogeneity, we can assume
that the ay are positive with Zai = 1. Using the Fourier-analytic formula for
8



negative moments (11) and Holder’s inequality, we obtain
Z akk = Kp,a / (H jl(akt)> tP=1de
k=1 0 k=1
n o B a2
< Kpa4 H (/ ‘jl(akt”ak tp—ldt>
0

i a2
= ripa [ [ (a"F (p,ai?)™ .

where the following function has emerged (after a change of variables in the last
line)

-p

(15) E

o0
(16) Fos)= [ h@Feid ps>o
0
This integral is finite as long as p < 3% because j; (t) = O(t73/2) (see (22) below).

The next step is to maximise, individually, the terms in the product on the right
hand side of (15), that is to look into supy, sP/2F(p, s). Heuristically, if we aim
at proving that the worst case is Gaussian, that is when a; = --- = a,, = % with
n — oo, a natural candidate for this supremum is then given by s — oo, which
would correspond to the inequality

#/2F(p,s) < lim sp/2/ i (8) 47~ dt = lim/ i (t//3)] 471t
§— 00 O S§— 00 O

o0 2
:/ e /8=t
0

(the last line can be justified using j;(t) = 1 — % +o(t?) = e t/8 4 o(t?), recall the
power-series definition (9) of j;). Were it true for all values of p and s, we would
get

(17)

—-Pp

oo
E < Kp’4/ e /814t = Cx(p),
0

n
> anék
k=1

finishing the proof. Unfortunately, the integral inequality (17) fails in certain ranges
of p and s, where additional arguments and ideas are needed. This is how we will
proceed.

Step 1: Inequality (17) holds for all0 < p < 2 and s > 2.

As above, this gives the following partial case of the theorem when all coefficients
ay, are small.

Corollary 10. When 0 < p < 2, inequality (14) holds with C(p) = Cx(p) for
2)1/2‘

every n > 1 and all real numbers a1, ..., a, with maxp<, |ag| < % (ZZ:1 aj

Step 2: For i < p < 2, we employ induction on n to cover the case maxp<y |ak| >
1 n 2 1/2
V2 (Chorad)



This will give the theorem when p > 1. For the induction to work, (14) is strength-
ened, but the base of the induction fails for small p (roughly p < 0.2), hence the
next two steps. Fortunately, when p is small, the integral inequality holds for a
wider range of s.

Step 3: Inequality (17) holds for all 0 < p < i and s > 1.3.

Corollary 11. When 0 < p < %, inequality (14) holds with C(p) = Cxs(p) for every

1/2
n > 1 and all real numbers ay, ..., a, such that maxy<, |ak| < ,/% ( he1 a%) /2,

Finally, when one of the coefficients ay, is large, the inequality holds for a different
reason (we will use a sort of projection-type argument).

Step 4: When 0 < p < %, inequality (14) holds with C(p) = Coo(p) for everyn > 1
and all real numbers ay, ..., a, with maxy<y, |ak| > \/% (22:1 ai)1/2.

2.3.2. Outline of the proof of Theorem 9. If we want to prove that the worst case is
now n = 2 with a; = ay = %, it is only natural to expect that sup;, sP/2F (p, s)
is attained at s = 2, corresponding to the integral inequality

(18) "2 F(p,s) < 27/°F(p,2).
We will proceed similarly, with only the first two steps sufficing, as the inductive
base now holds in the entire range.

Step 1: Inequality (18) holds for all 2 < p < 3 and s > 2.

Taking this statement for granted for now, we derive the following corollary.

1/2

Corollary 12. When 2 < p < 3, inequality (14) holds with C(p) = Ca(p) for every
2
k

n > 1 and all real numbers ay, ..., a, with maxg<y, |ag| < % (ZZ=1 a

Proof. Assuming > a? = 1 and applying (18) to the right hand side of (15) yields
n -p

> aréy
k=1

< hipa - 2PPF(p,2) = 2p/2’4p74/ ji(t)* P~ dt
0

E

= 2P2R|&; + &| 7P = Cy(p)

(for the penultimate step, recall again (15)). O

Step 2: For 2 < p < 3, we employ induction on n to cover the case maxggy |ax| >
1 n 2\1/2
75 (Xhorad)

To carry out these steps, we first establish a variety of indispensable technical
estimates. After this has been done in the next section, we will conclude the proof
in Sections 4 and 5.
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3. ANCILLARY RESULTS

3.1. Two-coefficient function. By rotational invariance,
Elaiéy + azVi&s| P = Elarer + agVtés| .

We begin with some properties of the function ¢ — E|aje; +agv/t€:| 7P, particularly
important in the inductive part of our proof. Recall the definition of the (Gaussian)
hypergeometric function which shows up very naturally, as explained in the next
lemma. For real parameters a, b, ¢, it is defined for |z| < 1 by the power series,

= (a 2k
oF1(a,b;¢2) = Z (zi)(:)kk'

k=0

Lemma 13. Let d > 1 and let £ be a random vector uniform on the unit Euclidean
sphere S41 in R?. Let p<d—1. Then

—d+2 d
Ele, + VIE| ™ = o F (127 p—ati e )

—t
2 "2’
d+2
() ,) (p )ktk
Z EEC 0<t<l.
k=0 5 k )
Proof. Fix 0 <t < 1. Let 0 = (e1,£) be the first coordinate of £. Thus

Ele; 4+ V€| P = E(1 + 20 + t)P/?
=(1+t)7P%E (1 ( + 2‘[9)

1+t
—p/2 p/2 2\/E 2
(e (55)
From (10),
62]6 (Zk)
22k . kN d/2)’
hence

Eler +Vig|? = (1+1)"/ Zng{d}zgk"”((lﬂ)Q) |

Since (p/2)q), 22k — (%)k (%)k, we get
pp+2.d 4 )

E te] 7P = (1+t)"P/%F
ler + V| (1+1) 21(4, Y AT ie
pp—d+2 d
= F - — 7~t
2471 (27 2 ) 27 )
where the last identity follows from Kummer’s quadratic transformations for the

hypergeometric function oF; (see, e.g. 15.3.26 in [1]). The desired power series
expansion now follows from the definition of 5 F}. [l

