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Abstract

Techniques for Battery Management: Modeling, Estimation, Learning & Controls

by

Saehong Park

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Scott Moura, Chair

This dissertation develops an advanced battery management system where lithium-ion battery
dynamics are governed by electrochemical principles, and estimation & control techniques
are applied to enhance the performance and longevity. The rapid progress in electrified
transportation, electronic devices, and energy storage system needs cutting-edge management
system that can monitor and control the electric battery system safely. We address this topic
in three phases: i) modeling, ii) estimation, and iii) controls respectively.

First, we provide an overview of battery fundamentals and develop mathematical models
for electrochemical battery phenomena. Electrochemical modeling is an important tool for
simulating the performance of a battery. With the electrochemical model as a simulator, one
can demonstrate prototypes of battery management system without conducting expensive
experimental protocols. Furthermore, designing reduced-order electrochemical models helps
to develop real-time estimation/control algorithms for large-scale battery systems.

Second, we propose a systematic framework to identify battery cell using the electrochemical
model. To accurately represent the cell chemistry, the model parameters must be correctly
identified. Good fitting parameters take a long time to identify. Often, it requires disassem-
bling the cell and performing specialized electrochemical characterization tests, a costly and
difficult process. The proposed parameter estimation framework for an electrochemical model
enables to estimate electrochemical parameters by using input-output data.

Lastly, we then develop a novel battery charging strategy for the identified electrochemical
model while accounting for the electrochemical constraints associated to aging mechanism.
The model-based optimal solutions reveal that the characteristic of optimal charging protocol
is Bang-Ride control, which provides theoretical supports on the existing charging strategy.
Furthermore, learning-basedc controller design via reinforcement learning is hihglighted as an
adaptive controller for battery charging strategy. The performance of this learning-based
feedback controller is demonstrated with other charging strategies.
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Chapter 1

Introduction

1.1 Energy Systems: Li-ion Batteries

As human civilization becomes more and more urban-centric, effective energy systems man-
agement is desired to handle uncertainties under both demand and supply sides. Furthermore,
electrified transportation and energy storage have shifted the paradigm of energy systems
and promised transition to zero-emission society. In this context, lithium-ion batteries play a
significant role as a main component for energy system to drive green society. The overall
lithium-ion battery demand is counted as 160 gigawatt hours (GWhs) in 2019, and expected
to increase around 2,300 GWhs in 2030 according to market research shown in Fig. 1.1a. As
more batteries are deployed to the urban systems, substantial battery accidents are reported
and released to media recent years. In aerospace, the reported accidents involving lithium
batteries in aircraft has risen sharply in recent years as shown in Fig. 1.1b according to
federal aviation administration (FAA). In ground transportation, a number of battery fires in
electric vehicle (EV) is steadily increasing, and the investigation for safety concerns of EV is
discussed in [112]. To ensure safety and efficiency, better monitoring techniques for battery
systems are inevitable.

With the perspective of engineering sciences, we recognize a battery as a physical system
that can be described by various mathematical models, in which advanced control and
estimation methodologies can be applied to improve the performance. Although models
differ greatly in complexity, electrochemical models can provide physical interpretation of
battery’s behavior during operation. In this thesis, we will discuss mathematical models for
lithium-ion batteries from electrochemistry perspectives. When the model is constructed, the
model-based estimation and control techniques are utilized to characterize the battery cell
behavior, and charge the battery safely. Lastly, a recent advancement of machine learning
techniques is addressed to the energy systems. This thesis is all about techniques for battery
management system with emphasis on modeling, estimation, controls & learning techniques
to enhance the operation of lithium ion batteries with respect to model fidelity, charge time,
and life time.
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(a) Annual lithium-ion battery demand and expectation [8].

(b) Number of events with smoke, fire, and explosion involving lithium batteries
in aircraft [33].

Figure 1.1: Battery Statistics
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(a) Pouch cell. (b) Prismatic cell. (c) Cylindrical cell.

Figure 1.2: Typical battery cells construction adopted from [89, 140]

1.1.1 Battery Systems Overview

Commercial batteries are categorized by three types: cylindrical cells, prismatic cells, and
pouch cells as illustrated in Fig. 1.2. These cells are assembled to support high current /
high voltage in battery pack for energy system. For most of EVs, the number of 5,376 cells
is required to provide “60” kWh energy . One of unique characteristics in battery is that
we have limited information about the system. For instance we only measure input current,
output voltage, and temperature. To understand how it is functioning during the operation,
one needs to understand the fundamentals of the battery. For instance, the cylindrical battery
is constructed spirally where the copper foil is used as the current collector for the anode,
which is composed of graphite and attached to the negative terminal of the cell. The separator
is an electrical insulator which keeps electrons from passing through but they let lithium
ions through. The aluminum foil is used as the current collector for the cathode. Since
every metallic materials have certain potential stability window, aluminum is stable at higher
potentials, which is cathode, while copper is stable at lower potentials, which is anode. The
electrodes are rolled up into a jelly roll, and then inserted into a cylindrical can. The liquid
electrolyte serves as catalyst to make a battery conductive by promoting the movement of
ions from cathode to the anode on charge and in reverse on discharge. When the battery is
fully charged, the majority of the lithium in the cell exists within the solid phase particles (or
the active material) in the anode lithiated carbon, LixC6. When the battery is discharged,
the lithium is delithiated to the surface of spherical particles in the anode, and then the
lithium ion is transported to the cathode while the electron flows through the circuit.

LixC6 ⇀↽ C6 + xLi+ + xe−. (1.1)



CHAPTER 1. INTRODUCTION 4

The electron and lithium ion are lithiated at the active material surface in the cathode,
typically a lithium metal oxide LiMO2. This electrochemical reaction can be described as:

Li1−xMO2 + xLi+ + xe− ⇀↽ LiMO2. (1.2)

The transport of lithium ion process is driven by electric potential difference between the
anode and cathode, which implies that the reverse process occurs for charging phase. The
configuration of Li-ion battery is determined which materials are used for each electrode. For
the anode material, graphite and lithium-titanium-oxide (LTO) are widely used while the
cathode can be made of lithium-cobalt-oxide (LCO), lithium-iron-phosphate (LFP), lithium
nickel cobalt manganese oxide (NMC), and lithium nickel cobalt aluminium oxide (NCA).
The separator can be made of polyolefin materials, i.e., polyethylene and polypropylene. The
electrolyte can be made of lithium salts i.e., lithium hexafluorophosphate (LiPF6). The
electrochemical model can be constructed based on the understanding of electrochemical
reaction with material properties. We will discuss the electrochemical models in Chapter 2.

1.2 Outline

The purpose of this thesis is to describe how electrochemical lithium ion battery models can
be estimated and controlled for advanced battery management system. A background on
the models and modeling techniques that are used in the thesis is provided in Chapter 2.
The cell characterization of the battery model with experimental validation is presented in
Chapter 3 as well as state-of-health estimation. With the identified cell information, the fast
charging control problem is addressed in chapter 4. The key contributions of this dissertation
and opportunities for future work are presented in Chapter 5.

1.3 Contributions

The goal of this dissertation is to provide various techniques for battery management sys-
tem which enhances the performance of lithium ion batteries through model-based estima-
tion/control approach and model-free learning approach. The new contributions to knowledge
on battery systems can be summarized as:

1. Model Development of electrochemical battery system

• First principles of electrochemical models : The full-order electrochemical battery model
and associated reduced order models are presented in Chapter 2. Based on the existing
electrochemical models, the modeling for reduced-order models is studied, and the
improvement for reduced-order model is proposed in Section 2.2.

• Hybrid modeling approach for battery system: Combining data-driven and first principles
is proposed as hybrid modeling approach in Section 2.3. This grey-box model can
capture the unknown dynamics of Li-ion battery, such as degradation process.
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2. Cell characterization of battery system

• Optimal experiment design: Cell characterization is critical aspect of the battery man-
agement system to ensure safety and efficiency. The objective of optimal experimental
design is to derive optimal inputs that maximize the identifiability of the system model.
With proper objective function that represents parameter identifiability, the optimal
control problem is transformed to experiment selection via convex programming in
Section 3.1.

• Sensitivity analysis for electrochemical model : The sensitivity of electrochemical param-
eters with respect to voltage output is evaluated by deriving sensitivity dynamics from
dynamical systems. This analysis demonstrates that some of parameters have huge
impacts on the voltage output, which can be used for parameter estimation algorithm
in Section 3.1.

• Battery-health identification: The battery health of electrochemical battery model is
defined as the moles of lithium for both solid-phase and electrolyte phase. These battery
health information is estimated by using input-ouptut measurement via simulation in
Section 3.2.

3. Fast-charging via Optimal control & Reinforcement learning

• model-based controller design: the optimal charging trajectory for battery fast-charging
is determined via Pontryagin Maximum Principle. Control optimization is performed
on a reduced battery model in Section 4.1.

• learning-based controller design: the learning-based controller for battery fast-charging
is obtained via approximate dynamic programming (also called reinforcement learning).
The learning-based controller plays as feedback controller for both states and outputs
compared with existing model-based approaches in Section 4.2. This learning-based
controller is also demonstrated as an adaptive controller that updates its control policy
when the system behavior has changed. Such feature is highlighted from the battery
management system perspective.
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Chapter 2

Modeling

In this chapter, we will introduce electrochemical battery models and modeling techniques
that are covered in the dissertation. First of all, the full-order electrochemical-thermal model
is presented in Section 2.1. Then, various types of reduced-order model is derived from
the full-order model in Section 2.2. Lastly, the hybrid modeling approach that combines
electrochemical model and data-driven model is discussed in Section 2.3.

2.1 Electrochemical Full-Order Model

The electrochemical battery model provides physical interpretation of battery inside, that
is the spatiotemporal dynamics of lithium ion concentration, electric potential, and the
Butler-Volmer kinetics which govern the intercalation reactions. A schematic of the model is
provided in Fig. 2.1. This cross section exhibits three regions: a negative electrode (anode),
the separator, and a positive electrode (cathode). Each region is denoted by superscript
j ∈ {n, s, p} representing negative electrode, separator, and positive electrode respectively.

2.1.1 Doyle-Fuller-Newman (DFN) model

We consider the Doyle-Fuller-Newman (DFN) model to predict the evolution of lithium
concentration in the solid c±s (x, r, t), lithium concentration in the electrolyte ce(x, t), solid
electric potential φ±s (x, t), electrolyte electric potential φe(x, t), ionic current i±e (x, t), molar
ion fluxes j±n (x, t), battery core temperature T1(t), and surface temperature T2(t) [119, 64].
Notation is defined in Table A.2. The governing equations are given by

∂c±s
∂t

(x, r, t) =
1

r2

∂

∂r

[
D±s r

2∂c
±
s

∂r
(x, r, t)

]
, (2.1)

εje
∂cje
∂t

(x, t) =
∂

∂x

[
Deff
e (cje)

∂cje
∂x

(x, t) +
1− t0c
F

ije(x, t)

]
, j ∈ {−, sep,+} , (2.2)
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Figure 2.1: Schematic of the first principles electrochemical model, also known as the pseudo
two-dimensional model or Dolye-Fuller-Newman (DFN) model.

σeff,± · ∂φ
±
s

∂x
(x, t) = i±e (x, t)− I(t), (2.3)

κeff(ce) ·
∂φe
∂x

(x, t) = −i±e (x, t)

+κeff(ce) ·
2RT1

F
(1− t0c) ·

(
1 +

d ln fc/a
d ln ce

(x, t)

)
∂ ln ce
∂x

(x, t), (2.4)

∂i±e
∂x

(x, t) = a±s Fj
±
n (x, t), (2.5)

j±n (x, t) =
1

F
i±0 (x, t)

[
e
αaF
RT1

η±(x,t) − e−
αcF
RT1

η±(x,t)
]
, (2.6)

C1
dT1

dt
(t) = h12[T2(t)− T1(t)] + Q̇(t), (2.7)

C2
dT2

dt
(t) = h12[T1(t)− T2(t)] + h2a[Tamb(t)− T2(t)], (2.8)

Q̇(t) = I(t)

[
V (t)− [U+(c+

s )− U−(c−s )] + T1(t)

[
∂U+

∂T1

(c+
s )− ∂U−

∂T1

(c−s )

]]
,

(2.9)

where De, κ, fc/a are functions of ce(x, t) and Deff
e = De(ce) · (εje)brug, σeff = σ · (εjs + εjf)

brug,

κeff = κ(ce) · (εje)brug are the effective electrolyte diffusivity, effective solid conductivity, and
effective electrolyte conductivity given by the Bruggeman relationship. We also have

i±0 (x, t) = k±
[
c±ss(x, t)

]αc [
ce(x, t)

(
c±s,max − c±ss(x, t)

)]αa
, (2.10)
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η±(x, t) = φ±s (x, t)− φe(x, t)− U±(c±ss(x, t))− FR±f j
±
n (x, t), (2.11)

c±ss(x, t) = c±s (x,R±s , t), (2.12)

∆T1(x, t) = U±(c±s (x, t))− T1(t)
∂U±

∂T1

(c±s (x, t)), (2.13)

c±s (x, t) =
3

(R±s )3

∫ R±s

0

r2c±s (x, r, t)dr. (2.14)

Along with these equations, boundary and initial conditions are required for well-posedness.
The boundary conditions for the solid-phase diffusion PDE (2.1) are

∂c±s
∂r

(x, 0, t) = 0,
∂c±s
∂r

(x,R±s , t) = − 1

D±s
j±n . (2.15)

The boundary conditions for the electrolyte-phase diffusion PDE (2.2) are given by

∂ce
∂x

(0−, t) =
∂ce
∂x

(0+, t) = 0, (2.16)

Deff,−
e (ce(L

−))
∂ce
∂x

(L−, t) = Deff,sep
e (ce(0

sep))
∂ce
∂x

(0sep, t), (2.17)

Deff,sep
e (ce(L

sep))
∂ce
∂x

(Lsep, t) = Deff,+
e (ce(L

+))
∂ce
∂x

(L+, t), (2.18)

ce(L
−, t) = ce(0

sep, t), (2.19)

ce(L
sep, t) = ce(0

+, t). (2.20)

The boundary conditions for the solid-phase potential ODE (2.3) are given by

∂φ−s
∂x

(L−, t) =
∂φ+

s

∂x
(L+, t) = 0. (2.21)

The boundary conditions for the electrolyte-phase potential ODE (2.4) are given by

φe(0
−, t) = 0, (2.22)

φe(L
−, t) = φe(0

sep, t), (2.23)

φe(L
sep, t) = φe(L

+, t). (2.24)

The boundary conditions for the ionic current ODE (2.5) are given by

i−e (0−, t) = i+e (0+, t) = 0, (2.25)

and also note that ie(x, t) = I(t) for x ∈ [0sep, Lsep].
In addition, the parameters D±s , De, κ, k

± vary with temperature via the Arrhenius
relationship:

ψ = ψref exp

[
Eψ
R

(
1

T1

− 1

Tref

)]
, (2.26)
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Figure 2.2: Schematic of single particle model for Li-ion battery

where ψ represents a temperature dependent parameter, Eψ is the activation energy [J mol−1],
and ψref is the reference parameter value at reference temperature Tref.

The input to the model is the applied current density I(t) [A m−2], and the output is the
voltage measured across the current collectors

V (t) = φ+
s (0+, t)− φ−s (0−, t)−RcI(t). (2.27)

The definitions of electrochemical parameters and states are listed in Appendix A. The
numerical implementations of the full-order model can be found in Appendix B.

2.2 Electrochemical Reduced-Order Models

The discretization of coupled partial differential equations (PDEs), ordinary differential
equations (ODEs), and algebraics equations (AEs) results in the full-order model as differential
algebraic equations (DAEs), whose differentials states and algebraic states contain hundreds
of variables. This complexity makes control design difficult in real-time application. In this
dissertation, we leverage the model reduction techniques to solve the electrochemical model
equations orders of magnitude faster than real-time.

2.2.1 Single Particle Model (SPM)

In this section we describe the simplest reduced-order of electrochemical, called single particle
model (SPM). This model idealizes each electrode as a single spherical porous particle
while neglecting electrolyte dynamics, as shown in Fig. 2.2. Specifically, the electrolyte
concentration is approximated as constant in space and time, and this restriction causes
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errors which will be discussed later in this section. The intercalation process and mass
transport is modeled by a linear diffusion PDE over spherical coordinates:

∂c−s
∂t

(r, t) = D−s

[2

r

∂c−s
∂r

(r, t) +
∂2c−s
∂r2

(r, t)
]
, (2.28)

∂c+
s

∂t
(r, t) = D+

s

[2

r

∂c+
s

∂r
(r, t) +

∂2c+
s

∂r2
(r, t)

]
, (2.29)

with Neumann boundary conditions,

∂c−s
∂r

(0, t) = 0,
∂c−s
∂r

(R−s , t) =
I(t)

D−s Fa
−AL−

, (2.30)

∂c+
s

∂r
(0, t) = 0,

∂c+
s

∂r
(R+

s , t) = − I(t)

D+
s Fa

+AL+
. (2.31)

The Neumann boundary conditions at r = R−s and r = R+
s represent that the molar flux

of lithium entering / exiting the electrode is proportional to the input current I(t). For
clarity, all parameters related to the SPM are listed in Table 2.1.

