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Considering the expensive annotation in Named Entity Recognition (NER), Cross-domain NER enables

NER in low-resource target domains with few or without labeled data, by transferring the knowledge of high-

resource domains. However, the discrepancy between different domains causes the domain shift problem and

hampers the performance of cross-domain NER in low-resource scenarios. In this article, we first propose

an adversarial adaptive augmentation, where we integrate the adversarial strategy into a multi-task learner

to augment and qualify domain adaptive data. We extract domain-invariant features of the adaptive data

to bridge the cross-domain gap and alleviate the label-sparsity problem simultaneously. Therefore, another

important component in this article is the progressive domain-invariant feature distillation framework. A

multi-grainedMMD (MaximumMean Discrepancy) approach in the framework to extract the multi-level

domain invariant features and enable knowledge transfer across domains through the adversarial adaptive

data. Advanced Knowledge Distillation (KD) schema processes progressively domain adaptation through

the powerful pre-trained language models and multi-level domain invariant features. Extensive comparative

experiments over four English and two Chinese benchmarks show the importance of adversarial augmenta-

tion and effective adaptation from high-resource domains to low-resource target domains. Comparison with

two vanilla and four latest baselines indicates the state-of-the-art performance and superiority confronted

with both zero-resource and minimal-resource scenarios.
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1 INTRODUCTION

Named Entity Recognition (NER) is typically framed as a sequence labeling task that targets
to locate and classify named entities in text into predefined semantic types, such as Person, Orga-
nization, Location, and so on. As one of the fundamental tasks in natural language processing

(NLP), NER has been explored for decades to serve other advanced downstream tasks, like in-
formation extraction [13, 50], text understanding [14, 33], and so on. Most existing NER models
are trained in a supervised manner, which depends on sufficient labeled data. As we know, well-
annotated data has expensive accessibility and is not always feasible in the real world. Although
distant supervision [2, 28] can bring alleviation and provide weak annotation, data denoising is
another time-consuming and labor-intensive issue caused by distant supervision techniques. Cur-
rent research [25] prefers cross-domain NER for learnt NER knowledge transferred from the high-
resource source domains to low-resource target domains. Like the transfer learning paradigm [30],
cross-domain NER trains a NER learner on a well-labeled source domain but enables it to perform
on a target domain without enough labeled examples.
However, cross-domain NER is faced with the challenge of decent solutions on the domain

shift problem [3, 7, 36]. Most solutions [1, 10, 17, 24, 32, 51] rely on high-quality cross-domain
features during cross-domain knowledge transfer. For low-resource scenarios, insufficient labeled
data usually show undesired performance in cross-domain features extraction. Another challenge
is the high quality of source domain data. The source domain should be enough assorted and
resourceful to make a single training dataset cover all the required NER types. The semantic
ambiguous words may appear in multiple domains and assigned different NER types. Because
their combination or usage is different across different domains, domain adaptation [27, 43] is an
intensively-explored solution among recent researches. Existing approaches follow two categories,
either word-level or discourse-level, in domain adaptations to enable cross-domain NER. When
mitigating the word-level discrepancy, previous endeavors introduce distributed word embed-
ding [15], label-aware maximum mean discrepancy estimation [45], and projecting learning [20].
When alleviating the discourse-level discrepancy, researchers propose multi-level adaptation
layers [20], tensor decomposition [11], and multi-task learning with external information [1, 24].
However, promising results in these methods all rely on valuable cross-domain features derived
from sufficient labeled data, which hinders their performance for low-resource scenarios. To
tackle both insufficient labeled data and domain shift problems, recent approaches [4, 19, 41, 50]
leverage external resources to generate pseudo labels for the compensation. Nevertheless, the
less confident labels not only deteriorate the robustness of models due to noise but also consume
additional computational resources.
To address abovementioned limitations of existingmethods, we propose a domain-invariant fea-

ture progressive distillation framework, PDALN†. We propose both word- and discourse-level do-
main adaptation on two low-resource scenarios: unsupervised and semi-supervised cross-domain
NER. PDALN†works on both insufficient labeled data and domain shift simultaneously through ad-
versarial adaptive data augmentation and adaptive feature progressive distillation. Components in
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PDALN†work one after another to uncover domain-invariant features. To alleviate the sparsity of
annotated target domain, we augment mix-domain training data with cross-domain anchor pairs.
Then we design to qualify and select the augmented data. We adopt adversarial training with a do-
main discriminator to explore domain-invariant space across the source and target domains. Such
a discriminator ranks the augmented data and selects the most adaptive set located in or closed
to the domain-invariant space. Next, we extract multi-level domain-invariant features through a
multi-grained Maximum Mean Discrepancy (MMD) adaptation metric to enable knowledge
transfer across domains. Besides, we boost the robustness of a pre-trained model through exam-
ples from contrastive learning [9, 21, 34, 39]. Finally, a sequential teacher-student Knowledge

Distillation (KD) framework works to progressively perform domain adaption increasing model
robustness and its confidence over domain invariant features.
The source code and datasets are publicly available at https://github.com/towermxt/cross_

doamin_ner. Our main contributions are summarized as follows:

• We propose an adversarial augmentation-assisted cross-domain NER model, PDALN†,
which is mainly used for both zero-resource and minimal-resource scenarios. PDALN† can
transfer multi-level domain invariant knowledge from high-resource source domain to low-
resource target domain without external retrieval auxiliary.
• We introduce an adversarial adaptive data augmentation to qualify and refine the augmen-
tation. Moreover, we learn the word-level and discourse-level domain invariant features by
a multi-grained domain adaptation metric on the refined adaptive data. We propose a self-
trainer to progressively boost invariant feature extraction.
• We conduct extensive experiments on four English benchmarks and two Chinese bench-
marks to show our new state-of-the-art performance in two low-resource settings, including
unsupervised and semi-supervised cross-domain NER.

We expand on our preliminary work, PDALN [56], by extending a multi-task leaner with the
adversarial strategy to denoise the adaptive data and explore a more reliable cross-domain adap-
tive space. Specifically, the improvements encompass: (1) supporting augmented data qualification
and refinement. Unbefitting augmentation can cause catastrophic error accumulation during learn-
ing; (2) providing weakly-labeled target data for the zero-resource scenario. The discriminator cre-
ated in the adversarial strategy can select unlabeled target samples located in the adaptive space,
and assign them pseudo labels by the NER classifier in themulti-task learner; (3) exhibiting detailed
performance on each NER type; and (4) evaluating the cross-domain adaptability on two Chinese
benchmarks. Individual achievements indicate the model’s capability to generalize on different
domains.

2 BACKGROUND AND OVERVIEW

In this section, we introduce the problem definition and related concepts. Then we discuss the
problem scope and challenges in the cross-domain NER task.

