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Abstract—The explosion of e-commerce has caused the need
for processing and analysis of product titles, like entity typing
in product titles. However, the rapid activity in e-commerce has
led to the rapid emergence of new entities, which is difficult
for general entity typing. Besides, product titles in e-commerce
have very different language styles from text data in general
domain. In order to handle new entities in product titles and
address the special language styles of product titles in e-commerce
domain, we propose our textual entailment model with contin-
uous prompt tuning based hypotheses and fusion embeddings
for e-commerce entity typing. First, we reformulate entity typing
into a textual entailment problem to handle new entities that
are not present during training. Second, we design a model
to automatically generate textual entailment hypotheses using
a continuous prompt tuning method, which can generate better
textual entailment hypotheses without manual design. Third, we
utilize the fusion embeddings of BERT embedding and Char-
acterBERT embedding to solve the problem that the language
styles of product titles in e-commerce are different from that of
general domain. To analyze the effect of each contribution, we
compare the performance of entity typing and textual entailment
model, and conduct ablation studies on continuous prompt tuning
and fusion embeddings. We also evaluate the impact of different
prompt template initialization for the continuous prompt tuning.
We show our proposed model improves the average F1 score by
around 2% compared to the baseline BERT entity typing model.

Index Terms—continuous prompt tuning, textual entailment
model, characterBERT, e-commerce entity typing

I. INTRODUCTION

Nowadays, the boom of e-commerce has led to an increasing

preference for online shopping. In order to better manage

products and provide services to customers, such as classifying

products and recommending products, e-commerce platforms

need to understand entities in the product titles, such as brand

names (Apple, Nike, etc.), product names (iPhone, shoes, etc.)

and other features (colors, sizes, etc.). This task is usually

formulated as entity typing, which is to classify entity types

given the entity and context. For example, a product title

‘NAGANO Set of 2 Chairs’ in Table I has ‘NAGANO’ as

a brand name and ‘Chairs’ as a product name. Thus the entity

typing task is to classify ‘NAGANO’ and ‘Chairs’ into ‘brand

name’, ‘product name’ or ‘feature’ based on the product title.

TABLE I: Sample data.

Product Titles∗

NAGANO Set of 2 Chairs

Maison Louis Marie Perfume Oil Discovery Set

Hugo Boss (Dark Blue for Men 2.5 Oz) EDT

(100% Cotton) Unpaper Towels - Cheeks Ahoy
∗Italics indicates brand; Bold indicates product; Bracket indicates feature.

Traditional approaches treat entity typing as text classifi-

cation with a pre-defined label set. However, new brands,

products and features are emerging all the time on e-commerce

platforms. Previous entity typing methods lack the flexibility to

welcome new entities and require a large amount of training

data to obtain decent performance. Thus, in this paper we

propose a novel approach to formulate entity typing as a tex-

tual entailment problem. This textual entailment formulation

gives our model the ability to easily adapt to new entities [1].

A textual entailment model is to determine whether two text

fragments have a relationship that one fragment implies the

other, that is, whether the two text fragments are entailment

or not [2]. In our work, we formulate the textual entailment

model by using the product title as one fragment of text and

hypotheses with unfilled slots for entities to be classified as

the other fragment of text. So the textual entailment task is to

determine whether the product title and the hypotheses with

entities to be classified are entailment or not. For example,

when the product title is ‘Nike Mens Sportswear Aimoji

Hoodie’, the entity to be classified is ‘Hoodie’ and entity labels

are directly used as hypotheses, the textual entailment model

input will be ‘Nike Mens Sportswear Aimoji Hoodie [SEP]

Hoodie is a brand name/ product/ feature’, where ‘is a brand

name/ product/ feature’ is the hypotheses.

TABLE II: Examples of human designed hypotheses for our

textual entailment models.

