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ABSTRACT

Consider a multi-aspect tensor dataset which is only observed

in multiple complementary aggregated versions, each one at a

lower resolution than the highest available one. Recent work [2]

has demonstrated that given two such tensors, which have been

aggregated in lower resolutions in complementary dimensions, we

can pose and solve the disaggregation as an instance of a coupled

tensor decomposition. In this work, we are exploring the scenario

in which, in addition to the two complementary aggregated views,

we also have access to a graph where nodes correspond to samples

of the tensor mode that has not been aggregated. Given this graph,

we propose a graph-assisted tensor disaggregation method. In our

experimental evaluation, we demonstrate that our proposedmethod

performs on par with the state of the art when the rank of the

underlying coupled tensor decomposition is low, and significantly

outperforms the state of the art in cases where the rank increases,

producing more robust and higher-quality disaggregation.
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1 INTRODUCTION

Consider as our running example amulti-aspect dataset that records

the number of scientific paper publications per publisher (e.g., IEEE,

ACM, SIAM, and Springer) over time and by institution. This can be

represented as a (publisher, time, university) tensor, and analyzing

such a tensor may be able to offer valuable insights to publication

trends over time and space, which can be beneficial to universities

and publishers alike.
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Consider, further, the scenario in which different stakeholders

may observe varying pieces of the data in terms of resolution.

For instance, stakeholder #1 may be able to observe publication

counts from different universities on a yearly basis as opposed to

a more fine-grained monthly basis, resulting in a (publisher, year,

university) tensor. At the same time, stakeholder #2 may be able to

observe monthly publication counts per publisher per country, but

lack the finer university-level granularity, resulting in a (publisher,

month, country) tensor.

Those two stakeholders essentially have access to two comple-

mentary aggregated views of the ideal high resolution tensor. How

can we effectively combine those two views in order to recover the

dataset in the highest available resolution in all its modes? Recently,

a novel tensor method, namely PREMA, was proposed to to solve

such a tensor disaggregation problem [1; 2], by posing the problem

as a variant of coupled tensor decomposition.

In this paper, following the example above, we focus on the fol-

lowing question: łIf we also have access to a (publisher, publisher)

graph, can we improve disaggregation performance?ž. More specifi-

cally, given such a graph, we extend PREMA [1; 2] to account for

graph Laplacian smoothness in the factor matrix corresponding to

the mode for which we have a graph available. Essentially, we are

ensuring that the rows of that matrix, which, in our running exam-

ple are publisher łembeddingsž, are encouraged to obey publisher

similarities defined by our graph. This graph can be either directly

computed from the aggregated data or provided by a domain ex-

pert. In this preliminary work, we directly compute graphs from

the aggregated data.

We conduct experiments on two real-world datasets and we mea-

sure the behavior of our proposed method. We center our analysis

on an important parameter of the problem which is the rank of the

decomposition, which dictates the fidelity of the reconstruction,

since a higher-rank decomposition represents the data more accu-

rately than a lower-rank one. We observe that our proposed graph

assisted tensor disaggregation method performs on par with state

of the art for relatively low ranks. However, as the rank increases,

our proposed method significantly outperforms state of the art,

providing higher fidelity disaggregation while also increasing the

robustness of the disaggregation process to potential overestima-

tions of the łoptimalž rank for a given dataset.

2 BACKGROUND

First, we will review the basis of tensor algebra. Tensors are ar-

rays having three or more than three dimensions with indices

(𝑖, 𝑗, 𝑘, ...). For the sake of simplicity, we focus on the three-dimensional

(a.k.a., third-order or three-mode) tensors. Let’s denote a general

tensor Z ∈ R𝐼×𝐽 ×𝐾 consisting of three modes: rows Z(:, 𝑗, 𝑘),

columns Z(𝑖, :, 𝑘), and fibers Z(𝑖, 𝑗, :). The horizontal, lateral,

and frontal slabs of Z are denoted by Z(𝑖, :, :), Z(:, 𝑗, :), and
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Z(:, :, 𝑘), respectively, for 𝑖 = 1, ..., 𝐼 , 𝑗 = 1, ..., 𝐽 , and 𝑘 = 1, ..., 𝐾 .

