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ABSTRACT
In this paper, we focus on data generated from a Markov chain

and provide optimal mechanisms for local Bayesian differential

privacy (BDP) guarantees. Our main theoretical contribution is to

provide a mechanism for achieving BDP when data is drawn from

a binary Markov chain. We improve on the state-of-the-art BDP

mechanism and show that our mechanism provides the optimal
noise-privacy tradeoffs for any local mechanism up to negligible

factors. We perform experiments on synthetic data to show that

a correlation aware adversary can launch successful attacks on

data that satisfies only the vanilla differential privacy guarantees.

Finally, we perform experiments on real data to show that our

privacy guarantees are robust to underlying distributions that are

not simple Markov chains.
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1 INTRODUCTION
Differential privacy (DP) [2] is the most popular data privacy def-

inition. An algorithm is differentially private if its outputs with

and without any individual’s data are (nearly) indistinguishable.

However, DP does not offer meaningful privacy guarantees against

an adversary who knows and exploits correlations in data [4]. Real

world data typically exhibits natural correlation structures. Social

networks mediate interactions and influence which often lead to

strongly correlated personal attributes. Similarly, spatial and tem-

poral proximity leads to strong correlations in data from sensors

recorded as discretized time series. Examples include data from

human mobility traces, power grids, health data from personal

wearable devices, and US census data. In many applications the
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correlation structure can be learned from historical data and so

should be assumed to be public knowledge.

The Pufferfish framework, proposed by Kifer and Machanava-

jjhala [5], allows for robust privacy guarantees on correlated data.

Bayesian differential privacy (BDP), initially proposed by Yang et al.

[9], is an instantiation of the Pufferfish privacy framework and a

generalization of differential privacy. The distinction between DP

and BDP is most salient when comparing which adversaries they

protect against. As an example, suppose we are trying to protect Al-

ice’s time series data. Differential privacy guarantees that someone

who knows Alice’s location at all but one time step will not learn

very much by analyzing the sanitized data set (their posterior after

seeing the sanitized data will not change much) [9]. BDP guarantees

that, regardless of what the adversary knows about Alice’s mobility

data, they will not learn much by analyzing the sanitized data set.

Presumably, Alice is not very interested in protecting her data only

against an adversary who knows almost all of it. Thus, we hope to

achieve privacy guarantees that do not depend on how many data

points the adversary knows.

1.1 Related Work
The limitations of differential privacy with correlated data has been

pointed out in different contexts [1, 3, 4, 8–11]. As a result, there

have been new correlation-aware privacy definitions in recent years.

Zhao et al. [10] consider a definition equivalent to BDP that they

term dependent differential privacy. Their proofs show that many

attractive properties of DP, like post-processing and composition

guarantees, also hold for BDP. Liu et al. [6] consider a different

privacy definition that they also term dependent differential privacy;

however, their definition is quite different, as it does not imply

DP [10]. Naim et al. [7] consider a privacy definition rooted in

information theory, that is more applicable to Internet privacy.

The original BDP paper considers a mechanism for the sum

query, with data drawn from a Gaussian query model [9]. We model

data generated from a Markov chain, so their mechanism does not

apply. Song et al. [8] provide a very general mechanism along with

guarantees for any privacy definition in the Pufferfish framework.

However, their mechanism may be computationally heavy (e.g. it

runs in O(n3) in our setting, while ours runs in time O(n), for data
of size n), and must be re-run (with additional privacy loss) for

multiple queries. Zhao et al. [10] provides a very general reduction

theorem which explains how ε-BDP is implied by a lower ε ′-DP.



This result, while very powerful, does not produce optimal noise-

privacy tradeoffs, as we show in the full paper.

2 WHY CONSIDER BDP?
In this section, we first explain the differences between the technical

definitions of DP and BDP. We then provide one interpretation of

the increased privacy that BDP ensures.

2.1 Differential Privacy
A randomized mechanism M is a function with domain X that

consists of all possible input databases, and range S denoting all

possible outputs.

Definition 1 (Dwork et al. [2]). A randomized mechanismM

is said to be ε-differentially private (ε-DP) if, for any databases x
and y that differ in exactly one tuple (i.e. one data point),

sup

s ∈S

Pr[M(x) = s]

Pr[M(y) = s]
≤ eε .

2.2 Bayesian Differential Privacy
For BDP, we now assume that the domain X of M is generated ac-

cording to some probabilistic model. We also introduce adversaries

A = A(i,K), where i ∈ [n] denotes the tuple A is trying to infer

(attack) and K ⊆ [n] \ {i} denotes the tuples A already knows.