This in particular yields the explicit expression for ¢42(q) from (2).
11



Corollary 14. Ford>1 and p < d — 1, we have

Pp—d+2.d.): I (§)T(d—p—1)
o2 r()ra-g-

Proof. The expression on the right hand side follows from Gauss’ summation iden-
tity (see, e.g. 15.1.20 in [1]). O

El& + &P =F (

Remark 15. In addition to the proof of Lemma 13 presented above we would like
to sketch a different argument, in the spirit of Lemma 1 from [4], which bypasses
the explicit use of the hypergeometric function. Let ¥(z) = |z|7P. Since on the
unit sphere ¢ € 971 is the outer-normal, by the divergence theorem (for the usual
Lebesgue nonnormalised surface integral),

1

2Vt Jgas
1 :

i o div,, ((V\IJ)(el + \/iﬂ;))dx

% /B (AW)(er +Viz)de

S et Vel g =

at Jou- ((T0)(er + Vi), €) de

for every 0 < ¢t < 1 (note that e; + v/tz on BY is away from the origin where ¥ is
singular). Computing the Laplacian yields the identity

d _ —d+2 o
— ler + V| pdfzu/ ley + Vx| 7P 2du.
dt Jga— 2 BY

Writing the last integral using polar coordinates allows to compute the higher
derivatives by simply iterating this identity. Thus

d _ plp—d+2) 1 / I
p_ P
(19) th|el + Vig| 5 5] g le1 4+ Viz| dz
plp—d+2) 1 /1 / d—1 —p—2
= + Vir2€|7P74d
2 1941 Jo Jga- e el -

and

d? p pp—d+2)(p+2)(p—d+4)
PR— p:
dt2E|€1+\/¥;€| 2 9

1 1
. 5] / rd“/ ler + Vitrz| P~ *dzdr,
0 Bd

etc. It then remains to evaluate these derivatives at ¢ = 0 to get the power-series
expansion coefficients.

Corollary 16. Let ¢ be a random vector uniform on the unit Euclidean sphere S®
inR* Let 0 < p < 2. Then

_ p2—p), p*(4—p?) ,
E P <1 — - ¢
fer + V] 8 192 :
12

0<t<l.




Proof. When d =4 and 0 < p < 2, all the terms in the power series from Lemma 13
but the first one (which equals 1) are negative. Dropping all but the first three thus
gives the desired bound. O

Corollary 17. Let d > 1. Let £ be a random vector uniform on the unit Fuclidean
sphere ST in RY. Let 0 < p < d —2. Then for every vector v in R? and a > 0,
we have

Elv + a&|™? < min{|v|7P,a"P}.

Proof. By homogeneity and rotational invariance, we can assume without loss of
generality that v = e; and 0 < a < 1 (note in particular that rotational invariance
implies E|e; + a&|™? = E|&1 + aé2| P = El|ae; + £| 7P, so the case a > 1 reduces to
the case 0 < a < 1 by multiplying both sides by a?). From (19) we see that the
function a — Ele; + a&| P is nonincreasing, in particular Ele; + a&|™? < 1. O

3.2. Bounds for the inductive base. We remark that in several places we need
to use numerical values of some special functions such as ji, I', ¥ = (logT')" and
will implicitly do so (to the required precision).

Based on tables left by Gauss, Deming and Colcord in [12] found the value of
mingso I'(z) correct up to the 19th decimal which we record here (although we will
not require such precision).

Lemma 18 ([12]). We have,
m;glr(x) = 0.8856031944108886887..,

uniquely occurring at ro = 1.46163214496836226...

To check the base of the induction from Step 2 in Section 2.3.1, we will need the
following two-point inequality.

Lemma 19. For every % <q¢<1land0<t <1, we have

L a0-q9), ¢(1-g%) <T(2-q) (2 <H>q> ,

2 12 2

Proof. We let Q4(t), Rq(t) denote the left hand side and the right hand side respec-
tively and set hq(t) = Rq(t) — Qq(t). We examine its second derivative,
2 2
g2 €040
W(t) = 29T (2 ~ q)alg + 13— 1)~ 4 TLZT)
which is clearly decreasing in t. Therefore, for all 0 < ¢ < 1, g (t) < hy(0) and for
0 < ¢ < 1, with the aid of Lemma 18,

34tz

hy(0) =T(2—q) — (3/2)""q(1 - q)

“20.q(1+q) ¢

~

= 0.3175.

A~

> 0.88 — (3/2)%-

13



As a result, hy(t) is concave on [0,1]. To show that hy(t) > 0 on [0,1], it thus
suffices to verify that (A) hy(0) > 0 and (B) hy(1) > 0, for all % <g< 1.

(A): hg(0) > 0is equivalent to I'(2—¢q) (2 — (2/3)?) > 1, or after taking logarithms,
ola) > f(a) with glg) = IogT(2 = 0). f(g) = ~log2 ~ log(1 — 4(3)7). Both / and
g are clearly convex (note f(q) = —log2+4 > 7 [5(2)1*/k). For 5 < ¢ <0.35, we
lower-bound g by its supporting tangent at ¢ = £, g(q) = £(q) = g(3)+9'($)(qa— %)
Since £(3) — f(3) > 0.0005 and £(0.35) — f(0.35) > 0.0003, thanks to the convexity
of f, we conclude that indeed g(q) > f(q) for § < ¢ < 0.35. For the remaining
range 0.35 < ¢ < 1, we crudely have, using the monotonicity of f and Lemma 18,

f(q) < f(0.35) < —0.124 < 10g(0.885) < logT'(2 — q) = g(q)-

(B): hq(1) > 0is equivalent to I'(2—¢q) > 1— (12 2 w Taking the logarithms
and using log(1l — z) < —z, z < 1, it suffices to show that
¢1-q)  (1-q*)

f(q) =logT'(2 —q) + 5 T 13

is nonnegative. This in fact holds for all 0 < ¢ < 1. Indeed, f(0) = f(1) = 0 and
for0<g<1,

