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ABSTRACT

Low-resource relation extraction (LRE) aims to extract potential
relations from limited labeled corpus to handle the problem of
scarcity of human annotations. Previous works mainly consist
of two categories of methods: (1) Self-training methods, which
improve themselves through the models’ predictions, thus suffer-
ing from confirmation bias when the predictions are wrong. (2)
Self-ensembling methods, which learn task-agnostic representa-
tions, therefore, generally do not work well for specific tasks. In
our work, we propose a novel LRE architecture named SELFLRE,
which leverages two complementary modules, one module uses
self-training to obtain pseudo-labels for unlabeled data, and the
other module uses self-ensembling learning to obtain the task-
agnostic representations, and leverages the existing pseudo-labels
to refine the better task-specific representations on unlabeled data.
The two models are jointly trained through multi-task learning to
iteratively improve the effect of LRE task. Experiments on three
public datasets show that SELFLRE achieves 1.81% performance
gain over the SOTA baseline. Source code is available at: https:
//github.com/THU-BPM/SelfLRE.
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1 INTRODUCTION

Relation Extraction (RE) aims to extract relation between entities
from corpus and obtain triplets: {Owl, Component-Whole, Claw}
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Figure 1: Comparison of self-training methods, self-
ensembling methods, and our proposed self-refining rep-
resentation learning methods. For our methods, the pseudo-
labels generated by self-training methods could refine task-
specific representations on self-ensembling methods. The
refined representations enable more correct pseudo-labels
by optimizing classifiers for self-training methods.

(In Figure 1) for downstream information retrieval (IR) tasks such
as web searching [1, 4, 11] and question answering [2, 6, 20]. The
current relation extraction networks need to rely on large amounts
of high-quality labeled data to achieve decent performance. How-
ever, it would be labor-intensive to obtain labeled data. Therefore,
the low-resource relation extraction (LRE) task is crucial to im-
prove the ability of the model by utilizing unlabeled data [3, 27]. As
shown in Figure 1, existing methods adopt two types of methods:
(1) Self-training methods and (2) Self-ensembling methods to utilize
the unlabeled data. Self-training methods (e.g., Co-training [28],
GradLRE [9], and STAD [27]) leverage the fine-tuned models to
pseudo-label the unlabeled data, and adopt the pseudo-labeled data
as the guidance to continue to optimize the model. However, these
methods inevitably suffer from the confirmation bias when the
pseudo labels are wrong. As incorrect pseudo-labeled data is con-
tinuously added to the labeled data for iterative training, the model
will drift away from the local optimum. Self-ensembling methods
(e.g., Mean Teacher [24], DualRE [17], and MRefG [16]) first adopt
data augmentation methods to generate sentences with similar re-
lational semantics, and leverages the fine-tuned mapping model to
obtain representations of two sentences. Inspired by contrastive
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learning methods [10, 13, 18], the similar relational representations
will pull closer, and vice versa. However, these methods can only
learn task-agnostic representations, while RE task-specific repre-
sentations, such as relation labels, cannot be learned specifically.
Why not combine the strengths of self-training and self-ensembling
methods while avoiding the shortcomings?

In this paper, we propose a novel self-refining representation
learning architecture for LRE task named SELFLRE, which treats
self-training and self-ensembling methods as two complementary
modules. As shown in Figure 1, we first adopt the fine-tuned model
to generate pseudo labels on unlabeled data. Then we use synonym
replacement to obtain an augmented sentence with the same rela-
tional semantics as the original sentence, and adopt the fine-tuned
mapping network to obtain the corresponding sentence representa-
tions. Certainly, these semantic representations are task-agnostic.
Therefore, we solicit the pseudo-labels generated by the classi-
fier to pull the representations under the same pseudo-relational
label to be close to each other, so as to refine the relational repre-
sentations specific to the RE task. Thanks to two complementary
methods, the pseudo labels generated by self-training methods
could be corrected by whether the semantic representations of the
same relation labels are close. The representations generated by
the self-ensembling methods could obtain task-specific guidance
through pseudo-labels, thereby pulling closer representations under
the same pseudo-labels. To summarize, the main contributions of
this work are as follows: (1) We propose a novel self-refining repre-
sentation learning architecture named SELFLRE for LRE task, which
treats self-training and self-ensembling methods as two complemen-
tary modules. Pseudo-labels can refine task-specific representations.
Task-specific representations enable more correct pseudo-labels
by optimizing classifiers. (2) Experiments on three public datasets
show that SELFLRE achieves 2.68% performance gain over the SOTA
baseline. Extensive analysis validates the effectiveness of SELFLRE.

