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Abstract
Given a tensor that captures temporal data, such as (user,
item, time), the way that we set the granularity of the “time”
mode can make or break our analysis of the data. If we set
the granularity to be extremely fine, we end up with a very
sparse and high-rank tensor which is essentially incompatible
with what virtually all tensor decomposition models expect,
i.e., tensors with low-rank structure, which can be expressed
in some form of factorization.

Traditionally, this problem has been avoided by setting
the granularity of the “time” to a “reasonable” aggregation
(say hourly or daily intervals), an approach which has
certainly served tensor analysis of temporal methods well
so far. However, such an approach requires tedious trial-
and-error experimentation across a number of such fixed
aggregations, where typically the one that provides the most
sensible results is retained, and furthermore it is arbitrary,
since the optimal aggregation over time need not necessarily
be uniform. In our work, we directly tackle this problem.

We introduce Harvester, the first principled
factorization-based approach which seeks to identify the
best temporal granularity of a given tensor. Unlike existing
methods which follow a greedy approach, Harvester

leverages multiple aggregated views of the tensor, and
a carefully-designed optimization problem, in order to
uncover an aggregation of a tensor which has a “good”
structure for factor analysis or a downstream task.

We extensively evaluate Harvester on synthetic and
real data, and demonstrate that it consistently produces
tensors of very high quality, compared to the state-of-the-art,
across the board for a number of different popular quality
measures that have been used by the community.

1 Introduction

Tensor decomposition methods have been used to find
latent structures in multi-modal data in a wide variety
of applications like web link analysis [13], social network
analysis [4], health care data analysis [11] and many
more. When dealing with data that is temporal in
nature, the granularity of data plays a crucial role in
determining its usability in any data mining or machine
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learning algorithms. In applications like web mining,
social networks or computer network analysis, if the
data is collected at very fine temporal granularity the
resulting tensor can be extremely sparse and noisy, in
addition to being very high-dimensional. Unfortunately,
tensors of that form are typically not amenable to
popular and widely-used tensor decompositions1, which
seek to identify low-rank latent structure in the data.

There have been recent works which modify the de-
composition algorithm in order to accommodate tem-
poral irregularities, such as imposing smoothness [8] or
burstiness [9] in the temporal factor or, especially in the
streaming case, defining a “continuous tensor model”
which accommodates incoming data in an “any-time”
fashion by implicitly aggregating locally over time [15].
Instead of customizing, and thus restricting, the decom-
position algorithm, in this work we seek to pre-process
the tensor data in order to allow for flexible downstream
analysis. Note that extreme aggregation hides away
the temporal information (and the model identifiability
boost that comes with it), while no aggregation leaves us
with very sparse and possibly noisy data, not amenable
to low-rank modeling. Hence the optimal level of ag-
gregation lies somewhere in between, and our goal is to
find it.

To circumvent the problem of having a long ten-
sor in temporal mode and no exploitable structure, the
most intuitive and widely-used approach is to aggregate
the temporal mode using certain fixed window sizes. For
example converting milliseconds to seconds, seconds to
minutes, minutes to hours, hours to days, and so on.
This solution can work, and has been serving tensor
analysis of temporal data well for many years; however,
there are a few issues with it, which we seek to miti-
gate in our work. First, it requires a copious amount of
trial-and-error experimentation to evaluate what aggre-
gation level works the best for the given data and tensor
decomposition method. Second, and more importantly,

1We use the terms “decomposition” and “factorization” inter-
changeably.
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tensor decomposition on these fixed size aggregated ten-
sors may result in finding “good” latent structures how-
ever there might exist more “natural” aggregation which
does not follow any fixed or arbitrary window size ag-
gregations and might provide latent structures that are
missed because of fixed window aggregation. To tackle
this problem, [19, 20] introduced the problem Trapped

Under Ice and provided greedy solutions IceBreaker

and IceBreaker++, which iterate over the temporal
mode and decide to aggregate two timestamps together
or not based on certain utility functions. However, the
greedy nature of those methods is prone to suboptimal
solutions and requires a lot of recursive iterations, which
hurts scalability, as we demonstrate in our experiments.