> 5
2
Z q—i—k: 1%

It suffices to show that this is negative for 0 < ¢ < 1 so that the concavity of f
will finish the argument. To this end, we upper bound the convex function h(q) =

Yo m by linear chords. For 0 < ¢ < 1, we have, h(q) < hi(q) = %h(OH—
%h(%) and since h(0) = %2 -1, h(%) = %2 —4, we get hy(q) = %(772 —9)g+ %2 —1.
We check that hy(q) —¢*— 3 is maximised at ¢ = ”259 with the value less than —0.1.
For 1 < ¢ <1, we have h(q) < ha(q) = T4h(3) + q_j h(1) and since h(1) =
get ha(q) = 2( 12- ” )g+ % — 8. Finally, we check that ha(q) —¢? — 3 is maximised
2 Wlth the value also less than —0.1. ]

6,We

at g =

We emphasise that in part (B) of this proof, we have shown that when ¢t = 1, the
inequality in Lemma 19 holds for all 0 < ¢ < 1. This combined with Corollary
16 leads to the following result, important in the sequel in the proof of integral
inequality (17).

Corollary 20. Let ¢ be a random vector uniform on the unit Euclidean sphere S3
inRY. Let 0 <p<2. Then

Ele, + &7 <T (2— g)

equivalently

(20) AwmuW#*m<sz@m>
14



Proof. To explain the equivalent form involving j, note that, E|le; + &P = E|€ +
&'|7P, for an independent copy &’ of £, thanks to rotational invariance. It remains
to use (11) which gives E[&; + &| ™ = kp4 [ [i1(t)[*tP~ dt and plug in the value
of Rp4- O

3.3. The integral inequality: 0 < p < 2. We record for future use the following
bounds

. 2!
1) ol <ew (-5 - 5).  0<r<a,
(22) (] < (8/m! 2 (e -7Vt

where the first one appears as Lemma 3.1 in [43] (see also [8, Lemma 3.6] for the
proof of a more general statement) and the second one can be found in Watson’s
treatise (see [48, p.447] as well as [14, Lemma 4.4]), which in particular gives

2 1/4
(23) o< /me () e ez
-

We define
> 2
(24) H(p,s) = / (e_St /8 _ |j1(t)|s)tp_1dt, 0<p<2, s>1
0

and immediately observe that after a change of variables one integral can be ex-
pressed in terms of the gamma function,

o
(25) G(p,s) = / e A1t = sP/29%/271 (p)2),
0

Recall (16), F(p,s) = [y li1(t)|*tP~1dt, so

(26) H(pa S) :G(p7s) 7F(p75)'
Then the crucial integral inequality (17) is equivalent to H(p, s) = 0.

Our main goal and result here is that the integral inequality H(p, s) > 0 holds in
rather wide ranges of parameters (p, s) (however, it does not hold for all 0 < p < 2
and s > 1 which, as already noted, would have been enough to deduce Theorem 8).

Lemma 21. The inequality H(p,s) > 0 holds in the following cases
(a) 0<p<2ands>2,
(b)0<p<§ands>13.

For the proof, we will need several rather intricate estimates on various integrals.

The general idea we employ here follows [43] and is to first use the explicit bounds

on j; from (21) and (23) to get H > 0 in certain but not all cases and then extend

them by interpolating in s (exploiting the simple dependence of G on s). This

is in contrast to several works, e.g. [8, 9, 10, 14, 26, 37] which heavily rely on

the approach developed by Nazarov and Podkorytov in [39] to integral inequalities
15



with oscillatory integrands. We also refer to recent papers [2] as well as [36] for
connections between such integral inequalities and majorisation.

We begin by setting
4P (27 - 151/2)=3/2
3s/2—p

+ 23p/2=15p/2 <r (p/2) —

U(pv S) =
(27)

[(p/2+2) T(p/2+4)
6s + 7252 >

which emerges in the next lemma (following Lemma 3.2 from [43]).

Lemma 22. For p < 3s/2, we have
F(p,s) <U(p, ).

Proof. Using (21) and (23) with tg = 4, we get

00 | [es} t2 t4 1
F(p,s):/O i1 (t)|°¢? dt</0 exp(—88—53.27)t1’ dt

8 s 4[)—33/2
* <151/4(27r)1/2> 5572~ p’

valid for p < % After the change of variables u = st2/8, the first integral becomes

o0 2
2 — — —_uz —
23p/2=1 ¢ p/2/ e 6 e P2 1 du.
0

w2

We estimate the first exponential using e™® < 1 —x + %, x > 0, which gives the
bound
> w? oul I'(p/2+2) T(p/2+4)
1—— P2y =T (p/2) —
/0 ( 65+7252)e " u=T0/2) 6s | 7252
on the integral appearing in the above expression. (I

Lemma 23. The inequality
U(p,s) < G(p,s)

holds in the following cases
(i)0<p<i and s > 1

(i) 0 <p< 2 ands

WV
Do

(i) 0 < p< 2 and s > 5.

Proof. Note that U < G is equivalent to the following inequality (after cancelling
the terms containing I'(p/2) on both sides, factoring out I'(p/2 + 2) and moving
terms across using that 3s/2 —p > 0),

3s 125 — (5 +2) (5 +3) sP/2+2
2 P 144 “Tw2+2)

(28) (2 - 15%/2)3/297P/2 <

16



To shorten the notation, let a = (27)*/2 - 15/ and

A(p,s) = 9—p/2 (?;9 —p) 12s — (g +2) (% +3)

144

which is decreasing in p and increasing in s. In each of the cases we will simply
replace A with its smallest possible value given the range of p and s, so we let
P = %, 51 = %, Py = §7 sg =2 and p3 = 2, s3 = % and have A(p,s) > Ay, where
Ay, = A(px, si) for k =1,2,3 in cases (i), (ii), (iii), respectively. Then it suffices to
prove that

Sp/2+2
Ara® > —————.
M7 T(p/2+2)

We take the logarithm and consider
_ p p
f(p,s) = sloga+log A — (5 + 2) log s +logT (5 + 2) .