Symbol Description Units
A Cell cross sectional area m2

aj Specific interfacial surface area m2/m3

cjs Concentration in solid phase mol/m3

cjss Concentration at particle surface mol/m3

cjs,max Max concentration in solid phase mol/m3

Dj
s Diffusion coefficient in solid phase m2/m3

F Faraday’s constant C/mol
I Input current A

ij0 Exchange current density V
Lj Electrode thickness m
R Universal gas constant J/mol-K
Rf Lumped current collector resistance Ω
Rj
s Particle radius m

r Radial coordinate m
T Cell temperature K
t Time seconds
Uj Equilibrium potential V
V Output voltage V
αj Anodic/cathodic transfer coefficient -

Table 2.1: Single Particle Model Parameters
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Note that superscript j in Table 2.1 indicates anode, seperator and cathode such as
j ∈ {+, sep,−}. The terminal voltage output is governed by a combination of electric
overpotential, electrode thermodyanmics, and Butler-Volmer kinetics, yielding:

V (t) =
RT

α+F
sinh−1

( −I(t)

2a+AL+i+0 (c+
ss(t))

)
+

RT

α−F
sinh−1

( I(t)

2a−AL−i−0 (c−ss(t))

)
+ U+(c+

ss(t))− U−(c−ss(t)) + RfI(t), (2.32)

where the exchange current density ij0 and solid-electrolyte surface concentration cjss are
computed as:

ij0(cjss) = kj
√
c0
ec
j
ss(t)(c

j
s,max − cjss(t)), (2.33)

cjss(t) = cjs(R
j
s, t), j ∈ {+,−}. (2.34)

The model parameters used in this study come from DUALFOIL simulation packages
which is publicly accessible [82]. These parameter values correspond to a lithium cobalt oxide
cathode, graphite anode chemistry.

The drawback of using SPM is that predicted voltage accuracy decreases as C-rate
increases. Discharge curves with different C-rates are plotted in Fig. 2.3. We use the DFN as
our baseline or “truth data”. At low C-rates, i.e. 0.1C and 0.5C, we observe that the SPM
voltage approximates the DFN voltage well. When C-rate increases, the prediction accuracy
decreases because the electrolyte lithium concentration gradient becomes significant, and our
key SPM assumption is violated. Hence, the SPM is no longer valid for high C-rate modeling.
Refer to [75] for further discussion about electrolyte dynamics. This presents a significant
challenge for BMS applications, such as electrified vehicles, where high C-rates are commonly
experienced. Large voltage output mismatch could lead to misguided control policies. In
response to the SPM’s limitations, the authors of [68] propose a modified SPM where an
empirical current-dependent approximation of the electrolyte phase potential difference is
augmented to the output voltage model. We address this challenge from the perspective of
using data-driven modeling, i.e., recurrent neural networks (RNNs) to capture the un-modeled
SPM dynamics in Section 2.3.

2.2.2 Single Particle Model with Electrolyte dynamics (SPMe)

Adding electrolyte dynamics into SPM can enhance the fidelity of reduced-order electrochem-
ical model. This model is called Single Particle Model with Electrolyte dynamics (SPMe).
From the previous work [79], the reduced-order model and associated state estimators are
derived with the following assumptions:

• [A1]: The solid phase Li concentration in each electrode is constant in the spatial
coordinate x, uniformly in time. Mathematically, c±s (x, r, t) and j±n (x, t) are constant
in the x direction.
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Figure 2.3: Discharge curves of DFN and SPM at various C-rates

• [A2]: The exchange current density term i±0 (x, t) can be approximated by its averaged
value ī±0 (t), which is independent of x.

• [A3]: The constants αa = αc (hereafter denoted simply by α). This assumption is
almost always true in practice.

• [A4]: The term kf(x, t)
.
=
(

1 +
d ln fc/a
d ln ce

(x, t)
)

is approximately constant in x, i.e.

k̄f (t) ≈ kf (x, t).

• [A5]: The term κ(ce) is approximately constant in ce, i.e. κ ≈ κ(ce).

• [A6]: The total moles of lithium in the electrolyte nLi,e and in the solid phase nLi,s are
both conserved.

• [A7]: The total moles of lithium in the solid phase, nLi,s, is known beforehand for state
observer design.

• [A8]: The total moles of lithium in the electrolyte, nLi,e, is known beforehand for state
observer design.

These assumptions ultimately render a model consisting of: (i) two linear spherical diffusion
PDEs modeling each electrode’s solid concentration dynamics, (ii) a quasilinear diffusion
equation (across three domains) modeling the electrolyte concentration dynamics, and (iii)
a nonlinear output function mapping boundary values of solid concentration, electrolyte
concentration, and current to voltage.
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In this section, we aim to relax some of these assumptions in order to improve the model
fidelity and state observer performance. The state-dependent parameters are preserved in the
model output equation, which removes [A4] – [A5]. Next, the total moles of lithium in the
solid-phase and electrolyte-phase are estimated by using sensitivity analysis, which eliminates
assumptions [A6] – [A8]. The state-dependent parameters in the electrolyte-phase, i.e.
diffusivity, conductivity, and activity coefficients are strongly dependent on the electrolyte
concentration. Specifically, they vary by an order of magnitude [123] with ce. Hence, it is of
great importance to incorporate state-dependent electrochemical parameters, which is shown
to have a greater impact on voltage prediction under high current.

To begin, applying assumptions [A1]-[A3] removes the spatial dependence of a variable,
and thus an overline is added to the variable name to avoid confusion. The first step is to
combine [A1] and ODE (2.5) to express molar ion flux as proportional to current,

j̄+
n (t) = − I(t)

Fa+L+
, j̄−n (t) =

I(t)

Fa−L−
. (2.35)

Note that the ionic current ie(x, t) has the trapezoidal shape [79]. Apply j
±
n in (2.35) to the

solid-phase diffusion equations and boundary conditions:

∂c±s
∂t

(r, t) =
1

r2

∂

∂r

[
D±s r

2∂c
±
s

∂r
(r, t)

]
, (2.36)

∂c±s
∂r

(0, t) = 0,
∂c±s
∂r

(R±s , t) = ± 1

D±s Fa
±L±

I(t).

Next, we derive the electrolyte diffusion equations by combining PDE (2.2) with (2.5),
(2.35), and [A1]:

∂c−e
∂t

(x, t) =
∂

∂x

[
De(c

−
e )
∂c−e
∂x

(x, t)

]
+

(1− t0c)
ε−e FL

− I(t), (2.37)

∂csep
e

∂t
(x, t) =

∂

∂x

[
De(c

sep
e )

∂csep
e

∂x
(x, t)

]
, (2.38)

∂c+
e

∂t
(x, t) =

∂

∂x

[
De(c

+
e )
∂c+

e

∂x
(x, t)

]
− (1− t0c)
ε+
e FL

+
I(t). (2.39)

Note that the boundary conditions are the same as the full-order model. Next, we derive
the nonlinear output function for terminal voltage, which is distinguished from previous
work. From (2.27), we notice the voltage V (t) depends on the solid potential at the current
collectors φ±s (x, t). Therefore, we solve (4.17) in terms of φs and spatially averaged quantities,

φ±s (x, t) = η̄±(t) + φ±e (x, t) + U±(c̄±ss(t)) + FR±f j̄
±
n (t). (2.40)

Next we derive each term on the right hand side of (2.40). Overpotential η̄±(t) is found by
solving the Butler-Volmer equation (2.6) in terms of η̄±(t), applying [A1], [A2], [A4], and
substituting (2.35),

(2.41)η̄±(t) =
RT

αF
sinh−1

(
∓I(t)

2a±L±ī±0 (t)

)
.
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The electrolyte potential φ±e (x, t) is found by integrating ODE (2.4) w.r.t. x across the entire
cell width,

(2.42)

∫ 0+

0−

∂φe
∂x

(x, t)dx =

∫ 0+

0−

−i±e (x, t)

κ(ce(x, t))
dx+

∫ 0+

0−

2RT

F
(1− t0c)

×
(

1 +
d ln fc/a
d ln ce

(x, t)

)
∂ ln ce
∂x

(x, t)dx.

Note that previous work [79] assumed ce-dependent parameters such as conductivity, κ(ce)
1

and activity coefficient,
d ln fc/a
d ln ce

(x, t) in [A4], [A5] are constant in ce. With the trapezoidal
shape of ionic current, The first term in (2.42) can be expressed as:

(2.43)

φ+
e (0+, t)− φ−e (0−, t) =

−I(t)

L−

∫ L−

0−

x

κ(ce(x, t))
dx− I(t)

∫ Lsep

L−

1

κ(ce(x, t))
dx

+
I(t)

L+

∫ 0+

Lsep

x− 0+

κ(ce(x, t))
dx+

∫ 0+

0−

2RT

F
(1− t0c)

×
(

1 +
d ln fc/a
d ln ce

(x, t)

)
∂ ln ce
∂x

(x, t)dx.

Note that the activity coefficient is present in the anode, separator, and cathode respectively.

We introduce κA(ce(x, t)) = 1 +
d ln fc/a
d ln ce

(x, t) for simplicity,

φ+
e (0+, t)− φ−e (0−, t) =

−I(t)

L−

∫ L−

0−

x

κ(ce(x, t))
dx− I(t)

∫ Lsep

L−

1

κ(ce(x, t))
dx

+
I(t)

L+

∫ 0+

Lsep

x− 0+

κ(ce(x, t))
dx

+
2RT

F
(1− t0c)

[∫ L−

0−
κA(ce(x, t))

∂ ln ce
∂x

(x, t)dx

+

∫ Lsep

L−
κA(ce(x, t))

∂ ln ce
∂x

(x, t)dx+

∫ L+

Lsep
κA(ce(x, t))

∂ ln ce
∂x

(x, t)dx

]
.

(2.44)

Using integration by parts,
∫
f(x)g′(x)dx = f(x)g(x) −

∫
f ′(x)g(x)dx and chain rule

provides the following algebra,

φ+
e (0+, t)− φ−e (0−, t) =

−I(t)

L−

∫ L−

0−

x

κ(ce(x, t))
dx

− I(t)

∫ Lsep

L−

1

κ(ce(x, t))
dx+

I(t)

L+

∫ 0+

Lsep

x− 0+

κ(ce(x, t))
dx

1The superscript {eff} is dropped in the notation for readability
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+
2RT

F
(1− t0c)

[
κA(ce(x, t)) ln ce(x, t)

∣∣∣x=L−

x=0−

−
∫ ce(L−,t)

ce(0−,t)

κ′A(ce(x, t)) ln ce(x, t)dce(x, t)

+ κA(ce(x, t) ln ce(x, t)
∣∣∣x=Lsep

x=L−

−
∫ ce(Lsep,t)

ce(L−,t)

κ′A(ce(x, t)) ln ce(x, t)dce(x, t)

+ κA(ce(x, t)) ln ce(x, t)
∣∣∣x=L+

x=Lsep

−
∫ ce(L+,t)

ce(Lsep,t)

κ′A(ce(x, t)) ln ce(x, t)dce(x, t)

]
. (2.45)

We simply denote the electrolyte potential difference (2.45) by

φ+
e (0+, t)− φ−e (0−, t) = ∆Φe(ce(x, t), κ(ce(x, t)), κA(ce(x, t)), I(t)).

The voltage output for the SPMe model is written as:

V (t) =
RT

αF
sinh−1

(
−I(t)

2a+L+ī+0 (t)

)
− RT

αF
sinh−1

(
I(t)

2a−L−ī−0 (t)

)
+ U+(c̄+

ss(t))− U−(c̄−ss(t))−

(
R+
f

a+L+
+

R−f
a−L−

)
I(t)

+ ∆Φe (ce(x, t), κ(ce(x, t)), κA(ce(x, t)), I(t)) . (2.46)

The terminal voltage output equation can be described as a combination of electrochemical
differences between two electrodes and the electroylte,

V (t) = ∆U(c̄±ss) + ∆φe(ce, I) + ∆η̄(c̄±ss, I) + ∆j̄n(I). (2.47)

0.5C 1C 2C
Proposed SPMe 16.1 mV 29.6 mV 46.5 mV

SPMe [79] 19.4 mV 40.3 mV 87.6 mV

Table 2.2: The output voltage error with respect to DFN model.

We validate the proposed SPMe model with the previous work [79] by comparing the
voltage prediction accuracy. A 18650 Lithium nickel-cobalt-aluminum oxide (NCA) battery
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Figure 2.4: The comparison of proposed SPMe(-.) with DFN(–) and previous SPMe(- -)
model [79] for NCA electrochemical parameters identified in [86].

parameters identified previous work [86] are adopted to simulate the electrochemcial models.
Suppose the DFN model represents a truth battery model. We visualize the voltage predictions
with different C-rates in Fig 2.4. The proposed model (-.) outperforms the previous work (- -)
compared to the truth model (–) in terms of voltage. The quantitative analysis for the voltage
comparison is summarized in Table 2.2. The voltage root mean square error (RMSE) is
computed up to 80 % of discharge capacity. We emphasize the inclusion of the state-dependent
electrolyte parameters are critical to the model-order-reduction, as they are shown in the
output voltage equation (2.46) directly. Furthermore, the voltage output is strongly affected
by the electrolyte characteristics of the cell. For instance, the conventional SPMe model
has lower voltage prediction error for the Lithium cobalt oxide (LiCoO2) chemistry in [79].
However, the prediction gets worse for the NCA chemistry in [86].

2.2.3 Single Particle Model with Electrolyte and Thermal
dynamics (SPMeT)

Lastly, the thermal dynamics of the battery can be added to the SPMe model, which is called
SPMeT. This model takes temperature measurement into account, which directly affects to
the electrochemical parameters governed by Arrhenius equation.

ψ = ψref exp

[
Eψ
R

(
1

T1

− 1

Tref

)]
, (2.48)

where ψ represents a temperature dependent parameter, i.e., ψ = [D±s , De, k
±, κ]. Eψ is the

activation energy [J mol−1], and ψref is the reference parameter value at reference temperature
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Tref.
The nonlinear temperature dynamics are modeled with a simple heat transfer equation

given by:

dTcell

dt
(t) =

Q̇(t)

mcp;th
− Tcell(t)− T∞

mcp,thRth

(2.49)

where Tcell represents cell temperature, T∞ is the ambient temperature, m is the mass of the
cell, cp,th is the thermal specific heat capacity of the cell, Rth is the thermal resistance of the
cell, and Q̇(t) is the heat added from the charging, which is governed by

Q̇(t) = I(t)((U+(SOCp)− U−(SOCn))− VT(t)) (2.50)

with the convention that a negative current is charging current, and VT(t) is the terminal
voltage determined by model equations. Both nonlinear open circuit potential functions
in (2.50) are functions of the bulk SOC in the anode and cathode, respectively. This heat
generation term makes the temperature dynamics nonlinear. This thermal dynamics can be
incorporated to any electrochemical model resulting in time-varying dynamical system.

2.3 Hybrid Electrochemical Modeling

Modeling battery system is an active research area as reader can see from previous section.
We are particularly interested in combining first principle and data-driven modeling technique
to capture the un-modeled dynamics by using input-output measurement in this section.

2.3.1 Introduction

Battery models for BMS applications can be categorized into two groups: equivalent circuit
models (ECMs), and electrochemical models. ECMs have relatively simple structures to
represent the input-output behavior of batteries using circuit elements, such as resistors and
capacitors. However, ECMs do not directly capture the physical phenomena inside the battery,
such as lithium transport, solid-electrolyte interphase dynamics, and degradation mechanisms.
Electrochemical models directly incorporate diffusion, intercalation, and electrochemical
kinetics. Although these models can accurately explain the internal behavior of the battery,
their mathematical structure is relatively complex for observer designs, such as state of
charge (SoC) and state of health (SoH) estimation. Consequently, reduced order models
are generally selected for state estimator design. There are several widely studied reduced
order electrochemical models in this field. The simplest is single particle model (SPM),
where electrolyte concentration is assumed constant in space and time [103]. Papers by
Santhanagopalan et al. [101] and Di Domenico et al. [30] study SPM-based Kalman filters
for SOC estimation. More recently, [29] studies nonlinear observers for the SPM. The main
limitation of the SPM is that it neglects electrolyte dynamics, which play important role at
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high charge/discharge C-rates2. For this reason, researchers have recently considered a SPM
with electrolyte dynamics (SPMe) [96]. A provably convergent partial differential equation
(PDE)-based state estimation technique based on the SPMe can be found in [75]. Tanim et
al. [117] augment the SPMe with Arrhenius relations for the model parameters to account
for temperature variation, abbreviated as SPMeT. A Luenberger state observer based on this
SPMeT model is derived in [118].