2.1 Problem Definition

Based on the BIO schema1, NER is to assign a sequence of labels Y = [y1, . . . ,yN ] to a given
sentence X = [x1, . . . ,xN ] with N tokens. An entity is a span of tokens e = [xi , . . . x j ](1 ≤ i ≤

j ≤ N ) associated with an entity type. Specifically, the first token of an entity mentioned in the
sentence with type X is labeled as B−X , the other tokens inside that entity mention are labeled as
I−X , and the non-entity tokens are labeled asO . Therefore,yi ∈ label = {B-X, I-X,O}, whereX is a

1https://en.wikipedia.org/wiki/Inside-outside-beginning_(tagging).
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NER type such as “PER”, “LOC”, “ORG” and so on.While cross-domain NER addresses domain shift
issues that occurred in NER for the sake of better domain adaptability. Domain adaptation is to
adapt a learner to the new/target domain using the labeled data available from the original/source
domain. The low-resource cross-domain NER task mainly studies the domain adaptation under
un-supervision or semi-supervision on the target domain in this article, while most of the existing
works [11, 12, 20, 45] lack evaluation on un-supervised cross-domain adaptation.

Unsupervised NER domain adaptation attempts to tackle the cross-domain discrepancy problem
without any supervision on the target domain, assuming that no labels for examples are available
from the target domain in training. In contrast, semi-supervised domain adaptation relaxes the
strict constraint, using a small number of additional labels on the target data. We are given source

domain {(Xs
m ,Y

s
m )}

Ns

m=1 with Ns labeled examples, and target domain data {Xt
m }

Nt

m=1 with Nt unla-
beled testing examples. We assume the source domain is characterized by probability distributions
Ps , while Pt represents target domain distribution. We aim to construct a model which can learn
transferable features to bridge the cross-domain discrepancy and build a classifier F = f (X;θ )
which can optimize target prediction using source supervision. We denote the source domain

data Ds
= {(Xs

m ,Y
s
m )}

Ns

m=1, unannotated target data Dtu = {X
tu
i }

Nu

i=1, and annotated target data

Dta = {(X
ta
j ,Y

ta
j )}

Na

j=1. D
t
= Dtu ∪ Dta is the total target data.

2.2 Problem Scope and Challenges

Sequence labeling is a general but fundamental approach encompassing various natural language
processing (NLP) tasks including word segmentation [26], part-of-speech tagging (POS) [38],
and named entity recognition [16]. NER studies take a significant portion in the development of
the sequence labeling family. Typically, existing NER methods follow the supervised learning par-
adigm and require high-quality annotations. While gold standard annotation is labor-intensive
and time-consuming, imperfect annotations are relatively easier to obtain from crowd-sourcing or
distant supervision manner but bring data noise issues. Researchers [1, 10, 17, 24] seek advanced
techniques for out-of-domain knowledge transfer. They require fewer annotation efforts but per-
form similarly to gold annotations.
Even though the benefit of well-learned cross-domain knowledge is prevalent in low-resource

annotation NER tasks, there are three main challenges faced by most of the state-of-the-art
works.

(1) How to evaluate the domain discrepancy for better mitigation. Existing approaches [1, 4, 15,
19, 20, 24, 41, 45] form domain shift into either word-level or discourse-level discrepancy.
In other words, an entity mention can appear and be assigned with different types across
domains. Besides, different types of entities show imbalance frequency. For example, a large
number of location names are shared in the political news domain and the sports domain,
but the case is very different for organization names across these domains. Moreover, written
styles are distinct among different data resources, like science news and tweets. Approaches
in the literature are diverse in the adaptation techniques to mitigate the gap of either token
distribution or sentence structure. The open-mind works [4, 19, 41] focus on token-level
consistency and complement with the help of auxiliary knowledge base linking, which in-
troduces too much noise. There are many studies [11, 12, 20] discuss how to cope with both
word- and discourse-level discrepancies. However, those methods either lack the capability
to capture expressive text features for the adaptation or should consume sufficient labeled
target data.

(2) How to learn sufficient entity features in the source domain. Usually, we expect the model
to take in as much knowledge of the NER classes as possible. But, it is hard to find a single
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training dataset that exactly covers all the required NER types. For each type, sufficient
mention instances are another consideration of source domain selection. Even though words
overlap across domains, their combination or usage is different. In low-resource scenarios,
supervised models incline to lose their behavior due to a lack of enough annotated data
to support the cross-domain bridge. The self-training strategy [19] and Knowledge Base
assistance [4, 41, 50] work to alleviate the issue during the training. More intuitively, those
methods harness the idea of data augmentation through either the pseudo label prediction
in self-training or the additional token linking from knowledge bases. The augmented data
truly benefits domain adaptation, but still suffers the lack of qualification. As we know, noise
data usually brings inevitable distraction to the model training.

(3) How to extend and guarantee the model’s ability to minimal or no annotation scenarios. As
mentioned above, data augmentation is explored to work as a compliment when transferring
knowledge from the high-resource source domain to the low-resource target domain. But
this leaves another consideration of data qualification. Our preliminary work [56] constructs
adaptive data under the guidance of cross-domain anchors. The results show its superiority
but raise further thinking about automatically adaptive data refinement. Even though limited
augmented data bring decent performance increases, we still expect more improvement with
more adaptive data that exactly form the cross-domain bridge.

3 PRELIMINARY

In this section, we introduce the base model in NER and the maximummean discrepancy measure-
ment.

3.1 Base Model

We adopt an expressive pre-trained language model (e.g., BERT [6]) to encode the sentence X =
[xCLS,x1, . . . ,xN ,xSEP] into a sequence hidden states h = [hCLS,h1, . . . ,hN ,hSEP], as the sentence
representation.
Encoder. We encode the input example X through the encoder Encoder to extract its features h:

h = Encoder(X). (1)

NER Classi�er. We describe the NER task objective as CRF loss, where Lcrf = logpcr f (Y|X).

pcr f (Y|X) =
1

Z

N
∏

i=1

ϕn (yi |hi ,V)

N−1
∏

i=1

ϕe (yi,i+1 |A), (2)

Lcrf =

N
∑

i=1

ϕn (yi |hi ,V) +

N−1
∑

i=1

Ayi ,yi+1 + logZ, (3)

where logϕn (yi = j |hi ,V) = exp(VTj hi ), hi is the word vector from the encoder, V is the CRF

weight matrix. A is used for CRF transition matrix ϕe . Z is the normalization constant.