In this work, we introduce a principled way of
finding an optimal aggregation of the temporal mode.
We take inspiration from [2, 3] which essentially tackles
the inverse problem to ours: given multiple views
of an aggregated tensor in different modes (temporal
and non-temporal), estimate the disaggregated tensor.
Motivated by that approach, we propose Harvester

where we leverage multiple aggregated views of a tensor,
derived from the tensor in the original granularity in
the temporal mode, and define a decomposition-based
approach for recovering the best granularity.

Our contributions in this paper are as follows:

• Novel Problem Formulation: We provide a new
and novel way to formulate the problem in terms of
a factorization problem which can be solved using
optimization techniques.

• Efficient & Scalable Algorithm: We propose
Harvester, which solves the formulated problem
in alternating fashion using non-negative multi-
plicative updates.

• Experimental Evaluation: We demonstrate the
effectiveness of Harvester by performing exten-
sive experiments on synthetic and real datasets.

2 Problem Formulation

2.1 Preliminary Definitions Tensors are multidi-
mensional arrays (of order higher than two, i.e., indexed
by three or more indices) which are used to model data
that are multi-aspect in nature.

Matricization of a tensor is defined as unfolding
or flatting a n-mode tensor in one of its modes to form
a matrix. Consider a 3-mode tensor X of dimension
I × J ×K, which can be unfolded in three ways along
each mode. Unfolding in first mode is given by X1 of
dimension I × JK and similarly unfolding in other two
modes is given by X2 and of X3 of dimension J × IK
and K × IJ respectively.
The n-mode product of a tensor X of dimension
I1 × I2 · · · × Ik · · · × In with a matrix W of dimension

Ik×F is given by Y = X×kW where dimension of tensor
Y is I1×I2 · · ·×Ik−1×F×Ik+1 · · ·×In. This can also be
extended to the matricization format as Yk = WXk.
The CANDECOMP/PARAFAC decomposition
(henceforth referred to as CP) [7, 10] of a tensor X of
size I×J×K and (tensor) rank F is a sum of F rank-1
tensors (outer products of three vectors in the 3-D case)

X ≈
∑F

r=1 ar ◦ br ◦ cr, which is irreducible, in that an

alternative decomposition cannot be found for F
′

< F .
Here ◦ denotes the outer product and ar, br, cr are
vectors of dimension I, J , K respectively. Another way
of writing the above decomposition is X ≈ JA, B, CK
where A, B and C are factor matrices of dimension
I×F , J×F and K×F respectively such that each outer
product of the rth column of A, B and C forms one of
the rank one tensors involved in the CP decomposition.

For more in-depth details on tensors and tensor
decompositions we refer readers to the popular surveys
in the literature [12, 22, 18].

2.2 Problem Definition Consider a tensor X ∈
R

I×J×K with extremely fine raw temporal granularity,
and which is very long and sparse/noisy in the temporal
mode (in this example we consider the third mode as the
temporal mode) which makes it ill-suited for compact
modeling via CP decomposition. Our problem is:

Given a tensor X ∈ R
I×J×K and multiple views of

the tensor X, Y1 ∈ R
I×J×K1 and Y

2 ∈ R
I×J×K2 ,

where K2 < K1 < K. Find an aggregated tensor
Y ∈ R

I×J×K∗

where K∗ < K2 < K1 < K,
such that its temporal mode latent factor matrix
is an optimal low-rank compression of the original
temporal mode latent factor, while respecting the
temporal sequence of indices in that mode.

Creating Views: To give a concrete example, let’s
assume X is of size I×J×9 and if we want to aggregate
the third mode on some fixed window size, say 3, so W
is of size 3× 9 and takes the form:

W =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1




The resulting tensor will be of size I × J × 3, where the
first 3 slices (1 to 3) are aggregated into one slice, the
next 3 slices (4 to 6) into a second slice and last three
slices (7 to 9) into the third slice.

3 Proposed Method

Consider a three mode tensor X ∈ R
I×J×K where I,

J denote the dimensions of the first two modes and K
that of the third mode which is temporal in nature and
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has fine granularity, making tensor X extremely sparse
and having no exploitable latent structure. The CP
decomposition of tensor X for a rank F is given by:

(3.1) X ≈ JA, B, CK

Where A ∈ R
I×F , B ∈ R

J×F and C ∈ R
K×F .