Tensor decomposition is the core technique for many tensor-based

methods and the commonly used models are Canonical Polyadic

Decomposition (CPD) (a.k.a., PARAFAC) and Tucker decomposi-

tion [5]. Next, we briefly introduce the CPD model which factors a

tensor into the sum of three-way outer products, i.e.,

Z ≈

𝑅∑︁

𝑟=1

a𝑟 ◦ b𝑟 ◦ c𝑟 (1)

where 𝑅 is the rank of the tensor, a𝑟 ∈ R𝐼 , b𝑟 ∈ R𝐽 , c𝑟 ∈ R𝐾 , and

the three-way outer product is defined as (a𝑟 ◦ b𝑟 ◦ c𝑟 ) (𝑖, 𝑗, 𝑘) :=

a𝑟 (𝑖)b𝑟 ( 𝑗)c𝑟 (𝑘). The factor matrices denoted by A ∈ R𝐼×𝑅 , B ∈

R
𝐽 ×𝑅 , and C ∈ R𝐾×𝑅 collect a𝑟 , b𝑟 , and c𝑟 , in their columns, i.e.,

A := [a1, ..., a𝑅], B := [b1, ..., b𝑅], C := [c1, ..., c𝑅] . (2)

We can compactly represent the CPD of a tensor into factors A,B

and C as [[A,B,C]].

3 PROPOSED METHOD

Consider two aggregated tensors, namely X and Y, which are seen

as the two views of the original tensor Z, obtained from the mode

product betweenZ and the aggregation matrices. Specifically,X :=

Z×3W ∈ R𝐼×𝐽 ×𝐷𝐾 where W ∈ R𝐷𝐾×𝐾 represents an aggregation

matrix with 𝐷𝐾 < 𝐾 and ×3 denotes the mode-3 product operator.

Without loss of generality, another view is aggregated from both

the first and second dimensions of X, that is Y := Z×1U×2V ∈

R
𝐷𝐼×𝐷 𝐽 ×𝐾 with 𝐷𝐼 < 𝐼 , 𝐷 𝐽 < 𝐽 , U ∈ R𝐷𝐼×𝐼 , and V ∈ R𝐷 𝐽 ×𝐽 . When

the aggregation doesn’t occur in either the first or second dimension

of Y, one can simply set V or U to be an identity matrix. Recently,

a novel algorithm, namely PREMA, was proposed to reconstruct

the original tensorZ given the aggregated tensors X and Y, and

the aggregation matricesW, U, and V [2].

Motivated by PREMA and going beyond it, we introduce a new

graph-assisted tensor disaggregation framework by leveraging the

the advances of graph auxiliary knowledge in preserving the data

structure. In many real applications, besides feature data, one is

often able to have access to its sample-to-sample interaction graph.

Following the running example of the introduction, we may be able

to obtain publisher-publisher relations which can be measured in

a variety of ways, including number of citations between the two

publishers, number of common authors between two publishers

and so on.

Such graph data can be provided by some domain experts or

calculated from feature data. Exploiting such graph information

in many machine learning models such as canonical correlation

analysis and tensor decomposition has shown improvement in their

downstream tasks [4; 6ś10].

As a proof of concept, in this work we generate the graph from

the aggregated data directly, and we reserve the investigation of

other types of graphs for future work. Given two views of aggre-

gated tensors X and Y, we first generate a graph similarity matrix,

namely S ∈ R𝐼×𝐼 , from X indicating the interactions between pairs

of horizontal slabs. Specifically, we treat each of the slab as one

node of a graph and vectorize the corresponding matrix and then

calculate the linear or nonlinear similarity between any two node

vectors using the kernel methods, 𝑘-nearest neighbors, and etc.

Algorithm 1: Graph-assisted tensor disaggregation

1: Input: aggregated tensors X and Y; aggregation matricesW,

U, and V; learning rates 𝛼 , 𝛽 , and 𝛾 ; graph regularization

coefficient 𝜇; rank 𝑅; graph similarity matrix S.

2: Calculate graph Laplacian L.

3: Repeat

Update A via Eq. 5

Update B via Eq. 6

Update C via Eq. 7

4: Until the objective is below a threshold or the number of

iterations is beyond another threshold.

5: Output: factor matrices A,B,C.

Next, we develop our new model by introducing the coupled tensor

decomposition while incorporating the graph regularizer in the

latent component matrix A, that is

min
A,B,C

∥X−[[A,B,WC]] ∥2𝐹 +∥Y−[[UA,VB,C]] ∥2𝐹 +𝜇Tr(A
⊤
LA) (3)

where L := D − S ∈ R𝐼×𝐼 denotes the graph Laplacian with D being

the degree matrix, the first two terms are the tensor decomposi-

tion errors from the two views and the last term promotes graph

smoothness, i.e., if two nodes, say𝑚 and 𝑛, in the graph captured

by the similarity matrix S are close (i.e., the (𝑚,𝑛)th entry of S is

high) then their corresponding latent component vectors (the𝑚-th

and 𝑛-th rows of A) are close in the Euclidean space.