3.2 MaximumMean Discrepancy (MMD) Measurement

The MMDmeasures the difference of two distributions (Ps , Pt ) in a pre-defined function spaceHk .
Usually, theReproducing Kernel Hilbert Space (RKHS)works as the function spaceHk with a
kernel k . The MMD measurement computes the squared formulation, d2

k
(Ps , Pt ) which is denoted

as:

d2k (Ps , Pt ) = ‖EPs [φ (D
s )] − EPt [φ (D

t )]‖2
Hk
, (4)
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where the mapping function, φ : X → Hk . And Ps = Pt iff d2
k
(Ps , Pt ) = 0. Gaussian Kernel

k (Ds ,Dt ) is used inφ. When adaptingMMDmetric on cross-domain NER, we compute the squared
version of MMD between source/target samples feature vectors:

d2k (H
s ,Ht ) =

1

(N s )2

N s
∑

i, j=1

k
(

hsi ,h
s
j

)

+

1

(N t )2

N t
∑

i, j=1

k
(

hti ,h
t
j

)

−
2

N sN t

N sN t
∑

i, j=1

k
(

hsi ,h
t
j

)

, (5)

where Hs and Ht are sets of encoded feature embeddings hs and ht with corresponding number
N s and N t .

4 THE PROPOSED MODEL

In this section, we present the details of model design in PDALN†. Above all, domain adaptation
components contains adaptive data augmentation and selection, and the multi-level MMDmetrics
for domain-invariant feature extraction. Firstly, adaptive data augmentation works to tackle the
labeled data insufficiency issue. Secondly, we construct a multi-task schema with both the NER
classifier and adversarial domain discriminator. This schema can explore the potential adaptive
space for augmented data qualification and selection. Thirdly, a multi-grained MMDmetric works
on the augmented adaptive data to extract domain invariant features. There is an intuitive illustra-
tion in Figure 1 to describe the motivation and function of each domain adaptation components,
and interpret how it solves the domain shift problems. Besides, we exploit a pre-trained model
to capture feature embedding, due to its impressive success in word contextual embedding. We
investigate a self-training strategy to progressively and effectively perform our domain adaption
components, as shown in Figure 3.We describe the details of cross-domain adaptation in Section 4.1
and progressive self-training for low-resource domain adaptation in Section 4.2.

4.1 Cross-domain Adaptation

Cross-domain NER models suffer over-fitting on limited labeled data. Thus, we exploit Cross-
Domain Anchor pairs to synthesize mix-domain data, so-called adaptive data. The adaptive data
is the cure for alleviating both word-level and discourse-level cross-domain gaps. Because we can
explore the adaptive space (in Figure 1) via those adaptive data, which is exactly the cross-domain
bridge transferring knowledge. To avoid including noise adaptive data, an adaptation capability
qualifier works to rank and select the most adaptive augmented data fed into the downstream
component.

4.1.1 Adaptive Data Augmentation. Pioneers [1, 20, 24, 45] mostly address domain shift prob-
lem by reducing the word-level and discourse-level cross-domain discrepancy. We synthesize the
adaptive data to provide shared features and bridge cross domain gaps on both word-level and
discourse-level.
We first introduce Cross-Domain Anchor used in adaptive data synthesis. We denote a source

domain entity by es whose labels are [ysis , . . .y
s
js ], and a target entity by et whose labels are

[yt
i t
, . . .yt

jt
]. Therefore, Cross-Domain Anchor pairs are defined asMAnchor = {(e

s , et ),ysis = yt
i t
}.

ysis = yt
i t

denotes two entities belonging to the same entity type when their first label is the
same. Intuitively, the anchor pairs works to alleviate the cross-domain word-level discrepancy.
Then, we use the cross-domain anchor pairsMAnchor to create adaptive data Dauд . Suppose we

have ep , where p ∈ {s, t } and ep ∈ Xp
= [x

p
1 , . . . ,x

p

ip
, . . . x

p

jp
, . . . ,x

p

|Xp |
]. Given an anchor pair

(ep , eq ) ∈ MAnchor , whereq ∈ {s, t } andq � p, we replace e
p inXp with eq as the augmented adap-

tive data Xp ′
= [x

p
1 , . . . ,x

q
iq , . . . x

q
jq , . . . ,x

p

|Xp |
]. Finally, we obtain the adaptive data Dauд

= {Xp ′}.

Intuitively, the augmented mix-domain sentences are considered as adaptive data because of their
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Fig. 1. Toy illustration of themethod. (1) DataDistribution of TwoDomains. (2) Adaptive Data Augmentation.

(3) Adaptive SPace Exploration. (4) Data Selection and Gap Mitigation.

shared sentence pattern across domains. For example, in Figure 1(2), adaptive sentences are “The
Australia firm’s parent company.” and “San Francisco will play three one-day internationals.”. We
exchange the words referring The Cross-Domain Anchor pair (“Australia”, “San Francisco”) which
are both assigned to the label “LOC”.

4.1.2 Adversarial Selection. Mix-domain data possibly introduce undesired noise into the adap-
tive data, which draws down the performance instead of adaptation benefit. Therefore, we seek
a way to qualify and select the adaptive data and expect the selected adaptive data to be more
valuable when extracting domain-invariant features. We adopt the adversarial strategy to learn
the adaptive space and filter out unconfident data around the boundary.
Multiple domains adversarial networks [8, 31] achieve great success in extracting transferable

knowledge to enable domain adaptation. Usually, the adversarial learning procedure is a two-
player game. The first player is a binary classifier, the domain discriminator, trained to distinguish
the source domain from the target domain. The second player is the domain-invariant feature
extractor to confuse the domain discriminator.
Domain Discriminator. Two linear neural networks followed by a ReLU function comprise the
domain discriminator. The domain discriminator takes in the token embeddings and passes down
domain recognition, based on which the sigmoid function predicts the probability of whether the
input belongs to the source domain,

p (Yd |X) = σ (W1 · ReLU(W2 · Encoder(X))), (6)

whereW2 ∈ Rdd×de andW1 ∈ Rdl×dd . de is the hidden dimension of the encoder. dd is the hidden
dimension of the discriminator.dl is the label size of the domain classification task. σ is the sigmoid
function to obtain the domain probability of each word. Yd ∈ {0, 1}dl is the domain prediction.
The loss function in the domain discriminator is denoted by:

Ldis = CrossEncropy(p (Yd |X),Ydis ), (7)

whereYdis ∈ {0, 1}dl is the ground truth of the domain classification task. In contrast, the domain-
invariant feature extractor loss is denoted by:

Lf ea = −CrossEncropy(p (Y
d |X),Ydis ). (8)
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ALGORITHM 1: Adversarial Training for Domain Adaptive Space

Require: Source domain sentences Xs , their NER labels Ys , and their binary domain label Yds .
Target domain sentencesXt , and their binary domain labelYdt . Adaptive data,Dauд . Number
of batches, Batch. Slack factor, ξ . Selection threshold: n for adaptive data Dauд ; ρ for weakly-
labeled target data Dpseudo .