Let us assume there exists an oracle tensor Y, which
has perfect latent structure, which is created by the
third mode-product of the tensor X with a matrix Wopt

which has special structure as specified in Section 2.2

(3.2) Y = X×3 Wopt

Wopt is of size Kopt × K so the dimension of Y

is I × J × Kopt, such that Kopt << K. The CP
decompositon of oracle tensor Y is given by

(3.3) Y ≈ JA, B, CoptK

where matrix Copt is of size Kopt × F
The key assumption we make is that C can be ob-

tained by some dimensionality-expanding linear trans-
formation of the unknown (latent) Copt. This is tan-
tamount to assuming that there exists low rank matrix
structure in the temporal mode.

(3.4) C = MCopt

where M ∈ R
K×Kopt and M is a tall matrix.

We create m ≥ 2 views of tensor X as follows:

(3.5) Y
1 = X×3 W1 = JA, B, C1K; C1 = W1C

(3.6) Y
2 = X×3 W2 = JA, B, C2K; C2 = W2C

...

(3.7) Y
m = X×3 Wm = JA, B, CmK; Cm = WmC

Before we formalize the problem, we need to address
some issues regarding the problem
1. Since we don’t have access to the oracle tensor Y

we cannot directly estimate Copt.
2. Most importantly, unlike in the case of [2, 3], where

the “right” Kopt is known beforehand, here we
don’t know the size Kopt for the matrix Copt.

Thus, we seek to estimate C̃ as shown in equation
3.9, which is supposed to be good approximation of
Copt. Using equation 3.4 and the fact that Ci = WiC
per equations 3.5-3.7, we have,

(3.8) Ci = WiMCopt

In the above equation, we know Ci and Wi, but we do
not know M and Copt – not even Kopt. As a result, we
do not know the product WiM. How can we bypass
this seemingly insurmountable challenge? We propose
to bring in ideas from sparse regression. The idea is to
over-parameterize the product WiM as a new matrix
variable Pi, and use a sparse diagonal row-selection
matrix to pick up the essential (reduced-dimension) row
span of Copt. In more detail, we approximate

(3.9) Ci ≈ PiΛC̃

where Pi is of size Ki×K, C̃ is of size K×F , and Λ is a
sparse diagonal matrix of size K×K, whose zero entries
are meant to strike out columns of Pi and corresponding
rows of C̃. The product PiΛ is a proxy for WiM, with
the diagonalΛ effectively providing us with a tall matrix
of a priori unknown number of columns Kopt.

Using equation 3.9, our optimization problem is:
(3.10)

L = min
C̃,Pi,Λ

m∑

i=1

||Ci−P iΛC̃||2F+α||C̃T ||2F+β||Λ||1+γ||Pi||
2
F

We optimize equation 3.10 for matrices C̃, Λ and Pi.
the sparsity or L-1 regularization constraint on Λ is
there to help reduce the granularity of the the C̃. The
non-zero entries in the diagonal of Λ control the final
granularity of the resulting tensor, thus we impose a
sparsity penalty on the diagonal.
Discussion: Since we are trying to find the best
aggregation in the third mode and we assume that
there exists a low dimensional structure in that mode,
one may ask why not just perform singular value
decomposition (SVD) on the third mode matricization
of the tensor and use the top-k right singular vectors
as the basis for the aggregation, which would yield the
best compression in the least squares sense.

[U,S,V] = svd(X3)

Y = X×3 Vk

In our case, this does not solve the problem we set out to
tackle. Even though there may be low-rank structure in
the temporal mode, captured by the aggregation matrix
Vk, this aggregation does not respect the temporal
sequence of slices, therefore is not appropriate for
recovering the type of aggregation we are interested in.

3.1 Proposed method: Harvester In this section
we present our methodHarvester to solve the problem
in equation 3.10. We solve it using non negative
multiplicative update (NMU) [14] in an alternating
fashion. Here, we derive the update steps only using
two views but this can easily be extended to more views.
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Using tensor X we create two views for that tensor
namely Y

1 and Y
2 which have lower resolution than the

original tensor. To create these views we multiply the
third mode of the tensor with a W1 and W2 matrix.

