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Abstract:

This paper examines global parameter sensitivity in a zero-dimensional lithium-sulfur (Li-S)
battery model. Li-S batteries are an appealing cell chemistry due to their high theoretical energy
density, abundant supply, and low cost. However, due to the lack of complete understanding
of the underlying working mechanisms for Li-S cells, the development of mathematical models
and state estimation is still at its early stages. Model development and parameter identification
are closely associated. Both are essential for developing battery management systems (BMS) in
commercialized Li-S powered applications. This paper highlights the parameter identification
challenges associated with Li-S models. Sensitivity analysis helps for parameter identification
by revealing information about parameter relevance and interdependence. Sensitivity analysis
also helps in understanding different physical ranges of parameters, and their impact on
model performance/response. In this work we examine global sensitivity analysis (GSA). A key
challenge for GSA, especially in Li-S batteries, is a lack of available information in the literature
about a-priori distributions of Li-S parameters. This paper aims to elucidate this challenge by
comparing GSA under different parameter distributions. Three model parameters are chosen in
this analysis, and their sensitivities are compared under three different distributions. We find
that, under certain distributions of parameters, relative importance of the parameters shifts.

Keywords: Lithium-Sulfur Battery, Global Sensitivity Analysis, Sensitivity Analysis,

Parameter, Sobol Indicies, Identification

1. INTRODUCTION

With an increasing push for electrification, research on
higher energy density battery chemistry has gained mo-
mentum, especially in applications where energy density is
critically important. Research on Lithium sulfur batteries
has gained traction due to their high theoretical energy
density 2500 Wh-kg™! (Guo et al. (2017)). The practical
energy density is expected to be 2-3 times greater than
current Li-ion batteries (Parke et al. (2021), Fotouhi et al.
(2017)). The abundant supply and low cost of sulfur adds
to the commercial interest in Li-S batteries. Consequently,
recent years have shown accelerated research in different
areas for Li-S, from understanding fundamental reaction
mechanisms, suitable electrolyte/electrode design, mod-
elling and controls (Lim et al. (2019), Peng et al. (2020)).
Even though the chemistry is promising due to higher
energy densities, its commercialization is hindered by the
limited utilization of sulfur, poor rate capability, self-
discharge, and capacity degradation. Shuttling of soluble
polysulfides during cycling between the cathode and anode
acts as a parasitic side reaction, causes formation of LisS
layer on the Li anode, thus causing capacity fade and low
cyclic efficiency (Feng et al. (2022), Liu et al. (2018)). This
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shuttle effect is blamed as a major hindrance toward the
commercialization of Li-S batteries.

There are a lot of efforts focused on mitigating the shuttle
effect, improving cell chemistry, and electrolyte design.
Most of the research on Li-S batteries focuses on materials
(Lim et al. (2019)), chemical development (Hou et al.
(2017)), and understanding the reaction fundamentals of
the battery (Peng et al. (2020)), which are all essential
to its development (Feng et al. (2022)). Nonetheless, it is
also essential to develop BMS systems based on mathe-
matical models, including state and parameter estimation
algorithms that monitor performance and health (Fotouhi
et al. (2017)).

Depending on the physical scales, Li-S models in litera-
ture range from, atomic level DFT simulations, to micro-
particle level kinetics, to bulk macroscale cell-level models
to system level models (Hou et al. (2015), Wang et al.
(2021), Kumaresan et al. (2008), Marinescu et al. (2016)).
The lower the magnitude of physical range of model, the
higher the model complexity gets due to inclusion of more
fundamental interactions (e.g. absorption energies, molec-
ular transport). A key aspect in model development is
identification of model parameters to align the model pre-
diction to experimental data (Parke et al. (2021)). In case
of Li-S, complex reaction mechanisms make both mod-
eling and parameter identification a daunting challenge.
Mathematical models with large number of parameters are
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generally associated with more complex parameter identi-
fication. In this regard, efforts are made on reducing model
complexity, experimental identification of parameters and
investigating parameter sensitivities.