2 TASK FORMULATION

Our task involves labeled and unlabeled sets for low-resource RE
setting. For labeled data: X = {(x;, yi)}l{\ill, where y; are one-hot
ground truth labels and Nj is the size of labeled samples. For unla-
beled data U = {(ui)}fi"l, with N, being the size of unlabeled sam-
ples. To create a contextual representation of an input sentence x,
we use BERT as a text encoder. The model includes a classifier head
fc(-) that produces a probability distribution of sentence x over dif-
ferent classes p(y|x) = fc(BERT(x)), and a mapping head map(-)
that maps the contextual representation obtained from BERT [5] to
a regularized low-dimensional embedding e(x) = map(BERT (x)).
The two modules leverage unlabeled data to complement each other
and the fine-tuned BERT with classifier head fc¢(BERT (x)) will be
evaluated as the final model.

3 MODEL

3.1 Pseudo Label Generation

The Pseudo Label Generation aims to obtain pseudo-labels for un-
labeled data. We begin by fine-tuning a BERT model using labeled
data X = {(xj, yi)}ﬁill, where y; are one-hot ground truth labels.
For a sentence x = 1,12, - -, t7] with corresponding entities E1
and E2, we follow Soares et al. [22] by including four special tokens
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1. He had chest pains and headaches from mold in the bedrooms.
2. The owl held the mouse in its claw.
3. Avci was the head of the chief of the police in Diyarbakir between 1984 and 1992.

Unlabeled Data
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1. He had chest pains and headaches
from mold in the living room.
2. The owl held the rat in its claw.
3. Avci was the head of the leader of the
police in Diyarbakir between 1984 and 1992.
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Figure 2: Architecture of SELFLRE.

to denote the start and end of E1 and E2. We introduce the [Elszqr¢],
[Elenal [E2start], [E2¢ng] and inject them to x:

X :[tl, T, [Elstart], ti, - - ,tj—l’ [Elend]’

1)
o [E2stare ], b+ S -1, [E2epal, -+ o 21],

as the input token sequence for the BERT model.

To obtain a relation representation for two entities E1 and E2,
we use the contextualized entity representation corresponding to
the positions of [Elgsqrs] and [E2gtqr+| from BERT, rather than
the [CLS] token output that summarizes sentence-level semantics.
These contextualized entity representations are then concatenated

R2%4_ where d

to form a fixed-length relation representation m €
represents the hidden dimensions of 768.

Subsequently, we feed the representation m to the classifier head
fc(-) to obtain the probability distribution p(y|x) = fc(m) over
the various classes and optimizing the BERT model with the cross-
entropy loss function:

1 &
Ly = FI Z loss(yi, p(ylxi)), @)
i=1

Similarly, we obtain a batch of probability distribution of unla-
beled samples {pi}fi"l of size Ny, using the fine-tuned BERT model.
To visually depict the clustering of pseudo-labels, we employ a
method for constructing pseudo-label graphs. The graph consists of
nodes that correspond to samples and edges that indicate the simi-
larity between pairs of samples. As a result, samples with higher
similarity are located nearer to one another in the pseudo-label
graph. We construct the pseudo-label graph via a similarity matrix
WP of size Ny X Ny:

1 ifi =j,
Wgz pi-pj ifi#jandp;-p; =T, ®3)
0 otherwise .
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For each pair of pseudo-labels with a similarity greater than the
threshold T, a connection will be established, and each sample will
be linked to itself with a self-loop of the strongest weight 1. The
pseudo-label graph will serve as the target of the embedding graph
in Representation Graph Learning to refine the representation space
and obtain the RE task-specific representations.

