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ABSTRACT

Low-resource relation extraction (LRE) aims to extract potential

relations from limited labeled corpus to handle the problem of

scarcity of human annotations. Previous works mainly consist

of two categories of methods: (1) Self-training methods, which

improve themselves through the models’ predictions, thus suffer-

ing from confirmation bias when the predictions are wrong. (2)

Self-ensembling methods, which learn task-agnostic representa-

tions, therefore, generally do not work well for specific tasks. In

our work, we propose a novel LRE architecture named SelfLRE,

which leverages two complementary modules, one module uses

self-training to obtain pseudo-labels for unlabeled data, and the

other module uses self-ensembling learning to obtain the task-

agnostic representations, and leverages the existing pseudo-labels

to refine the better task-specific representations on unlabeled data.

The two models are jointly trained through multi-task learning to

iteratively improve the effect of LRE task. Experiments on three

public datasets show that SelfLRE achieves 1.81% performance

gain over the SOTA baseline. Source code is available at: https:

//github.com/THU-BPM/SelfLRE.
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1 INTRODUCTION

Relation Extraction (RE) aims to extract relation between entities

from corpus and obtain triplets: {Owl, Component-Whole, Claw}
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Self-training methods 
(e.g., GradLRE, STAD)
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Figure 1: Comparison of self-training methods, self-

ensembling methods, and our proposed self-refining rep-

resentation learning methods. For our methods, the pseudo-

labels generated by self-training methods could refine task-

specific representations on self-ensembling methods. The

refined representations enable more correct pseudo-labels

by optimizing classifiers for self-training methods.

(In Figure 1) for downstream information retrieval (IR) tasks such

as web searching [1, 4, 11] and question answering [2, 6, 20]. The

current relation extraction networks need to rely on large amounts

of high-quality labeled data to achieve decent performance. How-

ever, it would be labor-intensive to obtain labeled data. Therefore,

the low-resource relation extraction (LRE) task is crucial to im-

prove the ability of the model by utilizing unlabeled data [3, 27]. As

shown in Figure 1, existing methods adopt two types of methods:

(1) Self-training methods and (2) Self-ensembling methods to utilize

the unlabeled data. Self-training methods (e.g., Co-training [28],

GradLRE [9], and STAD [27]) leverage the fine-tuned models to

pseudo-label the unlabeled data, and adopt the pseudo-labeled data

as the guidance to continue to optimize the model. However, these

methods inevitably suffer from the confirmation bias when the

pseudo labels are wrong. As incorrect pseudo-labeled data is con-

tinuously added to the labeled data for iterative training, the model

will drift away from the local optimum. Self-ensembling methods

(e.g., Mean Teacher [24], DualRE [17], and MRefG [16]) first adopt

data augmentation methods to generate sentences with similar re-

lational semantics, and leverages the fine-tuned mapping model to

obtain representations of two sentences. Inspired by contrastive
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learning methods [10, 13, 18], the similar relational representations

will pull closer, and vice versa. However, these methods can only

learn task-agnostic representations, while RE task-specific repre-

sentations, such as relation labels, cannot be learned specifically.

Why not combine the strengths of self-training and self-ensembling

methods while avoiding the shortcomings?

In this paper, we propose a novel self-refining representation

learning architecture for LRE task named SelfLRE, which treats

self-training and self-ensembling methods as two complementary

modules. As shown in Figure 1, we first adopt the fine-tuned model

to generate pseudo labels on unlabeled data. Then we use synonym

replacement to obtain an augmented sentence with the same rela-

tional semantics as the original sentence, and adopt the fine-tuned

mapping network to obtain the corresponding sentence representa-

tions. Certainly, these semantic representations are task-agnostic.

Therefore, we solicit the pseudo-labels generated by the classi-

fier to pull the representations under the same pseudo-relational

label to be close to each other, so as to refine the relational repre-

sentations specific to the RE task. Thanks to two complementary

methods, the pseudo labels generated by self-training methods

could be corrected by whether the semantic representations of the

same relation labels are close. The representations generated by

the self-ensembling methods could obtain task-specific guidance

through pseudo-labels, thereby pulling closer representations under

the same pseudo-labels. To summarize, the main contributions of

this work are as follows: (1) We propose a novel self-refining repre-

sentation learning architecture named SelfLRE for LRE task, which

treats self-training and self-ensemblingmethods as two complemen-

tary modules. Pseudo-labels can refine task-specific representations.