The optimization problem in Eq. (3) is non-convex and NP-hard

in general. To solve it, similar to PREMA, we use a Block Coordinate

Descent (BCD) algorithm which alternatively updates one variable

while fixing the others. After denoting the objective in Eq. (3) as

𝑓 and deriving the partial derivatives of 𝑓 w.r.t. A, B, and C in Eq.

(4) where ⊙ is Khatri-Rao product (a.k.a., column-wise Kronecker),

{X𝑡 } and {Y𝑡 } are mode-𝑡 unfolding of the corresponding tensors,

and ⊤ is matrix transpose, gradient descent technique is adopted

to update the variables in each iteration; see details in Eq.s (5), (6)

and (7) where 𝛼 > 0, 𝛽 > 0, and 𝛾 > 0 represent the learning rates.

The proposed framework is summarized in Alg. 1.

𝜕𝑓

𝜕A
= 2[((WC) ⊙ B)A⊤ −X1]

⊤ ((WC) ⊙ B) (4)

+ 2U
⊤ [(C ⊙ (VB)) (UA)⊤ −Y1]

⊤ (C ⊙ (VB)) + 2𝜇LA

𝜕𝑓

𝜕B
= 2[((WC) ⊙ A)B⊤ −X2]

⊤ ((WC) ⊙ A)

+ 2V
⊤ [(C ⊙ (UA)) (VB)⊤ −Y2]

⊤ (C ⊙ (UA))

𝜕𝑓

𝜕C
= 2W

⊤ [(B ⊙ A) (WC)⊤ −X3] (B ⊙ A)

+ 2[((VB) ⊙ (UA))C⊤ −Y3]
⊤ (C ⊙ (UA))

A = A − 𝛼
𝜕𝑓

𝜕A
(5)

B = B − 𝛽
𝜕𝑓

𝜕B
(6)

C = C − 𝛾
𝜕𝑓

𝜕C
(7)
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4 EXPERIMENTAL EVALUATION

4.1 Datasets

We evaluate the proposed method using two publicly available

datasets:

• Walmart dataset 1 which represents the weekly sales from

45 Walmart stores and 99 departments across 143 weeks

forming the tensor (stores, departments, weeks) of size 45 ×

99 × 143

• Indian Pines dataset 2 consisting of 145 × 145 pixels and 220

spectral bands which was collected from AVIRIS sensor [3].

4.2 Results

In this subsection we access the performance of our proposed

method in terms of the data disaggregation improvement compared

to the PREMA, that is

Improvement percentage =
PREMA NDE - Our NDE

PREMA NDE
(8)

where NDE abbreviates the normalized disaggregation error, i.e.,

NDE =

∥Z − Ẑ∥2
𝐹

∥Z∥2
𝐹

(9)

in which Z and Ẑ are the real and estimated tensor data and

Ẑ = [[A,B,C]].

Figure 1: Aggregation matrix W ∈ R8×143; blue and yellow

pixels are 0s and 1s; there is only one "1" in each column.

Figure 2: Aggregation matrix U ∈ R3×45; blue and yellow

pixels are 0s and 1s; there is only one "1" in each column.

When applying the proposed method on the Walmart dataset,

the aggregation matrix W is depicted in Figures 1 where almost

1https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data
2https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#
Indian_Pines