3.2 Representation Graph Learning

Representation Graph Learning aims to acquire task-agnostic rep-
resentations and utilize the available pseudo-labels to enhance
task-specific representations for unlabeled data.

To generate the embedding graph, we apply a random transfor-
mation (e.g. synonym replacement) to each sentence except the
entity part. As illustrated in Equation 1, we obtain a representation
m’ of the randomly transformed sentence. Then, we input m’ and
the representation m of the original sentence into the mapping head
map(-) to generate low-dimensional embeddings e = map(m) and
e’ = map(m’) respectively. Inspired by Li et al. [14], we construct
the embedding graph through the matrix W¢:

W = exp (e; - €}/7)

exp (e; - €j/7)
We minimize the contrastive learning loss as self-ensembling loss
function to optimize the embedding graph:

exp (e; - €]/7)
log —————— 5
; 5 6)

Nlexp (el ej/f)

where 7 is the temperature coefficient. To acquire task-specific
representations using the existing pseudo-labels, we will train the
BERT model and the mapping head map(-) so that the embedding
graph is analogous to the pseudo-label graph.

To make the two graphs comparable, we normalize the matrix
WP and W€ with wP w” /% wP and we WE/3,
tively. Then we could mlnlmlze the 51m11ar1ty loss of these two
normalized graphs via:

ifi=j,

4
ifi # j. @

Llc;tr - _

€ -
w; ; respec

Nu

Lm = S (7). ©

Ui=1

where H(Wip, I/T/ie) is defined as:

’ Ny
~p exp (e; - €}/7) ~ 5 exp (e; - €;/T)
Wi log| —g—=c— |- 2, Wilg| =] O
Zj:1 ij J=Lj#i Zj:l ij

The first term is a self-ensembling contrastive loss which mo-
tivates the model to produce embeddings that are alike for the
original and transformed sentences. The second term pushes the
model to group samples with comparable pseudo-labels to have sim-
ilar embeddings. This clustering results in samples from the same
class being positioned closer together, ensuring minimal entropy.

Our model could be self-refining with the pseudo label genera-
tion and representation graph learning during the training process.
It will initially generate low-confidence pseudo-labels, resulting in
a sparse pseudo-label graph. As the training progresses, the pseudo-
label graph guides the embedding graph to enable the mapping head
to generate task-specific representations, while the BERT model is
optimized with the loss returned in this process, thus obtaining a
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more confident pseudo-label. The process of refining the model is
iterative and continues until the stopping criterion is met, which in
our case is 5 epochs, leading to a more accurate and reliable model.
Our final loss function is:

L= Lx + ActrLﬁtr + AsimLZima (8)

where the scalar hyper-parameters ;s and Ag;;, are used to control
the weight of the unsupervised losses.

4 EXPERIMENTS AND ANALYSES
4.1 Setup and Baselines

Datasets and Experimental Settings: Following previous works
[9, 19], we evaluate the model on three public RE datasets: SemEval
[7], which contains 6,507/1,493/2,717 data in train/dev/test sets and
19 relation types, with 17.4% no_relation. TACRED [29], which
contains 68,124/22,631/15,509 data and 42 relation types, with 78.7%
no_relation. Re-TACRED [23], which contains 58,465/19,584/13,418
data and 42 relation types, with 64.3% no_relation. We follow the
existing setting [17] to use stratified sampling to divide the train set
into various proportions of labeled and unlabeled sets to remains the
same relation label distribution. Following previous works [9, 19],
we sample 5%, 10%, and 30% of the training set as labeled data for the
SemEval datasets, and 3%, 10%, and 15% of the training set as labeled
data for TACRED and Re-TACRED datasets. For all datasets, we
sample 50% of the train set as the unlabeled set. We adopt F1 Score
as the evaluation metric. We use the BERT-Base default tokenizer
with a max-length of 128 to preprocess data. For the classifier, we
set the layer dimensions as 2 X 768-384-labels. For the projection
head, we use a 2-layer MLP, we set the layer dimensions as 2 X 768-
384-64. We use BertAdam [12] with a 3e-5 learning rate, warmup
with 0.06 to optimize the loss, and set the batch size as 16. We set
the temperature coefficient 7 in Representation Graph Learning as
0.07. The hyper-parameters A¢sr and Agjp, are set to 0.75 and 1.
Baselines: For baselines, we compare SELFLRE with nine com-
petitive methods: (1) Self-Training [21], (2) Mean-Teacher [24], (3)
DualRE [17], (4) RE-Ensemble [17], (5) MRefG [15], (6) MetaSRE
[8], (7) GradLRE [9], (8) MixRE [25], and (9) UG-MCT [19]. These
baselines belong to the self-training and self-ensembling methods.
Finally, we present the upper bound model: BERT w. gold labels,
which indicates that all unlabeled data have their gold labels during
training with labeled data.