Task-specific representations enable more correct pseudo-labels

by optimizing classifiers. (2) Experiments on three public datasets

show that SelfLRE achieves 2.68% performance gain over the SOTA

baseline. Extensive analysis validates the effectiveness of SelfLRE.

2 TASK FORMULATION

Our task involves labeled and unlabeled sets for low-resource RE

setting. For labeled data: X = {(𝑥𝑖 , 𝑦𝑖 )}
𝑁𝑙

𝑖=1, where 𝑦𝑖 are one-hot

ground truth labels and 𝑁𝑙 is the size of labeled samples. For unla-

beled dataU = {(𝑢𝑖 )}
𝑁𝑢

𝑖=1, with 𝑁𝑢 being the size of unlabeled sam-

ples. To create a contextual representation of an input sentence 𝑥 ,

we use BERT as a text encoder. The model includes a classifier head

𝑓 𝑐 (·) that produces a probability distribution of sentence 𝑥 over dif-

ferent classes 𝑝 (𝑦 |𝑥) = 𝑓 𝑐 (𝐵𝐸𝑅𝑇 (𝑥)), and a mapping head𝑚𝑎𝑝 (·)

that maps the contextual representation obtained from BERT [5] to

a regularized low-dimensional embedding 𝒆(𝑥) =𝑚𝑎𝑝 (𝐵𝐸𝑅𝑇 (𝑥)).

The twomodules leverage unlabeled data to complement each other

and the fine-tuned BERT with classifier head 𝑓 𝑐 (𝐵𝐸𝑅𝑇 (𝑥)) will be

evaluated as the final model.

3 MODEL

3.1 Pseudo Label Generation

The Pseudo Label Generation aims to obtain pseudo-labels for un-

labeled data. We begin by fine-tuning a 𝐵𝐸𝑅𝑇 model using labeled

data X = {(𝑥𝑖 , 𝑦𝑖 )}
𝑁𝑙

𝑖=1, where 𝑦𝑖 are one-hot ground truth labels.

For a sentence 𝑥 = [𝑡1, 𝑡2, · · · , 𝑡𝑇 ] with corresponding entities 𝐸1

and 𝐸2, we follow Soares et al. [22] by including four special tokens

1. He had chest pains and headaches from mold in the bedrooms.

2. The owl held the mouse in its claw.

3. Avci was the head of the chief of the police in Diyarbakir between 1984 and 1992.

1. He had chest pains and headaches 

from mold in the living room.

2. The owl held the rat in its claw.

3. Avci was the head of the leader of the 

police in Diyarbakir between 1984 and 1992.
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Figure 2: Architecture of SelfLRE.

to denote the start and end of 𝐸1 and 𝐸2. We introduce the [𝐸1𝑠𝑡𝑎𝑟𝑡 ],

[𝐸1𝑒𝑛𝑑 ],[𝐸2𝑠𝑡𝑎𝑟𝑡 ], [𝐸2𝑒𝑛𝑑 ] and inject them to 𝑥 :

𝑥 =[𝑡1, · · · , [𝐸1𝑠𝑡𝑎𝑟𝑡 ], 𝑡𝑖 , · · · , 𝑡 𝑗−1, [𝐸1𝑒𝑛𝑑 ],

· · · , [𝐸2𝑠𝑡𝑎𝑟𝑡 ], 𝑡𝑘 , · · · , 𝑡𝑙−1, [𝐸2𝑒𝑛𝑑 ], · · · , 𝑡𝑇 ],
(1)

as the input token sequence for the 𝐵𝐸𝑅𝑇 model.