Sensitivity analysis uncovers the effect of parameters on
model response. It guides parameter identification by re-
vealing information about parameter relevance and inter-
dependence, which helps in grouping and ordering the
parameters during the identification process (Park et al.
(2018)). It also helps in optimally designing experiments
such that these parameters can be measured/estimated
under ordinary non-destructive testing conditions. The lit-
erature on parameter sensitivity and identification for Li-S
battery is limited. (Xu et al. (2021)) in their study inves-
tigated parameter sensitivity for 0-D Li-S model, to iden-
tify significant parameters for parameter identification. In
their study, they compared the performance of four 0-D
models with different reaction mechanisms, w.r.t. fitting
to experimental discharge data. The authors in this work
use local sensitivity analysis which is computed by the
derivative of voltage with respect to the varied parameter.
Important parameters are identified by sensitivity analyses
which then used in their identification. A key challenge
in this work is that the ‘nominal’ parameter values are
unknown, thus, local sensitivity analysis suffers from a
chicken and egg problem, where to identify the parameters
you must use a tool which assumes you know the param-
eter values. This motivates the use of Global sensitivity
techniques which don’t assume initial point estimates on
parameters and instead only assume the parameters live
in a range of values.

Ghaznavi and Chen in a series of three papers, explore
the sensitivity of parameters for a 1-D electrochemical
model (Kumaresan et al. (2008)) at different set values
of parameters. In their first work (Ghaznavi and Chen
(2014Db)), they studied the cell performance for a wide
range of discharge current rates and cathode conductivity.
They found that cell capacity performance for high current
rate was limited because of sulfur dissolution in electrolyte.
They also found a lower limit in conductivity below which
the cell ceases to operate. In their second work (Ghaznavi
and Chen (2014b)), the discharge behavior was studied
under a range of values of precipitation rate constants.
By doing so they uncovered the role of sulfur dissolution
and precipitation on capacity performance. They further
proposed an optimal sulfur content for higher capacity
performance. In their third work (Ghaznavi and Chen
(2014a)) they investigated the effect of exchange current
densities and the diffusion coefficients on reaction kinetics
and transport process. Relative magnitude of exchange
current densities help in illuminating the dominant and
rate limiting reaction. The study performed in (Ghaznavi
and Chen (2014a)) can be used to optimally design the cell
in relation to influence of parameter on cell performance.
The parameter sampling technique in these works faces
two major challenges. First, the parameters are varied one
at a time and therefore do not capture the effect of pa-
rameter interaction on the output. Second, the parameters
are sampled form an assumed set, which does not neces-
sarily signify actual physical values of parameters. This
motivates using techniques that explore the interaction of

parameters and systematic sampling of parameter values,
such as global sensitivity analysis.

In (Parke et al. (2020)) the authors developed a Tank-
in-Series model as an equivalent 1-D Li-S electrochemical
model. The authors study parameter sensitivities of the
model’s diffusion coefficients and cathode thickness for
different current rates to check the suitability of the
model. Similar to (Kumaresan et al. (2008)), sensitivity of
parameters is evaluated by analysing the model response
at different set values of parameters. Choosing parameters
in this way can be insightful, however it is inherently
heuristic in nature and does not systematically capture
how the range of these set points affect the voltage
response.

Senstivity analysis methods are generally classified into
two categories: local sensitivity analsysis (LSA) and GSA.
The two methods are different from each other in the kind
of information they represent. LSA evaluates first order
derivatives at a specific reference point in the parameter
space. Therefore, changing the ‘reference point’ changes
the information obtained from LSA. Despite being ref-
erence point dependent, LSA is used extensively in the
literature (Park et al. (2018), Xu et al. (2021)) because
it provides qualitative, easily interpretable information
which is also computationally cheap to evaluate.

On the other hand, GSA measures the magnitude of influ-
ence a parameter has on model response. It is global in the
sense that it evaluates the sensitivity over a given prob-
ability distribution on the parameter (Ramancha et al.
(2022)). Even though GSA is considered ‘global’, as a
range of parameters are considered in calculating sensi-
tives, the sensitivities obtained depend on the choice of
parameter distribution (Saltelli et al. (2008)). The down-
side of using GSA is related computational cost, which
increases exponentially as the number of parameters in
the analysis increases.