(3.11) Y
1 = X×3 W 1

(3.12) Y
2 = X×3 W 2

We create a tensor Z by stacking tensor Y1 and Y
2 onto

one another hence making them coupled in the first two
modes. The dimension of tensor Z is I × J × (K1 +
K2). Then we perform CP decomposition on tensor Z

which yields factor matrices needed for our optimization
algorithm. We split factor matrix D into C1 and C2

based on their respective dimensions as shown below:

Z = [Y1;Y2]

Z ≈ JA, B, DK

C1 = D(1 : K1, :)

C2 = D(K1 + 1 : K2, :)

(3.13)

We use equations 3.9 and 3.13 to create our optimization
problem that follows from equation 3.10. The optimiza-
tion steps to solve equation 3.14 are derived along the
lines of [21].
(3.14)

L = min
C̃,P1,P2Λ

||C1 − P 1ΛC̃||2F︸ ︷︷ ︸
f

+ ||C2 − P 2ΛC̃||2F︸ ︷︷ ︸
g

+

α||C̃T ||2F + β||Λ||1 + γ||P 1||
2
F + γ||P 2||

2
F︸ ︷︷ ︸

h

The gradient of L in eq. 3.14 w.r.t. C̃:

∂L

∂C̃
=

∂f

∂C̃
+

∂g

∂C̃
+

∂h

∂C̃
∂f

∂C̃
=

∂

∂C̃
(||C1 − P1ΛC̃||2F )

∂f

∂C̃
=

∂

∂C̃
Tr ((C1 − P 1ΛC̃)(C1 − P 1ΛC̃)T )

∂f

∂C̃
= −Λ

T
P

T
1 C1 −Λ

T
P

T
1 C1 +Λ

T
P

T
1 P1ΛC̃+Λ

T
P

T
1 P1ΛC̃

∂f

∂C̃
= 2Λ

T
P

T
1 P1ΛC̃− 2ΛT

P
T
1 C1

(3.15)

We can similarly derive ∂g

∂C̃
,

(3.16)
∂g

∂C̃
= 2ΛTPT

2 P2ΛC̃− 2ΛTPT
2

Gradient of h w.r.t C̃

∂h

∂C̃
=

∂

∂C̃
Tr (αC̃TC̃)

= 2αC̃

(3.17)

Combining equation 3.15, 3.16 and 3.17
(3.18)
∂L

∂C̃
= 2(ΛT

P
T
1 P1ΛC̃+Λ

T
P

T
2 P2ΛC̃−Λ

T
P

T
1 C1−Λ

T
P

T
2 C2+αC̃)

Setting ∂L

∂C̃
to zero and using non-negative multiplica-

tive update method to compute update step. ⃝∗ here
represents element wise product and fraction equation
below represents element wise division.

(3.19) C̃ ⇐ C̃ ⃝∗
ΛTPT

1 C1 +ΛTPT
2 C2

(Λ
T
PT

1 P1Λ+ΛTPT
2 P2Λ+ αI)C̃

The gradient of L in eq. 3.14 w.r.t P1 (or P2 ):

∂L

∂P1
=

∂f

∂P1
+

∂g

∂P1
+

∂h

∂P1

∂f

∂P1
=

∂

∂P1
(||C1 − P 1ΛC̃||2F )

∂f

∂P1
=

∂

∂P1
Tr ((C1 − P 1ΛC̃)(C1 − P 1ΛC̃)T )

= 2(P1ΛC̃C̃
T
Λ

T −C1C̃
T
Λ

T )

(3.20)

Gradient of g with respect toP1 is zero. Now computing
gradient of h with respect to P1

∂h

∂P1

=
∂

∂P1

Tr (γP1P
T
1 )

= 2γP1

(3.21)

Combining equation 3.20 and 3.21

(3.22)
∂L

∂P1

= 2(P1ΛC̃C̃TΛT − 2C1C̃
TΛT + 2γP1)

Setting ∂L
∂P1

to zero and using non-negative multiplica-
tive update method to compute update step. Again ⃝∗
here represents element wise product and fraction equa-
tion below represents element wise division.

(3.23) P1 ⇐ P1 ⃝∗
C1C̃

TΛT

P1(ΛC̃C̃TΛT + γI)

We can compute update step for P2 similarly,

(3.24) P2 ⇐ P2 ⃝∗
C2C̃

TΛT

P2(ΛC̃C̃TΛT + γI)

The gradient of L in eq. 3.14 with respect to Λ:

∂L

∂Λ
=

∂f

∂Λ
+

∂g

∂Λ
+

∂h

∂Λ
∂f

∂Λ
=

∂

∂Λ
(||C1 − P 1ΛC̃||2F )

∂f

∂Λ
=

∂

∂Λ
Tr ((C1 − P 1ΛC̃)(C1 − P 1ΛC̃)T )