To obtain a relation representation for two entities 𝐸1 and 𝐸2,

we use the contextualized entity representation corresponding to

the positions of [𝐸1𝑠𝑡𝑎𝑟𝑡 ] and [𝐸2𝑠𝑡𝑎𝑟𝑡 ] from 𝐵𝐸𝑅𝑇 , rather than

the [𝐶𝐿𝑆] token output that summarizes sentence-level semantics.

These contextualized entity representations are then concatenated

to form a fixed-length relation representation 𝒎 ∈ R2×𝑑 , where 𝑑

represents the hidden dimensions of 768.

Subsequently, we feed the representation𝒎 to the classifier head

𝑓 𝑐 (·) to obtain the probability distribution 𝑝 (𝑦 |𝑥) = 𝑓 𝑐 (𝒎) over

the various classes and optimizing the 𝐵𝐸𝑅𝑇 model with the cross-

entropy loss function:

L𝑥 =
1

𝑁𝑙

𝑁𝑙∑︁
𝑖=1

𝑙𝑜𝑠𝑠 (𝑦𝑖 , 𝑝 (𝑦 |𝑥𝑖 )), (2)

Similarly, we obtain a batch of probability distribution of unla-

beled samples {𝑝𝑖 }
𝑁𝑢

𝑖=1 of size 𝑁𝑢 using the fine-tuned 𝐵𝐸𝑅𝑇 model.

To visually depict the clustering of pseudo-labels, we employ a

method for constructing pseudo-label graphs. The graph consists of

nodes that correspond to samples and edges that indicate the simi-

larity between pairs of samples. As a result, samples with higher

similarity are located nearer to one another in the pseudo-label

graph. We construct the pseudo-label graph via a similarity matrix

𝑊 𝑝 of size 𝑁𝑢 × 𝑁𝑢 :

𝑊
𝑝
𝑖 𝑗 =



1 if 𝑖 = 𝑗,

𝑝𝑖 · 𝑝 𝑗 if 𝑖 ≠ 𝑗 and 𝑝𝑖 · 𝑝 𝑗 ≥ 𝑇,

0 otherwise .

(3)
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For each pair of pseudo-labels with a similarity greater than the

threshold 𝑇 , a connection will be established, and each sample will

be linked to itself with a self-loop of the strongest weight 1. The

pseudo-label graph will serve as the target of the embedding graph

in Representation Graph Learning to refine the representation space

and obtain the RE task-specific representations.

3.2 Representation Graph Learning

Representation Graph Learning aims to acquire task-agnostic rep-

resentations and utilize the available pseudo-labels to enhance

task-specific representations for unlabeled data.

To generate the embedding graph, we apply a random transfor-

mation (e.g. synonym replacement) to each sentence except the

entity part. As illustrated in Equation 1, we obtain a representation

𝑚′ of the randomly transformed sentence. Then, we input 𝒎′ and

the representation𝑚 of the original sentence into the mapping head

𝑚𝑎𝑝 (·) to generate low-dimensional embeddings 𝒆 =𝑚𝑎𝑝 (𝒎) and

𝒆
′
=𝑚𝑎𝑝 (𝒎′) respectively. Inspired by Li et al. [14], we construct

the embedding graph through the matrix𝑊 𝑒 :

𝑊 𝑒
𝑖 𝑗 =

{
exp

(
𝒆𝑖 · 𝒆

′
𝑖/𝜏

)
if 𝑖 = 𝑗,

exp
(
𝒆𝑖 · 𝒆 𝑗/𝜏

)
if 𝑖 ≠ 𝑗 .

(4)

We minimize the contrastive learning loss as self-ensembling loss

function to optimize the embedding graph:

L𝑐𝑡𝑟
𝑢 = −

1

𝑁𝑢

𝑁𝑢∑︁
𝑖=1

log
exp

(
𝒆𝑖 · 𝒆

′
𝑖/𝜏

)
∑𝑁

𝑗=1 exp
(
𝒆𝑖 · 𝒆 𝑗/𝜏

) , (5)

where 𝜏 is the temperature coefficient. To acquire task-specific

representations using the existing pseudo-labels, we will train the

𝐵𝐸𝑅𝑇 model and the mapping head𝑚𝑎𝑝 (·) so that the embedding

graph is analogous to the pseudo-label graph.