4.2 Results and Analysis

Main Results. Table 1 displays the F1 mean and deviation over 5 Se-
mEval, TACRED, and Re-TACRED train/test runs, using different la-
beled data amounts and 50% unlabeled. We note that unlabeled data
use enhances LRE models’ performance compared to labeled-only
data (BERT), showing unlabeled data integration improves RE task
accuracy. SELFLRE consistently surpasses previous SOTA models
MixRE and UG-MCT, with a 1.81% average improvement. Notably,
when labeled data is scarce (e.g., 3% TACRED and Re-TACRED),
SELFLRE achieves larger F1 improvement than the baselines. For
instance, it registers a 4.01% improvement on 3% training set versus
a 0.62% improvement on 15% set. We credit this to the self-refining
framework, leveraging pseudo-labels for task-agnostic to RE task-
specific representation learning, thereby iteratively securing better
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Table 1: F1 (%) comparisons on the SemEval, TACRED and Re-TACRED datasets with various amounts of labeled data and 50%
unlabeled data. The base encoders of all baselines are replaced by BERT for a fair comparison.

Methods / % Labeled Data SemEval TACRED Re-TACRED
5% 10% 30% 3% 10% 15% 3% 10% 15%

BERT (Only labeled data) 70.71x1.24  71.93+£0.99  78.55+0.87  40.11+3.88  53.17+£1.67  55.55+£0.82  42.64+1.24  58.45:1.38  64.34+1.02
Self-Training [21] 71.34+1.68  74.25+1.10  81.71+0.79  42.11+1.04 54.17+053  56.52+0.40  46.32+0.87  62.65+0.75  66.42+0.98
Mean-Teacher [24] 70.05+3.89  73.37+1.42  80.61+0.81  44.34+1.78  53.08+1.01  53.79+1.38  45.64+1.32  61.32+0.83  66.64+1.35
RE-Ensemble [17] 72.35+2.63  75.71+1.39  81.34+0.74  42.78+1.89  54.83+0.95  55.68+1.21  46.84+2.33  64.23+1.34  67.42+1.05
DualRE-Pairwise [17] 74.35+1.76  77.13x1.10  82.88+0.67  43.06+1.73  56.03+0.55  57.99+0.67  48.95+1.59  65.39+1.21  68.21+0.86
DualRE-Pointwise [17] 74.02+1.68  77.11+1.02  82.91+0.62  43.73+1.60  56.28+0.61  57.72+0.49  49.42+133  65.67+1.02  68.98+1.21
MRefG [15] 75.48+1.34  77.96+0.90  83.24+0.71  43.81+1.44  55.42+1.40  58.21+0.71  48.83+1.35  65.24+1.32  68.39+0.83
MetaSRE [8] 78.33+0.92  80.09+0.78  84.81+0.44  46.16+1.02  56.95+0.3¢  58.94+0.36  54.34+2.32  67.83+1.45  70.24+1.73
GradLRE [9] 79.65+0.68  81.69+0.57  85.52+0.34  47.37+0.74  58.20+0.33  59.93+0.31  61.22+0.58  74.03+1.74  76.32+0.67
MixRE [25] 77.58+0.59  81.13+0.82  85.51+0.38  49.35+1.25  59.13+0.87  61.97+1.32  62.48+0.67  72.45+0.73  78.32+0.59
UG-MCT [19] 80.43+£0.52  82.91+0.43  85.99+0.31  45.10+1.36  57.97+041  61.33+0.28  67.21+0.83  73.43%1.25  78.84+0.73
SELFLRE 81.24+0.53 83.42+0.49 86.35+0.47 51.16+1.39 60.06+1.44 62.39+0.41 68.93+0.84 74.24+0.78 79.07+0.51
w/o contrastive learning loss 77.23+0.74  80.55+0.62  84.19+0.47  49.68+1.31  58.41+1.22  61.32+0.95 66.43+1.84  73.52+1.57  78.45+0.69
w/o graph-based similarity loss ~ 75.38+1.42  79.49+1.13  83.04+1.05  47.26+1.53  57.34+1.35  60.08+1.21  64.24+1.18  72.88+1.02  77.93+0.95
BERT w. gold labels 84.64+0.28  85.40+0.3¢  87.08+0.23  62.93£0.41  63.66+0.23  64.69+£0.29  77.64+0.37  82.12+0.23  82.97+0.29