Labels
Example Hypotheses
Using Label Names

Example Hypotheses Using
Label Dictionary Explanations

Brand ‘entity’ is a brand name

‘entity’ is a band name, which is
a type of things manufactured by
a particular company under a
particular name

Product ‘entity’ is a product

‘entity’ is a product, which is an
article or substance that is
manufactured or refined for sale

Feature ‘entity’ is a feature

‘entity’ is a feature, which is a
distinctive attribute or aspect of
something
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Designing the hypotheses is the most essential part in

the textual entailment task [1]. Normally people manually

design multiple templates for experiments, and then choose the

templates with best experimental performance. Previous works

usually convert labels or dictionary explanations into hypothe-

ses with human-designed templates as shown in Table II.

However, the model performance cannot be guaranteed to be

satisfactory using human designed hypotheses. Not to mention

that it requires a lot of human effort and domain knowledge

to design and test these templates. Therefore, we propose

a special continuous prompt tuning method to automatically

find the best hypotheses for textual entailment models. Prompt

tuning is the process of creating prompt templates (hypotheses

in our case) that result in the most effective performance on the

downstream tasks, and continuous prompt tuning is to directly

create prompt templates in the embedding space rather than

creating prompt templates that human can understand [3].

Besides, product title data has its own language styles which

are different from text data in general domain. Most product

titles are not complete sentences, but phrases or a bunch

of keywords which summarize and describe products. For

example, ‘Trendy Apple Sports iWatch Band’ is a phrase and

‘Zebra Sarasa Retractable Gel Pen — Blue — Medium 0.7

mm’ is a set of keywords. Also, many special abbreviations

like ‘Pcs’ in ‘INGCO 142 Pcs combination tools set’, self-

made words like ‘Fashern’ in ‘Fashern snake skin print re-

becca set’ and translated words like ‘GaGaZui’ in ‘GaGaZui

Green Bean Sweet Spicy Flavor 33g * 30 bags 990g’ are in

product titles. In order to adjust to these e-commerce domain

special language styles, we utilize fusion embeddings of BERT

and CharacterBERT [4], which is a character-level language

model that includes a Character-CNN module to represent

entire words by deliberating their characters rather than using

predefined word-piece vocabularies from general domain as in

BERT [5]. By using fusion embeddings of BERT embedding

and CharacterBERT embedding, the special language styles

of product titles and the tokens that do not appear in the

predefined word-piece vocabularies can be handled better.

In this paper, we propose Continuous Prompt Tuning based

Textual Entailment Model (CTM) to handle new entities

in product titles, automatically generate optimized textual

entailment hypotheses and address the special language styles

problem of e-commerce domain. Our primary contributions

include:

• Formulating entity typing in product titles into a novel

textual entailment problem and building the textual entail-

ment model hypotheses using continuous prompt tuning

methods: The textual entailment formulation provides

model with the ability to handle new entities that are

not present in training set.

• Building a continuous prompt tuning model for BERT

and characterBERT: The continuous prompt tuning model

saves human effort to design textual entailment hypothe-

ses and is able to automatically build better hypotheses.

• Utilizing the fusion embeddings of BERT embedding and

CharacterBERT embedding: The fusion embeddings of

BERT embedding and CharacterBERT embedding allow

our proposed CTM model to handle the special language

styles of e-commerce product titles.

A more detailed version can be found at [18]. Our codes

are available at https://github.com/YiboWANG214/CTM.

II. RELATED WORK

Textual entailment problem is a frequently studied task, and

both prompt learning and character-level language models are

very popular in recent years.

Recently, lots of work has been studied for converting

a classification task into a textual entailment problem. For

example, [6] converts a relation classification task into a

textual entailment problem, where the hypotheses are rela-

tion descriptions. [1] treats the zero shot text classification

task as a textual entailment problem, so that their model

can achieve knowledge from other entailment datasets. The

textual entailment problem has great potential because the

changes and design of hypotheses can bring about many model

modifications and improvements.