To make the two graphs comparable, we normalize the matrix

𝑊 𝑝 and𝑊 𝑒 with𝑊
𝑝
𝑖 𝑗 =𝑊

𝑝
𝑖 𝑗 /

∑
𝑗𝑊

𝑝
𝑖 𝑗 and𝑊

𝑒
𝑖 𝑗 =𝑊 𝑒

𝑖 𝑗/
∑

𝑗𝑊
𝑒
𝑖 𝑗 respec-

tively. Then we could minimize the similarity loss of these two

normalized graphs via:

L𝑠𝑖𝑚
𝑢 =

1

𝑁𝑢

𝑁𝑢∑︁
𝑖=1

H
(
𝑊

𝑝
𝑖 ,𝑊

𝑒
𝑖

)
, (6)

where H(𝑊
𝑝
𝑖 ,𝑊

𝑒
𝑖 ) is defined as:

−𝑊
𝑝
𝑖𝑖 log

©­
«
exp

(
𝒆𝑖 · 𝒆

′
𝑖/𝜏

)
∑𝑁𝑢

𝑗=1𝑊
𝑒
𝑖 𝑗

ª®
¬
−

𝑁𝑢∑︁
𝑗=1, 𝑗≠𝑖

𝑊
𝑝
𝑖 𝑗 log

©­
«
exp

(
𝒆𝑖 · 𝒆 𝑗/𝜏

)
∑𝑁𝑢

𝑗=1𝑊
𝑒
𝑖 𝑗

ª®
¬
. (7)

The first term is a self-ensembling contrastive loss which mo-

tivates the model to produce embeddings that are alike for the

original and transformed sentences. The second term pushes the

model to group samples with comparable pseudo-labels to have sim-

ilar embeddings. This clustering results in samples from the same

class being positioned closer together, ensuring minimal entropy.

Our model could be self-refining with the pseudo label genera-

tion and representation graph learning during the training process.

It will initially generate low-confidence pseudo-labels, resulting in

a sparse pseudo-label graph. As the training progresses, the pseudo-

label graph guides the embedding graph to enable themapping head

to generate task-specific representations, while the 𝐵𝐸𝑅𝑇 model is

optimized with the loss returned in this process, thus obtaining a

more confident pseudo-label. The process of refining the model is

iterative and continues until the stopping criterion is met, which in

our case is 5 epochs, leading to a more accurate and reliable model.

Our final loss function is:

L = L𝑥 + 𝜆𝑐𝑡𝑟L
𝑐𝑡𝑟
𝑢 + 𝜆𝑠𝑖𝑚L𝑠𝑖𝑚

𝑢 , (8)

where the scalar hyper-parameters 𝜆𝑐𝑙𝑠 and 𝜆𝑠𝑖𝑚 are used to control

the weight of the unsupervised losses.

4 EXPERIMENTS AND ANALYSES

4.1 Setup and Baselines

Datasets and Experimental Settings: Following previous works

[9, 19], we evaluate the model on three public RE datasets: SemEval

[7], which contains 6,507/1,493/2,717 data in train/dev/test sets and

19 relation types, with 17.4% no_relation. TACRED [29], which

contains 68,124/22,631/15,509 data and 42 relation types, with 78.7%

no_relation. Re-TACRED [23], which contains 58,465/19,584/13,418

data and 42 relation types, with 64.3% no_relation. We follow the

existing setting [17] to use stratified sampling to divide the train set

into various proportions of labeled and unlabeled sets to remains the

same relation label distribution. Following previous works [9, 19],

we sample 5%, 10%, and 30% of the training set as labeled data for the

SemEval datasets, and 3%, 10%, and 15% of the training set as labeled

data for TACRED and Re-TACRED datasets. For all datasets, we

sample 50% of the train set as the unlabeled set. We adopt F1 Score

as the evaluation metric. We use the BERT-Base default tokenizer

with a max-length of 128 to preprocess data. For the classifier, we

set the layer dimensions as 2 × 768-384-labels. For the projection

head, we use a 2-layer MLP, we set the layer dimensions as 2 × 768-

384-64. We use BertAdam [12] with a 3e-5 learning rate, warmup

with 0.06 to optimize the loss, and set the batch size as 16. We set

the temperature coefficient 𝜏 in Representation Graph Learning as

0.07. The hyper-parameters 𝜆𝑐𝑡𝑟 and 𝜆𝑠𝑖𝑚 are set to 0.75 and 1.

Baselines: For baselines, we compare SelfLRE with nine com-

petitive methods: (1) Self-Training [21], (2) Mean-Teacher [24], (3)