Generally, GSA is thought to be advantageous with respect
to LSA because it more effectively captures the range in
which parameters may exist. However, even in the GSA
case, we rely on good estimates of the parameter distribu-
tion to understands the relative parameter importance.

To address this challenge, we conduct a meta-sensitivity
analysis on GSA under 3 parameter distributions to un-
derstand the way GSA sensitivities change as you change
the parameter distribution. To this end, we perform sensi-
tivity analysis on a 0-D electrochemical Li-S model (Huang
et al.). A global sensitivity evaluation method, i.e. Sobol
index (Saltelli et al. (2010)) is used for analyzing parame-
ter sensitivities. We use GSA in this study, firstly due to
lack of experimentally validated nominal values of parame-
ters (Parke et al. (2021)) and also to explore the interaction
effect of parameters. It is recognized that lack of definitive
possible physical values is a problem that Li-S models face.
To this extent, we performed sensitivity analysis for three
different distributions of model parameters. This is done to
examine the effect information about parameter a-priori
have on its relative importance in parameter identification.
To simplify, we focus on 3 of the model parameters for
performing sensitivity analysis. This study is performed
on 2 current profiles, to also emphasis the importance of
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experimental design on parameter identification. The main
contributions of this paper are thus:

(1) Analysis of a 0D lithium Sulfur battery model using
global sensitivity analysis.

(2) Analysis of Global sensitivity methods and their
robustness to parameter distributions. To the authors
knowledge, this is the first work that explores how
parameter distributions change the results of global
sensitivity analysis.

The paper is organized as follows. Section 2 introduces the
zero-dimensional electrochemical model considered in the
study. Section 3 details the global sensitivity technique
used for performing sensitivity analysis and details the
different parameter distributions chosen in the study.
Section 4 outlines the implementation of GSA. Section
5 presents the results of sensitivity analysis and details
the comparative sensitivity analysis of different parameter
distributions. Finally, section 6 provides conclusion for the
overall study.

2. LI-S BATTERY MODEL

This section summarizes a macro level electrochemical
model, i.e. the zero-dimensional Li-S model, developed in
the previous work (Huang et al.). The model captures
the fundamental redox reaction mechanisms happening
at the cathode, while disregarding the diffusion related
transport phenomena. This model only considers the re-
action kinetics on the cathode side. The reaction kinetics/
overpotential losses at the anode side are neglected. The
anode is taken as Li metal, which is assumed to be an
unlimited source of Li.

During discharge the Li-metal anode goes through an
oxidation reaction, liberating Li-ions. The Li-ions move
across the electrolyte towards the cathode, where they
react with the sulfur species and gets reduced into different
Li-polysulfide species. At the cathode, the elemental sulfur
S undergoes a series of complex electrochemical reactions,
forming different polysulfide species LisS,, (1 < n < 8),
starting from high order polysufides and finally reducing
to low order sulfide LisS. The high order polysufides are
soluble in organic electrolytes, which causes shuttling of
the high order sulfide species between cathode and anode.
This parasitic ‘shuttle’ effect causes self-discharge and
degradation of the anode.

The zero-dimensional model chosen for this study is a 3-
step electrochemical reaction given by:

3 _ 1o
gsg +e 5sg : (1)
o 3o
Se” +e isi : (2)
1 2
6s?; +e gSQ— 1. (3)

The lowest polysulfide i.e., S~ further principates. A
schematic of the reaction pathway during discharge is
shown in Fig. 1.

The mass evolution of sulfur species is described by the
following equations (4) -(8):

Dissolved LiPSs

Fig. 1. A schematic of the reaction pathway during dis-
charge at the cathode (Huang et al.)
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where states [x1, 22, 3, 24, T5] represent the mass of sulfur
species [Sg , Sg_, Si~, S27,8,] respectively. The shut-
tling effect of high order polysulfides i.e. S§ and Sg_ is
modeled by using a shuttling constant ks;. The precipita-
tion of S~ is modeled using equation with a precipitation
rate constant k.

The standard reduction potentials associated with the 3
reactions (1)-(3) can be modeled using Nernst equation
given by equations (9)-(11).
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The current associated with the 3 reactions (1)-(3) is
modeled by using Butler-Volmer equations (12)-(14).
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The total current flowing in the battery is the sum of the
current across the three reactions.