every 7 frontal slabs in Z are summed to generate a new frontal

slab inX viaX = Z×3W ∈ R𝐼×𝐽 ×𝐷𝐾 where 𝐼 = 45, 𝐽 = 99,𝐾 = 143,

𝐷𝐾 = 8, showing that the aggregated tensor X is only of 5.59% of

the original tensor’s size. Another disaggregation matrix U shown

in Figure 2 allows us to randomly divide the 45 horizontal slabs

ofZ into 3 groups and sum each group to form a new horizontal

slab for another disaggregated tensor Y, i.e., Y = Z×1U×2V ∈

R
𝐷𝐼×𝐽 ×𝐾 where V is an identity matrix and 𝐷𝐼 = 3. Clearly, the

aggregated tensor Y is only of 5% of the original tensor’s size. For

the graph similarity matrix S, we use X combined with Gaussian

kernel and 𝑘−nearest neighbors. This is realized by following four

steps: 1) extract the first 20 lateral slabs of X forming a sub-tensor

X𝑠 ∈ R45×20×8; 2) take the mode-1 matricization of the subset

of X𝑠 by flattening the tensor along its first mode and obtain a

matrix, namely X𝑠,(1) ∈ R
45×160; 3) apply the Gaussian kernel with

bandwidth parameter 0.1 to calculate the similarity between each

pair of rows in X𝑠,(1) and collect all the similarities to the matrix

S̄ ∈ R45×45 ; and 4) keep the top 𝑘 = 6 highest values of each row in

S̄ and zero out the remaining entries forming the graph similarity

matrix S ∈ R45×45. The learning rates 𝛼 , 𝛽 , and 𝛾 of our algorithm

are set the in the same way as them in PREMA; see the details in

Chapter 3.3 of [2]. Both our algorithm and PREMA initialize their

factor matrices by performing CPD on X and Y; the initial A and

B come from X and the initial C is based on Y.

Figure 3: NDE improvement percentage of our algorithmcom-

pared to PREMA for different 𝜇s and ranks using Walmart

dataset; the results show a significant data disaggregation

improvement of our algorithm especially with higher ranks.

We report the average NDE improvement percentage (defined

in Eq. 8) among 20 Monte Carlo runs of our algorithm w.r.t dif-

ferent ranks and graph regularization coefficients 𝜇s in Figure 3.

In Figure 4, we plot the used 𝜇 which are chosen among the can-

didates 0.0001, 0.001, 0.1, 5, 15, 20, 25, 30, 50, 100, 1000 for each

rank when the NDE improvement percentage reaches the highest

as well as their corresponding NDE improvement percentage. From

the results, we can tell that introducing graph regularizer to the

PREMA increases its data disaggregation performance significantly
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Metric
Case

R
50 100 500 1,000 1,500 2,000 3,000 4,000

Improv. Percentage

Case #1 −.1 ± .2 .5 ± 1.1 2.4 ± 1.1 1.2 ± .4 .8 ± .2 .3 ± .11 33.6 ± 8.6 94.9 ± 6.1

Case #2 .2 ± .6 .5 ± .2 3.5 ± 1.1 .7 ± .1 33.7 ± 9.6 96.5 ± 6 99.7 ± .2 98.8 ± 1.2

Case #3 .9 ± .8 .7 ± .3 3.8 ± .4 26.9 ± 9.8 91.1 ± 11.3 95.1 ± 6.9 94.2 ± 7.1 98.8 ± 1.3

Ours (NDE×100)

Case #1 .3 ± .01 .3 ± .05 .5 ± .05 .71 ± .04 1 ± .06 .96 ± .1 1.1 ± .2 3 ± .7

Case #2 .4 ± .03 1.05 ± .6 1.8 ± .2 2.6 ± .2 2.4 ± .6 5.3 ± 2.3 6.4 ± 5.8 3.8 ± 1

Case #3 .9 ± .4 2.44 ± .9 5 ± .6 2.8 ± .9 11.1 ± 7.8 8.1 ± 3.7 7 ± 2.7 6.6 ± 4.6

PREMA (NDE×100)

Case #1 .3 ± .01 .3 ± .05 .51 ± .06 .72 ± .04 1.07 ± .07 .97 ± .1 1.7 ± .4 222 ± 303

Case #2 .4 ± .03 1.06 ± .6 1.9 ± .2 2.62 ± .2 3.8 ± 1.8 946 ± 1376 3182 ± 3001 565 ± 401

Case #3 .9 ± .4 2.46 ± .9 5.2 ± .6 4 ± 1.9 1490 ± 5130 779 ± 1301 962 ± 1662 1398 ± 1517

Table 1: Normalized disaggregation error (NDE) comparison between our algorithm and PREMA for different ranks (R) and

compression rates (a.k.a., Cases): the 2nd panel describes the NDE improvement percentage of ours compared with PREMA,

and the 3rd and 4th panels report the NDE (multiplied by 100) of our algorithm and PREMA, respectively; the situations where

our algorithm’s improvement percentage is significant, our NDE is low, and PREMA’s NDE is very high are in bold; the results

show that our algorithm’s performance is stable w.r.t. the rank and data compression rate.

