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of earliest works originates from the idea of Markov Chains,
which are capable of learning item-item transition probabili-
ties, including FPMC [1]. FPMC [1] captures only the first-
order item transitions with low model complexity, assuming
the next preferred item is only correlated to the previous
interacted item.

The successful demonstration of sequential modeling from
deep learning inspires research potentials of sequential models
for SR, including Recurrent Neural Network (RNN) [2, 15,
16], Convolution Neural Network (CNN) [2, 17], and Trans-
former [4, 5, 6]. The representative work of RNN for SR is
GRU4Rec [18], which adopts the Gated Recurrent Unit (GRU)
in the session-based recommendation. Another line of SR is
CNN-based methods, such as Caser [17]. Caser [17] treats
the interaction sequence with item embeddings as an im-
age and applies convolution operators to learn local sub-
sequence structures. The recent success of self-attention-based
Transformer [3] architecture provides more possibilities in SR
due to its capability of modeling all pair-wise relationships
within the sequence, which is the limitation of RNN-based
methods and CNN methods. SASRec [4] is the first work
adopting the Transformer for SR and demonstrates its su-
periority. BERT4Rec [5] extends the SASRec to model bi-
directional relationships in Transformers, with the inspiration
of BERT [19]. DT4Rec [20] and STOSA [6] model items as
distributions instead of vector embedding and are state-of-the-
art SR methods with implicit feedback.

B. Item Relationships-aware Recommendation

Some methods propose to utilize extra item relation-
ships [21, 22] to enhance the representation capability of item
embeddings. For example, Chorus [23] specifically models
substitute and complementary relationships between items
in the continuous-time dynamic recommendation scenario.
RCF [24] proposes to model item relationships in a two-level
hierarchy in a graph learning framework. UGRec [25] extends
the idea of RCF and adopts the translation knowledge embed-
ding approach within the graph recommendation framework
to model both directed and undirected relationships for the
recommendation. MoHR [7] is the most relevant work to this
paper. MoHR incorporates item relationships into first-order
user-item translation scoring and proposes optimizing the next
relationship prediction, which can identify the importance of
each relationship in the dynamic sequence.

Although these methods significantly improve the recom-
mendation, they still obtain sub-optimal performance in rec-
ommendation and efficiency. Chorus can only handle substitute
and complementary relationships for sequential recommenda-
tion while more item relationships exist, and identifying the
significance of relationships is also crucial. RCF and UGRec
both rely on the graph modeling framework, which sometimes
requires a large amount of graphical memory due to the
exponential growth neighbors. Furthermore, neither RCF nor
UGRec can handle dynamic user preferences. MoHR only
models the first-order translation between user and item under
the relationship space [4].

C. Knowledge Graph Recommendation

Knowledge graph recommendation [8, 9, 26, 27, 28, 29]
originates from knowledge embeddings learning, where the
knowledge graph consists of the triplets describing entities
and their relationships. The classical line of knowledge graph
recommendation is embedding-based methods, which adopt
knowledge embedding techniques to learn entity and relation
embeddings, such as TransE [30], and DistMult [31]. The
representative work is CKE [32]. CKE utilizes TransE to learn
knowledge embeddings and regularizes the matrix factoriza-
tion. KTUP applies TransE to model both knowledge triplets
and user-item interactions. Another line of work is path-based
methods, in which RippleNet [33] is the representative work.
RippleNet starts paths from each user and aggregates item
embeddings with the path. The most state-of-the-art meth-
ods are based on collaborative knowledge graphs, including
KGAT [9] and KGIN [8]. Both KGAT and KGIN combine
the item knowledge graph and the user-item interaction graph
as a unified graph. KGAT applies TransE scores as attention
weights for node message aggregation. KGIN extends KGAT
by modeling paths as intents.