= 2(PT
1 P1ΛC̃C̃

T −P
T
1 C1C̃

T )

(3.25)
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We can similarly derive the derivative of g w.r.t. Λ,

(3.26)
∂g

∂Λ
= 2(PT

2 P2ΛC̃C̃T −PT
2 C2C̃

T )

Next, based on the update steps in Section 2 of [14], we
compute the Gradient of h w.r.t. Λ

∂h

∂Λ
=

∂

∂Λ
||βΛ||1 = βE(3.27)

where E is a matrix of all ones. We would like to
reiterate that, although L-1 Norm is not a differentiable
function in the entirety of its domain and thus we
must instead compute its sub-gradient, the constraint
of non-negativity on Λ allows us to circumvent that
issue and compute the gradient as long as values of Λ
are not negative (which we guarantee by non-negative
initialization and subsequent iterations).

Combining equations 3.25, 3.26 and 3.27
(3.28)
∂L

∂Λ
= 2P

T

1
P1ΛC̃C̃

T
− 2P

T

1
C1C̃

T
+ 2P

T

2
P2ΛC̃C̃

T
− 2P

T

2
C2C̃

T
+ βE

Setting ∂L
∂Λ

to zero, we use the non-negative multiplica-
tive update method to compute the update step. ⃝∗
represents element wise product and fraction equation
below represents element wise division.
(3.29)

Λ ⇐ Λ ⃝∗
2PT

1 C1C̃
T + 2PT

2 C2C̃
T

2PT
1 P1ΛC̃C̃T + 2PT

2 P2ΛC̃C̃T + βE

Aggregation strategies So far, we have computed
Λ, C̃, P1 and P2 which are needed to construct the
aggregated tensor. We can construct the aggregated
tensor in the following ways, given Co = ΛC̃
-aggregateOnNorm: We use one of the techniques from
[20], namely norm aggregation and apply it to matrix
instead of tensor. Essentially we iterate over the rows
of Co, add a candidate row to previous row, if the
rate of change of norm between the previous row and
sum of previous and candidate row is more than a
certain threshold. If not, the candidate row becomes
the previous row and process continues until we reach
the end. We use that norm aggregated matrix Cnorm

to construct a tensor.

Wnorm = aggregateOnNorm(Co, normThreshold)

Cnorm = WnormCo

Y
norm ≈ JA, B, CnormK

-aggregateZeroRows: Since Λ is not only a diagonal
matrix but it’s also a diagonally sparse matrix, which
is used in update steps to turn off (zero out) the rows

of C̃. We can just use those non zero rows as anchor

points to create a matrix Cspar which contains only the
non-zero rows of Co.

Wspar = aggregateZeroRows(Co)

Cspar = WsparCo

Y
spar ≈ JA, B, CsparK

We use tensors Ynorm and Y
spar for evaluation.

4 Experimental Evaluation

We implemented our method2 in Matlab using tensor
toolbox [5] and for using CP-WOPT [1] algorithm in
tensor toolbox for tensor completion we make use of
L-BFGS-B Matlab wrapper 3.

Hyperparameter Tuning: Our problem formula-
tion has three hyperparameters which need to be tuned
namely α, β and γ as in equation 3.14. We use differ-
ent ranges for the hyperparameters search space used
in equation 3.14 based on the dataset, we specify those
ranges while discussing the results for those datasets in
their respective sub sections. We perform grid search
over these values and choose two points from this grid
search results based on following conditions:
Sparsity threshold: Number of non zero entries
in diagonal of lambda (Λ) matrix is less then some
threshold. For synthetic dataset we set that threshold
to be 1/10 of the third dimension of X, e.g., for X being
100× 100× 500, the threshold is set at 500/10 = 50.
Error threshold: From all the points that meet the
above threshold condition, we find the median error and
only consider points with error less than that threshold.

After applying the above two thresholds, we choose
two points, one which has smallest error on the loss
function (min error point) and other one which have
the lowest number of non-zero entries on the diagonal
of the lambda (Λ) matrix (min sparsity point). We
use these two points for our analysis. For each of these
points we create two tensors namely Ynorm and Yspar

as mentioned in previous section. In total, Harvester

produces 4 candidate tensors for evaluation namely min
error Ynorm, min error Yspar, min sparsity Ynorm, and
min sparsity Yspar The result presented in this work for
our method Harvester will be of one or more of those
points unless specified otherwise.