Figure 4: The highest NDE improvement percentage (the blue

line in a linear scale) and the chosen 𝜇 (the purple bars in a

logarithmic scale) of our algorithm v.s. rank using the Wal-

mart dataset; the candidate 𝜇s are between 10
−3 and 10

3; the

results show that when 𝜇 is properly chosen our algorithm

can achieve remarkably data disaggregation performance.

when 𝜇 is chosen properly, and this advantage is more apparent

when the rank goes up.

Next, we investigate the effectiveness of our algorithm using the

Indian Pines dataset in three cases:

Case #1: two aggregated tensors are obtained by following the sim-

ilar procedure to the Walmart data aggregation but setting 𝐷𝑘 = 22

and 𝐷𝐼 = 15 which makes X ∈ R145×145×22 and Y ∈ R15×145×220

of 10% and 10.34% of the original tensor size, respectively.

Case #2: similar to the Case #1 except setting 𝐷𝑘 = 11 and 𝐷𝐼 = 8

which makesX ∈ R145×145×11 andY ∈ R8×145×220 of 5% and 5.52%

of the original tensor size.

Case #3: similar to the Case #1 except setting 𝐷𝑘 = 8 and 𝐷𝐼 = 5

which makes X ∈ R145×145×8 and Y ∈ R5×145×220 of 3.64% and

3.45% of the original tensor size.

In Table 1, we are showing the NDE Improvement percentage of

our method, the NDE of ours and PREMA for various ranks ranging

from 50 to 4, 000 in the above three different cases where each

result is in the format of mean±standard deviation after 20 Monte

Carlo experiments. Furthermore, we plot four randomly chosen

samples of a single horizontal slab recovery in Figure 5 to visualize

the comparison among the true, ours, and PREMA’s reconstructed

data. We use 𝜇 = 100 for the ranks 𝑅 = 50, 100, 500, 𝜇 = 1, 000 for

𝑅 = 1, 000, 1, 500 and 𝜇 = 100, 000 for 𝑅 > 1, 500. Clearly, when

𝑅 ≤ 1, 000 both our algorithm and PREMA are performing stably

well, i.e., the NDE is no more than 5.2% while our algorithm has

very little NDE improvement. When the rank is large, PREMA’s

performance drops a lot. For example, the NDE of PREMA is 14.9

when 𝑅 = 1, 500 in Case # 3. But, our algorithm has very stable NDE

even when 𝑅 is high. Interestingly, when the rank is large enough

it’s better for our algorithm to choose a large 𝜇, which implies that

the graph regularizer plays a critical role for the data disaggregation

task. It’s also worth to mention that from the Case #1 to Case #2

to Case #3, the compression rate is getting higher and higher and

PREMA is facing the disaggregation challenge with a smaller and

smaller rank. This implies that when the compression rate is low,

both PREMA and our algorithm have prominent performance in a

wide range of ranks. Last but not the least, our method is performing

well in the extreme cases when either the rank is too high or the

compression rate is too low (here, we aren’t assuming the rank can

be infinity high).

5 CONCLUSION

In this paper we introduce a graph-assisted tensor disaggregation

method which leverages graph information to improve the robust-

ness and the fidelity of the reconstruction of a high-resolution

tensor from two complementary disaggregated views. In our exper-

imental evaluation, we observe that our proposed method is able to

operate well in cases where the rank of the underlying decomposi-

tion model is very high, where state of the art runs into instabilities
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(a) 𝑖 = 86, NDE of ours and PREMA are 0.7% and 249%

(b) 𝑖 = 105, NDE of ours and PREMA are 1.07% and 152%

(c) 𝑖 = 4, NDE of ours and PREMA are 1.78% and 273%

(d) 𝑖 = 115, NDE of ours and PREMA are 0.96% and 350%

Figure 5: Four examples for horizontal slab recovery (the size

of each slab is 220× 145) with two different compression rates

(a.k.a., Cases) where 𝑖 is the slab index; NDEs are described in

each case; the first columns are true slabs; the second columns

are the reconstructed slabs from our proposed algorithms;

the third columns are reconstructed slabs from PREMA; the

top two rows are in Case #2; the bottom two rows are in Case

#3; each entry of a slab matrix specifies the color using the

full range of colors in the colormap; the results show that

our algorithm outperforms the state-of-the-art.

and is unable to smoothly improve its performance as the rank

increases. In future work, we intend to investigate extensions to

the model and decomposition algorithm, explore different ways of

estimating the graph from the existing data, and identify different

additional constraints and regularizations that can further improve

tensor disaggregation.
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