Since the publication and popularity of GPT-3 [7], prompt

learning has been payed great attention to. As mentioned in

[3], prompt tuning is the phase of creating effective prompt

templates for downstream tasks, which is one of the most

important phases of prompt learning. Prompt tuning can be

classified into hand-crafted prompt tuning and automated

prompt tuning. Many famous work has exploited hand-crafted

prompt tuning, like GPT-3 [7], T5 [8] , etc. Manually designed

prompt templates do not require computational resources and

work well in many cases. However, exploring optimal prompt

templates via hand-crafted prompt tuning is hard and requires

time and domain knowledge. Thus, automated prompt tuning

[9]–[11] is proposed to solve these problems. Prompt learning

has an effect comparable to or even better than fine-tuning

on large language models such as GPT-3 and T5 [10], [11]

and smaller language models like [12]. The success of prompt

learning inspires us to apply the idea of continuous prompt

tuning to design textual entailment hypotheses for entity typing

task.

Many character-level language models based on different

methods have been proposed to tackle the problem caused

by subword-level models. [13] introduces a hierarchical RNN

based character-level language model. [14] proposes a model

to apply a CNN and a highway network over characters, whose

output is sent to a LSTM lanaguage model. CharacterBERT [4]

utilizes a Character-CNN module to represent tokens by their

characters; CharBERT [15] uses context string embeddings

and a heterogeneous interaction module to obtain character

representations; CharFormer [16] use a soft gradient-based

subword tokenization module to learn subword representation

from characters. Canine [17] is a neural encoder that operates

directly on character sequences without subword tokenization

or vocabulary.
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Fig. 1: Model architecture. STEP 1 is the process of obtaining optimized hypotheses by applying prompt tuning to BERT and

CharacterBERT separately, and STEP 2 is the process of using textual entailment model and fusion embedding for classification.

A running example is shown in the figure.

III. METHODS

In this work, we reformulate the entity typing task in

product titles into a textual entailment problem. To save human

effort and improve model performance, we utilize continuous

prompt tuning to automatically create optimized hypotheses

for the textual entailment model. Additionally, we fuse BERT

embedding and characterBERT embedding to acclimate to

special language styles of product titles.

A. Problem Formulation

Given a product title x and an entity e which is a substring

of x, the original entity typing task is to classify the entity e

into an entity type y ∈ {‘brand’, ‘product’, ‘feature’} for each

input product title x.

In order to format the entity typing task into a textual

entailment problem, we concatenate the product title x, the

entity e and the hypothesis h for different classes together and

send them into the textual entailment model. The new input

to the textual entailment model is formulated as follows:

xnew = [CLS], x, [SEP ], e, h, (1)

where h ∈ H, and H is the hypotheses set with one hypoth-

esis for each class. The objective of the textual entailment

model is to predict whether the two text fragments of the

concatenated new input is entailment or not, which is to

classify the new input xnew into a binary class ynew ∈
{‘entailment’, ‘non-entailment’}.

B. Textual Entailment model

In order to train a textual entailment model, we need to con-

struct positive/negative entailment pairs. For the positive pairs,

we concatenate the sentence-entity pair and the hypothesis

from its ground truth label as the positive entailment example.

For negative pairs, we randomly select one hypothesis from

negative labels to construct ‘non-entailment’ example.

During training, we train the textual entailment model with

the cross entropy loss on the constructed positive and negative

entailment pairs. For the inference, we concatenate each test

example with hypothesis from different classes and we choose

the class with the highest probability as the predicted entity

type.
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C. Continuous Prompt Tuning

Inspired by soft prompt tuning [11], we design a novel con-

tinuous prompt tuning method to obtain optimized hypotheses

for the textual entailment task.

Given a product title with n tokens x = {x1, . . . , xn} and

the corresponding entity with m tokens e = {e1, . . . , em},

the embedding matrix Xe = [X;E] ∈ R
(n+m)×d is obtained

by the language model, where X ∈ R
n×d is the embedding

matrix of the product title x, E ∈ R
m×d is the embedding

matrix of the entity e and d is the dimension of the embedding

space. The continuous prompt template (hypothesis) h is

represented as H ∈ R
p×d, where p is the length of the prompt

tokens. Then the embedding matrix Xe and the prompt matrix

H are concatenated as [Xe;H] ∈ R
(n+m+p)×d to be the input

embedding of the language model. The prompt tuning phase

is then modeled as a masked language modeling. During the

fine-tuning of the masked language modeling, the parameters

θ of the language model are frozen, and the only tunable

parameters are the embedding matrix H of the hypothesis. For

each class, the optimized embedding matrix Hnew ∈ R
p×d

of one hypothesis is generated by using all training data in

this class. Later these embedding matrices will be used as the

optimized hypotheses in the textual entailment model.