III. PRELIMINARIES

A. Problem Definition

Given a set of users U and items V , and the associated in-
teractions, we first sort the interacted items of each user u ∈ U
chronologically in a sequence as Su = [vu1 , v

u
2 , . . . , v

u
|Su|],

where vui ∈ V denotes the i-th interacted item in the sequence.
In addition to the interaction sequence, there are item rela-
tionship pairs {(vi, r, vj) ∈ I} with a number of relationships
{r ∈ R}, where {vi ∈ V} and {vj ∈ V}. Iv,r refers to the
set of items related to the item v by the relationship r. The
goal of SR is to recommend a top-N ranking list of items as
the potential next items in a sequence. Formally, we should
predict p

(
v
(u)
|Su|+1 = v |Su, I

)
.

B. Self-Attention for SR

We build the proposed model upon the original self-attention
module as the sequence encoder in this paper, and we first
introduce it before presenting our model. To be specific, given
a user’s action sequence Su and the predefined maximum
sequence length L, the sequence is truncated by removing
earliest items if |Su| > L or padded with zeros to obtain
a fixed length sequence s = (s1, s2, . . . , sL). An item em-
bedding matrix M ∈ R|V|×d is defined, where d is the latent
dimension size. A trainable positional embedding P ∈ RL×d

is added with item embeddings within the sequence to get the
sequence embedding:

ESu = [ms1 + ps1 ,ms2 + ps2 , . . . ,msn + psL ]. (1)

Specifically, self-attention (SA) adopts scaled dot-products
between item embeddings in the sequence to obtain their pair-
wise correlations, which are as follows:

SA(ESu) = softmax
(
QK⊤
√
d

)
V, (2)
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where Q = ESuWQ, K = ESuWK , and V = ESuWV .
WQ ∈ Rd×d, WK ∈ Rd×d, and WV ∈ Rd×d are learnable
weight matrices for key, query, and value transformations.
Other components in Transformer are utilized in SASRec,
including the point-wise feed-forward network, residual con-
nection, and layer normalization.

IV. PROPOSED MODEL

This section introduces the proposed multi-relational self-
attention for SR, MT4SR, which consists of three components.
Figure 2 shows the overall model architecture of MT4SR. The
first component is the multi-relational self-attention module.
The second component is the intra-sequence item relationships
modeling for fitting the related item pairs observed in the
sequence. The last module is inter-sequences related items
modeling, exploring item pairs outside sequences.

A. Self-Attention with Auxiliary Item Relationships

The existing self-attention modules [3, 19] typically only
handle a single item relationship in the sequence, which is
‘was interacted before’ in SR. A relevant work MoHR [7] can
process additional related items with various relationships, but
it can only handle first-order item transitions. Self-attention
models all item-item pairs within the sequence and naturally
considers high-order item transitions. There remain challenges
in modeling sequential dynamics with auxiliary related item
pairs and high-order transitions simultaneously. Different from
item-item transitions, modeling auxiliary relationships needs
to be relationship-aware. To address both challenges, we
introduce the Multi-Relational Self-Attention (MRSA) to in-
corporate relationship types information into the attention
weight calculation. We first discuss the connection between
existing dot-product attention and knowledge embeddings and
conclude that the scaled dot-product can be interpreted as a
variant of knowledge embeddings. Based on this connection,
we introduce auxiliary item relationships modeling for enhanc-
ing self-attention.

1) Connection between Self-Attention and Knowledge Em-
beddings: We first discuss the connections and the differences
of existing dot-product attention and the knowledge embed-
ding DistMult [31]. From Eq. (2), we extract the dot product
component in self-attention calculation for a specific item pair
(vsi , vsj ), which is as follows:

Att(vsi , vsj ) = Qvsi
K⊤

vsj
= Evsi

WQW
⊤
KE⊤

vsj

= Evsi
WQKE⊤

vsj

(3)

where Evsi
∈ R1×d and Evsj

∈ R1×d denote the item
embeddings of item vsi and vsj in Su repspectively, WQ ∈
Rd×d, WK ∈ Rd×d are weight matrices in self-attention,
and WQK = WQW