I=ig1+iga+ir.

(15)
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The precipitation of sulfide S, causes loss of active reac-
tion area which is modeled as:

ar = a2(1 —w - x5)7. (16)
The overall output voltage is related to the standard re-
duction potential and overpotential of the three reactions.

a1 =V — Eq, (17)
N2 =V — Ena, (18)
nL = V- EL- (19)

The equations above collectively form a differential alge-
braic equation (DAE) model whose parameters are sum-
marized in Table 1.

Table 1. Zero-Dimensional Model Notation

Notation Name Units
Mg Molar mass of S [g/mol]
ns8,MS6,MS4,MS No. of S atoms in polysulfide -]
Te No. of electron per reaction -]
F Faraday’s constant [C/mol]
R Gas constant [J/K/mol]
T Temperature K]
ks Shuttle constant 71
kp Precipitation rate Ell|
52 S2~ Saturation mass lg]
EY, Standard potential, rxn 1 V]
EY, Standard potential, rxn 2 V]
EY Standard potential for rxn 3 V]
% Exchange current density, rxn 1 [A/m?]
979 Exchange current density, rxn 2 [A/m?]
ir,0 Exchange current density, rxn 3 [A/m?]
:1:;] Initial mass of species j le]
I Applied current [A]
ar Active reaction area [m?]
a? Initial active reaction area [m?]
5 Power of the relative porosity -]
w Relative porosity change rate [1/g]
v Electrolyte volume per cell (L]
NH1,MH2,L Surface overpotentials V]

3. PARAMETER SENSITIVITY

This section focuses on the parameter sensitivity informa-
tion evaluated from GSA, for different parametric distri-
butions.

In the 0-D model considered in this study, there are 11
model parameters in total. In this study we focus on 3
parameters due of the constraints on computational time
required for GSA calculations. The parameters considered
in the sensitivity analysis are: Iy, i1 and k,.These
3 parameters are chosen in this study, as ranges of their
respective distribution can vary significantly. This makes
the analysis on the effect of parameter distribution in GSA
interesting.

3.1 Global Sensitivity Analysis

GSA quantifies the variation of model response by varying
the parameters along the entire parameter domain. A
variance-based GSA tool, i.e. Sobol index, is used in this
study (Saltelli et al. (2010)). The Sobol index, is a measure
of the percentage of variance in model output, caused

by a particular parameter or its interaction with other
parameters. The variance in model output as a function
of its parameter is decomposed as:

np Mp
var(y(p)) =Y _var(yi(p:) + Y _ var(yi; (pipj)) + - -

i=1 i<j

Fvar(yiz, . n, (D1, 02,0 Pny)) (20)
where 7 is the model output p; is the i** model parameter
and n, is the number of parameters in the model. Each
term in the distribution above is orthogonal and is based
on the assumption of independence of model parameters.
Next we define each term.

The first term in the decomposition represents the output
variance caused by parameter p; alone and is calculated
as:

() = vy (B (00 (21)

where the conditional expectation is taken over the joint
distribution of random vector p, marginalized with respect
to parameter ¢, and given p;.

The second and the following terms capture the effect of
varying parameters simultaneously, and are called second
order interactions, and corresponding higher order inter-
actions. The 2nd order interaction terms are calculated as
follows:

vm%@@»wmm(mwpm@

~ij

—var(yi(pi)) — var(y;(p;))  (22)
These decomposed partial variances are normalized w.r.t.
the total variance and is termed as the corresponding Sobol
index. The commonly used Sobol indices are:

(1) First-order indices: Sy ; = var(y;(p:))/var(y)
(2) Second-order indices: Sa,;; = var(y;;(ps:,p;))/var(y)
(3) Total-order index: St ; = S;+Sij+Sijk+...4+51,...n,

In this study we use the Sobol index framework for
analyzing global sensitivities of the 3 parameters E%,,i%,
and k.