Our goal is to show that f(p,s) > 0. We observe that

0 1 1 /p 1 1 /pe
_ = —— — - < —— —
apf(p,s) 210g5+2¢(2+2)\ 210g5k—|—21/1<2 —|—2>

in each case respectively and the resulting numerical values on the right bounded
above by —0.015, —0.02 and —0.029, k£ = 1,2, 3. Similarly,

p/2+2 S

2f(p,S)=10ga— /loga—w
Os s

Sk

with the right hand side bounded this time below by 0.34, 0.39 and 0.47, k£ = 1,2, 3.
Thus f(p, s) is decreasing in p and increasing in s, so

f(p,s) = f(pr, sk)

and after plugging in the explicit numerical values, the right hand side is bounded
below by 0.041, 0.049 and 0.032, k = 1, 2, 3, thus proving (i), (ii) and (iii). O

The next two lemmas are vital for the interpolation argument.
Lemma 24. For % < p < 2, we have
F(p.8/3) < e "°G(p,2).

Proof. Using (23) with to = 5, we get

fe%s) 5p74
) / i (O)F3 =1t < (8/m)Y/3(25/24)%/3 ——
5 —
Wthh fOI‘ p g 2 gives
= P _gpp—4 9
/ [ (O[3 1dE < (8/m)4/3(25/24)/32 5.

s 9 32/3.58/374/3
17



k kt+1

m’ m

Gl R
{5

(we have used that [j;| < 1 and that j; is monotone on [0,5], the former justified
by (10) and the latter e. g in [43], p. 290, in the proof of Proposition 1.1). Now,

fol/m tPldt = < A resulting bound on e?/621=P [ [j; (t)[8/3tP~1dt is

anP 08 P
of the form
_ p
= Z Akay,
k

with explicit positive numbers Ay, ar. We check that L(p) = log h(p) < logT'(p/2) =
R(p) for 0.8 < p < 2 relying on the fact that both sides are clearly convex (recall
that summation preserves log-convexity). Specifically, we divide the interval [0.8, 2]
into 12 consecutive subintervals [u;,u; 1], u; = 0.8 +0.14, ¢ = 0,1,...,11 and on
each interval we lower-bound R(p) by its tangent put at the middle v; = %ttt
Li(p) = R'(vi)(p — vi) + R(v;) and then check that ¢;(p) > L(p) by checking the
values at the end-points p = u;, u;+1, which are gathered in Table 2. ([

We divide the interval [0, 5] into consecutive subintervals of the form [
k=0,1,...,5m — 1 with m = 100 and crudely bound

5
[ inpree-ar
0

1/m 1 5m—1
< P e+ —
(30) /0 > maX{

k=1

], for

8/3

)

TABLE 2. Proof of Lemma 24: lower bounds on the differences at
the end-points of the linear approximations ¢; to R(p).

‘ 012 3 4 5 6 7 8 9 10 11
1 58 9 10 12 13 14 14 15 15 15
4 8 9 10 11 13 14 14 15 15 15 14

0 () — L)
103 . (li(wit1) — L(uig1))

Lemma 25. For 0 < p < , we have

F(p,1.3) < e®17G(p,1.7).

Proof. Fix 0 < p < i. We break the integral on the left hand side into the sum of
4 integrals A; + --- + A4 over (0,1), (1,5), (5,10) and (10,00). For the first one,
we use (21),

13 /2 4 13 377
()13 1— t2 7t4 t 1
li1(t)] <exp{ 10(8+3~27>}< 0 +38400 . 0<t<

(the last inequality obtained by taking the first terms in the power series expan-
sion of the penultimate expression, which gives an upper bound as can be checked
directly by differentiation). Integrating against t?~! yields

1 13 377 1 13 377

_ P .
p 80(p+2) * 38400(p+4) ~p 80(p+2) * 384004
18




For the last one, we use (23) with ¢, = 10,

A< [ ((8/7r)1/2(100/99)1/4f3/2)1'3t1’*1dt: G 10"
4 10 1113/40 . 53/10(371')13/20 39 — 20p
253/20 10P

1113/40 . 53/10(37)13/20 34

For Ay and As, we use Riemann sums. First, without any error term thanks to the

monotonicity of j; on (1,5),
k+1 L
s 1 (1 + +) }/ tP=Ldt
m 1_;'_%

e S e (14 £)
b (o)) et

Second, on (5,10), we choose the midpoints and bound the error simply using the
supremum of the derivative via the crude (numerical) bound

d : 1.3
"
i o)

1.3

1.3

sup < 0.06

te(5,10]

. . . . . J J J

(since | &1 (0)]"2] = 13} (12}, (1)) and jj(t) = 222 = 2900 — 454 the
function under the supremum can be expressed in terms of Jy and J; and the supre-
mum can be estimated by employing the precise polynomial-type approximations

to Jo and J; from [1], 9.4.3 and 9.4.6, pp.369-370). This leads to

5m—1 54 kL 10
kE+1/2 1
1(5+ +1/ ) / tp’ldt+0.06—/ tPlde
m 5 2m Jy

( k:—i—l/Q) N

With hiIldSlght7 we choose m = 200. Adding these 4 estimates together (call the
right-most hand sides of these bounds By, ..., Bs) and multiplying through p, it
suffices to show that L(p) < R(p) for 0 < p < 7, where

(54 k/mp-l 3.5
m 100m~

L(p)=p-(Bi+--+ By), R(p) = (62/1723/21.7—1/2)1)11 (g + 1) )