⊤
K . The attention calculation brings

up the closeness between self-attention and knowledge em-
bedding scoring functions, including ANALOGY [34] and
DistMult [31]. Specifically, given a knowledge triplet (h, r, t),
the scoring function of DistMult is defined as follows [35]:

fr(h, t) = h · diag(wr) · t⊤, (4)

where h and t are head and tail entity embeddings, wr ∈
Rd is the relation weight embedding of relation r, and the
diag(wr) ∈ Rd×d. The scoring function of ANALOGY is:

fr(h, t) = h ·Wr · t⊤, (5)

where Wr ∈ Rd×d is a normal relation matrix that WrW
⊤
r =

W⊤
r Wr.
We can observe the connection among Eq. (3), Eq. (4), and

Eq. (5) if we view the WQK as the relation weight matrix of
the relationship ‘was interacted before’. To this end, we can
conclude that the dot-product attention defined in the self-
attention module can be viewed as a variant of the knowledge
embedding scoring function.

However, there is a significant difference among them.
WQK , as a relationship weight matrix, is not a normal matrix,
which indicates that the relationship modeled in the dot-
product attention are asymmetric, even in the bi-directional
version BERT [19] (removing the causality masking in Trans-
former). This is reasonable in the SR next-item prediction
task because the temporal order matters in the sequential
modeling [4]. By comparing with DistMult and ANALOGY,
DistMult encodes the relation as a vector, and ANALOGY
constrains the weight matrix as a normal matrix, lacking
sufficient representation flexibility or introducing optimization
difficulty.

2) Multi-Relational Self-Attentions: To enhance the dot-
product self-attention module with auxiliary item relationships
modeling, we build upon ANALOGY to calculate the item
relatedness scoring MRSA(ESu) as follows:

softmax

QK⊤ +
∑
r∈R

wrESuWrW
⊤
r E

⊤
Su

√
d

V, (6)

where R denotes the set of relationships, Wr ∈ Rd×d is the
learnable weight matrix of relationship r, wr is a learnable
scalar for controlling the weight of the relationship r. Note
that WrW

⊤
r is a normal matrix, similar to the definition

in ANALOGY without constraints, indicating the capability
of modeling auxiliary item relationships in SR. MRSA can
handle the arbitrary number of item relationships and model
these item pairs in high-order item transitions, as self-attention
models all item pairs within the sequence. Note that the
number of relationship |R| is small, e.g., |R| ≤ 10.

B. Intra-Sequence Item Relationships Supervision

Based on the calculation of MRSA defined in Eq. (6),
the auxiliary item relatedness scorings do not use the input
related item pairs, i.e., I, as the supervised signals to guide the
computations for accurate attentions. Without the supervision
of I, the additive multi-relational attention component acts
only as extra free parameters. To resolve this issue, we propose
a regularization term that measures the errors between the
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Fig. 2: Model Architecture of MT4SR. Note that intra-sequence and inter-sequences related item pairs can appear in all
relationship.

predictions of intra-sequence related item pairs and the ones
of ground truth related item pairs as follows:

Lintra = −
Su∑
i=1

Su∑
j>i

∑
r∈R

[
I ((vi, vj) ∈ Ir) ∗ log σ (fr(vi, vj))

+ (1− I ((vi, vj) ∈ Ir)) log σ (1− fr(vi, vj))

]
,

(7)
where Ir refers to the set of item pairs with the relationship
r, I ((vi, vj) ∈ Ir) is indicator function with value of 1 when
(vi, vj) exists in Ir and 0 otherwise, σ(·) is the sigmoid
function, fr(vi, vj) = EviWrW

⊤
r E

⊤
vj denotes the relatedness

prediction score of item pair (vi, vj) in relationship r, which
is defined in Eq. (6). Lintra measures the relatedness prediction
errors of all intra-sequence item pairs. When Lintra is optimized
to be close to 0, relatedness of all intra-sequence item pairs
are correctly predicted, i.e., ESuWrW

⊤
r E

⊤
Su in Eq. (6) has

correct attention computations.