Ensure: Selected Adaptive data D
auд

ξ
, and Weakly-labeled target data Dpseudo .

1: procedure Adv-Select(Xs ,Xt ,Ys ,Yds ,Ydt ,Batch)
2: for i = 1, . . . ,Batch do

3: for modelm in {NER, Fea,Dis} do // Three objectives in multi-task framework.
4: if modelm is NER then

5: Sample batch {xsi ,y
s
i }. // Where xsi ∈ X

s , and ysi ∈ Y
s .

6: Compute Lcr f ← Equation (3).
7: Update parameters θNER in Encoder and CRF layer. // θNER contains both pa-

rameter in Encoder θe and CRF layer θcr f .
8: else

9: Sample batch {xi ,y
d
i }. // Where xi ∈ X

s ⋃Xt , and ydi ∈ Y
ds
⋃

Ydt .
10: if modelm is Dis then
11: Compute Ldis ← Equation (7).
12: else

13: Compute Lf ea ← Equation (8).

14: Update parameters θbin in Encoder and Discriminator layers. // θbin contains
both parameter in Encoder θe and discriminator layer θdis .

15: for i = 1, . . . , len(Dauд ) do

16: Calculate Idomain (x
auд
i , ξ ) ← Equation (9). // Where x

auд
i ∈ Dauд .

17: Rank {Idomain (x
auд
i , ξ )} and Select top n to be D

auд

ξ
.

18: for i = 1, . . . , len(Xt ) do

19: Calculate Idomain (x
t
i , ξ ) ← Equation (9). // Where x ti ∈ X

t .

20: Rank {Idomain (x
t
i , ξ )} and Select top ρ to be Xt ′.

21: Predict pseudo label Yt ′ of Xt ′ by NER model with parameter θNER , and Dpseudo
=

{Xt ′,Yt ′}.

We formulate the adversarial selection model as a multi-task framework, including the NER
task and two binary domain classification tasks. We describe the training details in Algorithm 1
and Figure 2. To better explore the target domain, we make the model take in both source and
target domain data. Since there are many unannotated data Dtu in target, they are only allowed to
update the discriminator and feature extraction task but not the NER task. The domain discrimina-
tor tries to make the encoder unable to distinguish the domain of a token through confrontation.
In this way, the encoder should pay more attention to features that are less related to the source
domain when learning the NER task. After adversarial training, the domain discriminator can still
correctly classify certain sentences with a high probability. We define these as domain-adhered
samples. Other samples are ambiguous regarding domain (for example, sentences with a proba-
bility close to 0.5), and they are defined as samples that are more domain-invariant. To select the
most adaptive data in Dauд

= {Xp ′}, we calculate domain-invariant score, Idomain , for each of the
adaptive samples. It is denoted by:

Idomain = max(1 − |p (yds ) − 0.5|, 1 − |p (y
d
t ) − 0.5| + ξ ), (9)
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Fig. 2. Multi-task learning strategywith bothNER task and adversarial domain-invariant feature space learn-

ing task. The learner through adversarial training helps to select and refine the adaptive data augmentation

proposed in Section 4.1.1.

Fig. 3. Low-resource cross-domain NER Training Schema. Semi-supervised Training mainly extract the

domain-invariant feature in the adaptive data by a progressive knowledge distillation strategy.

wherep (yds ) andp (y
d
t ) are predicted probabilities on source and target domain through the domain

discriminator. Idomain indicates how much the example is independent of either source or the
target domain. If it is hard to tell which domain the example should be, the example is regarded
as the domain-invariant feature carrier. Therefore, we select samples with the highest Idomain in
the top n to refine set Dauд

= {Xp ′}. ξ is a slack factor for releasing the constraints on the target
domain.
The adaptive data Dauд serves only the semi-supervised cross-domain NER task because it ex-

ploits the label information to construct cross-domain anchor pairs. For the unsupervised cross-
domain NER task, we can use the multi-task schema to create weakly labeled target data. As we
discussed above, the adversarial discriminator can explore the potential adaptive space, sharing the
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domain-invariant features among the samples located in it. Therefore, we can search the whole
unlabeled target examples and pick out those located in or close to the adaptive space. Idomain

measures howmuch the sample is close to the adaptive space. We rank the samples by Idomain and
select the top ρ samples to be the domain-adaptive pseudo-labeled dataset {Xt ′}. ρ is the hyper-
parameter to decide the ratio of selected data. After deciding the domain-invariant sample set in
the target domain, the NER classifier can predict pseudo-NER labels by pcr f (Y

t ′ |Xt ′). Finally, the

weakly-labeled domain-invariant sample set is Dpseudo
= {Xt ′,Yt ′}.

4.1.3 Multi-grainedMMD for Domain-invariant Features. In this part, we present how to extract
multi-level domain-invariant features throughmulti-grainedMMDmetrics. Therefore, data points
sharing same word and sentence features can move together, like shown in Figure 1(3). We devise
the multi-grained MMD objectives, LwMMD and LdMMD, to measure and alleviate the word-level and
discourse-level gaps.

Ld
MMD (D

s ,Dt ) = d2k

(

Hs
CLS,H

t
CLS

)

, (10)

Lw
MMD (D

s ,Dt ) =
∑

y∈label

μyd
2
k (Hy (D

s ),Hy (D
t )), (11)

where HCLS is the set of CLS token embeddings in a pre-trained model. Hy are the set of token
embeddings assigned with label y. μy is the corresponding coefficient.

4.2 Self-training for Low-Resource Domain Adaptation (DA)

4.2.1 Robust Feature Adaptation. Considering limited vocabulary and noise data samples, we
leverage the contrastive learning [5, 9, 34, 52] to boost feature extraction. We follow the positive
and negative sample construction in [46] to construct a distorted dataset Dc

= {(X′,Y ′)} over a
given dataset D = {(X,Y )}.

Lc = − log
exp(z · z̄)/τ

∑

zi ∈{z̄}∪Zneд exp(z · zi/τ )
, (12)

where z =W⊤hCLS , z̄ =W⊤h̄CLS are mapping vectors of a sentence X and X′, respectively. Zneд

is the negative samples from D ∪ Dc except X and X′. τ is a temperature hyper-parameter.

4.2.2 Low-Resource Objectives. Low-resource cross-domain NER includes both zero-resource
and minimal-resource scenarios. For the zero-resource scenario, we use all unlabeled target data to
compute the adaptation on the discourse level. Since the word-level MMD loss needs pre-provided
token label information, we evaluate it on the domain-adaptive and pseudo-labeled data Dpseudo.
Therefore, the unsupervised cross-domain NER loss is denoted as:

LunDA = Lcrf + α
′LdMMD (D

s ,Dtu ) + (1 − α ′) · Lw
MMD (D

s ,Dpseudo) + Lc . (13)

For the minimal-resource scenario, we can use a small size of labeled target data Dta to esti-
mate the word-level adaptation. Then, the semi-supervised cross-domain NER objective is
denoted as:

LsemiDA = Lcrf + α · L
d
MMD (D

s ,Dt ) + β · Lw
MMD (D

s ,Dta ) + Lc , (14)

where α and β are the hyper-parameters.