4.1 Evaluation Metrics and Baselines We evalu-
ate our method Harvester on two model-based mea-
sures namely relative fit of the model and CORCONDIA
[6, 17] and also on a task-based measure on tensor com-
pletion [1]. In order to choose the “best” rank for the

2https://github.com/ravdeep003/harvester-sdm
3https://github.com/stephenbeckr/L-BFGS-B-C
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tensor at hand, we use AutoTen [17] (modified with non-
negativity constraints). Given the rank identified by
AutoTen, we compute the following quality measures:
Relative Fit of the model: We evaluate the fit of
non-negative CP using the AutoTen rank:

(4.30) Relative F it = 1−
( ||XInput −Xcomputed||F

||XInput||F

)

CORCONDIA: The Core Consistency Diagnostic
(CORCONDIA) [6] returns a score for how well the
given factors obey the CP model, given a tensor and a
decomposition at a certain rank. AutoTen, uses COR-
CONDIA to arrive to the selected rank, so we are es-
sentially using the value reported by AutoTen.
Tensor Completion: This can be viewed as down-
stream task oriented evaluation, in which we hide 20%
of non-zero entries and use CP WOPT [1] for predicting
the missing values. We report RMSE between the pre-
dicted and actual hidden values. The lower the RMSE
the better the performance on the tensor completion
task. For consistency with the previous two measures,
for which higher is better, we compute 1/RMSE.

Baselines: We compare against the following:
IceBreaker++: We compare our method Harvester

against the greedy based method IceBreaker++ [20],
which introduced the problem of Trapped Under Ice

and provided a greedy approach to tackle the problem.
Fixed aggregations: We also compare our method
against fixed aggregations views generated from the
input tensor, which just aggregates the slices based on
certain fixed window intervals.

4.2 Synthetic data generation We created the
synthetic datasets in a similar fashion as mentioned
in the [20]. We first create a sparse tensor of certain
sparsity and then we distribute the non-zero entries in
each frontal slice X(:, :, k) over certain fixed number
of slices (B). We repeat this for every frontal slice
in original tensor, every time distributing the non-zero
entries to new fixed bucket of slices(B) and concatenate
all the buckets to create the dataset. Table 1 shows
the different synthetic datasets used in the experiments.
For example take SD1 (synthetic dataset 1), the original
data is of size 100 × 100 × 10, all the non-zero entries
in the k-th slice X(i, j, k) are randomly distributed over
50 slices in the third mode with the same i, j indices.

We create 4 types of dataset as shown in table
1, for each type of dataset we create 10 datasets and
we report our findings for these 40 datasets. Hyper-
parameter ranges used are : for α we use the values
[10−4, 10−3, 10−2], for β we use [10−2, 10−1, 100, 10] and
for γ we use [10−4, 10−3, 10−2].

4.3 Pareto-based evaluation for synthetic data
We evaluate the quality of our method Harvester and
baseline methods on the three evaluation criteria as
mentioned in section 4.1. We are seeking a tensor which
maximizes CP FIT, CORCONDIA and minimizes the
RMSE for tensor completion (or maximize 1/RMSE).
This is essentially a multi-objective optimization prob-
lem, and a widely accepted means of measuring opti-
mality in this case is to identify points in that 3D space
which lie in the so-called Pareto frontier [16], i.e., points
which dominate the rest of the points with respect to the
three dimensions/objectives. To that effect, we find the
tensors which lie on the Pareto frontier of these eval-
uation metrics, and we count how frequently a given
method produces such tensors. The more frequently
a method yields tensors lying on the Pareto frontier,
the better the quality of those tensors, thus, the higher
performing the method. We perform Pareto finding op-
eration on all the data points obtained using method
Harvester, IceBreaker++, fixed aggregation views
of the tensor which we used with our method. In finding
Pareto-optimal points we excluded the original tensor.

To measure the effectiveness of our method Har-

vester against baselines we count the number of times
each method is on the Pareto frontier for all the syn-
thetic datasets we evaluated on and we present that
information in table 2. We observe that points from
our method Harvester are always on the Pareto fron-
tier with variety of the synthetic datasets. As shown in
table 2, Harvester performs far better than the base-
line methods. In all of the synthetic datasets, we see
that tensor generated by Harvester was found on the
Pareto frontier. In SD4 IceBreaker++ did reasonably
well, as it was on the Pareto frontier six times as op-
posed to Harvester which was on the Pareto frontier
for all ten datasets.