C. Inter-Sequences Related Items Modeling

There are only limited portions of intra-sequence related
item pairs (<10% shown in Table II). The inter-sequences
item pairs help connect item transitions across sequences and
incorporate more users’ collaborative signals from connected
sequences. To fully explore and utilize the inter-sequences sig-
nals, we propose a novel regularization term, which describes
the inter-sequences item pairs and is defined as follows:

Linter = −
∑
r∈R

∑
vi∈Ir

[
log σ (fr(vi, vj+))

+ log σ (1− fr(vi, vj−))

]
,

(8)

where vj+ ∈ Ivi,r is a positive item with the relationship
r with the item vi, vj− ∈ V \ Ivi,r is a negative sampled
item without relationship r connection with the item vi. The
Linter regularization term reinforces the relatedness between
item pairs that are inter-sequences. The fundamental difference
between Lintra and Linter is that Lintra focuses only the item
pairs within sequences while Linter can explore item pairs that
never exist in training sequences, i.e., inter-sequences. The
Lintra and Linter are complementary and benefits the exploration
of additional sequential collaborative signals.

D. Prediction Layer
In the prediction layer, we still apply the point-wise feed-

forward networks (FFN), residual connections, dropout, and
layer normalization techniques for inferring the next item
embedding. The detailed calculation can be found in related
papers [3, 4]. To be specific, the overall process includes:

FSu = FFN(LN (MRSA(ESu)))

OSu = FSu + Dropout (FSu) ,
(9)

where LN denotes the layer normalization, the process in
Eq. (9) can be stacked for multiple layers by feeding the
output sequence embedding OSu to the next MT4SR block.
By having K number of layers, we use the output sequence
embeddings from the last layer OK

Su for generating the next
item vi prediction score as follows:

r(Su
L, vi) = OK

L Evi . (10)

r(Su
L, vi) indicates the possibility of item vi being the next

item after the sequence Su with the length of L. We calculate
the r(Su

L, vi) over all candidate items vi to generate the ranked
item list for top-N next item recommendation by sorting the
scores in descending order.
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E. Loss

The final loss consists of three components, the recommen-
dation loss, Lintra, and Linter. We adopt the cross-entropy loss
to measure the next-item prediction error on each position in
the sequence, which is defined as follow:

Lpred = −
∑
Su∈S

|Su|∑
t=1

[
log

(
σ(rSu

t ,j+)
)
+ log

(
1− σ(rSu

t ,j−)
)]

,

(11)
where j+ is the ground truth next item at step t in Su, j−

is sampled from the items that the user u has no interaction
with, and σ(·) denotes the sigmoid function. The final loss is
defined as:

L = Lpred + αLintra + βLinter + λ||Θ||22, (12)

where Θ consists of all learnable parameters in MT4SR, α,
β, and λ are hyper-parameters.

V. EXPERIMENTS

In this section, we demonstrate the effectiveness of MT4SR
in top-N recommendation results and detailed analysis. We
answer the following research questions (RQs):
• RQ1: Does MT4SR provide better recommendations than

existing methods?
• RQ2: How sensitive is the recommendation performance

with varying α and β?
• RQ3: How does each proposed module affect the recom-

mendation performance?
• RQ4: Where do improvements of MT4SR come from?