In parallel, computational learning theory in artificial intelligence has been rapidly applied
to real-world engineering applications, such as self-driving cars, pattern recognition, and
robotics. Artificial neural networks are a fundamental technique in machine learning for
modeling an environment from data. In this paper, we focus on dynamic neural networks,
which were first proposed for dynamic system identification in the early 1990’s [80]. Dynamic
neural networks, a.k.a. recurrent neural networks (RNNs), can capture dynamical behavior
by learning from input-output data. In battery applications, some published works have
studied RNN models. The authors of [66] use an adaptive RNN to predict remaining useful
life of lithium-ion batteries. They use the Levenberg-Marquardt algorithm to optimize the
network parameters, then estimate the electrolyte resistance and charge transfer resistance in
the ECM to infer power fade. In [21], the ECM is converted into an RNN model that captures
SoC information and model parameters. The authors conclude that the RNN can accurately
describe the charge-discharge phenomena of a lead-acid battery. Similarly, a RNN-based SoH
indicator for lithium-ion batteries is proposed in [31]. They also predict variations in capacity
and resistance of an ECM reformulated into a RNN. This literature suggests that RNNs can
play a useful role in predicting battery dynamics, especially aging mechanisms. However, this
set of literature is completely based on the ECM. Moreover, it lacks a theoretical stability
analysis. This motivates us to explore the role of RNNs in combination with electrochemical
models, and study stability for various classes of RNNs.

In this chapter, we propose a hybrid battery model that integrates the SPM and RNN.
Note, the SPM is valid for low C-rates, but produces erroneous voltage predictions at high
C-rates where electrolyte dynamics play an increased role [78]. This paper focuses on a
simple RNN, known as the Elman network [32], which originally emerged in cognitive science.
Contrary to the conventional electrochemical modeling approach of extending models based
on first principles, we augment the SPM with Elman networks to improve voltage prediction
accuracy. To the best of the authors’ knowledge, the combination of electrochemical and
data-driven models have not been previously explored. We summarize our key contributions
as follows. First, we propose a hybrid modeling framework that incorporates electrochemical
and RNN models – namely the SPM and Elman networks. We consider the real-time recurrent
learning (RTRL) algorithm for learning Elman network weights online. Second, we suggest a
special case of Elman networks that guarantees stability in the sense of Lyapunov. Third,

2C-rate is a normalized measure of electric current that enables comparisons between different sized
batteries. Mathematically, the C-rate is defined as the ratio of current, I, in Amperes [A] to a cell’s nominal
capacity, in Ampere-hours [Ah]. For example, if a battery has a nominal capacity of 2.5 Ah, then C-rates of
2C, 1C, and C/2 correspond to 5 A, 2.5 A, and 1.25 A, respectively.
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Figure 2.5: Proposed framework for hybrid modeling approach based on electrochemical
model.

we demonstrate that our hybrid approach often outperforms other reduced electrochemical
models that do not apply learning structures.

2.3.2 Neural Network Structure and Training Algorithm

In this section we describe the hybrid modeling framework, which applies a machine learning
algorithm on top of the electrochemical model as depicted in Fig. 2.5. We augment the first
principals model with an input-output learning model to enhance voltage prediction accuracy.

Consider the Elman network structure in Fig. 2.6. In general, there are nI inputs, nH
hidden units, and nO outputs in this network. The structure consists of output layer weight
matrix W3 ∈ RnO×nH , input layer-to-hidden layer weight matrix W2 ∈ RnH×nI , and hidden
layer-to-context layer weight matrix W1 ∈ RnH×nH . Since we have few measurements in
battery systems, this Elman network structure can be reduced to a single-input / single-output
network, i.e., input current and output voltage. The network dynamic equations can be
written as follows:

x(k) = f(W1 · x(k − 1) + W2 · u(k)), (2.51)

y(k) = g(W3 · x(k)). (2.52)

where x(k) is called the “hidden layer” output vector, y(k) is the output from the “output
layer”, and u(k) represents the input. Functions f(·) and g(·) are “activation functions” for
each layer. We take

f(z) = tanh(z), (2.53)
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Figure 2.6: Elman network structure.

for reasons that emerge in the stability analysis. The function g(·) is often taken as the
identity function, that is

y(k) = W3 · x(k). (2.54)

Note that (2.51)-(2.52) is a nonlinear system, with order given by user-selected parameter
nH .

The weight matrices, W1, W2, and W3 are updated to train the network. There are
several methods for training RNNs, such as backpropagation through time, real-time recurrent
learning (RTRL), and the extended Kalman filter [47]. In this work, we use the RTRL scheme
which is a gradient-descent online learning algorithm that calculates the error gradient at
every time step. The instantaneous squared error E(k) at time step k is computed as:

E(k) =
1

2
e(k)2 =

1

2
(yd(k)− y(k))2, (2.55)

where e(k) is the prediction error between desired output yd(k) and network output y(k) at
time step k. In RTRL, we update the weight matrix W via gradient-descent to minimize the
squared error E(k) such as:

W3,ij(k + 1) = W3,ij(k)− η3 ·
∂E(k)

∂W3,ij(k)
(2.56)

= W3,ij(k) + η3 · e(k) · xj(k),

W2,jq(k + 1) = W2,jq(k)− η2 ·
∂E(k)

∂W2,jq(k)
(2.57)

= W2,jq(k) + η2 · e(k) ·W3,ij · γj(k) · u(k),
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W1,jl(k + 1) = W1,jl(k)− η1 ·
∂E(k)

∂W1,jl(k)
(2.58)

= W1,jl(k) (2.59)

+ η1 · e(k) ·W3,ij · γj(k) · xj(k − 1),

where η1, η2, η3 ∈ R are user-selected learning rates for each weight, and i, j, q, l represent the
unit index in each layer. Parameter γj is the derivative of activation function:

γj(k) = f
′

j(W1,jl · x(k) +W2,jq · u(k)).

Compared to typical feedforward neural networks that build approximators of nonlinear
functions by using static input-output mappings [44], the Elman network is able to approximate
arbitrary dynamical systems with arbitrary precision according to the universal approximation
property [25]. We consider online training of (2.51)-(2.52), i.e. recursive estimation of
W1,W2,W3, to capture the error between measured voltage and SPM-predicted voltage.

Special Case of Elman Network

A long-standing and un-solved challenge is proving the convergence of weights W1,W2,W3,
or even convergence of e(k) to zero via online learning [110]. The key issue is nonlinear term
W3x(k). In the neural network community, a number of papers have discussed this issue.
For instance, in [48], the stability of the dynamic backpropagation algorithm is thoroughly
discussed based on a dynamic learning process and RNN suggested by Narendra [80]. The
authors propose two learning schemes: a multiplier method and a constrained learning rate
algorithm to avoid unstable phenomenon during the learning process. The author in [110]
proves that the Elman network’s weights converge in the sense of Lyapunov functions under
a backpropagation algorithm with adaptive dead zones.In this paper, we examine a special
case of Elman networks for which weight convergence can be proven with RTRL update laws.

2.3.3 Stability Analysis

This section analyzes stability for the proposed learning structure. First we derive the weight
error dynamics,

W̃(k) = W(k)−W∗, (2.60)

where W∗ is the “true” weight matrix that represents the desired output given input data.
The output error at time k is given by:

e(k) = yd(k)− y(k)

= W3f(W∗1x(k − 1) + W∗2u(k))

−W3f(W1(k)x(k − 1) + W2(k)u(k))

= −αW3

(
W̃1(k)x(k − 1) + W̃2(k)u(k)

)
, (2.61)
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where the last equality is derived by the Mean Value Theorem, which requires function f to
be continuous on a closed interval and differentiable on an open interval, which activation
function f(z) = tanh(z) satisfies. Therefore ∃ z ∈ R such that α = f ′(z) and 0 < α ≤ 1.
Then, we can re-write (2.57)-(2.58) as follows:

W1(k + 1) = W1(k) + η1(k)e(k)γ(k)x(k − 1)T

= W1(k)− η1(k)αW3

(
W̃1(k) · x(k − 1) + W̃2(k) · u(k)

)
γ(k)x(k − 1)T , (2.62)

W2(k + 1) = W2(k) + η2(k)e(k)γ(k)u(k)

= W2(k)− η2(k)αW3

(
W̃1(k) · x(k − 1) + W̃2(k) · u(k)

)
γ(k)u(k). (2.63)

Assume the true weight matrices W∗1,W∗2 are constant, and η1(k) = η2(k) = η(k). Then
the weight error dynamics are:

W̃1(k + 1) = W̃1(k)− η(k)αW3

(
W̃1(k)x(k − 1) + W̃2(k)u(k))

)
γ(k)x(k − 1)T , (2.64)

W̃2(k + 1) = W̃2(k)− η(k)αW3

(
W̃1(k)x(k − 1) + W̃2(k)u(k)

)
γ(k)u(k). (2.65)

The following theorem guarantees the convergence of W1, W2 to their true values under
update laws (2.62)-(2.63).

Theorem 1. The zero equilibrium of weight error dynamics (2.64), (2.65) are stable in the
sense of Lyapunov functional, V (k) = ||W̃1(k)||2+||W̃2(k)||2 if

η(k) ≤ 2
[
α‖x(k − 1)T + u(k)‖2W3

Tγ(k)T
]−1

. (2.66)

Proof. Lyapunov’s indirect theorem requires that the difference in the Lyapunov functional
denoted by ∆V is negative-definite along the trajectories ∀ W̃1, W̃2, i.e.:

||W̃1(k + 1)||2−||W̃1(k)||2+||W̃2(k + 1)||2−||W̃2(k)||2≤ 0.

Squaring both sides equations (2.62) and (2.63), we can construct ∆V as:

∆V = −2η(k)αW3

(
||W̃1||2x(k − 1) + W̃T

1 W̃2u(k)
)
× γ(k)x(k − 1)T

+
∣∣∣∣∣∣η(k)αW3

(
W̃1x(k − 1) + W̃2u(k)

)
γ(k)x(k − 1)T

∣∣∣∣∣∣2
− 2η(k)αW3

(
W̃T

2 W̃1x(k − 1) + ||W̃2||u(k)
)
γ(k)u(k)

+
∣∣∣∣∣∣η(k)αW3

(
W̃1x(k − 1) + W̃2u(k)

)
γ(k)u(k)

∣∣∣∣∣∣2. (2.67)
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After a few steps for re-arranging ∆V , we can finally obtain

∆V ≤ −2η(k)αW3

∣∣∣∣∣∣(W̃1x(k − 1) + W̃2u(k)
∣∣∣∣∣∣2γ(k)

+ η(k)2α2
∣∣∣∣∣∣(W̃1x(k − 1) + W̃2u(k))

∣∣∣∣∣∣2 × ∣∣∣∣∣∣x(k − 1)T + u(k)
∣∣∣∣∣∣2||W3||2||γ(k)||2

≤ 0, (2.68)

where the last inequality is derived from the definition of the adaptive learning rate in
(2.66).

Remark 1. The adaptive learning rate, η(k) defined in (2.66) can be re-written in terms of
the previous desired output yd(k − 1), since we adopt specialized Elman network structure
expressed by yd(k − 1) = W3 · x(k − 1). That is:

η(k) ≤ 2

[
α
∥∥∥ 1

nH
1nHyd(k − 1) + u(k)

∥∥∥2

W3
Tγ(k)T

]−1

, (2.69)

where 1nH is a nH × 1 vector of ones. Assuming a constant weight matrix W3 plays the
critical role for calculating the adaptive learning rates from the previous output data yd(k−1)
and current input data u(k).

Remark 2. Since the activation function is strictly monotonically increasing and has bounded
derivative, we can state that when α = 1, the following condition

η(k) ≤ 2

[∥∥∥ 1

nH
1nHyd(k − 1) + u(k)

∥∥∥2

W3
Tγ(k)T

]−1

, (2.70)

becomes sufficient condition for (2.69) as α ∈ (0, 1]. Practically, we calculate the learning
rates based on (2.70) with equality as long as the computed value does not exceed 1, since
0 < η(k) ≤ 1 is used to regularize the learning rate.

2.3.4 Simulation Results

This section presents simulations that demonstrate the hybrid approach performance compared
to several electrochemical models. The measured voltage data is generated from the DFN
model, which plays the role of “true” voltage. Consequently, the model voltage error arises
from model reduction. We notate Elman 1 as the special case of the Elman network and
Elman 2 as the original Elman network. We use 4 hidden units for the Elman networks.
Elman 1 uses adaptive learning parameter η(k) given by (2.70), and Elman 2 uses fixed
learning parameter η = 0.3 in the simulation. We train the RNN to identify an uncertainty
model with various input profiles such as 1C/2C/5C discharge cycles and dynamic current
profiles. This enables us to investigate how the identified RNN captures the uncertainty
dynamics. In all cases, we require 10 epochs or less for the output error to converge. To
evaluate the resulting learned RNN, our primary performance metric is the root mean square
error (RMSE) between the DFN voltage and various model voltages.
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Figure 2.7: Voltage error comparison for UDDSx2 cycle: (a) Input current. (b) SPMe. (c)
The special case of Elman network (d) The original Elman network.

Training Phase

The numerical training results are displayed in Table 2.3, for various input profiles and models
that do and do not incorporate learning structures. Indeed, our proposed hybrid approach
resolves the limitations of the SPM. To explore this, we also consider the SPMe from [75]
as a baseline comparison to quantify the error between pure electrochemical models and
hybrid electrochemical models. As shown in Table 2.3, the SPMe – which includes electrolyte
dynamics – has about 50 % lower error than SPM in all scenarios. The hybrid modeling
approach exhibits even better performance than SPMe in many cases. Interestingly, the
SPM+Elman 2 consistently outperforms its simpler SPM+Elman 1 counterpart. This is not
surprising, as SPM+Elman 2 has more parameters in W3 that it may tune to reduce output
error. However, as discussed before, analytic weight error convergence guarantees are not
available.

Consider the Urban Dynamometer Driving Schedule (UDDS), which is a standard fuel
economy test cycle. The input current data in Fig. 2.7(a) is generated from two concatenated
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Input Profiles SPM (60) SPMe (90) SPM+Elman 1 (64) SPM+Elman 2 (64)
(Training Data) (No learning) (No learning) (Learning) (Learning)

1C discharge 20.0mV 10.0mV 1.8mV 1.8mV

2C discharge 39.4mV 19.0mV 3.0mV 5.2mV

5C discharge 107.2mV 54.6mV 67.6mV 38.7mV

Sine wave† 67.6mV 31.0mV 34.7mV 29.3mV

UDDS 20.8mV 14.7mV 10.1mV 7.6mV

†min:1C, max:5C

Table 2.3: RMSE comparison for different models (w/ and w/o learning) and input profiles
in the training phase. The number in parentheses is the number of states in the model.

Input Profiles SPM (60) SPMe (90) SPM+Elman 1 (64) SPM+Elman 2 (64)
(Testing Data) (No learning) (No learning) (Learning) (Learning)

1C discharge 20.0mV 10.0mV 10.5mV 9.2mV

2C discharge 39.4mV 19.0mV 20.9mV 18.5mV

5C discharge 107.2mV 54.6mV 73.8mV 66.5mV

Sine wave† 67.6mV 31.0mV 42.7mV 37.9mV

†min:1C, max:5C

Table 2.4: RMSE comparison for different models (w/ and w/o learning) and input profiles in
the testing phase, using RNNs trained on UDDS. The number in parentheses is the number
of states in the model.

UDDS cycles. Fig. 2.7(b) shows the voltage error for the SPMe and SPM relative to DFN,
while Fig. 2.7(c),(d) presents the voltage errors for the proposed hybrid modeling scheme and
SPM only, relative to the DFN. Note that we use the fixed weights after learning to verify
the training performance. In addition, the cumulative distribution function (CDF) of the
absolute voltage error in UDDS is computed for measuring model output precision, as shown
in Fig. 2.8.We comment that applying adaptive learning rate η(k) from (2.70) to the Elman
2 model yields divergent weights for UDDS. This corroborates our analysis that suggests a
condition on η(k) is not available to guarantee convergent weights for Elman 2, however such
a condition is derived for Elman 1. This is a fundamental tradeoff balanced by the increased
error reduction potential of the Elman 2 model.