4.3.1 Rank Sensitivity In this section, we explore
the sensitivity of our algorithm Harvester with re-
spect to different ranks. We run this experiment using
a dataset of size 100 × 100 × 10 generated using rank
10, which was then used to generate a fine grained ten-
sor of size 100 × 100 × 500, using the same method as
described in section 4.3. In Figure 1(a), 1(b) and 1(c)
we report mean and standard deviation of Corcondia,
Relative fit and RMSE for the dataset over 5 runs. We
observe that Harvester has a steady performance for
the initial rank increase but further increase in the rank
deteriorate some of the evaluation metrics.

4.4 Scalability Analysis In this section we show
the scalability analysis for Harvester as the third
mode grows, since Harvester depends on the views

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



Dataset Original Rank Bucket Approximate View 1 View 2 Number
Dimension (Xog) (R) size (B) Final Dimension( X) (Y1) (Y2) of datasets

SD1 100× 100× 10 5 50 100× 100× 500 100× 100× 100 100× 100× 50 10

SD2 100× 100× 10 10 50 100× 100× 500 100× 100× 100 100× 100× 50 10

SD3 100× 100× 10 30 50 100× 100× 500 100× 100× 100 100× 100× 50 10

SD4 100× 100× 100 20 20 100× 100× 2000 100× 100× 400 100× 100× 200 10

Table 1: Table of Synthetic Datasets analyzed

Dataset Original Approximate Harvester IceBreaker Views
Dimension (Xog) Final Dimension( X) Count Count Count

SD1 100× 100× 10 100× 100× 500 10 0 0
SD2 100× 100× 10 100× 100× 500 10 0 0
SD3 100× 100× 10 100× 100× 500 10 1 0
SD4 100× 100× 100 100× 100× 2000 10 6 0

Table 2: How many times each method was on the Pareto frontier
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Figure 1: Harvester sensitivity as a function of the rank on a 100× 100× 10 dataset with true rank 10

of the original tensor. We run Harvester on the
different settings one with coarser views and other one
with finer views. In Figure 2(a), we report time taken
by Harvester for both of these inputs. When the
third mode is smaller both aggregations roughly take
the same time, but as the dimension grows we see that
Harvester with coarser aggregation runs faster.

We also evaluated the scalability of Harvester

against IceBreaker++. Figure 2(b) shows the time
taken by each method. Since IceBreaker++ depends
on the performance of the utility functions, we ran Ice-

Breaker++ without the missing value prediction utility
function (the most time consuming utility function used
in that work). We also ran IceBreaker++ with one
iteration of missing value prediction utility function as
opposed to 10 times reported in the paper [20]. We com-
pared it with Harvester with both coarser and fine
grained views. As shown in Figure 2(b), Harvester is
significantly faster than IceBreaker++.

Finally, we evaluate the behavior of Harvester

as the rank which is used to compute the coupled
tensor factorization to set up the problem with Ci’s
increases. For an input dataset to Harvester of size
100 × 100 × 500 we ran it 10 times for each rank
and report runtimes in Figure 2(c). We observe that

Harvester scales linearly with respect to rank.

4.5 Real-world case study: Foursquare Dataset
We use the foursquare dataset4 [25] for check-ins in New
York City collected over 10 months from 12 April, 2012
to 16 February, 2013. We constructed a 3-mode tensor
with user, venue categories and time as the three modes
where each entry in tensor is number of check-in for a
user for a particular venue category for a given day. We
aggregated temporal mode on the daily basis to create
an input tensor and we used top 126 venue categories
(venue categories which had more check-ins than the
median check-in value of each categories). We, thus,
end up with a tensor of size 1083 × 126 × 250 (user,
venue categories, days). We create two views from the
input tensor of size 1083×126×125 and 1083×126×50
respectively. These two views were used by Harvester

to find tensor of optimal granularity. By conducting the
same Pareto-based evaluation, we observed that only

Harvester tensors are on the Pareto frontier.
In the interest of space, we present a small indica-

tive set of the latent factors extracted from one of those

4https://www.kaggle.com/datasets/chetanism/

foursquare-nyc-and-tokyo-checkin-dataset
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