DualRE [17], (4) RE-Ensemble [17], (5) MRefG [15], (6) MetaSRE

[8], (7) GradLRE [9], (8) MixRE [25], and (9) UG-MCT [19]. These

baselines belong to the self-training and self-ensembling methods.

Finally, we present the upper bound model: BERT w. gold labels,

which indicates that all unlabeled data have their gold labels during

training with labeled data.

4.2 Results and Analysis

MainResults. Table 1 displays the F1 mean and deviation over 5 Se-

mEval, TACRED, and Re-TACRED train/test runs, using different la-

beled data amounts and 50% unlabeled. We note that unlabeled data

use enhances LRE models’ performance compared to labeled-only

data (BERT), showing unlabeled data integration improves RE task

accuracy. SelfLRE consistently surpasses previous SOTA models

MixRE and UG-MCT, with a 1.81% average improvement. Notably,

when labeled data is scarce (e.g., 3% TACRED and Re-TACRED),

SelfLRE achieves larger F1 improvement than the baselines. For

instance, it registers a 4.01% improvement on 3% training set versus

a 0.62% improvement on 15% set. We credit this to the self-refining

framework, leveraging pseudo-labels for task-agnostic to RE task-

specific representation learning, thereby iteratively securing better
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Table 1: F1 (%) comparisons on the SemEval, TACRED and Re-TACRED datasets with various amounts of labeled data and 50%

unlabeled data. The base encoders of all baselines are replaced by BERT for a fair comparison.

Methods / % Labeled Data
SemEval TACRED Re-TACRED

5% 10% 30% 3% 10% 15% 3% 10% 15%

BERT (Only labeled data) 70.71±1.24 71.93±0.99 78.55±0.87 40.11±3.88 53.17±1.67 55.55±0.82 42.64±1.24 58.45±1.38 64.34±1.02

Self-Training [21] 71.34±1.68 74.25±1.10 81.71±0.79 42.11± 1.04 54.17±0.53 56.52±0.40 46.32±0.87 62.65±0.75 66.42±0.98

Mean-Teacher [24] 70.05±3.89 73.37±1.42 80.61±0.81 44.34±1.78 53.08±1.01 53.79±1.38 45.64±1.32 61.32±0.83 66.64±1.35

RE-Ensemble [17] 72.35±2.63 75.71±1.39 81.34±0.74 42.78±1.89 54.83±0.95 55.68±1.21 46.84±2.33 64.23±1.34 67.42±1.05

DualRE-Pairwise [17] 74.35±1.76 77.13±1.10 82.88±0.67 43.06±1.73 56.03±0.55 57.99±0.67 48.95±1.59 65.39±1.21 68.21±0.86

DualRE-Pointwise [17] 74.02±1.68 77.11±1.02 82.91±0.62 43.73±1.60 56.28±0.61 57.72±0.49 49.42±1.33 65.67±1.02 68.98±1.21

MRefG [15] 75.48±1.34 77.96±0.90 83.24±0.71 43.81±1.44 55.42±1.40 58.21±0.71 48.83±1.35 65.24±1.32 68.39±0.83

MetaSRE [8] 78.33±0.92 80.09±0.78 84.81±0.44 46.16±1.02 56.95±0.34 58.94±0.36 54.34±2.32 67.83±1.45 70.24±1.73

GradLRE [9] 79.65±0.68 81.69±0.57 85.52±0.34 47.37±0.74 58.20±0.33 59.93±0.31 61.22±0.58 74.03±1.74 76.32±0.67

MixRE [25] 77.58±0.59 81.13±0.82 85.51±0.38 49.35±1.25 59.13±0.87 61.97±1.32 62.48±0.67 72.45±0.73 78.32±0.59