TABLE III: Datasets Statistics After Preprocessing

Dataset Beauty Toys Tools Office

#users 22,363 19,412 16,638 4,905
#items 12,101 11,924 10,217 2,420

#ratings 198,502 167,597 134,476 53,258
density 0.05% 0.07% 0.08% 0.44%

avg ratings/user 8.3 8.6 8.1 10.8

avg ratings/item 16.4 14.0 13.1 22.0

#related item
pairs 403,724 624,213 300,514 58,829

avg pairs/item 33.4 52.3 29.4 24.3

A. Datasets and Preprocessing

We conduct the experiments on four benchmark datasets
from Amazon review datasets across various domains. Ama-
zon datasets are known for high sparsity and rich meta
information of items. There are also several sub-categories of
rating reviews in Amazon datasets. We select Beauty, Tools,
Toys, and Office sub-categories because of the wide adoption
in [4, 5, 6, 20]. Amazon datasets have four types of item
relationships, including ‘also viewed,’ ‘also bought,’ ‘bought
together, and ‘buy after viewing.’ Following [4, 5, 6, 20, 36],
we treat the presence of ratings as positive interactions and also
adopt the 5-core settings by filtering out users with less than 5

interactions. We use timestamps of ratings to sort interactions
and form the sequence for each user. The last interacted item
is used for testing, and the second last interacted item is used
for validation. Details of datasets1 are shown in Table III.

B. Evaluation

We rank all items instead of the biased negative sampling
evaluation [37] for accurate models comparison. We adopt the
standard top-N ranking evaluation metrics to evaluate the rec-
ommendation performance, including Recall@N, NDCG@N,
and MRR. Recall@N measures the ratio of the ground truth
positive item appearing in the top-N recommendation list.
NDCG@N considers the ranking position of the positive item
in the top-N list by assigning different weights in ranking
positions. MRR evaluates the performance for the entire
ranking list while also considering ranking positions. We
report the averaged test metric results over all users based on
the best validation performance. We report the performances
when N = 5 and N = 10, which are also adopted by
[4, 5, 6, 20, 36].

C. Baselines

We compare the proposed MT4SR with the following base-
lines in three groups. The first group includes static recommen-
dation methods, including BPR [38] and LightGCN [39]. The
second group includes sequential recommendation methods:
Caser [17], SASRec [4], BERT4Rec [5], and STOSA [6].
The third group consists of recommendation methods with
item relationships modeling, including knowledge graph rec-
ommendation methods KGAT [9] and KGIN [8] as well
as the sequential method MoHR [7]. We also include the
RCF [24] as the baseline model in the third group. We
grid search all parameters and report the test performance
based on the best validation result. We search the embedding
dimension in {64, 128} for all baselines, max sequence length
from {50, 100}, learning rate from {10−3, 10−4}, the L2
regularization weight from {10−1, 10−2, 10−3}, dropout rate
from {0.3, 0.5, 0.7}. For sequential methods, we search the
number of layers from {1, 2, 3} and the number of heads
in {1, 2, 4}. We adopt the early stopping strategy that model
optimization stops when the validation MRR does not increase
for 50 epochs.

D. Overall Comparisons (RQ1)

We compare the recommendation performances of all mod-
els in Table IV and quantitatively demonstrate the superiority
of MT4SR. We obtain the following observations:
• MT4SR achieves the best performance against all base-

lines in all metrics, demonstrating superior recommendation
performance over existing methods. The relative improve-
ments range from 3.56% to 21.87% in all metrics. We
can also observe that improvements are consistent in MRR
for measuring the entire recommendation list, ranging from
5.00% to 13.96%. We attribute improvements to several

1https://jmcauley.ucsd.edu/data/amazon/
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multi-relational self-attention module connects more similar
items for popular items; (2). related item pairs follow the
power-law distributions, where popular items have most pairs.

VI. CONCLUSION

This work proposes a novel and general Multi-relational
Transformer MT4SR for modeling high-order transitions and
auxiliary item relationships simultaneously. To supervise the
intra-sequence relatedness of item pairs, we also introduce a
novel regularization measuring errors between related item
pairs predictions and ground truth item pairs, guaranteeing
accurate item relatedness self-attention calculations. We also
explore inter-sequence item pairs with a novel regularization
term. Extensive results and qualitative analysis on four real-
world datasets demonstrate the effectiveness of MT4SR and
well support the superiority of MT4SR in alleviating cold-start
user and item issues and the capability of modeling high-order
item relationships for SR.
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