Testing Phase

In this phase, we use the fixed weights obtained from the training phase to test the accuracy
of hybrid electrochemical model. Here, we simply illustrate the robustness of the hybrid
modeling framework. Specifically, we select the RNN models trained on UDDS data and
test the performance with different input profiles. The UDDS data is selected for training,
since it contains the richest frequency content. The numerical results in Table 2.4 illustrate
two important observations: (i) The hybrid models do not degrade the voltage prediction
accuracy compared to a stand-alone SPM model. (ii) The hybrid models yield comparable
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Figure 2.8: Cumulative distribution function of absolute voltage error on UDDS profile, with
90% quantile errors annotated.

accuracy to the SPMe.

2.3.5 Summary

In this chapter, a hybrid electrochemical modeling framework that integrates recurrent neural
networks (RNNs) with a reduced electrochemical model is proposed. Contrary to conventional
approaches of integrating more physics into the electrochemical models, we examine the
potential of data-driven models to recover model-measurement mismatch. Specifically, we
study a simple RNN, called the Elman network, which mimics dynamical phenomena from
observed data. Additionally, we prove convergence of estimated weights to their true values
for a special case of the Elman network. This stability analysis yields an adaptive learning rate
for the real-time recurrent learning (RTRL) update law. Simulation results demonstrate that
our hybrid battery modeling significantly improves the predicted voltage accuracy compared
to other reduced electrochemical models. On-going work involves validating our proposed
hybrid approach experimentally with different types of Li-ion batteries.
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Chapter 3

Estimation

In this chapter, we present parameter estimation framework for electrochemcial models.
Proposed parameter estimation method, a.k.a system identification is crucial aspect of
battery management system in order to derive model-based control strategy. In Section 3.1,
the system identification framework for lithium-ion battery cell is presented via optimal
experimental design. In Section 3.2, the electrochemcial parameters that determine battery
health are estimated.

3.1 Characterization of Electrochemical Model

3.1.1 Introduction

Accurate electrochemical battery models are critical for a variety of tasks, such as designing
high-performance battery management systems, battery pack design, and analysis. However,
identifying parameters in electrochemical battery models from measured voltage, current,
and temperature data is notoriously difficult. Recently, non-invasive parameter identification
of electrochemical models has become an emergent research topic. Schmidt et al. [106]
conducted combined parameter analysis and identification by using a Fisher information
matrix approach in combination with sensitivity analysis. They use a reduced electrochemical
model – a single particle model with electrolyte potential. Recently, Bizeray et al. [13]
analyze parameter sensitivity in a single particle model and show it is fully parameterized
with six subgroups, under certain mild conditions on the electrode potentials. In contrast,
Forman et al. [36] use an “all-in-one” approach to identifying 88 parameters from driving
cycle data using a genetic algorithm and the Doyle-Fuller-Newman model. They validate
the identified parameter values with experiments and perform Fisher information analysis ex
post facto. Similarly, authors in Zhang et al. [134] use a multi-objective genetic algorithm
called NSGA-II for a LIFePo4 cell. They use terminal voltage and surface temperature as
identification objectives. Recently, both Jobman et al. [50] and Jin et al. [49] propose a
two-step procedure that sequences parameter identification. The thermodynamic parameters
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are identified first, and then the kinetic parameters are identified second via pulses and/or
electrochemical impedance spectroscopy (EIS). In the published literature, we can categorize
parameter identification process: 1) Battery models 2) Optimization techniques 3) Algorithms
4) Experimental setup as shown in Fig. 3.1.

Figure 3.1: Battery parameter identification procedure in the literature

Rather than identify all the parameters, some researchers focus on identifying specific
subsets of parameters, such as battery health-related or kinetic parameters. For example,
the physical parameters, such as diffusion coefficients and activation energies are targeted in
[134]. In Marcicki et al. [72], the authors focus on the electrochemical parameters related to
power and capacity fade, as well as their temperature dependence under a variety of charge
sustaining and depleting experiments. In Vazquez-Arenas et al. [125], the researchers analyze
sensitivity of certain key parameters using Analysis of Variations (ANOVA), and identify the
kinetic and transport parameters with standard test cycles.

Most existing literature on battery parameter identification focuses on parameter fitting,
namely, matching model output to experimental data. However, it is unclear if the experi-
mental data is “sufficiently rich” to identify the parameters. A small set of publications in
the battery parameter identification literature directly address this problem by formulating
an input trajectory optimization problem [100, 67]. This work optimizes the amplitude and
frequency of a sinusoidal input signal to maximize the Fisher information matrix, for an
equivalent circuit model and single particle model, respectively. One could exploit a series
of inputs that excite specific parameter sensitivity, however, collecting the required data
from experiments can be cost and time intensive. This motivates the following question:
Which inputs should be applied to maximize parameter identifiability in a systematic way?
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Figure 3.2: NCR 18650PF Li-ion battery used for parameter edentification.

In addition, the estimated parameters should be characterized by confidence intervals. These
questions motivate optimal experimental design (OED), which provides an important link
between experimental design and modeling [38]. In this paper, we propose an electrochemical
model-based optimal experiment design framework that yields parameter estimates with
statistical information. Instead of formulating a nonlinear trajectory optimization problem,
we propose a convex input selection problem. We summarize our unique key contributions as
follows.

1. A sensitivity analysis for the full-order electrochemical model, as known as Doyle-Fuller-
Newman (DFN) model, is executed by analytically deriving the sensitivity differential
algebraic equations. To the best of the authors’ knowledge, an analytic sensitivity
analysis for all the electrochemical parameters has never been executed before. We
place emphasis on this sensitivity analysis, as it plays a crucial role in computing the
Fisher information matrix, and the parameter estimation algorithm.

2. We formulate an optimal experimental design via convex optimization. Rather than
solving a large-scale nonlinear optimal control problem, we propose an input selection
problem where the optimal inputs are selected from a (large) discrete set. Notably, we
quantify the experimental output measurement variance for our battery tester to trade
off Fisher information with measurement variance.

3. We provide the confidence intervals along with the parameter estimates via nonlinear
least squares with the Levenberg-Marquardt algorithm [70].

3.1.2 Electrochemical Parameters

The electrochemistry-based battery model combined with two state thermal dynamics in
Sec. 2.1.1 is capable of high-fidelity simulations. However, it has a large number of parameters
that must be identified for experimental data. Next, we distinguish fixed parameters from
those we seek to identify from data. We classify parameters into two categories: fixed geometric
/ thermal parameters in Table 3.1 and electrochemical parameters listed in Table 3.2.
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Geometric parameters
Symbol Description [SI units]
L− Thickness of negative electrode [m]
Lsep Thickness of separator [m]
L+ Thickness of positive electrode [m]
A Electrode current collector area [m2]

Thermal parameters
Symbol Description [SI units]
C1 Heat capacity of battery core [J (m2 K)−1]
C2 Heat capacity of battery surface [J (m2 K)−1]
h12 Heat transfer coefficients from core to surface [W (m2 K)−1]
h2a Heat transfer coefficients from surface to ambient [W (m2 K)−1]
E{D±s ,De,κ,k±} Activation energy for Arrhenius temperature dependence [kJ mol−1]

Table 3.1: Fixed geometric / thermal parameters.

For the fixed parameter category, we directly measure the geometric parameters and adopt
the thermal parameters for a cylindrical 18650 cell shown in Fig 3.2 from the literature [134].
We then divide the electrochemical parameters in Table 3.2 into two groups: equilibrium
parameters and dynamics parameters. There are 21 to-be-identified parameters in total.
The equilibrium parameters are closely related to the cell charge capacity. The dynamics
parameters characterize the internal dynamics of the battery, e.g. diffusion, ion transport,
ohmic overpotential and electrochemical reactions. Due to the wide range of dynamics
parameter values, we apply normalization. Parameter θi is normalized to θ̄i according to:

Logarithmic scale: θ̄i =
log θi − log θi,min

log θi,max − log θi,min

, Linear scale: θ̄i =
θi − θi,min

θi,max − θi,min

,

(3.1)
where each parameter’s upper and lower bound is determined from the existing literature
values, and possibly any a priori knowledge of the physically meaningful parameter values.

3.1.3 System Generalization

Next, we abstract the electrochemical battery model into a general dynamical system format
to formulate our optimal experimental design approach. The dynamical system notation is
shown in Table B.1. In particular, the DFN model is represented by differential algebraic
equations (DAEs) after discretizing (2.1)-(2.27) in space via a suitable method, e.g. finite
differences, Padé approximation, spectral methods (see e.g. [111, 37, 34, 12]):

ẋ = f(x, z, u,θ), x(t0) = x0, (3.2)

0 = g(x, z, u,θ), z(t0) = z0, (3.3)

y = h(x, z, u,θ). (3.4)
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Equilibrium parameters
Symbol Description [SI units] Normalization scheme
ε−s Solid-phase volume fraction [-] -
ε+s Solid-phase volume fraction [-] -
nLi,s Moles of cyclable lithium in solid phase [mol] -

Dynamics parameters
Symbol Description [SI units] Normalization scheme
D−s Solid-phase diffusion coefficients of the anode [m2 s−1] Logarithmic
D+
s Cathode solid-phase diffusion coefficients of the cathode [m2 s−1] Logarithmic

R−s Solid-phase particle radii of the anode [m] Linear
R+
s Solid-phase particle radii of the cathode [m] Linear

σ− Solid-phase conductivity of the anode [S m−1] Logarithmic
σ+ Solid-phase conductivity of the cathode [S m−1] Logarithmic
De(·) Electrolyte diffusion coefficient [m2 s−1] Linear
ε−e Electrolyte volume fraction [-] Linear
εsep
e Electrolyte volume fraction [-] Linear
ε+e Electrolyte volume fraction [-] Linear
κ(·) Electrolyte conductivity [S m−1] Linear
t0c Transference number [-] Linear
d ln fc/a

d ln ce
(·) Activity coefficient [-] Linear

k− Kinetic rate constants [(A m−2)(m3 mol−1)(1+α)] Logarithmic
k+ Kinetic rate constants [(A m−2)(m3 mol−1)(1+α)] Logarithmic
R−f Film resistance [Ω m2] Linear

R+
f Film resistance [Ω m2] Linear

ce(x, 0) Initial Li-ion concentration in electrolyte [mol m−3] Linear

Table 3.2: Parameters of interest for identification.

DAE Variables DFN Variables
x c−s , c

+
s , ce, T1, T2

z φ−s , φ
+
s , i
−
e , i

+
e , φe, j

−
n , j

+
p

u I
θ dynamic parameters in Table 3.2

Table 3.3: DAE notation for the electrochemical model.

Denote x = [c−s , c
+
s , ce, T1, T2]T ∈ Rnx as the state vector, z = [φ−s , φ

+
s , i
−
e , i

+
e , φe, j

−
n , j

+
p ]T ∈

Rnz as the algebraic variable vector, y = V (t) as the output variable defined in (2.27).
Importantly, θ = [D−s , D

+
s , . . . , c

0
e] ∈ Rnp is the vector of dynamics parameters in Table 3.2

which we seek to identify.
Sensitivity analysis is used to understand how a model’s output depends on variations in

the parameter values [132]. Based on nominal parameter values, local sensitivity analysis
measures the effects of small changes in the parameters have on the output. For continuous
dynamical systems, the local sensitivities are defined as the first-order partial derivatives of
the system output with respect to the parameters. We briefly introduce how to derive local
sensitivities in dynamical systems described by (3.49)-(3.51). Subsequently, we develop this
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approach toward a parameter estimation framework via Fisher information.
Define sensitivity variables as follows:

Sx =
∂x

∂θ̄
, Sz =

∂z

∂θ̄
, Sy =

∂y

∂θ̄
, (3.5)

where Sx ∈ Rnx×np , Sz ∈ Rnz×np , Sy ∈ Rny×np are sensitivity matrices. The i, j matrix element
is defined as the partial derivative of the i-th variable to the j-th normalized parameter, e.g.

[Sx]i,j(t) =
∂xi(t)

∂θ̄j
. (3.6)

The evolution of the sensitivity variables is governed by the sensitivity differential algebraic
equations (SDAEs), which can be derived following the procedure in [51]:

d

dt
Sx =

∂f

∂x
Sx +

∂f

∂z
Sz +

∂f

∂θ
, Sx(0) = Sx0, (3.7)

0 =
∂g

∂x
Sx +

∂g

∂z
Sz +

∂g

∂θ
, Sz(0) = Sz0, (3.8)

Sy =
∂h

∂x
Sx +

∂h

∂z
Sz +

∂h

∂θ
. (3.9)

The advantage of SDAEs is that they provide a rigorous mathematical computation
of the sensitivities compared to a perturbation method where sensitivities are obtained by
perturbing each parameter slightly and calculating the output difference with respect to
nominal parameters. Note that SDAEs are linear time-varying DAEs, where the Jacobians are
computed at each time step. The Jacobians can be derived analytically by-hand, or calculated
numerically via finite differences. In this work, we utilize automatic differentiation since it
provides accurate, automated, and fast Jacobian calculations. In particular, we use CasADi
[3], which efficiently computes the first and second-order derivatives. In this work, the battery
model DAEs and the corresponding SDAEs are simulated by using the IDAS integrator
provided by SUNDIALS via the CasADi interface [43]. Besides convenience for simulation,
the automatic calculation of Jacobians provides advantages for optimal experiment design
and parameter estimation, as described in the following sections.

3.1.4 Optimal Experimental Design

In this section, we propose a systematic framework for Li-ion battery parameter identification,
as summarized in Fig. 3.3. First, we briefly summarize the approach.

As a first step, one should select a mathematical model to represent the system under study.
The mathematical model considered here is the DFN model. The DFN model mathematically
takes the form of DAEs. Once the battery model is selected, then nominal parameter values
must be determined. It is important to note that finding nominal parameter values near
the true values is beneficial, since the optimal parameter fitting algorithms are based on
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Figure 3.3: The proposed model-based design of experiments framework for parameter
identification in of the DFN model.

gradient-descent approach and therefore converge to local minima. We searched relevant
papers to choose credible nominal values.

After setting nominal parameter values, we separate the parameters into two groups:
equilibrium parameters and dynamical parameters. For equilibrium parameter identification,
we adopt the method in [24]. Note that it is possible to derive sensitivity values for equilibrium
parameters, however, these values turned out to be dependant on the initial states, resulting
in non-zero values for zero currents. For this reason, we solve the non-linear least square
problem using data generated from an open circuit voltage (OCV) experiment, which applies
very low rate charge/discharge cycles to characterize the equilibrium state. To estimate
the dynamical parameters, we generate an input library of possible input trajectories. The
sensitivities for each input trajectory are calculated in the library. Then we partition the
dynamical parameters into groups, based on their sensitivity magnitudes. High sensitivity
parameter groups should be identified first, followed by less sensitive parameters groups.

After grouping the parameters, we run optimal experimental design via convex program-
ming to select optimal inputs for parameter estimation. We use the open-source cvx solver to
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select optimal inputs. Then, corresponding experiments are executed to collect experimental
measurements. For the experimental setup, we utilize a PEC Corp. SBT2050 series tester and
Espec environmental chamber. Once experimental measurements are acquired, the parameter
estimation algorithm is applied to fit the simulation result to experimental measurements.
In this work, we utilize the Levenberg-Marquardt algorithm for parameter updates at each
iteration. We repeat this process until each parameter group is complete. Once we finalize
the identified parameters, we compare the identified model output predictions versus a testing
data set. For comparison, we benchmark our proposed approach against simple discharge
and charge current profiles, which we refer to as a “conventional approach”. The following
subsections contain detailed analysis for each block of the proposed model-based design of
experiments.

Equilibrium structure parameter identification

We formulate a procedure to identify parameters in the equilibrium structure of electrochemical
models. In words, these parameters correspond to cyclable lithium in the solid phase nLi,s
[mol], electrode capacity Q± [Ah], and the stoichiometric points θ± [-]. Note, in this subsection
we overload the symbol θ to represent stochiometric points to remain consistent with the
literature. To identify these parameters, we require experimentally obtained open circuit
voltage (OCV) data and known open circuit potential functions for each electrode U±(·). We
remark that a priori knowledge of U±(·) appears to be a necessary assumption for equilibrium
parameter identification, a finding that is consistent with existing literature [13, 50, 49]. We
adopt the procedure from a patent by one of the co-authors [24].