4.2.3 Progressive Joint KD and DA. First of all, we train the base model on both source and
target domains to explore a rough adaptive space. Then to further refine it, we exploit a progres-
sive teacher-student framework to perform the pre-trained model on adaptive data. The sequen-
tial teacher-student framework works to prohibit from over-fitting on limited augmented adaptive
data. The sequential students can progressively overlook “problematic” examples but learns things
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that generalize well from its teacher. Therefore, the KD framework can improve the domain adap-
tation confidence over the adaptive data. The cross-domain NER loss used for adaptive data is
denoted as:

LunDA = Lcrf + α
′LdMMD (D

pseudo ,Dtu ) + Lc , (15)

LsemiDA = Lcrf + α · L
d
MMD (D

auд ,Dt ) + β · Lw
MMD (D

auд ,Dta ) + Lc . (16)

We use fθtea and fθstu to denote teacher and student models in the progressive KD framework,
respectively. f

θ̂
is the base model learned by Equation (14). Then, we initial the teacher and the

student model as: θ
(0)
tea = θ

(0)
stu = θ̂ . The t-th student computes the loss:

Ldistill = (1 − γ ) · LDA + γ ·
1

N

N
∑

n=1

−f
θ
(t )
tea,n

(X) log fθstu ,n (X), (17)

where LDA ∈ {LunDA,LsemiDA}, X ∈ Dauд , containing N entities. f ·,n (X) means the output of

entity n. The updated model is θ̂
(t )
stu = argminθstu Ldistill. Finally, we update the (t + 1)-th iteration

by: θ
(t+1)
tea = θ

(t+1)
stu = θ̂

(t )
stu .

5 EXPERIMENTS

In this section, we make a comparison between PDALN† and other baselines on four English and
two Chinese public benchmarks. Besides, to better evaluate the domain adaptability on each NER
label, we present a comparative analysis of each label type with our previous work, PDALN [56].

5.1 Datasets

All datasets contain the four common entity types, including PER (person), LOC (location),
ORG (organization), and MISC (miscellaneous). For the English group, the source comes
from CoNLL-2003 English NER data [40] comprising 21.0K/3.5K/3.7K samples for the training/
validation/test sets. The target domains are:

(1) SciTech [11] contains a set of science and technology news with 3K sentences.
(2) WNUT 2016 [42] contains 2,400 tweets (comprising 61K sentences and 34k tokens) with

10 entity types. We convert 10 types in WNUT 2016 into four CoNLL03 entity types for
evaluation consistency.

(3) Webpage [37] comprises 783 entities from 20 webpages, including many long sentences.
(4) Wikigold [2] contains distant supervised examples derived from Wikipedia articles with

40k tokens.

The two Chinese datasets are the SIGHAN2006 NER dataset (Sighan) [18] and the Weibo NER
dataset (Weibo) [35]. Sighan contains three types, including person, location, and organization,
while Weibo contains additional types (geopolitical entity) apart from these three. We convert
four-type Weibo into a three-type dataset by merging type geopolitical entity into type location.
We take Sighan (only training set) as the source domain and the entire small Weibo to be the target.

Table 1 shows the data distributions on each NER type. SciTech has a comparative annotation
advantage on these four types since specific types (i.e., “PER”, “LOC”, “ORG”) take the major parts
like the case in the source domain. However, WNUT 2016 suffers the �ood of type “MISC” after
reducing 10 types to four CoNLL03 entity types. Webpage lacks balanced annotations. Sighan, as
the source, contains sufficient examples of each type.

5.2 Baselines

BiLSTM+CRF [16], early vanilla base model in NER.
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Table 1. The Distributions of Sentence and Each Entity in the Seven

Datasets Mentioned in 5.1

Datasets #Sentence #PER #LOC #ORG #MISC

CoNLL 217662 6600 7140 6321 3438

SciTech 34733 794 266 538 228

WNUT 2016 61908 669 867 760 2092

Webpage 5678 233 32 69 59

Wikigold 6812 140 165 176 126

Sighan 41728 9028 18522 10261 –

Weibo 1890 1919 425 333 –

BERT+CRF, advanced vanilla base model, which only replaces with the pre-trained language
model BERT.
La-DTL [41] introduces the label-aware MMD metric for alleviating word-level discrepancy.
DATNet [57] devises a generalized resource-adversarial discriminator to capture the cross-domain
features.
JIA2019 [11] constructs multi-task architecture for cross-domain NER knowledge transfer. Its key
idea is the tensor decomposition to learn the task embedding.
Multi-Cell [12] proposes another multi-task learning strategy. The authors devise a multi-cell
compositional LSTM structure for cross-domain NER.
We evaluate the performance on two variants of PDALN†. Following PDALN, we replace the

sequential KD framework in the self-training stage withMT and VAT, Mean Teacher strategy [44]
and Virtual Adversarial Training [29], respectively.

5.3 Training and Implementation Details

Our optimizer is Adam with a decay learning rate of 0.00005. We adopt cased BERT-base and
BERT-base-Chinese, with 12 transformer blocks and the self-attention heads, 768 of the hidden
layer size, and 32 of the batch size. The slack factor in Equation (9) is ξ = 0.1. The temperature
hyper-parameter is τ = 0.05. The coefficient μy in Equation (11) is 0.25. We pick out 200/1000
labeled target/source examples to synthesize adaptive data, obtaining 2,800 (200*4+1000*2) exam-
ples. Through the discriminator learned in Section 4.1.2, we choose the top 1,400 examples with
the highest Idomain scores.