The initialization of hypotheses is critical to the continuous

prompt tuning and the textual entailment performance. We

use different lengths and different types of hypotheses ini-

tialization. The first type of hypotheses is directly using class

labels to formulate the initialized hypotheses. The length of the

hypotheses is 3 and the hypotheses are ‘is a brand/ is a product/

is a feature’. The second type of hypotheses is converted

from dictionary explanations of the class labels. The length

of the hypotheses is 14 and the initialized hypotheses are ‘is a

brand, which is a type of things manufactured by a particular

company/ is a product, which is an article or substance

manufactured or refined for sale/ is a feature, which is a

distinctive attribute or a special aspect of something’. Different

hypotheses initialization leads to different performance.

D. Fusion Embeddings

For CharacterBERT, each token is converted into a sequence

of characters and then represented as a 50-dimension input

tensor. Then a Character-CNN module will be used to project

the 50-dimension input tensor into a 768-dimension Charac-

terBERT embedding which is selected to be dimensionally

aligned with BERT.

The optimized hypothesis using BERT embedding

HnewBERT
and the optimized hypothesis using

CharacterBERT embedding HnewCharacterBERT
for each

class can be obtained by applying continuous prompt

tuning separately on BERT and CharacterBERT. Then

HnewBERT
is concatenated to the BERT embedding of the

product title and the entity, and the concatenated new BERT

embedding is fed into the BERT model for a better contextual

embedding. Similarly, HnewCharacterBERT
is concatenated to

the CharacterBERT embedding of the product title and the

entity, and the concatenated new CharacterBERT embedding

is fed into the CharacterBERT model.

After obtaining the better contextual BERT embedding and

CharacterBERT embedding, we use different fusion meth-

ods to obtain the fusion embedding of BERT embedding

and CharacterBERT embedding. The same embedding di-

mension of CharacterBERT and BERT allows diverse fusion

methods to be tried. We tried two simple but effective fu-

sion methods: 1). concatenating ‘[CLS]’ BERT embedding

(VBERT ) and weighted ‘[CLS]’ CharacterBERT embedding

(VCharacterBERT ), and 2). adding ‘[CLS]’ BERT embed-

ding (VBERT ) to weighed ‘[CLS]’ CharacterBERT embed-

ding (VCharacterBERT ). We use ‘[CLS]’ embedding because

‘[CLS]’ embedding is considered to accommodate sentence

information.

For the first fusion method, the fusion embedding for one

sample is

[VBERT α ∗ VCharacterBERT ], (2)

where VBERT is ‘[CLS]’ BERT embedding, VCharacterBERT

is ‘[CLS]’ CharacterBERT embedding and α is a tunable

weight parameter. The fusion embedding shape for a batch is

[batch size, 2*hidden size]. For the second method, the fusion

embedding for one sample is

VBERT + α ∗ VCharacterBERT . (3)

The fusion embedding shape for a batch is [batch size,

hidden size]. The fusion embeddings of input are then fed

into two-layer MLPs for textual entailment classification.

In summary, as in Fig. 1, the input of STEP 1 is xnew in (1),

which is the new input for the textual entailment formulation

and the output of STEP 1 is the optimized hypothesis using

BERT embedding HnewBERT
and the optimized hypothesis

using CharacterBERT embedding HnewCharacterBERT
. The

input of STEP 2 is x, e, HnewBERT
and HnewCharacterBERT

,

and the output of STEP 2 is the probability of the input to be

entailment.

IV. EXPERIMENTS AND RESULTS

In this section, we compare the performance of our proposed

CTM model and the baseline models on a product title dataset.

Then we compare model performance of entity typing and

textual entailment model on test set and novel entity set and

conduct a series of ablation studies to investigate the effect of

each contribution.