Plainly, R(p) is convex (as being log-convex), whilst

ng 13 N 377
~ 80  40(p+2) 153600

p+c1 - plOP + co - pBP + Z Aipal

with positive constant ci, ca, \; (specified above) and a; > 1 (of the form (1+k/m),
k > 0). Thus, L(p) is also convex and now we proceed similarly to what we did in the
proof of Lemma 24. Note that L(0) = R(0) = 1. For 0 < p < 0.02, we lower-bound,
R(p) > lo(p) = 1+R'(0)p and check that £4(0.02)—L(0.02) > 1075 > 0, to conclude
R(p) = L(p), 0 < p < 0.02. We divide the remaining interval (0.02,0.25) into
6 intervals: (0.02,0.05), (0.05,0.1), (0.1,0.15), (0.15,0.2), (0.2,0.23), (0.23,0.25),
denoted say (uj, u;i+1), 4 =1,...,6, choose their midpoints v; = L;““ and lower-
bound R(p) by its tangent £;(p) = R'(v;)(p—v;)+ R(v;) and check that ¢;(p) > L(p)

19



at p = u;, u;41 (see Table 3) to conclude that R(p) > L(p) for all u; < p < uit1
1=1,...,6, by convexity. ([

TABLE 3. Proof of Lemma 25: lower bounds on the differences at
the end-points of the linear approximations ¢; to R(p).

i|]1 23456

We are ready to prove the main inequalities of this section.

Proof of Lemma 21. First we show (a). Lemma 22 combined with Lemma 23 (ii),
(iii) gives (a) for all 0 < p < %, s =22 aswellasall 0 < p < 2 and s > %,
respectively. It remains to handle the case % <p <2 2<s<K

We apply
Hélder’s inequality, Lemma 24 and (20), equivalently F(p,2) < G(p,2), to get,

D woloo

8—3s 35—6

F(p,s) < F(p,2) = F(p,8/3) 2
8—3s 35—

<(6w2) 7 (eviw) T
= e P T 2PID(p/2).

By concavity, log s < 552 +log2, s > 2, thus

(31) eTPT L sTP/29P2 . s> 9 p >0,
which gives (a).
To show (b), we proceed similarly. Lemma 22 combined with Lemma 23 (i) gives

(b) for all 0 < p < % and s > 1.7. In the remaining case 1.3 < s < 1.7, from
Hélder’s inequality, Lemma 23 (i) and Lemma 25, we obtain

10s—13 17—10s

Flp,s) < F(p,1.7) "7 F(p,1.3)" %
10s—13 17—10s

< (G(p, 1.7)) (62”/17G(p, 1.7))
p 17—10s

— et 1.77P/223P/271D(p)2).

7—10s

Thanks to concavity, log s < %s—l—i—log 1.7, s < 1.7, which gives e HE 1 7P/ <
s7P/2 whence (b). O

3.4. The integral inequality: 2 < p < 3. We follow the general approach from
the previous case p < 2. Recall (16), F(p,s) = [~ [j1(t)|*t*~'d¢ and that the
crucial integral inequality (18) reads s?/2F(p,s) < 2P/2F(p,2). Thus here we let

(32) H(p, s) :s*p/22p/2F(p,2)fF(p,s), 2<p<3, s>1.
20



Note that we can express F'(p, 2) explicitly: using Corollary 5 and (12), we obtain

F(p,2) = / 11277 dt =k, JEl6 + &I 7P = K, 12772 Cy(p)
0

In view of (32), we therefore set

(33) G(p,s) = s P/22%/>71T(p/2) D(p)
with
(34) Dpy=—TB8-0

so that

H(pa S) = G(p, S) - F(p7 5)'
The main result of this section is that integral inequality (18) also holds for all
s = 2. We emphasise that H(p,2) = 0.

Lemma 26. The inequality H(p, s) > 0 holds for all2 < p < 3 and s > 2.

This will be established in a very much similar way to the previous section: crude
pointwise bounds on j; will suffice to handle the case s > % which will then be
extended to s > 2 by interpolation.

Lemma 27. With D(p) defined in (34), the function p — log D(p) is increasing,
convez and positive on (2,3).

Proof. Let x = 3;—”, 0<z < % By the Legendre duplication formula (see, e.g.
6.1.18 in [1]),
I'(2z) 22211 ()
D(z+3)T(z+32) - Val(z + )Tz + 3)
Thus the convexity of log D(p) on (2, 3) is equivalent to the convexity of

f(z) =logI'(x) —logT’ (x+ ;) —logT <x+ g)

on (0, 3). Using the series representation of (logI'(z))” = 30" (2 +n) =2 (see, e.g.
6.4.10 in [1]), we get

D(p) =

0o 1 00 1 0o 1
1
xTr) = _— —
f(2) ;(Hn)‘z T;(a:—l—n—k%p ;(x+n+3/2)2
1 1 © 1 > 1
=5 + -2
xr2 (a:+%)2 ;(ax—&—n)? ;(a@—l—n—i—%)Q
F0r0<x<%,
00 1 o) 1 o] 1 0o 1 772
9 S - _9 =Ty
7;1(“”)2 ;<w+n+%>2 nz<%+n>2 n;(m%v 2



thus

The right hand side is clearly decreasing (e.g., by looking at the derivative), so for
O<z < %, it is at least 4 — 1 — 7r72—1—4: 7T— ”—; which is positive.

Moreover, %logD(pﬂp:g = 1_7"’ > 0 (v = 0.57.. is Euler’s constant), so D(p) is
strictly increasing on (2,3) with D(2) = 1. O

Lemma 28. Forall2<p <3 ands> %, we have

U(p,s) < G(p, s).