5.4 Results and Discussion

5.4.1 Domain Adaptation on Unsupervised NER. Our main results are shown in Tables 2 and 3
for English and Chinese benchmarks, respectively. These two tables both exhibit two groups of
results, one for un-supervised cross-domain NER and the other for semi-supervised cross-domain
NER. Unsupervised cross-domain NER represents the zero-resource scenarios, where model train-
ing is blind to labeled target examples. Not all baselines can extend performance on the zero-shot
paradigm. Compared with the baselines with zero-shot capability, PDALN† achieves the best F-1
scores on all benchmarks, beating PDALN. Its performance gain ranges 0.6%-1.3% over PDALN.
Particularly, PDALN† attains significantly new state-of-the-art performance. Adversarial adaptive
data augmentation plays a core role in domain adaptation when there is no accessibility to labeled
data.Moreover, results show that approaches (BERT+CRF, PDALN, and PDALN†) integratedwith a
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Table 2. Comparison with four English Benchmarks under the Evaluation Metrics, F1 Score

(Precision/Recall) (in %)

Baselines
SciTech WNUT 2016 Webpage Wikigold

F1 (Pre/Rec) F1 (Pre/Rec) F1 (Pre/Rec) F1 (Pre/Rec)

Un-supervised NER

BiLSTM+CRF 67.01 (73.53/61.56) 26.54 (47.79/18.37) 43.34 (58.05/34.59) 42.92 (47.55/39.11)

BERT+CRF 74.26 (68.57/80.97) 44.37 (34.39/62.50) 55.94 (58.29/53.78) 47.99 (44.13/52.61)

JIA2019 73.58 (74.28/72.91) 38.16 (47.26/32.00) 46.96 (51.61/43.08) 45.18 (48.68/42.15)

Multi-Cell 75.01 (77.10/73.03) 41.07 (47.96/35.91) 48.62 (58.27/41.72) 46.04 (47.94/44.29)

PDALN
75.80 (70.21/82.36) 46.12 (36.00/64.19) 56.93 (58.36/55.57) 49.73 (45.39/54.99)

75.56 ± 0.41 45.93 ± 0.35 57.25 ± 0.31 49.55 ± 0.44

PDALN†
76.71 (71.46/82.78) 47.27 (37.44/64.11) 58.29 (59.09/57.51) 50.34 (46.03/55.55)

76.65 ± 0.07 47.10 ± 0.11 58.21 ± 0.10 50.28 ± 0.11

Semi-supervised NER

BiLSTM+CRF 67.83 (72.95/63.39) 27.61 (48.56/19.29) 44.46 (58.88/35.72) 44.65 (48.40/41.44)

BERT+CRF 75.29 (70.23/81.14) 45.31 (35.15/63.77) 56.78 (58.71/54.99) 48.45 (44.02/53.88)

La-DTL 73.30 (74.10/72.52) 35.97 (37.22/34.78) 51.39 (48.81/54.23) 47.74 (46.70/48.83)

DATNet 69.22 (65.14/73.84) 32.67 (35.56/30.21) 47.71 (47.53/47.90) 37.92 (36.90/39.00)

JIA2019 74.65 (75.65/74.01) 39.14 (48.89/32.64) 47.39 (52.19/43.40) 45.77 (49.24/42.76)

Multi-Cell 75.89 (76.89/74.92) 42.19 (47.83/37.74) 49.45 (59.94/42.09) 46.45 (45.29/47.67)

PDALN w/MT 77.80 (72.93/83.38) 46.45 (36.11/65.10) 57.43 (58.69/56.24) 51.74 (47.39/56.97)

PDALN† w/MT 77.76 (73.05/83.12) 48.34 (38.21/65.79) 58.38 (59.88/56.97) 51.89 (47.54/57.13)

PDALN w/VAT 77.33 (73.10/82.08) 46.68 (36.46/64.87) 57.14 (58.26/56.07) 51.08 (46.88/56.13)

PDALN† w/VAT 77.85 (73.25/83.08) 47.86 (38.01/64.61) 58.69 (59.64/57.77) 51.30 (47.09/56.35)

PDALN
78.23 (73.58/83.51) 48.22 (37.78/66.66) 58.56 (59.99/57.20) 53.06 (48.77/58.19)

77.31 ± 0.59 47.63 ± 0.61 58.25 ± 0.34 52.48 ± 0.49

PDALN†
78.17 (73.27/83.77) 49.21 (38.84/67.17) 59.17 (60.39/58.01) 53.44 (49.23/58.44)

78.05 ± 0.09 49.00 ± 0.10 59.12 ± 0.05 53.27 ± 0.13

Only the performances of PDALN and PDALN† comprise two parts: the best score among five runs in the top, average

F-1 score with deviation score in the bottom.

pre-trained languagemodel obtain decent recall but suffer a failure on the precision scores. Though
showing competitive performance on the recall scores, PDALN† and PDALN surpass BERT+CRF
overall due to benefits from multi-level domain adaptation with the contrastive-learning fused
pre-trained language model.

5.4.2 Domain Adaptation on Semi-supervised NER. As shown in Tables 2 and 3, most of the
baselines in the group of unsupervised cross-domain NER cannot achieve decent performance
gain by only taking in limited annotated resources. But PDALN† and PDALN show their superi-
ority over not only the unsupervised approaches but also those in supervision. Their outperfor-
mance over the most state-of-the-art shows overall 2%-4% improvements among all benchmarks.
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Table 3. Chinese Benchmark Evaluation under the Evaluation Metrics:

F1 Score (Precision/Recall) (in %)

Baselines
Un-supervised NER Semi-supervised NER

F1 (Pre/Rec) F1 (Pre/Rec)

BiLSTM+CRF 38.01 (51.34/30.26) 41.45 (52.66/34.18)

BERT+CRF 52.43 (55.37/49.78) 54.83 (57.70/52.24)

La-DTL – 43.87 (53.64 /37.11)

DATNet – 45.37 (53.88/39.18)

JIA2019 37.35 (50.94/29.48) 41.88 (52.19/34.97)

Multi-Cell 40.14 (50.19/33.44) 42.03 (52.93/34.85)

PDALN w/MT – 55.62 (59.98/51.85)

PDALN† w/MT – 55.92 (60.49/51.99)

PDALN w/VAT – 56.61 (60.64/53.08)

PDALN† w/VAT – 57.45 (61.37/54.00)

PDALN
53.83 (56.85/51.11) 55.80 (60.21/52.00)

52.99 ± 0.76 54.57 ± 0.80

PDALN†
53.99 (57.13/51.17) 57.59 (61.82/53.91)

53.41 ± 0.13 56.76 ± 0.55

Only the performances of PDALN and PDALN† comprise two parts: the best

score among five runs in the top, and the average F-1 score with deviation score

in the bottom.