4. MONTE CARLO IMPLEMENTATION

To compute the Sobol indices we conduct a Monte Carlo
analysis. We use CasADi (Andersson et al. (2019)) to
simulate the model and voltage response for parameters
sampled randomly from the three distributions. We then
use the package SALib (Iwanaga et al. (2022)) to compute
Sobol indices over these simulations. We run 512 Monte
Carlo simulations for each parameter distribution.

We analyze the global sensitives under 3 different para-
metric distribution as shown in Table 2.

Table 2. Distribution of parameters

Distribution 1 Distribution 2 Distribution 3

EY 5% (Uniform) | 5% (Uniform) 5% (Uniform)

iy 5% (Uniform) | 20% (Uniform) | 1 order (Log-norm)

kp 5% (Uniform) | 20% (Uniform) | 2 order (Log-norm)

The parameter distributions analyzed is either a uniform
or a lognormal around a nominal value. All three dis-
tribution sets consider a 5% variation in EY%,, since the
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Fig. 2. Input current profiles

standard reduction potential can generally only vary by
0.5 V. The other parameters i%, and k,, however, do not
have a defined nominal range of values. In literature, the
estimated values of these parameters vary significantly by
1 or 2 orders of magnitude (Xu et al. (2021) , Marinescu
et al. (2016)). Hence these 3 parameter distribution sets
are considered in the analysis, with different degrees of
parametric variation.

5. RESULTS

In this section we analyze the results of GSA for the
following input profiles:

e 1A constant current (C/3) discharge
e A dynamic current input

For each current profile, we show the GSA results for
the selected 3 model parameters {F01, ‘101, kp} and
3 probability distributions on those parameters. For each
parameter distribution set (Table 2), we also analyze the
resulting distribution on the state trajectory. We use first
order Sobol indices as a measure of parameter sensitives.
We find that, for certain parameters, the first-order Sobol
indicies are strongly impacted by the parameter distribu-
tion.

5.1 Constant Current Analysis

Figure 3 shows the model voltage distribution for the con-
stant current input for 3 different distributions. Each of the
three subplots represents a different parameter distribu-
tion. The blue and yellow lines in the figure represent the
mean voltage response and its corresponding plus/minus
one standard deviation, respectively, for each distribution.
We observe that voltage variance is large in the first 3000
seconds for all distribution sets, and distribution set 3
uniquely shows higher variation after 4500 second. The
model remains relatively insensitive between 3500-4500
seconds across all three parameter distributions.

Sobol indicies for the constant current input are shown in
Fig 4. It can be observed that for all the distributions, pa-
rameter EY, remains sensitive in the initial 4000 seconds,
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Fig. 3. Voltage response for the 3 parameter distribution

sets at constant current

while parameter k, only becomes significant in the latter
part of the profile. It is also interesting to observe the
parameter i}, has very low sensitivity for distribution set
1 and 2, while for distribution set 3 its sensitivity increases.

The explanation for greater variance for distribution set 3
after 4500 seconds, and corresponding sensitivity profiles,
can be inferred by analyzing the state evolution of sulfur
species (Fig. 5). The figure shows the evolution of sulfur
species for 1A constant current for the three parameter
distributions.

Table 3. Normalizing constants for state plots

States | Constant Current | Drive cycle Current
1 2.97 2.97
o 2.54 2.38
T3 2.95 1.24
T4 0.027 4.46e-05
5 0.604 3e-05

The solid and the dotted lines in the figure, denote mean
and min/max evolution of the sulfur species using the
parameters from the three distributions. It should be noted
that the plots of species in the figure are normalized by
maximum of each state over all three distributions. These
normalizing constants are shown in table 3. It can be
observed that species Sg and Sg, which are affected by
parameters EY%; and i%, according to equations (9) and
(12), are only present in the initial 4000 secs. Once Sg
is exhausted around 3000 sec and Sg starts decreasing,
the variance caused by parameter EY%; on model output
decreases significantly. As Sg is depleted, reaction 1 is no
longer a prevalent reaction, thereby equations (9) and (12)
cease to affect voltage output.
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Fig. 4. 1st order Sobol index for each parameter

E%,,i%,,k, (columns), under each distribution set
(rows) detailed in Table 2.