A. Dataset

The raw data is provided by Huski.ai . We randomly select

10,000 English product titles from the raw data, and hire three

workers to label each token in product titles as one of the brand

name, product/ product name, feature or others. We then filter

the data based on the majority and manually double check the

data. After filtering, the training set has 2324 samples in total

with 797 ‘brand’, 700 ‘product’ and 827 ‘feature’, and the test

set has 1317 samples in total with 360 ‘brand’, 437 ‘product’

https://huski.ai
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TABLE III: F1 score comparison between our proposed CTM

models and the baseline model.

Hypotheses /
Initialization

Model Brand Product Feature Average

- Entity Typing 0.8602 0.8391 0.8754 0.8595

Class Labels
CTM (add) 0.8809 0.8555 0.8931 0.8770
CTM (concate) 0.8776 0.8587 0.8871 0.8747

Dictionary
Explanations

CTM (add) 0.8760 0.8636 0.8906 0.8778

CTM (concate) 0.8679 0.8666 0.8946 0.8778

TABLE IV: Class F1 scores and Average F1 scores for entity

typing and textual entailment model with labels / dictionary

explanations as hypotheses on test set and novel entity set.

Dataset Model Brand Product Feature Average

Test Set
Entity Typing 0.8602 0.8391 0.8754 0.8595
Textual Entailment
(label)

0.8568 0.8395 0.8605 0.8572

Textual Entailment
(dictionary)

0.8776 0.8451 0.8727 0.8648

Novel
Entity
Set

Entity Typing 0.8925 0.7860 0.8632 0.8601
Textual Entailment
(label)

0.9094 0.7833 0.8693 0.8689

Textual Entailment
(dictionary)

0.9139 0.7985 0.8772 0.8759

and 520 ‘feature’. We also create a novel entity set, which is

filtered from the test set, only with new entities that are not

present in training set. The novel entity set has 572 samples

in total with 267 ‘brand’, 135 ‘product’ and 170 ‘feature’.

This novel entity set is used to compare the ability to handle

new entities between the entity typing task and the textual

entailment formulation. Sample data is shown in Table I.

B. Experimental Results and Analysis

Table III exhibits the F1 score comparison between our pro-

posed CTM models with different fusion methods and prompt

initialization and the baseline entity typing model. Any version

of our CTM model has better performance compared to the

entity typing model, and CTM with concatenation as fusion

method and dictionary explanations as prompt initialization

has the best performance in general.

To analyze the contributions of different components in our

proposed CTM model, we compare model performance of

entity typing and textual entailment model on test set and novel

entity set, and perform ablation studies on prompt tuning and

fusion embedding on test set.

TABLE V: Class F1 scores and Average F1 scores for CTM

and CTM without prompt tuning (PT) to evaluate the contri-

bution of prompt tuning. All the results are evaluated on the

test set.

Hypotheses /
Initialization

Model Brand Product Feature Average

Class Labels

CTM (add) 0.8809 0.8555 0.8931 0.8770

(w/o) PT 0.8808 0.8575 0.8836 0.8740
CTM (concate) 0.8776 0.8587 0.8871 0.8747

(w/o) PT 0.8862 0.8532 0.8749 0.8709

Dictionary
Explanations

CTM (add) 0.8760 0.8636 0.8906 0.8778

(w/o) PT 0.8717 0.8523 0.8787 0.8679
CTM (concate) 0.8679 0.8666 0.8946 0.8778

(w/o) PT 0.8668 0.8477 0.8784 0.8648

TABLE VI: Class F1 scores and Average F1 scores for

CTM and CTM without fusion embedding to evaluate the

contribution of fusion embedding. All the results are evaluated

on the test set.

Hypotheses /
Initialization

Model Brand Product Feature Average

Class Labels

CTM (add) 0.8809 0.8555 0.8931 0.8770

CTM (concate) 0.8776 0.8587 0.8871 0.8747
CTM
(CharacterBERT)

0.8683 0.8459 0.8751 0.8633

CTM (BERT) 0.8607 0.8368 0.8799 0.8610

Dictionary
Explanations

CTM (add) 0.8760 0.8636 0.8906 0.8778

CTM (concate) 0.8679 0.8666 0.8946 0.8778

CTM
(CharacterBERT)

0.8667 0.8389 0.8776 0.8618

CTM (BERT) 0.8850 0.8492 0.8809 0.8717

Textual Entailment Formulation In order to compare the

ability to handle new entities between entity typing formu-

lation and textual entailment formulation, we conduct com-

parative experiments between entity typing and textual entail-

ment on both test set and novel entity set. We also conduct

experiments on textual entailment model with different hand-

crafted hypotheses to verify impact of different hypotheses.