UG-MCT [19] 80.43±0.52 82.91±0.43 85.99±0.31 45.10±1.36 57.97±0.41 61.33±0.28 67.21±0.83 73.43±1.25 78.84±0.73

SelfLRE 81.24±0.53 83.42±0.49 86.35±0.47 51.16±1.39 60.06±1.44 62.39±0.41 68.93±0.84 74.24±0.78 79.07±0.51

w/o contrastive learning loss 77.23±0.74 80.55±0.62 84.19±0.47 49.68±1.31 58.41±1.22 61.32±0.95 66.43±1.84 73.52±1.57 78.45±0.69

w/o graph-based similarity loss 75.38±1.42 79.49±1.13 83.04±1.05 47.26±1.53 57.34±1.35 60.08±1.21 64.24±1.18 72.88±1.02 77.93±0.95

BERT w. gold labels 84.64±0.28 85.40±0.34 87.08±0.23 62.93±0.41 63.66±0.23 64.69±0.29 77.64±0.37 82.12±0.23 82.97±0.29

Figure 3: Pseudo label quality analysis on three datasets.

pseudo labels. SelfLRE almost matches the performance of a model

using gold labels, with only a 4.92% average difference across the

datasets, as if using 50% more labeled data.

Ablation Study. We conduct an ablation study to showcase the

impact of both loss functions in the test set. SelfLRE w/o contrastive

learning loss means that the self-ensembling method is removed,

which will weaken the model’s ability to learn representations and

affect the semantic analysis of the SelfLRE. SelfLRE w/o graph-

based similarity loss means to remove the self-training method,

leading to the unavailability of guidance from pseudo-labels in

representation learning, which in turn affects task-specific repre-

sentation learning. From the ablation rows in Table 1, we could

observe that two loss functions all contribute positively to SelfLRE.

Compared with contrastive learning loss, graph-based similarity

loss can bring more performance improvement (3.24% vs. 1.89%),

which shows the importance of pseudo-label supervision guidance.

Pseudo label Quality Analysis. We evaluate the contribution

of the two modules to model performance by analyzing the F1

of the pseudo labels. As shown in Figure 3, we observe that both

self-ensembling learning and self-training learning positively affect

the model’s performance. Among them, using high-quality pseudo-

label data to guide task-specific representation learning can bring

about a 5.71% F1 improvement, and the improved pseudo-label

reversely promotes a more high-quality mapping network, resulting

in further improvement of the pseudo-label classification ability.

Visualize Contextualized Representations. To demonstrate the

impact of self-ensembling and self-training on relational represen-

tation learning, we used t-SNE [26] to visualize dimension-reduced

representations. We selected 4 relations and 40 entity pairs from

Re-TACRED and show the results in Figure 4. The SelfLRE w/o

(c) SelfLRE(b) SelfLRE w/o contrastive 

learning loss
(a) SelfLRE w/o graph-

based similarity loss

Figure 4: Visualizing contextualized representations after

t-SNE dimension reduction. Features are shaped with their

ground-truth relation labels.

graph-based similarity loss already assigns meaningful semantics,

but is inadequate for the RE task. Without contrastive learning

loss, the model cannot provide confident clusters due to suboptimal

learning. SelfLRE leverages the self-refining training schema to

improve the relational representation learning Ð we could learn

denser clusters and more discriminative representations.

5 CONCLUSION AND FUTUREWORK

In this paper, we propose a novel self-refining representation learn-

ing framework: SelfLRE for LRE task, which integrates two com-

plementary self-training and self-ensembling methods. The self-

trainingmethod could provide pseudo labels to help self-ensembling

method refine task-specific representations. Conversely, the refined

representations can be used to optimize pseudo-label classification

to obtain higher-quality labels. Experiments on three datasets show

that SelfLRE achieves 1.81% performance gain over SOTA baseline.

In future work, we plan to extend the general LRE framework to

other classification tasks, such as sentiment analysis, text classifi-

cation, and also explore its applicability to other domains such as

medical health and natural science.
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