Consider the equilibrium structure of the electrochemical model described in [119]. The
relationship between cyclable lithium nLi,s and normalized electrode concentrations θ± is
given by:

nLi,s = ε−s L
−A c−s,max · θ−(k) + ε+

s L
+A c+

s,max · θ+(k), ∀ k, (3.10)

where k indexes stochiometric points parameterized by time or Ah-processed. For convenience,
let us define the lumped parameters H± as

H± = ε±s L
±A · c±s,max. (3.11)

Dimensional analysis reveals that H± have dimensions of [mol]. Consequently, we define
H± to be the molar capacity of the electrodes. The charge capacity of the electrodes is
therefore given by:

Q± = F ·H±, (3.12)

where F is Faraday’s constant. Then, let us define a recursive relationship that relates the
steady-state normalized anode concentrations before and after injecting current I for ∆t time
units.

θ−(k + 1) = θ−(k)− ∆t

FH−
· I, ∀ k. (3.13)
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The equilibrium voltage, i.e. OCV, is given by:

V (k) = U+(θ+(k))− U−(θ−(k)), ∀ k. (3.14)

Solving (3.10) for θ+(k) and substituting into (3.14) gives:

V (k) = U+

(
nLi,s −H−θ−(k)

H+

)
− U−(θ−(k)), ∀ k. (3.15)

To summarize, we have unknowns x = [θ−(0), H+, H−, nLi,s]
T

and equations (3.13), (3.15).
Optimization formulation
We formulate the following nonlinear optimization problem to find the unknown variables

x given experimentally obtained cell OCV data Vocv(k) and known open circuit potential
functions U±(θ±):

minimize
x

N∑
k=0

[V (k)− Vocv(k)]2 , (3.16)

subject to: V (k) = U+

(
nLi,s −H−θ−(k)

H+

)
− U−(θ−(k)), ∀ k, (3.17)

V max = U+

(
nLi,s −H−θ−(0)

H+

)
− U−(θ−(0)), (3.18)

θ−(k + 1) = θ−(k)− ∆t

FH−
· I, ∀ k = 0, 1, · · · , N − 1, (3.19)

where N is the total number of experimental data points, and V max corresponds to the
maximum OCV and the first index k = 0. Note the last constraint is initialized with
optimization variable θ−(0). This optimization program is nonlinear and non convex in the
optimization variables, requiring a nonlinear optimization solver, such as fmincon in Matlab.

Suppose that θ±(0)? and θ±(N)? correspond to the optimized normalized concentrations
at the maximum and minimum voltage limits, respectively, according to the cell’s datasheet.
Then the stochiometric points are given by:

θ±,? = θ±(0)?, θ
±,?

= θ±(N)?. (3.20)

Suppose that H±,? correspond to the optimized molar capacities of each electrode. Then
the charge capacity of each electrode Q±,? and the cell Q? can be calculated as:

Q±,? = F ·N±,?, Q? = min
{
Q+,?, Q−,?, F · n?Li,s

}
. (3.21)

By solving the optimization problem (3.16)-(3.19) using OCV data from three averaged
C/50 charge/discharge cycles, we obtain the following equilibrium parameters as follows:

Figure 3.4 compares the identified equilibrium model against experimental data. We
achieve an overall root mean square error (RMSE) of less than 5 mV in 98% of the operating
range. If one uses faster OCV tests, e.g. C/25, C/10, or C/5, then the resulting model
identification accuracy will degrade. Based on the identified structure, we define the cell
state-of-charge (SOC) in association with the equilibrium voltage as listed in Table 3.5, which
is used for simulation and experiment design in subsequent sections.
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Parameter Estimated values
ε−s 5.438895e-01
ε+
s 6.663649e-01
nLi,s 0.1406 moles

Table 3.4: Identified equilibrium parameters.
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Figure 3.4: OCV comparison between identified model and experimental data for three
averaged C/50 charge/discharge cycles.

SOC Voltage mapping [V]
80% 3.9481
60% 3.7689
40% 3.5982
20% 3.4562

Table 3.5: Cell SOC to voltage mapping.

Sensitivity analysis & Grouping for dynamic parameters

Next we identify the dynamic parameters in Table 3.2. A fundamental challenge is linear de-
pendence between the parameter sensitivities, resulting in non-uniqueness between estimated
parameter values. For this reason, we adopt a parameter grouping-based approach [106]. In
our approach, each parameter’s sensitivity is analyzed across a large number of input profiles.

Input library design
In order to design the optimal set of experiments for identifying battery parameters, a

suite of candidate input profiles has been generated. Broadly, these candidate profiles can be
categorized as (i) pulse, (ii) sinusoid, and (iii) driving cycle inputs. A total of 738 profiles
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exists across these three input categories. Across all categories, profiles have been normalized
to 1 Ah of charge processed in order to fairly evaluate candidate profiles. Setting constraints
that define the feasible set of input profiles is the first step in evaluating the candidate input
profiles. Across all profile categories, the following constraints must be upheld:

1. T1 ≤ 50oC

2. |I(t)| ≤ 5C

3. 600 sec ≤ tf ≤ 3600 sec

Additionally, all input profiles are generated from the following initial SOC: SOC0 ∈
{0.8, 0.6, 0.4, 0.2}. The initial voltage V0 values associated with initial SOC are determined
according to the Table 3.5. On the other hand, input profiles need to keep the SOC within
its upper and lower limit. To check that these conditions hold, the absolute ∆SOC for each
profile is calculated and added to SOC0. The immediate conclusions are that driving cycle
profiles, all of which are net discharging, cannot be applied when the battery SOC is 20%.
Similarly, discharging pulse and sinusoid profiles cannot be applied when the battery SOC is
20%. Charging pulse and sinusoid profiles cannot be applied for SOC ≥ 80%. Consequently,
these inputs are parsed out of the input library. The remainder of this section will describe
the parameters of each profile category and its corresponding normalization scheme.

Pulse profiles are generated with six input variables for a total of 540 pulse profiles as
shown in Table 3.6:

Input variable Setting
Amplitude 0.5C to 5C, in 0.5C increments
Pulse width 1 sec to 1000 sec
Duty cycle n ∗ (pulse width), n ∈ {1, 2, 3}
Total time 600 sec (10 min) to 3600 sec (1 hr)
Initial voltage V0 = {3.9481 3.7689 3.5982 3.4562}
Current charge only, discharge only, or both

Table 3.6: Pulse profile specification.

Note that the pulse width upper bound is set to be commensurate with the characteristic
diffusion time for a given battery chemistry. The current values are normalized using an
L1 norm, i.e. the integral of the current magnitude over the total time of the profile:
I(t)/

∫
|I(t)|dt. Therefore, the total normalized amount of charge processed in each pulse is

equal to 1 Ah.
Sinusoid profiles are generated with four input variables for a total of 180 sinusoid profiles,

as detailed in Table 3.7. Note that the frequency range was set in order to: (i) avoid exciting
dynamics occurring at un-modeled frequencies, and (ii) not violate the sampling rate limit of
a standard battery tester. The current values are also normalized with the L1 norm, i.e. the
integral of the current magnitude over the total time of the profile: I(t)/

∫
|I(t)|dt. Therefore,
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the total normalized amount of charge processed in each pulse is equal to 1 Ah. Charge only,
discharge only, and charge-discharge profiles follow the same structure as the pulse profiles.

Input variable Setting
Frequency {0.01, 0.05, 0.1} Hz
Total time 600 sec (10 min) to 3600 sec (1 hr)
Initial voltage V0 = {3.9481 3.7689 3.5982 3.4562}
Current charge only, discharge only, or both

Table 3.7: Sinusoid profile specification.

The dynamic drive cycle profiles summarized in Table 3.8 are evaluated at three different
initial SOCs, for a total of 18 dynamic drive cycle profiles. Note that US06 is the most
aggressive cycle in terms of peak current applied. The current values are normalized to the L1

norm so that the total normalized amount of charge processed in each pulse is equal to 1 Ah.

Name Description
DC1 naturalistic morning driving test profile [57]
DC2 nautralistic evening driving test profile [57]
LA92 Unified driving schedule for emission inventory [1]
SC04 Speed correction driving schedule [1]
UDDS Urban dynamometer driving schedule [1]
US06 High acceleration aggressive driving schedule [1]

Table 3.8: Driving cycle profile specification.

There are 540 pulse inputs, 180 sinusoidal inputs, and 18 driving cycle inputs, yielding a
total of 738 inputs and 329.65 hours in the input library. Note that short duration input
profiles tend to have large input magnitudes due to normalization while long duration input
profiles have relatively small input magnitudes. High performance computing cluster is used
to parallelize model simulation and sensitivity calculations.

Parameter grouping
In this section, we introduce the parameter grouping methodology for parameter iden-

tification. It is well known (see e.g. [36]) that the entire electrochemical parameter vector
θ is weakly identifiable from the measured output, since the system is nonlinear in the
parameters. This is due to linear dependence between the parameter sensitivity vectors [106].
Therefore, it is necessary to analyze the linear dependency among electrochemical parameters,
and rank/organize them into groups to avoid non-unique solutions during the parameter
identification process. Suitable linear transformations of STySy can reveal properties such
as norm and linear dependence [69]. For parameter grouping, we first perform sensitivity
analysis across the library of input profiles.

After calculating the sensitivities (3.54)-(3.56) for 738 profiles through parallel computing,
we apply the Gram-Schmidt process on STySy to reveal the orthogonalized sensitivity magni-



CHAPTER 3. ESTIMATION 39

-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 

Sensitivity Magnitude [log scale]

Figure 3.5: The sorted average orthogonalized sensitivity magnitudes across all inputs in the
input library.

tudes and linear dependence [14]. Figure 3.5 visualizes the average sensitivity magnitudes
via Graham-Schmidt orthogonalization over 738 profiles.

Based on this sensitivity analysis, we group the parameters based on their orthogonalized
sensitivity magnitudes. The resultant groups are shown in Table 3.9. It is evident that some
of the parameters have strong identifiability, i.e. particle radii R±s . Other parameters, e.g.
the transference number t0c and solid phase conductivities σ±, are weakly identifiable. To
validate these conclusions, we apply a parameter perturbation approach to a parameter from
each of the four groups. Figure 3.6(a) visually demonstrates that Group 1 parameter R−s has
the largest impact on voltage, followed by representative parameters in Group 2 (D−s ), Group
3 (R−f ), and Group 4 (σ−). For fair comparison, we perturb each representative parameter
according to its normalized value, denoted by upper bars in Fig. 3.6. Note, one should
not expect these conclusions to be generally true across all cell chemistries, models, and
manufacturers. These conclusions are specific to the cell under study and normalization.

In the parameter identification framework, Group 1 is identified first, while the other
parameters are fixed to their nominal values. Next, Group 2 parameters are identified while
fixing the remaining unidentified parameters, and so forth.
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(a) Perturbation of Group 1 parameter R
−
s .
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(b) Perturbation of Group 2 parameter D
−
s .
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(c) Perturbation of Group 3 parameter R
−
f .
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(d) Perturbation of Group 4 parameter σ−.

Figure 3.6: The comparison of model output impact by changing parameters.
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Group 1 Group 2 Group 3 Group 4
R−s D−s R−f σ−

R+
s D+

s k− σ+

ε−e ε+
e εsepe

κ(·) ce0 k+

De(·) R+
f t0c

d ln fc/a

d ln ce
(·)

Table 3.9: Dynamic Parameter Groups.

Optimal input design

In statistical experiment design, the amount of “information” on parameter vector θ contained
in the observation y from an experiment is calculated by the Fisher information matrix, F
[129]. The Fisher information matrix is mathematically defined as:

F =

∫ tf

0

STy (t)Q(t)−1Sy(t) dt, (3.22)

where t ∈ [0, tf ], and Q(t) is the covariance matrix of the measurement error. Since the true
parameters θ∗ are unknown, the sensitivity is calculated around nominal parameter values
θ0. The deviation of the parameter estimates from their true values can be expressed as the
covariance matrix Σ. According to the Cramer-Rao bound [28], [22], the inverse of the Fisher
information matrix provides a lower bound on Σ,

F−1 ≤ Σ. (3.23)

Our goal is to find inputs that minimize the lower bound of the parameter estimation error,
thus improving the parameter estimation quality. To optimize the amount of information, a
proper scalarization of F should be considered. Several scalarization criteria are commonly
used in the literature such as:

• D-optimality : log det(F−1).

• A-optimality : trace(F−1).

• E-optimality : λmax(F).

Each optimality criterion has a different geometrical interpretation. For instance, D-
optimal design minimizes the geometric mean of the errors in the parameters, while E-optimal
design minimizes the largest eigenvalue of the confidence region of parameters. In this work,
we use D-optimal design as it is the most commonly used [38]. However, the other criteria
are equally applicable in this framework.

We formulate a procedure to optimize experiment design to produce inputs that are
maximally informative for parameter estimation. A natural and mathematically elegant
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approach is to formulate an optimal control problem. Namely, one may seek an input trajectory
that maximizes D-optimality subject to the system dynamics. This concept has been applied
in [100, 67]. However, solving a large-scale optimal control problem with thousands of states
and nonlinear dynamics given by (3.49)-(3.51), (3.54)-(3.56) is computationally intractable.
For example, we found it requires two weeks of wall clock time to optimize a 100 second input
trajectory for the electrochemical model. The previous literature [100, 67] side-steps this
challenge using control vector parameterization and simplified models, such as an equilivalent
circuit model or single particle model.

To bypass the challenge of solving a large-scale nonlinear optimal control problem, we
pursue a different approach. Specifically, we seek the set of inputs from an input library
which maximizes the Fisher information matrix. This process yields a convex optimization
program, which can be rapidly solved with polynomial complexity open-source solvers, such
as cvx [39].

We now detail the theory behind optimal experiment design via convex optimization.
Suppose we have a set of L experimental inputs ui(t), i = 1, 2, · · · , L. For each input profile
ui(t), we obtain a corresponding sensitivity vector Sy,i(t) by solving (3.49)-(3.51) and (3.54)-
(3.56) simultaneously. Amongst these L inputs ui(t), i = 1, 2, . . . , l, we select M inputs that
are maximally informative as measured by the Fisher information matrix F , where M < L.
Let mj ∈ {0, 1} be a binary value that indicates if experiment j is executed from the input
library. Then, the total number of experiments is given by

m1 +m2 + . . .+ml = M. (3.24)

We then rewrite the Fisher information matrix as:

F =
L∑
i=1

miS
T
y,iQ

−1
i Sy,i. (3.25)

We now formulate a combinatorial optimization problem to maximize the D-optimality
criterion of F :

minimize
mi

log det

(
L∑
i=1

miS
T
y,iQ

−1
i Sy,i

)−1

, (3.26)

subject to mi ∈ {0, 1}, (3.27)

m1 + . . .+ml = M. (3.28)

This problem is a binary integer program, where the optimal number of experiments mi

is the solution. In general, large-scale combinatorial problems are NP-hard. In this work, we
relax the integer constraint (3.27) into 0 ≤ mi ≤ 1, yielding a relaxed optimization problem
that is convex. Let ηi = mi/M be the fraction of experiment type i to execute. Then the
Fisher information (3.25) can be re-written as

F = M
L∑
i=1

ηiS
T
y,iQ

−1
i Sy,i, (3.29)
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where η ∈ RL, 1Tη = 1. Thus, our final convex optimal experiment design problem is:

minimize
η

log det

(
L∑
i=1

ηiS
T
y,iQ

−1
i Sy,i

)−1

, (3.30)

subject to 0 ≤ ηi ≤
1

M
, ∀ i 1Tη = 1, (3.31)

where M can be dropped without affecting the minimizer. One can show this is a convex
problem with respect to η [15]. Additionally, the solutions will be integral; that is, the
solution to relaxed optimization problem (3.30)-(3.31) is also the solution to (3.26)-(3.27).

Remark: Suppose that associated with each experiment ui(t) is a cost ci, which can
represent time required, economic/labor cost, or battery degradation. The total cost is:

c1m1 + · · ·+ clml = mcTη. (3.32)

Suppose we have a cost budget of B. One can then add a budget constraint as a scalar
linear inequality, yielding convex program:

minimize
η

log det

(
L∑
i=1

ηiS
T
y,iQ

−1
i Sy,i

)−1

, (3.33)

subject to 0 � η � 1

M
, 1Tη = 1, (3.34)

mcTη ≤ B. (3.35)

Output measurement error quantification

Consider the output measurement covariance Qi in (3.30). This quantity is critically important
to include in the optimization formulation. To motivate this point, consider figure 3.7a and
3.7b which visualize the battery tester’s measured voltage for ten repeated pulse inputs.
Figure 3.7a contains time steps in which the measured voltage has variance larger than 30
mV. This variance is uncorrelated with the order in which the experiments are performed.
In contrast, the sinusoidal tests in Fig. 3.7b have variance consistently around 0.3 mV.
Consequently, there can be non-trivial variation in the battery tester’s measured voltage,
depending on the input profile. Note, our SBT2050 test system manual claims a voltage
resolution of 100 µV. The precise source of the measurement variance is unknown.