The parameter sensitivities visualized in Fig. 4 highlight
the relevance of parameters in different parts of the pro-
files. It can also be observed that after 3000 seconds, the
noise in the Sobol index of EY, and i%, becomes greater,
as the variance in output correspondingly decreases sig-
nificantly (Fig. 3). This can also be observed from Fig. 5
that for all 3 distributions, the variation in state evolution
between 3000 -4500 sec becomes small.

The difference in sensitivity magnitude observed in Fig.
4 shows that for distribution set 1 and 2, the parameter
i9%, remains relatively insignificant. Namely, most of the
variance in output during the initial 4000 sec is dominated
by EY%,. Only in distribution set 3, with a lognormal
distribution on parameter %, does its sensitivity increase
to a detectable level.

Fig. 4 shows that parameter k, is the only significant
parameter after 4000 sec, in all three distribution sets.
This is because k, affects the state evolution of $?~ and
Sp, which are only present after 4000 seconds, as seen in
Fig. 5. Even though k, is the only significant parameter
in the later half of the profile, it can be observed that the
variance in output caused by k, is significantly higher in
distribution set 3, as seen in Fig. 3. Fig. 5 further shows
the variance in evolution of S?~ and S, under different
distribution sets. It can be observed that with a much
larger parametric range in set 3, k, significantly affects
the evolution of $2~ and Sp. This elucidates how different
parametric distributions can significantly affect the states,
voltage output and its corresponding sensitivity.
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Fig. 5. Evolution of states (mass of sulfur species) for
constant current
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5.2 Dynamic Cycle Analysis

Next we analyse the sensitivity results for a dynamic
input current. For dynamic current we chose a natural-
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istic evening driving cycle (LeBlanc (2006)). We append
multiple of this drive cycle to normalize to 2Ah of ab-
solute current throughput. Looking at Fig. 6 and Fig. 8§,
the distribution of parameters does not have a noticeable
impact on the variation on voltage or state trajectories.
As such we focus our attention on Fig. 7 which does show
a noticeable trend with distribution.

The sensitivity profiles for dynamic current input are
displayed in Fig. 7. The most significant parameter in
this profile is EY%,, across all distribution sets. It can
be observed that with increased parametric range for
i%;,, its sensitivity i.e. variation in voltage caused by %,
increases. For distribution set 3, %, has a larger sobol
index, denoting it becomes a significant parameter. This
information is relevant in application, since it implies that
i%, can be a significant if its range of variation is properly
chosen. In contrast, even by increasing the range k,’s
distribution by two orders of magnitude, its sensitivity
remains small. This can be explained by looking at the
state evolution of species in Fig. 8. Species S?~ and S, in
most part of the cycle remain minimal, thereby the effect of
kp, on voltage output remains marginal. This implies that
for any distribution, %k, would have very low identifiability
for this input profile.

In both the case studies analyzed, it was observed that
EY, is a significant parameter across all the distribution
sets. However, the significance of parameter i%, and k,
showed dependency on their distribution. It is also ob-
served that identifiability of parameter greatly depends
on the input profile. In case study 1, E%, and kp are the
parameters significantly affecting voltage response, while
i%, remain relatively insignificant, across all distributions.
In case study 2, i%, becomes an important parameter,
affecting the voltage response (distribution 3), while k,
remains insignificant.

This analysis advocates for the importance of analyzing
parametric sensitivity on proper choice of input profile
for parameter identification. It also highlights the effect
of proper choice of range of parameter in performing
sensitivity analysis.

6. CONCLUSION

This paper conducts a meta-analysis on global sensitivity
of Li-S model parameters, analyzing its dependence on
assumed parameter distributions. Two cases studies are
presented, where sensitivities of three parameters are an-
alyzed under three distribution sets. It is observed that
information about a parameter a-priori has a significant
impact on its relative importance in parameter identifica-
tion. The input profile as well as the parameter distribu-
tion affect the impact a parameter has on voltage response.

This work lays the groundwork for optimal experiment
design using GSA. Importantly we highlight the issue that
optimal experiments designed using conventional GSA are
not robust to the distribution chosen on the parameters.
This motivates future work in distributionally robust op-
timal experiment design.
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