Since many baselines adopt an RNN-based network to encode input sentences, it is a challenge to
overcomemodel intrinsic shortcomings, i.e., vanishing and exploding gradient problems. These ap-
proaches lack expressive contextual information to assist recall score rise, which contrarily is the
merit of most pre-trained language models. Consequently, they are prone to increase false-positive
predictions.
Even though approaches integrated with a language model achieve stunning recall scores, their

precision scores dramatically fall behind the baselines without one. The pre-trained model group
shows too much power on limited annotated data, easily causing overfitting. PDALN† and PDALN
take a breakthrough in moderating the pre-trained language model’s capability to make a trade-
off between the precisions and recalls. They attain promising precision gain and increasing recall
scores compared with BERT+CRF. Their breakthroughs mainly benefit from the progressive do-
main adaptation with moderate knowledge distillation from the teachers.
Besides, we compare two variants (w/MT andw/VAT) of PDALN† and PDALNwith different KD

strategies, one for Sequential Mean Teacher and the other for teacher-student Virtual Adversarial
Training. Their performance approaches to PDALN† and PDALN on the high-quality labeled data,
SciTech. But they are vulnerable to noise data in WNUT 2016 and easily overfit on limited and
incomplete annotated samples in Webpage or Wikigold.
At last, we describe the evaluation of improvement between PDALN† and PDALN. Over-

all, PDALN† brings the model’s stability with significantly-reduced performance deviation. The
model’s stability shows the practicability and reliability of adversarial adaptive data augmentation.
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Table 4. Evaluation on the four Entity Types

PDALN

PDALN†

PER LOC ORG MISC

F1 (Pre/Rec) F1 (Pre/Rec) F1 (Pre/Rec) F1 (Pre/Rec)

SciTech
91.42 (92.25/90.61) 71.36 (64.21/80.31) 68.76 (60.56/79.54) 48.81 (45.12/53.17)

91.34 (92.11/90.59) 71.40 (64.35/80.20) 68.45 (60.55/78.72) 49.13 (45.61/53.25)

WNUT 2016
86.27 (84.51/88.12) 48.57 (44.33/53.71) 46.81 (41.11/54.36) 27.90 (21.48/39.79)

86.39 (85.77/87.02) 49.07 (44.91/54.08) 47.01 (41.12/54.88) 28.34 (22.00/39.81)

Webpage
80.34 (78.45/82.34) 45.75 (41.50/50.97) 45.60 (43.12/48.39) 42.48 (39.61/45.81)

80.96 (79.70/82.27) 45.18 (40.98/50.34) 46.28 (43.88/48.93) 42.48 (39.30/46.22)

Wikigold
84.95 (85.69/84.24) 43.36 (39.45/48.14) 42.12 (35.94/50.89) 37.53 (32.11/45.16)

84.97 (84.95/85.00) 43.65 (40.01/48.02) 41.58 (35.37/50.44) 37.97 (32.34/45.98)

PDALN† achieve outperformance on three of the four English benchmarks. The adversarial data
selection serves for noteworthy improvement on the datasets suffering low annotation quality.

5.4.3 Evaluation on Entity Type. We provide PDALN†’s and PDALN’s performance on each
entity type in Table 4. The performance on type “PER” is more stable and well-performed than
the other three, “LOC”, “ORG”, and “MISC”. In other words, domain discrepancy is mainly caused
by the other three types, which convey the difference in entity distributions and topics between
the four benchmarks. Entity performances also vary among those four benchmarks. SciTech takes
the best performer thanks to its comparative annotation quality. Most of the entities in SciTech are
in the group of type “PER”, which have been well recognized almost approaching 91% F1 scores.
Thus, domain adaptation components in PDALN only provide limited performance gains. That
means the other three benchmarks leave more space for domain discrepancy mitigation by both
PDALN† and PDALN. They obtain significant performance gains compared with SciTech. Com-
pared with PDALN, PDALN† shows its advantage on type “MISC”, due to the adversarial adaptive
data selection.

5.4.4 Ablation Study. As Table 5 shows, the adaptive data is the most important component
contributing to the performance improvements. The progressive KD framework plays a secondar-
ily important role. Similar findings with PDALN, the multi-grained MMD and Lc are still crucial
for robust feature extraction, especially for the noisy dataset, like distant supervised Wikigold.
PDALN†’s success depends more on the adversarial adaptive data selection than PDALN does on
adaptive data without selection.
The ablation study on each individual entity type in Table 6 shows that data augmentation

and progressive self-training perform more impressive results for domain adaptation than the
multi-grained MMD method. Mostly, domain gap mitigation works more significantly on “LOC”,
“ORG”, and “MISC” than “PER”. As we discussed in the paper, the BERT-based models are prone to
overfitting small annotated data, especially for imbalanced data. Even if the powerful pre-trained
language model brings high recalls but ruins the precision by increasing false positive examples.
But Dauд and Ldist il l help the precision increase for most entity types as well as achievement in
the recall in PDALN†.

5.4.5 Case Study. In Figure 4, we compare the predictions on the sample sentences among
ground-truth, best baseline model, and ours. There are some complex Chinese samples to show the
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Table 5. Ablation Study

Baselines
SciTech WNUT 2016 Webpage Wikigold

F1 (Pre/Rec) F1 (Pre/Rec) F1 (Pre/Rec) F1 (Pre/Rec)

PDALN 78.23 (73.58/83.51) 48.22 (37.78/66.66) 58.56 (59.99/57.20) 53.06 (48.77/58.19)

w/o Lc −0.56 (−0.56/−0.57) −0.72 (−0.64/−0.81) −0.27 (−0.35/−0.21) −1.20 (−1.22/−1.18)

w/o Ld
MMD −1.25 (−1.42/−1.02) −1.21 (−0.93/−1.77) −0.80 (−0.64/−0.95) −1.46 (−1.33/−1.64)

w/o Lw
MMD −1.59 (−1.91/−1.14) −1.39 (−1.23/−1.53) −0.98 (−0.81/−1.14) −1.51 (−1.49/−1.54)

w/o Ldistill −1.94 (−2.57/−1.10) −1.68 (−1.60/−1.46) −1.38 (−1.30/−1.46) −1.56 (−1.68/−1.37)

w/o Dauд −1.96 (−2.36/−1.44) −1.79 (−1.56/−2.02 ) −2.17 (−2.16/−2.19) −1.64 (−1.51/−1.81)

PDALN† 78.17 (73.27/83.77) 49.21 (38.84/67.17) 59.17 (60.39/58.01) 53.44 (49.23/58.44)

w/o Lc −0.51 (−0.25/−0.83) −0.92 (−0.90/−0.72) −0.62 (−0.75/−0.52) −1.14 (−1.28/−0.93)

w/o Ld
MMD −1.19 (−1.11/−1.28) −1.57 (−1.39/−1.68) −0.74 (−0.84/−0.66) −1.50 (−1.49/−1.49)

w/o Lw
MMD −1.52 (−1.60/−1.40) −1.85 (−1.79/−1.54) −1.23 (−0.91/−1.55) −1.45 (−1.35/−1.59)

w/o Ldistill −1.88 (−2.26/−1.36) −1.82 (−1.86/−1.18) −1.58 (−1.40/−1.77) −1.41 (−1.54/−1.22)

w/o Dauд −1.90 (−2.05/−1.70) −2.11 (−1.92/−2.13 ) −1.93 (−1.86/−2.00) −1.66 (−1.57/−1.76)

The minus number indicates performance drops (in percentage) after removing or replacing the methods. (w/o Lc ):

the removal of robust feature extraction by Equation (12). (w/o Ld
MMD

) and (w/o Lw
MMD

): the removal of the

sentence-level and word-level MMD loss in Equation (14). (w/o Ldistill): the removal of progressive knowledge

distillation loss in Equation (17).

challenge of NER. All models fail on the first sentence. Themaskwords can be a school (taggedwith
“ORG”) or a specific place (taggedwith “LOC”) to learn how to drive.Most of the learners think they
refer to an organizationwhile the distance supervised tagger assigns them location labels. From the
second sample, most of the models have the ability to undercover the correct knowledge that was
missed by the ground truth. Our model shows the advantage of understanding fine-grained parts
in a long-term entity mention, like the example in Sentence 3. The reason is that the anchor-driven
data augmentation makes the model aware of the small segments. For the English group, ours can
outperform the baselines in Sentence 4, correct the ground truth in Sentence 5, or behavior the
same with the ground truth in Sentence 6.