Proof. We let a = (2m)1/2 . 15Y/4 and inserting the definitions of U from (27) and
G from (33), the desired inequality becomes

4Pq =% _ _ F(p/2+2) F(p/2+4>
4Pa" p/293p/2=1 (T (1/9) —
35/2—p e ( (v/2) 6s ! 7257
—p/293p/2-11 (P
< s7202p () ),
equivalently,
op/2+1 s 125 — (p/2+2)(p/2 + 3)

VTS sP/3+2 < g2 (g) (D(p)—1)+r(§+2) . .
The right hand side is clearly increasing with s (D(p) > 1 by Lemma 27), whereas
the left hand side is decreasing with s (for every fixed 2 < p < 3), as can be checked
by examining the derivative of log(a~*sP/2*2). Therefore, it suffices to prove this
inequality for s = %. Moreover, after replacing I'(§) on the right hand side with
0.88 (see Lemma 18) and I'(§ + 2) with I'(3) = 2, it suffices to prove that the

function

32— (p/2+2)(p/2 + 3) b(16/3)p/2
+ 36 T 4—p

where b = 2a78/3(8/3)2, is positive for 2 < p < 3. We put

p/2
YO & o2+ 2)(p/2+ )

f(p) = 0.88(8/3)*(D(p) — 1)

L(p) =10

and g
(p) = 0.88(8/3)*(D(p) — 1) + 3
which are both convex (D(p) is even log-convex, Lemma 27). For 2 < p < 5, we
use the tangent ¢1(p) = R(2) + R'(2)(p — 2) as a lower bound, R(p) > ¢1(p) and
check that at p = 2, p = g the linear function ¢; dominates L (the difference is
0.017.. and 0.076.., respectively), which then gives R > ¢; > L on (2, g) Similarly,
for 2 <p <3, R(p) > l2(p) = R(5/2) + R'(5/2)(p— 5/2), and ¢, — L at p = 2 and
p=3is 1.19.. and 3.77.., respectively. This finishes the proof. (I

=

Lemma 29. For all 2 < p < 3, we have

F(p,8/3) < e /°G(p,2).
22



Proof. Consider

L(p) =log F(p.8/3).  R(p) = log (¢ ™/*G(p,2))

which are both convex (recall Lemma 27). Using that, we crudely bound R(p)
from below by tangents: 71(p) = R(2) + R'(2)(p — 2) on (2,2.5) and ra(p) =
R(2.5) + R'(2.5) (p — 2.5) on (2.5,3) and then compare their values at the end
points with upper bounds on L to conclude that 1 > L on (2,2.5) and 7o > L
on (2.5,3). Estimates (29) and (30) added together (applied with m = 100 as in
Lemma 24) yield

L(2) < 0.35, L(2.5) <0.56, L(3) < 0.96,
whereas we check directly that
r1(2) > 0.359, r1(2.5) > 0.58, 712(3) > 1.48.

Comparing these values finish the argument. O

Proof of Lemma 26. Lemma 22 combined with Lemma 28 show that H(p,s) > 0
for all 2 < p < 3 and s > 8/3. To cover the regime 2 < s < 8/3, we first apply
Hélder’s inequality in the exact same way as in the proof of Lemma 21 (a),

8—3s 35—6

F(p,s) < F(p,2) 2 F(p,8/3) =
=G

(p,2) and Lemma 29, we get that

and now, with F(p,2)
F(p,s) < e T G(p,2).

Finally, using (31), the right hand side gets upper bounded by the desired G(p, s).
([l

3.5. Miscellaneous facts. Our first result here is a straightforward extension of
Lemma 8 from [29] to negative moments (see also Lemma 3 in [10]).

Lemma 30. Let 0 < p < 1. Let n,d > 1 and let Xy,...,X,, be independent
rotationally invariant random vectors in R%. Then

n
> vkl X
k=1
for arbitrary vectors vy, ..., v, in R%, where
VT (432
—
L (32)T(5)

Proof. Thanks to homogeneity, we can assume that the v; are unit. Thanks to ro-
tational invariance and independence, we can assume without loss of generality that
vy = -+ = v, = ey, but then it suffices to consider the case n = 1 (because sums of
independent rotationally invariant random vectors are rotationally invariant). The
latter can be easily justified in a number of ways.

23

-p

= /Bp,dIE

n -p

> (vrs Xi)

k=1

E

Bp,d =

NN



For instance, it follows from a Fourier-analytic argument: we invoke (11), rewrite
E jg/0-1(t[Xk|) as Ee*(ve:Xk) and apply (8) with d = 1 to 3 (vg, Xi) which gives
Bp,a = kpa/ (2Kp,1).

Alternatively, we can apply a standard embedding-type argument: if we take a
random vector & uniform on the unit Euclidean sphere S%~!, independent of the
X, we have for every vector z in R¢

E| (z,8) |7 = B, gla| ™
with

f |t| =P 1—t2) *dt r(lgﬂ)r(g)

[La—e)=ta ﬁr(%)

Applying this to = X1, taking the expectation over X; and noting that (Xi,¢&)
has the same distribution as (X7, e;) finishes the argument. O

BoL =Bl (e1,8) |7 =

Lemma 31. For every 0 < q < 2, we have
13\
— | <TI'(2-q).
<20) (2-q)

Proof. The function f(q) =1ogT'(2 — q) — qlog 2 is convex on (0,2) with f'(0) =
vy—1-— log > 0.007. Thus f is strictly 1ncreasmg and the lemma follows since
f(0)=o0. d

4. END OF THE PROOF OF THEOREM 8

To finish the proof of Theorem 8, we only need to justify Steps 1-4 from Section
2.3.1.

4.1. Step 1 and 3: Integral inequality. Lemma 21 (a) and (b) gives Step 1 and
3, respectively.

4.2. Step 2: Induction. First note that, by homogeneity, (14) with C(p) = C(p)
is equivalent to

-p n —p/2
< Cx(p) (1 + Za%) .
k=2

&+ ar
k=2

For p > 0 and z > 0 we define
Pplx) = (14 2)7P/2

@Am={%“” o

and

Vv

20p(1) = ¢p(2—2), 0<z<L
Geometrically, on [0, 1], the graph of ®,(x) is obtained from the graph of ¢,(z) on
[1,2] by reflecting it about (1, ¢,(1)). Crucially, ®,(x) < ¢p(x) for all z > 0, since
24



20,(1) < ¢p(x) + ¢p(2 — ), by the convexity of ¢,. By induction on n, we will
show a strengthened version of the above with ¢, on the right hand side replaced
by ®,,.