This motivates quantification of the output measurement covariance. Namely, (3.30)-(3.31)
requires Qi for each input in the library. However, experimentally characterizing Qi for each
input requires running every experiment in the input library multiple times (e.g. 10 times) –
an intractable task. Therefore, we propose to predict the covariance Qi using a regression
model trained from a small number of experiments. This enables us to account for variance
in experimental trials without running a large number of experiments.

The size of matrix Q is based on the number of samples taken during an experiment.
Due to this, we scalarize Q in order to compare how Q varies across experiments that have
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Figure 3.7: Experimental outputs and quantification.

different lengths. For a given experiment and its corresponding covariance matrix Qexp, we
scalarize Qexp using the square root of the mean across the diagonal entries of Qexp:

q =

√√√√ 1

n

n∑
i

Qexp
i,i , (3.36)

where n is the dimension of the matrix Q. Next, we seek a regression model to predict q
from the current input profile. To this end, we consider a metric of “input intensity” as the
feature in our regression model. Namely, we propose to use the L2 norm, Ĩ, to characterize
input intensity where

Ĩ =

√∫ tf

0

I(t)2dt. (3.37)

Using Ĩ as a regression model feature, we fit the following regression models to q:

for charge inputs: q̂c = acĨ + bc, for discharge inputs: q̂d = ad · ebd·Ĩ , (3.38)

where ac = 6.2382× 10−5, bc = −4.0739× 10−3, ad = 2.1045× 10−4, bd = 1.7020× 10−2. For
inputs that are not purely charge or discharge, the two models are averaged:

q̂cd =
1

2
(qc + qd) . (3.39)

The scalar predictions q̂ are then squared and constructed into a matrix according to:

Q̂ = q̂2 · In, (3.40)

where In is an n× n identity matrix. For training, 5 drive cycle profiles are used to estimate
the parameters ac, bc, ad, bd in (3.38). We test the predicted variance on drive cycle inputs.
Data for training and testing is provided in Fig. 3.7c, along with the curve fit regression
model predictions.
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Parameter estimation

After obtaining experimental data, we now seek to optimally fit the parameter vector θ to
this data. The optimization problem for parameter identification can be formulated as a
nonlinear least squares problem:

minimize
θ̂

M∑
i=1

kf∑
k=0

yi(k)− ŷi(k; θ̂)

Qi(k)
, (3.41)

where k indexes the timed samples, M is the number of optimized input profiles obtained from
optimal input design, yi(k) is the experimentally measured voltage, ŷi(k; θ̂) is the model’s
voltage prediction, and Qi(k) is the measurement variance for input profile i at time step k.
The Levenberg-Marquardt algorithm is used to update the parameters θ̂ iteratively to solve
the nonlinear optimization problem (3.57). This algorithm adaptively updates the parameter
estimates via a hybridization of the gradient descent update and the Gauss-Newton update
[59]: [

JTWJ + γ · diag(JTWJ)
]
∆θ = JTW(y − ŷ), (3.42)

where J = ∂ŷ/∂θ̂ is the local sensitivity of the output ŷ, and W is the inverse of the
measurement error covariance matrix, W = Q−1. The value of γ weighs gradient descent
update against Gauss-Newton update. Conveniently, the Levenberg-Marquardt algorithm
directly utilizes the Jacobians computed via automatic differentiation, as discusssed in the
sensitivity analysis in Section 3.1.3. Then, the parameter updates are iteratively updated
according to:

θ(n+ 1) = θ(n) + ∆θ, (3.43)

where n is the iteration index.
After optimally fitting the parameters, estimation error statistics are calculated according

to

ρθ = JTWJ, (3.44)

σθ =
√

diag[JTWJ]−1, (3.45)

where ρθ is the parameter covariance matrix, and σθ is the standard parameter error. Lastly,
95% confidence intervals for the parameter estimates are calculated as follows:

θ̂ − t(1−0.05,N)
σθ√
N
≤ θ∗ ≤ θ̂ + t(1−0.05,N)

σθ√
N
, (3.46)

where N is the number of observations, and t is the upper critical value for the t-distribution
with n− 1 freedom [126].
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3.1.5 Experimental Results

In this section the proposed optimal experimental design is applied to a 18650 Lithium
nickel-cobalt-aluminum oxide (NCA) battery cell. To assess the benefits of our proposed
approach, we compare results against parameter identification using a conventional approach
with standard test cycles.

Parameter identification results

With consideration for output measurement error covariance Q, the results for optimal input
selections for parameter identification are listed in the Table 3.10. The optimized inputs
have moderate magnitude and do not increase cell temperature more than 5◦C. Based on
the sensitivity analysis and parameter grouping, we estimate parameters for each group in a
cumulative fashion. For example, we allow the Group 1 parameters to be refined with Group
2 parameters while fitting the model parameter to Group 2 experimental data. Similarly,
Group 1 & 2 parameters are refined with Group 3 parameters and so on. Since we do not have
information on the true parameters, it is useful to identify the parameters in a cumulative
way to prevent overfitting and increase the degrees of freedom during optimization. The
authors’ previous work also showed that an optimized input reduces the condition number of
the objective function’s Hessian with respect to the parameters [87]. This accelerates gradient
descent methods for parameter estimation.

Group 1 Group 2 Group 3 Group 4
#339 #90 #292 #120
#342 #120 #365 #343
#345 #339 #467 #362
#348 #345 #503 #503
#365 #365 #507 #507

Table 3.10: Input profiles from optimal experimental design.

Figure 3.8 displays the parameter identification results for each group. For instance,
Group 1’s optimal input consists of a series of concatenated input profiles with id #339, 342,
345, 348, 365, as shown in Fig. 3.8a. We also plot the identified model’s voltage prediction
versus the experimentally measured voltage. Finally, the cumulative distribution function
of the absolute voltage prediction error before and after applying parameter estimation are
displayed in the bottom subplot. Note the most significant improvements relative to the
nominal parameter values come after applying the Group 1 optimized inputs. This is intuitive,
as the Group 1 parameters have the greatest sensitivity, by definition.

The final parameter estimates along with their 95% confidence intervals are listed in
Table 3.11. The identified parameter values are also visualized in Fig. 3.9 on a normalized
axis, along with the nominal values for comparison. The 95% confidence intervals are also
visualized by error bars for each parameter, and correspond to the optimized input for that
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parameter. Note that parameter bounds are obtained from the literature [35, 9, 122, 5] to
ensure that the identified values are physically meaningful. The results indicate that strongly
identifiable parameters (e.g. R±s ) have narrow confidence intervals while weakly identifiable
parameters (e.g. σ±) have relatively wide confidence intervals. This finding is intuitive, since
large variations in the weakly identifiable parameters produce trivial changes in the voltage
output trajectory, as demonstrated in Fig.3.6.
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(a) Identification results for Group 1 parameters. (b) Identification results for Group 2 parameters.

(c) Identification results for Group 3 parameters. (d) Identification results for Group 4 parameters.

Figure 3.8: Identification results for optimal designed inputs.
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Parameter Unit Lower Upper Nominal Result 95% C.I.†

D−s [m2 s−1] 2.25e-16 1.05e-12 3.90e-14 2.634e-14 2.407e-18
D+
s [m2 s−1] 2.00e-16 1.00e-12 1.00e-13 6.625e-14 1.548e-17

R−s [m] 1.00e-06 1.00e-04 10.9e-06 20.235e-06 8.362e-10
R+
s [m] 1.00e-06 1.00e-04 10.9e-06 17.163e-06 7.494e-10

ε−s [-] - - - 0.5438 -
ε+s [-] - - - 0.6663 -
σ− [S m−1] 50 500 100 500 1.740e+03
σ+ [S m−1] 50 500 100 500 1.334e+02
De(·) [m2 s−1] 0.5 1.5 1 1.195 1.176e-03
ε−e [-] 0.18 0.45 0.3 0.289 3.687e-04
εsep
e [-] 0.45 0.5 0.5 0.468 5.801e-04
ε+e [-] 0.18 0.33 0.3 0.307 5.523e-04
κ(·) [S m−1] 0.5 1.5 1 1.398 1.308e-03
t0c [-] 0.36 0.363 0.363 0.36 5.585e-04
d ln fc/a

d ln ce
(·) [-] 0.5 1.5 1 0.573 9.971e-04

k− [(A m−2)(m3 mol−1)(1+α)] 7.5e-05 7.5e-03 7.5e-04 7.5e-05 4.457e-07
k+ [(A m−2)(m3 mol−1)(1+α)] 2.3e-04 2.3e-02 2.3e-03 2.3e-04 4.614e-06
R−f [Ω m2] 1.0e-05 1.0e-03 5.0e-04 8.719e-05 6.773e-06

R+
f [Ω m2] 1.0e-04 1.0e-03 1.0e-03 4.619e-04 6.963e-06

nLi,s [mol] - - - 0.1406 -
ce(x, 0) [mol m−3] 500 1500 1000 1500 8.191e-01

†Confidence interval calculated at the end of identification process in Fig. 3.8d

Table 3.11: Final identification results for NCA 18650 Li-ion battery.

3.1.6 Validation

In this section, the proposed optimal experimental design (OED) is tested on various input
profiles not used for identification, including driving cycles, sinusoidal inputs, and pulse
inputs. In order to investigate the performance of the proposed approach, a “conventional”
experimental design approach is considered for comparison. It consists of 7 standard constant
charge / discharge profiles, along with a driving cycle. Unlike the proposed approach, the
conventional approach does not group parameters, nor design inputs to maximize identifiability.
All parameters of interest are identified from concatenating experimental data. The Levenberg-
Marquardt algorithm is also utilized to fit parameter values. The parameters are fit using an
“all-in-one” approach, meaning they are not grouped nor fit sequentially. All parameters are
fit simultaneously.

Figure 3.10a and 3.10b compare the proposed and conventional approach to experimental
constant discharge data with respect to battery capacity. These figures demonstrate that
our proposed approach outperforms the conventional approach in terms of voltage accuracy.
Table 3.12 provides the RMSE on up to 90% of capacity range for the 0.5C and 1C discharge
cases. Both experimental design approaches improve the model accuracy compared to nominal
parameters. However, our proposed approach outperforms the conventional approach. Since
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Figure 3.9: Parameter estimates and 95% confidence intervals versus the nominal parameter
values.
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we do not consider thermal parameters in this paper, the voltage prediction accuracy decreases
as temperature evolves away from 25◦C. Specifically, constant discharge at 1C is enough to
produce non-trivial heat generation and cause surface temperature to nearly reach 30◦C. The
voltage prediction in the extremely low SOC region, such as below 3V, is difficult to match
with experimental data. In this region voltage drops dramatically and we have insufficient
data sampling granularity to accurately identify the equilibrium structure. On the other
hand, battery cells rarely operate in this region in practice.

Besides constant discharge tests, validation is also conducted on sinusoidal and pulse
inputs to assure that the OED approach is able to capture a comprehensive set of input
profiles. Figure 3.10c and 3.10d show the applied current profile and output voltage for sample
sinusoidal and pulse inputs profiles. The voltage accuracy is calculated and summarized in
Table 3.13. Again, the OED approach outperforms the conventional approach.

Lastly, we use the driving cycle inputs described in Table.3.8 for validation. These
driving cycles originate from automotive fuel emission testing. The RMSE calculations
are summarized in Table. 3.14. The results show that the OED approach outperforms the
conventional approach in every case.
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Figure 3.10: Experimental validation results for the NCA 18650 battery with testing profiles.
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Parameters 0.5C discharge 1C discharge
Nominal parameters 33.7 mV 55.7 mV
Conventional approach 19.9 mV 36.1 mV
Proposed approach 11.8 mV 25.5 mV

Table 3.12: RMSE between simulation and experimental measurement up to 90% capacity in
constant discharge.

Input profiles Errors in OED [mV] Errors in conventional [mV]
Sinusoidal input 10.13 12.01

Pulse input 14.06 16.63

Table 3.13: RMSE between simulation and experimental measurement with sinusoidal and
pulse inputs.

Input profiles Errors in OED [mV] Errors in conventional [mV]
DC 1 6.89 7.96
DC 2 8.49 12.50
LA 92 11.90 13.70
SC 04 14.50 17.20
UDDS 12.40 14.70

Table 3.14: RMSE between simulations and experimental measurements with driving cycle
inputs.

3.1.7 Summary

In this work we have established an optimal experimental design (OED) framework for
systematically identifying the parameters of an electrochemical battery model. The key
novelty is optimizing the input trajectory to maximize the Fisher information matrix. Specif-
ically, we leverage sensitivity analysis and convex optimization theory to rank parameters
according to orthogonalized sensitivity and select the optimal experiments for identifying
these parameters. A sensitivity-based parameter grouping enables us to focus on the most
sensitive electrochemical parameters. For parameter estimation, the Levenberg-Marqaurdt
algorithm is adopted to solve a nonlinear least square problem. Additionally, we provide
statistical confidence intervals for the parameter estimates. We experimentally validate the
performance of the proposed OED approach compared to conventional approach on a 18650
lithium nickel-cobalt-aluminum oxide (NCA) cell. We quantify the performance in terms
of voltage accuracy with respect to experimentally measured voltage. We use a set of 9
validation profiles ranging from constant current pulses to driving cycles. The proposed
approach achieves less than 15 mV RMSE in all validation scenarios, and outperforms the
conventional approach in terms of voltage accuracy in all cases.
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3.2 State-Of-Health (SOH) Estimation

Previous Section 3.1 focused on electrochemical parameters in the full-order electrochemical
model while some of parameters are assumed to be known or directly measured. In this section,
further analysis on battery state of health (SoH) estimation is conducted for reduced-order
model. Specifically the moles of lithium for solid-phase and electrolyte phase are defined as
indicators of battery health. This section examines estimation of lithium in the solid-phase
and electrolyte-phase of electrochemical battery models, for state-of-health estimation.

3.2.1 Introduction

Electrochemical models are often reduced in complexity to balance prediction accuracy with a
control-oriented structure that enables online algorithm design. The simplest electrochemical
model is single particle model (SPM) where a single particle replaces the spatial distribution
of active particles in each electrode, and the electrolyte concentration is treated as constant
in space and time. State estimation based on SPM is conducted by using a Kalman filter in
[101, 131]. Furthermore, nonlinear and backstepping state estimation techniques based on
the SPM can be found in [29, 116]. The limitation of SPM is that it neglects the electrolyte
dynamics, which play an important role during high charge and discharge events. For
this reason, researchers consider SPM with electrolyte dynamics (SPMe) to understand the
internal behavior more accurately than SPM. A state-of-the-art backstepping state estimation
approach based on SPMe can be found in [79]. Tanim et al. [117] augments the SPMe
with Arrhenius relations for the model parameters to account for temperature variation,
abbreviated as SPMeT. In addition, the author uses Luenberger state estimator based on this
model [118]. While SOC estimation can be considered as a state estimation design problem,
the SOH estimation problem is not clearly defined. There are many aging mechanisms to
describe degradation [11], and they can be difficult to integrate with the electrochemical
models and validate experimentally.

SOH estimation for electrochemical models is still a nascent research topic in the literature.
One of the most dominant sources for the loss of cell capacity is the loss of cyclable lithium
induced by anodic solid-electrolyte interphase (SEI) layer growth [63, 26]. SEI layer growth
was found to be the dominant cause of capacity fade during the first 200 cycles (also known
as the acceleration stage) [102]. Side reactions, such as SEI layer growth and lithium
plating/striping, can alter the amount of lithium/lithium-ions in either the solid-phase (nLi,s)
or electrolyte-phase (nLi,e). Many previous works have addressed capacity estimation by
tracking model parameters [58, 45, 133], but very few have focused on battery SOH estimation
by estimating the moles of cyclable lithium. Previously, an adaptive PDE observer coupled
with a least-squares algorithm was proposed to identify solid-phase lithium as well as internal
resistance [77]. The extended Kalman filter (EKF) was also employed to estimate the amount
of cyclable Li-ions as an unknown model parameter using a single particle model [136]. In [46],
the total number of lithium in solid-phase in a reduced SPM was estimated though estimation
of the states. Although these works illuminate the importance of cyclable lithium, none of
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the aforementioned literature (i) simultaneously estimates solid-phase and electrolyte-phase
lithium, and (ii) mathematically analyzes the sensitivities of these two parameters to the
output voltage.