6 RELATEDWORK

Recently, label sparsity is under intensive exploration and has obtained remarkable success in
many research frontiers [22, 23, 47–49, 53–55]. In its literature, cross-domain transfer plays a great
role when dealing with the domain shift problem. Most of existing approaches in cross-domain
NER are summarized into two categories by how they solve the domain shift issue.
The first group of approaches is to address the word discrepancy across different domains.

Word-level discrepancy means that word distributions are not compatible across different domain
datasets. This work [15] devises distributed word embedding methods to adopt and aggregate
domain-specific knowledge. Therefore, the domain-specific knowledge works to boost the cross-
domain NER performance. Some researchers [45] introduce label-aware MMD to solve domain
shift by shared knowledge located in the words assigned with the same labels across domains.
Others [20] introduce a simple projecting function on the word level to map target domain words
into source domain word space.
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Table 6. Ablation Study on Each NER Type

Baselines
PER LOC ORG MISC

F1 (Pre/Rec) F1 (Pre/Rec) F1 (Pre/Rec) F1 (Pre/Rec)

SciTech 91.42 (92.25/90.61) 71.36 (64.21/80.31) 68.76 (60.56/79.54) 48.81 (45.12/53.17)

w/o Dauд −0.36 (−0.34/−0.39) −1.38 (−1.81/−0.65) −2.38 (−2.81/−1.49) −1.69 (−2.00/−1.23)

w/o LMMD −0.28 (−0.50/−0.07) −1.41 (−1.51/−1.21) −1.08 (−1.16/−0.88) −1.40 (−1.05/−1.88)

w/o Ldistill −0.58 (−0.48/−0.69) −1.66 (−2.02/−1.03) −1.83 (−1.93/−1.57) −1.24 (−1.28/−1.17)

WNUT 2016 86.27 (84.51/88.12) 48.57 (44.33/53.71) 46.81 (41.11/54.36) 27.90 (21.48/39.79)

w/o Dauд −0.72 (−0.67/−0.78) −1.27 (−1.06/−1.56) −1.48 (−1.51/−1.35) −2.07 (−1.62/−2.88)

w/o LMMD −0.53 (−0.52/−0.53) −1.11 (−1.36/−0.71) −1.47 (−1.33/−1.64) −1.04 (−0.74/−1.70)

w/o Ldistill −1.15 (−1.23/−1.08) −1.59 (−1.88/−1.12) −1.26 (−1.05/−1.57) −2.03 (−1.93/−1.56)

Webpage 80.34 (78.45/82.34) 45.75 (41.50/50.97) 45.60 (43.12/48.39) 42.48 (39.61/45.81)

w/o Dauд −1.72 (−2.01/−1.40) −2.57 (−2.27/−2.97) −1.40 (−1.18/−1.68) −1.73 (−1.45/−2.10)

w/o LMMD −0.43 (−0.51/−0.34) −0.79 (−0.62/−1.03) −0.43 (−0.35/−0.53) −0.65 (−0.49/−0.87)

w/o Ldistill −1.02 (−1.23/−0.78) −0.97 (−1.04/−0.84) −1.27 (−1.43/−1.06) −1.36 (−1.31/−1.40)

Wikigold 84.95 (85.69/84.24) 43.36 (39.45/48.14) 42.12 (35.94/50.89) 37.53 (32.11/45.16)

w/o Dauд −1.09 (−1.22/−0.97) −1.95 (−2.44/−1.15) −2.06 (−2.08/−1.85) −1.89 (−1.76/−1.99)

w/o LMMD −0.84 (−0.78/−0.90) −1.45 (−1.63/−1.13) −1.56 (−1.35/−1.85) −1.63 (−1.64/−1.49)

w/o Ldistill −1.15 (−1.43/−1.28) −1.47 (−1.61/−1.22) −1.35 (−1.22/−1.52) −1.83 (−1.84/−1.64)

The other group is for alleviating the sentence-level discrepancy. Because sentences from dif-
ferent domains vary in the patterns, written styles, publication categories, data quality, and so on.
Approaches in this group includemulti-level adaptation layers [20], tensor decomposition [11], and
multi-task learning with external information [1, 24]. This work [20] devises sentence-adaptation
component, taking in the pre-adapted word embedding to obtain adaptive sentence features. Be-
sides, researchers [11] design multi-task learning strategy, performing tensor decomposition to
transfer cross-domain NER knowledge. Moreover, some explorers [24] make NER labels as the
experts to educate model learning between domains. Others [12] propose a multi-cell composi-
tional LSTM structure for cross-domain NER. Besides, those [4, 19, 41] seek auxiliary knowledge
from external resources. Through the external resource, model can generate pseudo labels for the
low-resource domain to solve the labeled data insufficiency.
However, those methods impede their performances under both zero-resource and minimal-

resource scenarios, because of a lack of robust and adaptive features or sufficient labeled target
data for fine-tuning. The external resource assisted models inevitably introduce too much
noise.

7 CONCLUSION

In this article, we propose an adversarial assisted progressive adaptation knowledge distilla-
tion framework, including anchor-guided and adversarial qualified adaptive data to address data
sparsity, multi-grained MMD to bridge the domain adaptation, and progressive KD to stably distill
cross-domain knowledge. The results exhibit the model’s superiority over the most state of the
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Fig. 4. Case Study on Both English and Chinese sentences. For each sample sentence, a comparison performs

on the ground truth and the predictions of the best baseline model and PDALN†. Words under the green

mask in each sentence are assigned NER tags under the human judgments to evaluate the quality of the

ground truth. The prediction in red means incorrect assignments while the green is correct ones.

art. The most merit in this model is valuable domain-invariant feature extraction by the effective
training framework from the well-denoised augmented mix-domain data. We expect and explore
further ideas to construct more advanced and effective adaptive data or to study a more expressive
and powerful adaptation space rather than an adversarial training strategy.
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