Definition 2. The Bayesian Differential Privacy Loss (BDPL) of
M with respect to A is defined as

BDPL(A;M) = sup

xi ,x ′
i ,xK ,s

Pr[M(X ) = s |xi , xK ]
Pr[M(X ) = s |x ′i , xK ]

.

The probability, taken over the mechanism and data generation

process, should should be interpreted as the probability of the

database being X , given xi and xK , and then observing M(X ) = s .

Definition 3 (Yang et al. [9]). A randomized mechanism M

is said to satisfy ε-BDP, if supA BDPL(A;M) ≤ eε , where the adver-
saries range over all possible i and K .

ε-DP is equivalent to requiring BDPL(A;M) ≤ eε , for all adver-
saries A = A(i, [n] \ {i}), i.e all adversaries that know all but one

tuple. It follows that ε-BDP is at least as strong as ε-DP.

2.3 Semantic Differences between DP and BDP
Differential privacy forms privacy guarantees without a model for

how the data is generated. Thus, if an adversary has reasonable

background knowledge regarding the data distributions, it may be

the case that an ε-differentially private mechanism will produce

an output that is disproportionately more likely (from the perspec-

tive of the adversary) given one of two neighboring datasets. This

limitation of DP is well understood; Dwork et al. [2] reframes this

limitation in terms of the semantic guarantee that DP provides. Sup-

pose you are a medical researcher tasked with convincing users to

divulge sensitive health data, which will then be published online.

Differential privacy, according to the semantic interpretation, can

be used as a tool to encourage participation. Individuals, who can

only control their own participation in the study, know that they

will receive minimal (privacy) harms directly tied to their partic-

ipation in the study. Viewed this way, DP is an entirely end-user

focused persuasive tool. However, an ethical researcher not only

wants to persuade users to participate, but also to understand and

limit the harms caused by the study itself. DP answers the question

of whether a single user ought to participate; BDP answers the

question of whether the study ought to be performed (in terms of

the privacy “cost” of the study). Put another way, BDP persuades

the researcher to publish a sanitized copy of their data, by more

comprehensively limiting the harms to any study participant.

We stress that in thismedical example, since the database consists

of records that each belong to different individuals, DP can still

be a reasonable choice (e.g. if the study could significantly help

the participants, and the additional noise hinders utility). However,

when considering data from a single individual, like mobility or

heartbeat time series data, (standard) DP does not provide sufficient

guarantees.
1
BDP provides much more meaningful guarantees than

DP in these settings.

3 MAIN RESULTS
Our main theoretical contribution is providing a mechanism for

achieving BDP when the data is drawn from a binary Markov chain.

We focus on non-interactive mechanisms, which return “sanitized”

(i.e. noisy) estimates of the real database that can be queried offline

without further privacy loss. In contrast, query-based mechanisms

must be rerun with additional privacy losses for each query. In

order to achieve local privacy guarantees, our primary mechanism

adds independent noise to each tuple. Local privacy means that no

centralized curator needs to have access to the agents’ true data.

Instead, the owners of each tuple can privately sanitize their entry

before submission, which would be ideal for IoT settings. When

privacy guarantees are framed in terms of trust or persuasive power,

this property is extremely attractive.

Our model is simple yet fundamental; we represent data corre-

lations via Markov chains, and these preliminary results consider

only binary state spaces. We assume that the data is positively cor-

related, as in the case of location data, where an individual is more

likely to stay in the same location than leave (given a fine-enough

time scale). We improve on the state-of-the-art BDP mechanism

and show that our mechanism provides the optimal noise-privacy
tradeoffs (among local/independent noise mechanisms) up to negli-

gible factors. This is significant because the previous general results

only provide a sufficient bound on the noise [6, 10]. The main chal-

lenge with finding an exact bound is describing how the privacy

loss evolves through the Markov chain. We also consider a mecha-

nism which adds correlated noise to the data, but find no additional

improvement to noise-privacy tradeoffs. Lastly, we perform exper-

iments on real and synthetic data. We first demonstrate that DP

does not bound the correlated advantage, by providing a concrete,

correlation aware attack that more than doubles the DP bound.

Further, even on real data that is not entirely Markovian, a neural

network adversary, using Long Short Term Memory (LSTM) mod-

els, cannot surpass our mechanism’s privacy bounds, suggesting

that our mechanism is robust to varying correlation structures in

practice.
2

1
There are definitions such as group differential privacy [2] that apply to this setting,

but they require significantly more noise. See [8] for a more thorough analysis.
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