In light of the previously highlighted works, this section addresses these challenges by
proposing a parameter estimation framework driven by parameter sensitivity analysis for a
reduced-order electrochemical model. In particular, this work is motivated by the authors’
previous work [77, 79, 86]. First, we improve the output voltage prediction accuracy by
considering state-dependent parameters, i.e. conductivity and the activity coefficient in the
electrolyte dynamics. The performance of the proposed reduced-order model is demonstrated
by comparing it against a full-order model and the previous reduced-order model in [79].
Secondly, we formulate the SOH estimation problem as a parameter estimation of cyclable
lithium in both the solid-phase and electrolyte-phase of an electrochemical model. Drifting
SOH parameters leads to voltage deviations compared to a fresh cell, which imply capacity
and power fade. Lastly, we construct a parameter estimation scheme using sensitivity analysis
that exploits the choice of cyclable lithium as the unknown parameters. We verify the
proposed parameter estimation technique in the simulation.

3.2.2 The State of Health (SOH) for Electrochemical Model

The moles of lithium in the solid phase and electrolyte phase impact Li-ion battery state of
health (SOH). They are defined as:

nLi,s(t) =
∑

j∈{+,−}

εjsL
jA

4
3
π(Rj

s)3

∫ Rjs

0

4πr2cjs(r, t)dr. (3.47)

nLi,e(t) =
∑

j∈{−,sep,+}

εjeA

∫ Lj

0j
cje(x, t)dx. (3.48)

These quantities are initially determined during the manufacturing process by the Li metal
in the active materials and lithium ions dissolved in the electrolyte. In realistic scenarios,
the moles of lithium are not conserved due to aging mechanisms, e.g. SEI layer growth,
Li-plating, and solvent oxidation. The loss of total lithium contained in the solid phase is
known to cause capacity fade, and the loss of total lithium in the electrolyte phase contributes
to power fade. For instance, the change of total lithium in the solid-phase results in different
trajectories of open circuit voltage (OCV) during the operation. Figure 3.11 describes two
different OCV trajectory when the total moles of lithium has changed.

Figure 3.12 illustrates this phenomenon, where we have reduced the amount of cyclable
lithium for each phase. The moles of lithium is decreased by 10% to represent an aged
cell, and compared with the fresh cell in simulation. Mathematically, these changes only
affect the initial conditions of the electrochemical states. The battery is fully discharged
to the minimum voltage threshold using constant current in order to analyze the capacity
fade in Fig. 3.12a, while high C-rate pulse current is applied to the battery for power fade
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Figure 3.11: The OCV trajectory for given mole of lithium in solid-phase. The solid line
describes the trajectories of OCV curve.

demonstration in Fig. 3.12b. We observe that the moles of lithium contribute to degrading
state of health in Li-ion batteries.

In order to estimate these SOH parameters, we first combine the system dynamics (2.36)
– (2.39) with the algebraic equations (3.47) – (3.48), which results in differential algebraic
equations (DAEs),

ẋ = f(x, z, u), x(t0) = x0, (3.49)

0 = g(x, z, u), z(t0) = z0, (3.50)

y = h(x, z, u), (3.51)

after discretizing (2.36) – (2.39) and (3.47) – (3.48) in space via a suitable methods, e.g. finite
differences, Padé approximation, spectral methods, etc. [37, 34]. Denote x = [c−s , c

+
s , ce]

T ∈
Rnx as state vectors, z = [nLi,s, nLi,e]

T ∈ Rnz as algebraic variables, y = V (t) as output
variable defined in (2.46). The system is a semi-explicit DAE of index 1 as [∂g/∂z]−1 exists
and the SOH parameters, z, only appear in the initial conditions of time-derivative states
x0.
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Figure 3.12: The impact of SOH parameters nLi,s, nLi,e on voltage output. Top: A decrease of
nLi,s decreases capacity, i.e., capacity fade. Bottom: a decrease of nLi,e affects the instantaneous
voltage, which contributes to power fade.

3.2.3 SOH Parameter Estimation

This section derives estimators for SOH parameters nLi,s, nLi,e by leveraging the proposed
SPMe model in Section 2.2.2 and (3.49)-(3.51).

Sensitivity Analysis

Sensitivity analysis is used to understand how a model’s output depends on variations in
parameter values, or initial conditions [86]. For time-continuous dynamic systems, the local
sensitivities are defined as the first-order partial derivatives of the system output with respect
to the parameters around nominal parameter values. In this section, we briefly introduce how
to derive local sensitivity of SOH parameters in dynamical system described in (3.49)-(3.51),
and develop this approach toward an SOH parameter estimation framework.

Let’s define sensitivity variables as follows:

Sx =
∂x

∂z
, Sy =

∂y

∂z
, (3.52)

where Sx and Sy are sensitivity matrices of the local sensitivity vector where si,j is defined
as the partial derivative of the i-th state to the j-th algebraic variable such as:

si,j(t) =
∂xi(t)

∂zj
. (3.53)

Then, we can formulate the sensitivity differential equations (SDEs) for the system (3.49)
– (3.51) via multivariate calculus as follows:
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Ṡx =
∂f

∂x
· Sx +

∂f

∂z
, Sx(0) = Sx0, (3.54)

Sy =
∂h

∂x
· Sx +

∂h

∂z
, Sy(0) = Sy0, (3.55)

where

0 =
∂g

∂x
· Sx(0) +

∂g

∂z
. (3.56)

Note that the sensitivity dynamic equations are formulated as ordinary differential
equations (ODEs), not differential algebraic equations (DAEs) because the sensitivity vectors
are obtained by differentiating the states and outputs with respect to the algebraic variables.
It is important to notice that the algebraic equations (3.56) are only used for sensitivity initial
conditions, Sx(0) as the algebraic variables only appear in the initial conditions of the states
in (3.50). This is key difference compared to the sensitivity analysis discussed in Section 3.1.
The advantage of SDEs lies in fundamental mathematical derivation and computational
efficiency compared to a perturbation method whose sensitivity is obtained by perturbing
each parameter slightly, finding the corresponding initial conditions, and then calculating the
output difference with nominal parameters. Notice that SDEs are time-varying ODEs where
Jacobians of state transition functions, algebraic equations with respect to the states, and
algebraic variables should be computed at each time step. Such intricate ODEs encourage
researchers to utilize automatic differentiation tools, such as CasADi [3], which efficiently
computes the first and second-order derivatives of this intricate model. In this work, the
battery model DAEs and its SDEs are simulated by using the IDAS/CVODES integrator
provided by SUNDIALS via CasADi interfaces [43].

Nonlinear Least Squares

The SOH parameter estimation problem can be formulated as a nonlinear optimization
problem, i.e., nonlinear least squares. The objective is to minimize the output voltage
difference between measured output, y, and predicted output, ŷ:

min
ẑ
.

tf∑
t=0

[y(t)− ŷ(t; ẑ)]2. (3.57)

The Levenberg-Marquardt algorithm is used to update the parameters ẑ iteratively by
solving the nonlinear optimization problem (3.57) above. This algorithm adaptively chooses
parameter updates between the gradient descent update and the Gauss-Newton update [59]
via equation: [

JTJ + γdiag(JTJ)
]
hẑ = JT (y − ŷ), (3.58)
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where J = ∂ŷ/∂ẑ is the local sensitivity of the output ŷ. Conveniently, the Levenberg-
Marquardt algorithm utilizes the sensitivities derived in Section 3.2.3. The value of γ trades
off between gradient descent update and Gauss-Newton update. Then the parameters are
updated iteratively by

ẑk+1 = ẑk + hẑ. (3.59)

Once the parameters are fit to the data, the least squares estimator provides the parameter
estimation statistics evaluated at the final estimates denoted by z. Namely,

ẑ ∼ N
(
z, ρ2(z)

)
, (3.60)

where ρ2 is the asymptotic covariance matrix obtained explicitly by

ρ2(z) = σ2
[
J(z)TJ(z)

]−1
, (3.61)

where J(z) is the local sensitivity at the final estimates. The error variance σ2 is computed
as:

σ2 =
1

N − p

tf∑
t=0

[y(t)− ŷ(t; z)]2, (3.62)

where N is the number of observations and p is the number of parameters. The 95 %
confidence intervals are derived by using t-distributions:

z − t(1−0.025)
ρ√
N
≤ z∗ ≤ z + t(1−0.025)

ρ√
N
, (3.63)

where t is the upper critical value for the t-distribution with N − 1 freedom [98].

3.2.4 Simulation Results

In this section, we present SOH parameter estimation results to validate the proposed
approach via simulation. Suppose the aging mechanisms consume moles of lithium in solid
and electrolyte phase after a number of cycles. Then the voltage starts to deviated compared
to a fresh cell. Even though the exact underlying ageing mechanisms are not considered in
this study, many of them ultimately lead to a decrease of these quantities. Our goal is to
track these SOH parameters by nonlinear least squares using input/output measurements.

Figure 4.1a exhibits the impact of parameter changes to the output voltage. The Urban
Dynamometer Driving Schedule (UDDS) input profile is considered as an input current profile
applied to the enhanced SPMe. One can notice that the perturbation of nLi,s affects the
voltage variation in the whole period even after cycling, i.e. the relaxation period. This is
because nLi,s is related to the equilibrium structure of the electrochemical model determining
the window of the open-circuit voltage (OCV) curve [86]. Consequently, a change of nLi,s shifts
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Figure 3.13: The simulation results on the voltage deviations as well as SOH estimation using
Urban Dynamometer Driving Schedule (UDDS) input profile. The voltage RMSE reduces
below 1 mV after 4 iterations using Levenberg-Marquardt algorithm.

the equilibrium states during the relaxation period. On the other hand, the nLi,e parameter
is linked to the electrolyte concentrations by definition. This fact implies that a change
of nLi,e influences on the level of electrolyte concentration, which alters the instantaneous
voltage output during operation. Interestingly, nLi,s and nLi,e are linearly independent with
each other, with respect to the output voltage variation since they shown up in separate
terms of (2.47). We confirm that the voltage errors are linearly independent at the bottom
in Fig. 4.1a. For instance, the voltage error (Verr) is linearly independent on each other,
Verr (90%nLi,s & 90%nLi,e) = Verr (90%nLi,s) + Verr (90%nLi,e). This fact makes the SOH
parameter estimation problem simpler and straightforward.

In these simulations, we adopt the electrochemical parameters for a fresh cell identified in
the authors’ previous work [86]. Specifically, the “true” SOH parameters are set as nLi,s =
0.1406 [mol], nLi,e = 0.0062 [mol]. To represent the aged cell behavior, we assume that the
aged cell retains 90 % moles from the fresh cell, i.e., nLi,s = 0.1265 [mol], nLi,e = 0.0056 [mol].
The parameter updates at each iteration compared to the true parameters (aged) are shown at
the top in Fig. 4.1b. We observe that the voltage RMSE decreases every iteration by updating
the SOH parameters. After 4 iterations the parameter estimates approach the correct aged
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cell values. Moreover, the voltage RMSE reaches less than 1 mV. The final parameter
estimates with 95% confidence interval are obtained as n̂Li,s = 0.1267 ± 2.09× 10−5 [mol],
and n̂Li,e = 0.0055± 7.80× 10−6 [mol].

3.2.5 Summary

This section addresses state-of-health (SOH) parameter identification for an electrochemical
battery model. We consider the SOH estimation problem for general electrochemical models,
and propose a parameter estimation framework via sensitivity analysis. Once the output
voltage measurement starts to diverge from the fresh cell behavior due to ageing mechanisms,
the Levenberg-Marquardt algorithm is used to solve a nonlinear least squares problem for
SOH parameter fitting. In order to validate our proposed framework, we simulate the
overall process using a model-to-model comparison. These results demonstrate how the SOH
parameters are monitored by proposed approach. On-going work involves validation of the
proposed SOH parameter estimation framework with experimental data.
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Chapter 4

Learning & Optimal Controls

The objective of battery control is to derive optimal fast-charging strategy based on the
identified electrochemical model. In this chapter, we formulate battery fast charging control
problem and analyze the control strategies from controls & machine learning perspectives.
First of all, the analytical solution of battery fast charging strategy is discussed via model-
based optimal control theory in Section 4.1. The contribution is to support the existing
charging protocols via optimality of input trajectory. Secondly, reinforcement learning-based
controller is proposed as a tool for fast charging control in Section 4.2. This learning-based
controller is validated with other existing control strategies with several remarks.

4.1 Model-based fast-charging control

4.1.1 Introduction

Battery fast charging performs an essential role in electrified transportation to reduce driver’s
waiting time and range anxiety. This can be easily achieved by using aggressive current
profiles, however, it also accelerates battery degradation effects, such as solid electrolyte
interface layer growth, and lithium plating deposition. For this reason, batteries should be
carefully monitored and controlled during fast charging as it may cause cells to crack, leak,
and lose capacity. The role of battery management systems is to charge the batteries as fast
as possible while not violating the safety constraints. In the literature, several model-based
optimal control techniques have been proposed in consideration of providing fast-charging
while guaranteeing safety constraints.

The authors in [55] formulate a minimum-time charging problem and use nonlinear model
predictive control. Similarly, authors in [121] propose quadratic dynamic matrix control
formulation to design an optimal charging strategy for real-time model predictive control. In
the context of aging mechanism, the authors of [92] have studied the trade-off between charging
speed and degradation, based on an electro-thermal-aging model. The authors in [94] consider
minimizing film layer growth of the electrochemical model. Authors in [113] derive an optimal
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current profile using a single particle model with intercalation-induced stress generation. The
key novelty here is incorporating mechanical fracture, which can be a dominant mechanism in
degradation and capacity fade. To ensure safety, a proportional–integral–derivative controller
is proposed. In [65], the authors exploit differential flatness properties of the single particle
model to yield a computationally efficient optimal control problem, solved via pseudospectral
methods. On the other hand, the authors in [138] synthesize a state estimation and model
predictive control scheme for a reduced electrochemical-thermal model, in order to design
health-aware fast charging strategy. The problem is formulated as a linear time-varying model
predictive control scheme, with a moving horizon state estimation framework. Similarly,
authors of [99] propose reference governor approach for equivalent hydraulic battery model,
which integrates state estimation with a reference governor scheme.

Nearly all existing model-based control strategies apply computational methods that
yield the following: apply maximal charging current until the battery reaches one of the
constraints, and then ride this constraint. There are a number of research papers showing this
rule empirically. However, a theoretical analysis that derives and characterizes this solution
has not been executed.

To solve a deterministic optimal control problem, there are two related methods: (i) the
Hamilton-Jacobi-Bellman (HJB), which is based on Bellman’s principle of optimality [2], and
(ii) Pontryagin Minimum Principle (PMP), which originates from Calculus of Variations. The
HJB approach guarantees the global optimal solution. Often, the solution to the HJB PDE
is computed by the level-set method [84], and the computational complexity is exponential
in the dimension of the state. This leads to intractable computation for high-dimensional
systems. On the other hand, PMP provides necessary conditions for optimality. The solution
of PMP is either numerically computed by, e.g. shooting methods [56], or analytically
derived. With shooting methods, computing the solutions to the PMP conditions is more
tractable for higher-dimensional systems than the HJB approach. Furthermore, PMP yields
sufficient conditions for convex optimal control problems [41, 71]. In the literature, PMP
has been widely adopted to solve various constrained optimal control problems. It was first
applied to aircraft control and fuel management [16, 18], and expanded to other areas such
as hybrid electric vehicle energy management [53], train operation [52], fluid structures [85],
and persistent monitoring in multi-agent systems [130].

In this paper, we focus on the PMP approach to analytically derive the optimal solution
for the battery fast charging problem. This allows us to explicitly relate model parameters
to the optimal input and state trajectories. We examine a reduced-order electrochemical
model, as this represents a physical interpretation of state constraints. Our contribution is
to prove that battery fast charging, for a class of models, yields a solution that maximizes
its allowable charging current until a safety constraint is active. When the safety constraint
becomes active, then a feedback control law is applied to ensure safety. We derive analytical
solutions from PMP and validate the proposed solutions by numerical simulation.
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4.1.2 Preliminaries

This section introduces the Pontryagin Minimum Principle for optimal control problems [93,
54, 17, 41]. For a given dynamical system,

ẋ = f (x(t), u(t), t) , x(0) = x0, (4.1)

where x(t) ∈ Rn and u(t) ∈ Rm, and f : Rn × Rm × R→ Rn is assumed to be continuously
differentiable in its arguments. The control input u(t) is admissible in a given time horizon if

u(t) ∈ Ω(t) ⊂ Rm, t ∈ [0, tf ]. (4.2)

The objective function is defined as

J = h (x(tf ), tf ) +

∫ tf

0

g (x(t), u(t), t) dt, (4.3)

where g is the running cost, g : Rn × Rm × R1 → R and h is terminal cost, h : Rn × R1 → R.
Both functions are continuously differentiable and tf denotes the terminal time. The objective
of the optimal control problem is to design u(t) to minimize the overall cost, mathematically,

min
u(·)
J : ẋ = f(x(t), u(t), t), x(0) = x0, u(t) ∈ Ω(t), (4.4)

the optimal control problem is to find an admissible control u∗, which minimizes the objective
function (4.3) subject to the state equation and the associated constraints. The control u∗ is
called an optimal control and x∗ is called the optimal trajectory.