Theorem 32. Let % <p <2 Let&y, &, ... beindependent random vectors uniform
on the unit Euclidean sphere S in R*. For every n > 2 and nonnegative numbers

as,...,a,, we have
—p .
< Cx(p)®yp (Z ai) :
k=2

Proof. For the inductive base, when n = 2, (35) becomes

Eley + Vigl 7 <277 (2 2) @p(1),  t20,

(35) E &+ ar
k=2

where we have put ¢t = a3. By homogeneity and the fact that ®, < ¢, the case

t > 1 reduces to the case 0 <t < 1. Indeed, if t > 1, ®,(t) = ¢,(t) = (1—1—75)_’7/27 o)
dividing both sides by t~7/2, the inequality is equivalent to the one with 1/t instead
of t and ¢,(1/t) on the right hand side. The case 0 < ¢t < 1 follows by combining
Corollary 16 and Lemma 19 (applied to ¢ = p/2, noting as usual that by rotational
invariance, Ele; + vt&| P = E|&; + V& 7P).

For the inductive step, let n > 2 and suppose (35) holds for all n — 1 nonneg-
ative numbers as,...,a,. To prove it for n nonnegative arbitrary numbers, say
gy ...y 0n, Qpy1, We let
_ 2 2 2
rT=ay+-tant+an;,
and consider 3 cases.

Case 1: ap > 1 for some 2 < k < n+1. Then x > 1, so ®,(x) = ¢,(x) and our
goal is to show

n+1 -p n+1 —p/2
(36) E|Y arék| < Coolp) <Z ai)

k=1 k=1
where we put a; = 1. Let af,...,a;,;; be a nonincreasing rearrangement of the
sequence ai,...,an4+1 and set aj = 2,k =1,...,n+ 1. Thanks to homogeneity,

ay
to prove (36), it is enough to prove
n+1

-p n+1
o5 e <cum, (za;f)
k=2

which is handled by either of the next two cases because here a] = 1 and a), <1
for all £ > 2.

Case 2.1: a, <1 forall2 <k <n+1and x> 1. Since x > 1, our goal is again

(36) with a; = 1. We have,
n+1 1/2
Vidtz= <Z ak> )
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so Corollary 10 finishes the inductive argument in this case.

Case 2.2: ap, <1 for all2 <k <n+1 and x < 1. Fix vectors vy, ..., v,y in R*
with |vg| = ay, for each k =2,...,n 4+ 1. Then, plainly,
n+1 -P n+1 -P
El&+ Y anée| =El|lers+ Y |velés
k=2 k=2
and thanks to Lemma 30, when 0 < p < 1, the right hand side can be written as
n+1 -Pp n+1 -p
Elle1lé: + Z [vkl€k| = BpaE |{e1,&) + Z (Vi k)
k=2 k=2

If we let @ be a random orthogonal matrix, independent of the £, and note that
(&n, En+1) has the same distribution as (&, Q&,), we obtain

n+1 -p n—1 -p
E <61a€1> + Z <’Uk7§k> = EQE§ <617§1> + Z <'Uku§k> + <vn + QTvn+17§n>
k=2 k=2

Going back to the vector sum again via Lemma 30, we arrive at the identity

n+1 -p n—1 —-p
El& + ) arés| =EQBe|&+ > [0l + [vn + Q vnialén
k=2 k=2

The same identity continues to hold for all 0 < p < 3: we know it holds for all
0 < p < 1 and both sides are clearly analytic in p wherever the expectations exists,
so in {p € C, Re(p) < 3}, because |E| - |?| < E| - [R(*) for z € C (the analyticity
follows, e.g. from Morera’s theorem by a standard argument). Conditioned on
the value of @), the inductive hypothesis applied to the n — 1 nonnegative numbers
[val, s [Un_1l]s [vn + Q Tvny1| yields

n+1 -P

G+ ak
k=2

Note that

w2+ -+ Jono1 P+ vn £ Qo1 P =2 £2 (00, QT vpsa)

so thanks to the symmetry of the distribution of @), we can rewrite the right hand
side as

E < ECo@)®y (Jual® + -+ + [vn-al? + o0 + Qv ).

@p(:ﬂ +2 <Un7 QTvn+1>) + q)p(x -2 <Un> QTvn+1>)

Coo(p)Eq 5
The proof of the inductive step now follows from the following extended concavity
property of ®, applied to a4 = x +2 <vn, QTvn+1>. (Il

Lemma 33. Let p > 0. For every a_,ay > 0 with % < 1, we have

By (a_) + Dp(ay) a_+a;
2 S )

Proof. This is Lemma 20 in [10] (stated there for no reason only for 0 < p < 1, as
the proof works for every p > 0 because it only uses the convexity of ¢p). (Il
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4.3. Step 4: Projection. Let us say that a1 = maxygy, |ak|, so a1 > ,/}—g.

Projecting onto this coefficient, that is applying Corollary 17 to a = a; and
v=>p_,ar (conditioning on its value), we get

p

n - 13 p/2 12 D
E <a’<(p) <27r(2-%) =cem),
;akfk aq <10) 2 (p)

where the last inequality results from Lemma 31 (applied to ¢ = p/2). This finishes
the proof of Theorem 8. (]

5. END OF THE PROOF OF THEOREM 9

To finish the proof of Theorem 9, we only need to show here Steps 1 and 2 from
Section 2.3.2.

5.1. Step 1: Integral inequality. Lemma 26 gives the desired claim.

5.2. Step 2: Induction. We repeat the entire inductive argument from Section
4.2 verbatim, replacing 1 < p < 2 with 2 < p < 3 and Cw(p) with Ca(p). The
only modification required is to check the inductive base which now amounts to
verifying that

El¢; + ViE&| ™ < Ca(p)@,(t) = Ca(p) (21772 — (3 —t)#/2), 0<t<L

By Lemma 13, the left hand side is clearly increasing in ¢ (when 2 < p < 3 and
d = 4 all the coefficients in the power series expansion therein are positive), whereas
the right hand side is clearly decreasing in ¢. By the definition of Cy(p), there is
equality at ¢ = 1. This finishes the whole proof.
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APPENDIX: BEHAVIOUR OF THE CONSTANTS

We sketch an argument of the following proposition which justifies (5).