The regular entity typing model is used as baseline, and BERT

is used as a backbone model for both entity typing and textual

entailment model. The results are shown in Table IV. For

test set, the difference of performance between entity typing

and textual entailment is relatively small and the average F1

score of entity typing is even slightly better than textual en-

tailment model with labels as hypotheses. For novel entity set,

the performance improvement obtained by textual entailment

formulation is more significant for hypotheses converted from

both labels and dictionary explanations. For both sets, the aver-

age F1 scores of the textual entailment model with dictionary

explanations as hypotheses are higher than that of the textual

entailment model with labels as hypotheses. The more obvious

improvement of textual entailment model on novel entity set

compared to the improvement of textual entailment model on

test set shows that the textual entailment formulation provides

model with the ability to better handle new entities. Beside, the

format of textual entailment model provides more possibilities

for performance improvement, like the selection of hypotheses.

The performance difference between two hypotheses indicates

that different textual entailment hypotheses lead to different

model performance, which confirms our previous thinking

that model performance cannot always be guaranteed by

human-designed hypotheses and indicates the importance of

the selection of hypotheses.

Prompt Tuning In order to evaluate the contribution of prompt

tuning and verify whether the hypotheses obtained by prompt

tuning work better than hand-crafted hypotheses, we compare

the performance between the CTM models and the similar

models without prompt tuning based hypotheses. Besides, to

explore the effect of different prompt initialization for prompt

tuning, the experiments are performed on hypotheses and

prompt initialization converted both from labels and dictionary

explanations. The results are shown in Table V. Whether using
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class labels or dictionary explanations as prompt initialization,

the hypotheses obtained by prompt tuning perform better

than the hypotheses converted manually from class labels or

dictionary explanations, which implies that prompt tuning is

effective for model improvement. When applying hypotheses

converted from class labels, the model improvement obtained

by using prompt tuning is small; when applying hypotheses

converted from dictionary explanations, the model improve-

ment achieved by using prompt tuning is greater. One possible

explanation is that the dictionary explanations induce longer

hypotheses, allowing more parameters to be tuned during the

prompt tuning phase. A good prompt template initialization

can lead to better model performance.

Fusion Embedding In order to compare the performance

between fusion embedding and BERT / CharacterBERT em-

bedding, we conduct experiments on the CTM models and the

similar models using BERT embeddings or CharacterBERT

embeddings alone on hypotheses and prompt initialization

converted from both labels and dictionary explanations. In

addition, we build the same architecture for BERT embed-

ding and CharacterBERT embedding, which is using a two-

layer MLP classifier for embedding classification, for better

comparison. As shown in Table VI, fusion embedding works

much better than BERT embedding or CharacterBERT em-

bedding either using class labels or dictionary explanations as

hypotheses and prompt initialization. This is expected because

by using fusion embedding, we cover both word-piece-level

information and character-level information, which makes the

model more adaptable to product title language style and

special e-commerce product title vocabulary.

V. CONCLUSIONS

We reformulate entity typing in product titles into a novel

textual entailment model and utilize the continuous prompt

tuning to automatically create entailment hypotheses. The

textual entailment formulation provides model with the ability

to better handle new entities that are not present in the

training set. And the use of the continuous prompt tuning

eliminates the trouble of manually designing hypotheses and

creates better hypotheses to increase the model performance.

We try different types of prompt templates to initialize the

continuous prompt tuning method and analyze the different

results obtained. Besides, we apply the fusion embedding of

BERT embedding and CharacterBERT embedding to address

the different language styles of product titles and special

vocabularies in e-commerce. In conclusion, our proposed CTM

model has the ability to deal with new entities and the special

language styles of product titles.
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