# SelfLRE w/o graph-based similarity loss ® SelfLRE w/o contrastive learning loss #SelfLRE
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Figure 3: Pseudo label quality analysis on three datasets.
pseudo labels. SELFLRE almost matches the performance of a model
using gold labels, with only a 4.92% average difference across the
datasets, as if using 50% more labeled data.

Ablation Study. We conduct an ablation study to showcase the
impact of both loss functions in the test set. SELFLRE w/o contrastive
learning loss means that the self-ensembling method is removed,
which will weaken the model’s ability to learn representations and
affect the semantic analysis of the SELFLRE. SELFLRE w/o graph-
based similarity loss means to remove the self-training method,
leading to the unavailability of guidance from pseudo-labels in
representation learning, which in turn affects task-specific repre-
sentation learning. From the ablation rows in Table 1, we could
observe that two loss functions all contribute positively to SELFLRE.
Compared with contrastive learning loss, graph-based similarity
loss can bring more performance improvement (3.24% vs. 1.89%),
which shows the importance of pseudo-label supervision guidance.
Pseudo label Quality Analysis. We evaluate the contribution
of the two modules to model performance by analyzing the F1
of the pseudo labels. As shown in Figure 3, we observe that both
self-ensembling learning and self-training learning positively affect
the model’s performance. Among them, using high-quality pseudo-
label data to guide task-specific representation learning can bring
about a 5.71% F1 improvement, and the improved pseudo-label
reversely promotes a more high-quality mapping network, resulting
in further improvement of the pseudo-label classification ability.

Visualize Contextualized Representations. To demonstrate the
impact of self-ensembling and self-training on relational represen-
tation learning, we used t-SNE [26] to visualize dimension-reduced
representations. We selected 4 relations and 40 entity pairs from
Re-TACRED and show the results in Figure 4. The SELFLRE w/o
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(a) SelfLRE w/o graph-
based similarity loss

(b) SelfLRE w/o contrastive

" (c) SelfLRE
learning loss

Figure 4: Visualizing contextualized representations after
t-SNE dimension reduction. Features are shaped with their
ground-truth relation labels.

graph-based similarity loss already assigns meaningful semantics,
but is inadequate for the RE task. Without contrastive learning
loss, the model cannot provide confident clusters due to suboptimal
learning. SELFLRE leverages the self-refining training schema to
improve the relational representation learning — we could learn
denser clusters and more discriminative representations.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel self-refining representation learn-
ing framework: SELFLRE for LRE task, which integrates two com-
plementary self-training and self-ensembling methods. The self-
training method could provide pseudo labels to help self-ensembling
method refine task-specific representations. Conversely, the refined
representations can be used to optimize pseudo-label classification
to obtain higher-quality labels. Experiments on three datasets show
that SELFLRE achieves 1.81% performance gain over SOTA baseline.
In future work, we plan to extend the general LRE framework to
other classification tasks, such as sentiment analysis, text classifi-
cation, and also explore its applicability to other domains such as
medical health and natural science.
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