Proposition 34. For every d > 1, the equation cq2(q) = ca,00(q) has a unique
solution ¢ = ¢ in (—(d—1),2). Moreover, cq2(q) < cd,00(q) for —(d—1) < q < ¢
and cq2(q) > cd,00(q) for ¢ < q<2. Ford > 5, we have ¢ € (—(d—1),—(d—2)).

Proof. Since the cases 1 < d < 4 have been explicitly dealt with (see the discussion
in the introduction), it is enough to analyse the case d > 5. Moreover, by the
Schur-concavity result of [4] and [29], ¢4.00(q) < ca,2(q) for every 0 < ¢ < 2, so we
can further assume that —(d — 1) < ¢ < 0. We look into the sign of

ha(q) = log(ca,2(q)?) — log(ca,0 (q))-

Note that for ¢ < 0 the sign of hq(q) is opposite to the sign of ¢42(q) — ca,00(q)-
Now, h4(q) can be equivalently recast as

ha(q) =log [ 27%
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Writing « = “2=1 € (0,%51) and hq(z) = hg(22 + 1 — d), we get (using the
Legendre duplication formula I'(2x)/7 = 2227T'(2)T'(x + 1/2)) that

S I(x) 2120 (3)°
ha(z) = zlogd + log (I‘(m+ %)F([L’-l— d§1)> + log <\ﬁddzl )

We now make the following claims.

Claim 1. For all 0 < z < 1, h/4(z) > 0.06.

Claim 2. For every d > 5, inf i Ry (z) > 0.

1I<z<
Claim 3. Bd(%) < 0.

The strict convexity from Claim 1, the simple observation that hg(04) = +oo and
Claim 3 give that that hy has a unique zero, say zg in (0, %), is positive on (0, x¢)
and negative on (zg, 1). Claim 2 and the simple observation that Bd(%) = 0 gives
that hy is negative on [1, %) Convexity also gives that hq is negative on (%, 1), for
hd(%) and hy(1) are negative. These give the desired behaviour of ¢g.2(q) — ¢a,00(q)
for —(d — 1) < ¢ < 0. Finally, it also follows from Claim 2 that A/,(0) > 0 which
gives ¢4,2(0) — ¢4.00(0) > 0. It remains to prove the claims. O

Proof of Claim 1. Differentiating twice yields

I 1 1 B 1
hd(x)_z<(x+n)2 (x+n+%)2 (x+n+°l21)2>.

n=0

Note that the first two terms make up a decreasing function, thus for 0 < x < 1
and d > 5 the right hand side is greater than

> 1 1 1 72
Z<(1+n)2 a (1+n+%)2 B (n—|—2)2> _5_?>O7

n=0

which proves the claim. O

Proof of Claim 2. Differentiating once yields

hy(z) =logd + (w(x) -V <x+ ;)) —v (H d;)

where ¢ = (logT')’ as usual denotes the digamma function. By the well-known

inequality ¢ (u) < logu — i, u > 0 (see, e.g. 6.3.21 in [1]), we obtain

%(x)}logd10g<x+d;1)+2x+1d_1 - (1/} (x+;) 1/)(1'))

Put y = % and call the right hand side F'(x,y). Note that for every fixed = > 1,
OF 1 1 1 1 1 1 1 1
Biy(x’y) TyT12 a+y 2(@+y)? ” y+1/2 14y 2(1+4y)?

which is clearly positive for all y > 0. Therefore, for all 1 < z <y,

hy(x) > F(z,y) > F(z, ).
30




It remains to prove that f(x) = F(x,z) > 0 for every z > 1. We have,

o= (o 8) 1) (oo -e).

Note that each bracket is a decreasing function in z (for the second one, e.g. by
taking the derivative). Thus, crudely, for 1 < 2 < 1.07,

flz) > (log (1 + 5 1'07) + 4.;07> ~ (w (1 + ;) —w(l)) > 0.003.

as well as ¢(z) >

For x > 1.07, using again ¢(x + 1/2) < log(z + 1/2) —
log(x 4+ 1/2) — L (see [17]), we get

1 1 1 1
>1 1+ — — ===
/(@) og( +2x) +4x (ac 233—|—1>
It is elementary to verify that the right hand side is positive for x > 1.07 (it is in
fact unimodal, e.g. by analysing its derivative). ]

_1
2x+1

Proof of Claim 3. We have, hy (%) = log (2d_2d1_d/2f (g)) Letting v = d/2 >
5/2 and using

(37) I(u) <V 2mut T Te vt T u >0,

(see [23]), we get
ha ( > < log (\/ 224 e “*ﬁul/z) < log (\/ 2772“716*“+31*0u1/2) .

Denoting the right hand side by f(u), we see that f is strictly concave. Since
1'(5/2) < =0.1, f is decreasing for u > 5/2. Thus f(5/2) < —0.04 finishes the
argument. O

Remark 35. We have,

1 —log?2

(38) q;=—(d—1)4 O(d)exp (— 5 d) , d — 0.

As before, by Claim 1, to show ¢} < —(d — 1) 4+ 2ay for some oy > 0, it suffices to
check that hg(aq) < 0. We have,

j () 297°1(§)°
halag) = aglogd + lo +lo —
a(@a) = aalogd +log T(oa+ Dl(aa+ ) 8 /rd%
'«
= aqlogd + log 1( (5 )d R + dlog2 — log(4/7).
Ioag+ 5)T (g + 457)d =

Note that I'(z) < £, for 0 < z < 1 (since I'(1 + z) < 1). We consider ag = Cde™*?
for positive constants ¢, C' chosen soon. For d large enough, oy < %, so I'(aq+ %) >

1. Moreover, I'(ag) < aid, Dlag+%552) > T(42) = 2 T(HL) > 21(4), as well as
31




aglogd = o(1), thus

Applying (37) to I'(£), we obtain

~ 1 1
ha(aq) < O(1) —logC +d (c+ ilogQ— 2> .

N _ 1-log2
Choosing ¢ = —55=

negative.

and C' large enough to offset O(1), the right hand side becomes
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