Unconstrained Optimal Control

Without constraints on the inputs and states, we first derive the necessary conditions for
(4.4). First, the Hamiltonian function, H : Rn × Rm × Rn × R→ R is defined as:

H (x, u, p, t) , g (x, u, t) + p>f(x, u, t), (4.5)

where p ∈ Rn is called the adjoint vector or the costate vector. The necessary conditions for
u∗ to be an optimal control are obtained by Calculus of Variations : for all u ∈ Ω(t), t ∈ [0, T ]

ẋ∗(t) =
∂H
∂p

(x∗(t), u∗(t), p(t), t) , (4.6)

ṗ(t) = −∂H
∂x

(x∗(t), u∗(t), p(t), t) , (4.7)

0 =
∂H
∂u

(x∗(t), u∗(t), p(t), t) , (4.8)

with corresponding transversality or boundary conditions,

0 =
∂h

∂x
(x∗(tf ), tf )− p(tf ), (4.9)
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0 = H (x∗(tf ), u
∗(tf ), p(tf ), tf ) +

∂h

∂t
(x∗(tf ), tf ) . (4.10)

With eqs. (4.7) and (4.9), we can determine the costate trajectory. Note that p(tf ) = 0
when the terminal state is free or the terminal cost function h(·) is zero. The conditions for
optimality are also sufficient if H is convex in (x, u) for each (p, t) ∈ Rn × [0, T ] and h(x, tf )
is convex in x [41, 71].

Constrained Optimal Control

Most control systems have constraints on inputs and states inherently. Based on the
Hamtiltonian function in (4.5), we add some of features of constraint functions to construct
the constrained optimal control problem. First of all, the input u(t) is admissible if it is
piecewise continuous and satisfies the mixed constraints, such as

l(x(t), u(t), t) ≤ 0, t ∈ [0, tf ], (4.11)

where l : Rn ×Rm ×R→ Rq is continuously differentiable. In addition, we can consider pure
state variable inequality constraints, namely,

c(x(t), t) ≤ 0, t ∈ [0, tf ], (4.12)

where c : Rn × R→ Rnc . For example, suppose states are required to be positive, x(t) ≥ 0.
In any interval where x(t) = 0, we must have ẋ(t) ≥ 0 so that x does not become negative.
Lastly, the terminal state is constrained by inequality and equality constraints, namely

a(x(tf ), tf ) ≤ 0, (4.13)

b(x(tf ), tf ) = 0, (4.14)

where a : Rn×R→ Rna and b : Rn×R→ Rnb are continuously differentiable. The Lagrange
function, L : Rn × Rm × Rn × Rq × Rnc × R→ R is defined as:

L(x, u, p, µ, η, t) , H(x, u, p, t) + µ>l(x, u, t) + η>c(x, t), (4.15)

where µ and η are Lagrange multipliers. When convenient, we omit the time argument for
readability. Since the constraints are adjoined directly to form the Lagrangian, this method is
called direct adjoining method. The Lagrange multipliers satisfy the complimentary slackness
conditions, namely,

µ(t) ≥ 0, µ(t)>l(x, u, t) = 0, (4.16)

η(t) ≥ 0, η(t)>c(x, t) = 0. (4.17)

Pontryagin’s Minimum Principle allows for a jump in p(t) at a point in time when the
state x(t) enters its constraint boundary. The jump must satisfy the conditions

p(τ−) = p(τ+) + ζ(τ)
∂c

∂x
(x∗(τ), τ) , (4.18)
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where ζ(τ) ≥ 0 and

H
(
x∗(τ), u∗(τ−), p(τ−), τ

)
=

H
(
x∗(τ), u∗(τ+), p(τ+), τ

)
− ζ(τ)

∂c

∂t
(x∗(τ), τ), (4.19)

at a time τ at which one of the state variables has just reached its boundary value. An
instant τ is called entry time if there is an interior interval ending at t = τ and a boundary
interval starting at τ . Similarly τ is called an exit time if a boundary interval ends and an
interior interval starts. If the trajectory just touches the boundary, then τ is called contact
time. Taken together, entry, exit, contact times are called junction times.

The necessary conditions for the optimality of u∗ by using the Calculus of Variations [54]
are obtained as follows:

ẋ∗(t) =
∂L
∂p

(x∗(t), u∗(t), p(t), µ(t), η(t), t) , (4.20)

ṗ(t) = −∂L
∂x

(x∗(t), u∗(t), p(t), µ(t), η(t), t) , (4.21)

0 =
∂L
∂u

(x∗(t), u∗(t), p(t)) , (4.22)

with corresponding transversality conditions,

0 =
∂h

∂x
(x∗(tf ), tf ) + α

∂a

∂x
(x∗(tf ), tf ) + β

∂b

∂x
(x∗(tf ), tf )

+ γ
∂c

∂x
(x∗(tf ), tf )− p(tf ), α ≥ 0 (4.23)

0 = γ>c (x∗(tf ), tf ) , γ ≥ 0, (4.24)

the complimentary slackness conditions hold

µ(t) ≥ 0, µ(t)>l(x∗, u∗, t) = 0, (4.25)

η(t) ≥ 0, η(t)>c(x∗(t), t) = 0, (4.26)

ζ(τ) ≥ 0, ζ(τ)c(x∗(τ), τ) = 0, (4.27)

and jump conditions (4.18)–(4.19) should hold at any entry/contact time τ . Similar to the
unconstrained case, if the Hamiltonian is convex with respect to (x, u), then the conditions
are also sufficient [41, 71].

4.1.3 Fast Charging Optimal Solution

SPM model discretization

There are numbers of techniques to discretize PDE (2.28) – (2.29) in the literature [19, 34,
76, 73, 37]. Among them, we apply Padé approximation [37] to the solid-phase diffusion
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PDE (2.1). We briefly explain Padé approximation next, since the optimal control solution is
based on this discretized model. By taking the Laplace transform from input jn to c±s (R±s , s),
the PDE (2.28)–(2.31) is written as a transcendental transfer function:

G(s) =
c±s (R±s , s)

jn(s)

=
R±s
D±s

sinh

(√
s
D±s
R±s

)
R±s
√

s
D±s

cosh

(√
s
D±s
R±s

)
− sinh

(√
s
D±s
R±s

) . (4.28)

The third-order Padé approximation of (4.28) is:

G(s) ≈

3

R±s
+

4R±s
11D±s

s+
R±s

3

165D±s
2 s

2

s
(

1 +
3R2

55Ds

s+
R4

3465D2
s

s2
) . (4.29)

Then, the controllable canonical state-space form is:ċ±s1ċ±s2
ċ±s3

 =

0 1 0
0 0 1

0 −3465D±s
2

R±s
4 −189D±s

R±s
2


c±s1c±s2
c±s3

+

 0
0

3465D±s
2

R±s
4

 j±n (4.30)

c±s (R±s , s) =
[

3
R±s

4R±s
11D±s

R±s
3

165D±s
2

]
. (4.31)

Lastly, we can derive the state-space realization where the bulk concentration, c̄−s = SOCn ·
c−s,max is expressed as a state in a Jordan-form. We perform linear transformation such that
the system matrix has diagonal form,

ẋ = Ax+Bu,

where

A =

a1 0 0
0 a2 0
0 0 0

 , B =

b1

b2

b3

 , (4.32)

and we define surface concentration, c−ss = C>x, as an output function of the states, x =
[x1, x2, x3]>, and bulk concentration for the anode is a state, c̄−s = x3.

c̄−ss =
[

3
R−s

4R−s
11D−s

(R−s )3

165(D−s )2

]
x = C>x. (4.33)

Table 4.1 shows the values of the A, B, C matrices for several common Li-ion chemistries.
Note that the sign of the elements are consistent, which is important for generalizing the
optimal control solutions across chemistries.
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LCO† NCA‡ NMC‡‡

a1 -7.3E-02 -1.2E-02 -3.4E-01
a2 -8.9E-03 -1.47E-03 -4.2E-02

B

 6.5E-07
-8.0E-08
-1.7E-01

  2.4E-05
-3.0E-06

-3.2

  2.2E-07
-2.7E-08
-1.2E-01



C

-1.3E+06
1.5E+06

1

 -6.8E+05
7.7E+05

1

 -2.9E+06
3.3E+06

1


†Lithium Cobalt Oxide [81] , ‡ Nickel Cobalt Aluminum Oxide [86], ‡‡ Nickel Manganese Cobalt Oxide.

Table 4.1: A, B, and C matrices for three common battery chemistries.

PMP analysis

In this section, we derive the optimal solution for the fast charging problem. First, we start
with the Single Particle Model (SPM) optimal control problem formulated as follows:

max
u(t)

∫ tf

t0

x3(t)dt (4.34)

subject to ẋ1 = a1x1 + b1u, x1(0) = x10,

ẋ2 = a2x2 + b2u, x2(0) = x20,

ẋ3 = b3u, x3(0) = x30,

− ub ≤ u ≤ ub,

C>x ≤ Cb,

where −ub represents the maximum charging rate, and the state constraint places an upper
bound on the surface concentration in (4.33), denoted by Cb. The surface concentration
cannot exceed its maximum concentration level, c−s,max, which is determined by the electrode’s
electrochemical properties. The objective is to maximize the bulk concentration of the
anode, in a fixed time horizon, in the presence of input and state constraints. Note that
h(x(tf), tf) = a(x(tf), tf) = b(x(tf), tf) = 0 in (4.3), (4.13), (4.14). Our objective is to
characterize the battery fast charging problem by using Pontryagin Minimum Principle.
The necessary optimal conditions discussed in Section 4.1.2 are computed as follows. The
Lagrangian is:

L = x3 + p> (Ax+Bu)

+ µ1(u+ ub) + µ2(ub − u) + η(Cb − C>x). (4.35)

where p = [p1, p2, p3]> is the co-state vector, and µ1, µ2, η are Lagrange multipliers associated
with input and state constraints. Note that µ1, µ2 do not affect the sign of L due to the
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complimentary slackness. To find the optimal control solution, we focus on the part of L
that depends on u

L̃ = (b1p1 + b2p2 + b3p3) u+ (µ1 − µ2) u, (4.36)

The costate dynamics (4.21) and input optimality (4.22) are computed as

ṗ1(t) = −a1p1 + ηc1, (4.37)

ṗ2(t) = −a2p2 + ηc2, (4.38)

ṗ3(t) = −1 + ηc3, (4.39)

0 = p1b1 + p2b2 + p3b3 + µ1 − µ2. (4.40)

Next, we state the two main results of this paper. They describe the optimal solution
with inactive constraints and active constraints, which respectively give Bang and Bang-Ride
solutions. First of all, the state trajectory for maximum charging current can be derived
analytically:

x1(t) = ea1tx1(0) +
b1ub
a1

(1− ea1t), (4.41)

x2(t) = ea2tx2(0) +
b2ub
a2

(1− ea2t), (4.42)

x3(t) = −b3ubt+ x3(0). (4.43)

The range of Cb that yields an unconstrained optimal control solution to (4.34) is given
by:

c1x1(tf ) + c2x2(tf ) + c3x3(tf ) , C̄ < Cb. (4.44)

Theorem 1. If Cb > C̄, then the optimal solution to (4.34) is to maximize the current input,
−ub, so-called Bang control, and the state constraint is not active during the control horizon.

Proof. Inactive state constraint implies that γ = 0 in transversality conditions (4.23), (4.24)
and the Lagrange multiplier, η(·) ≡ 0. Then, we can find the final conditions of co-states p(t)
at terminal time by solving co-state dynamical equations in (4.37) – (4.39), such as:

p1(tf ) = p2(tf ) = p3(tf ) = 0,

⇐⇒ p1(0) = p2(0) = 0, p3(0) = tf .

Therefore, the co-state trajectories are:

p1(t) = p2(t) = 0, p3(t) = −t+ tf .

We find that (4.36) is maximized when u = −ub, which implies that the optimal current
is the maximum charging rate.
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Theorem 2. If Cb < C̄, then the optimal solution to (4.34) is to maximize the current input,
−ub, until the inequality constraint becomes active. Then it rides the constraint bound –
Bang-Ride control. Furthermore, the switching time1, σ, does not exist for Cb < C̄ but the
Junction time, τ , exists.

Proof. To prove this theorem, we consider two cases: 1) when the state constraint becomes
active at the terminal time, 2) when the state constraint becomes active prior to the terminal
time.

Case 1: Consider the case when the state constraint becomes active at the terminal time,
which implies that γ 6= 0. Then the transversality condition (4.23) yields

p1(tf ) = −c1γ,

p2(tf ) = −c2γ,

p3(tf ) = −c3γ,

with the final conditions above, the co-state trajectories become a function of γ, such as,

p1(t) =
−c1γ

e−a1tf
e−a1t, (4.45)

p2(t) =
−c2γ

e−a2tf
e−a2t, (4.46)

p3(t) = −t− c3γ + tf . (4.47)

Plugging this into b1p1 + b2p2 + b3p3 in (4.36), then the switching time occurs when the
sign of (4.36) changes. That is, the optimal current input switches from −ub to +ub. The
existence of a switching time σ is equivalent to the existence of a root of b1p1 + b2p2 + b3p3 = 0
w.r.t. t, namely:

γ

(
−b1c1

e−a1tf
e−a1t +

−b2c2

e−a2tf
e−a2t − b3c3

)
= b3(t− tf ). (4.48)

The range of γ that yields a solution t = σ(γ) to (4.48) is

0 ≤ γ ≤ −b3tf
−b1c1
e
−a1tf + −b2c2

e
−a2tf − b3c3

≈ tf . (4.49)

Then the Bang-Bang control law is obtained as follows:

u∗(t) =

{
−ub, t ≤ σ(γ),

+ub, t > σ(γ),
(4.50)

1switching refers to shift other extreme value, e.g., −ub → ub.
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and the state trajectory is computed as:

x1(t) =


ea1tx1(0) + b1ub

a1
(1− ea1t), t ≤ σ(γ),

ea1(t−σ(γ))x1(σ(γ))−
b1ub
a1

(1− ea1(t−σ(γ))), t > σ(γ),

(4.51)

x2(t) =


ea2tx2(0) + b2ub

a2
(1− ea2t), t ≤ σ(γ),

ea2(t−σ)x2(σ(γ))−
b2ub
a2

(1− ea2(t−σ)), t > σ(γ),

(4.52)

x3(t) =

{
−b3ubt+ x3(0), t ≤ σ(γ),

b3ub(t− σ(γ)) + x3(σ(γ)), t > σ(γ).
(4.53)

We claim that σ(γ) does not exist as the state constraint is violated before t reaches σ(γ).
That is C>x(σ) > C>x(tf), ∀σ(γ). Note that σ(γ) is determined by γ in (4.49), then the
constraint bound, Cb is obtained as C>x(tf), where x(tf) follows from (4.51) – (4.53). We
can check that the following statement holds for given ranges of electrochemical values in
Table 4.1 :

c1[(ea1(tf−σ)− 1)x1(σ)− b1ub
a1

(1− ea1(tf−σ))]

+c2[(ea2(tf−σ) − 1)x2(σ)− b2ub
a2

(1− ea2(tf−σ))]

+c3[b3ub(tf − σ)] < 0. (4.54)

We conclude that the switching time does not exist when the state constraint becomes
active at the terminal time. The switching time occurs only if Cb = C̄, and is equivalent to
terminal time, tf . Note that we speculated that the state constraint becomes active when
the constraint Cb is less than C̄, which is the scenario discussed in Case 2 next.

Case 2: Consider the case when the state constraint becomes active prior to the terminal
time. Then transversality condition (4.23) and junction condition (4.18) state that

p(tf ) = −γC, (4.55)

p(τ−) = p(τ+) + ζ(−C), (4.56)

where t = τ is the time when the state hits the state constraint bound,

C>x(τ) = Cb. (4.57)

Then the input u can be found such that state does not violate the constraint further, i.e.,
C>ẋ(t) = 0 ∀t ∈ [τ+, tf ]. We can find such an input by taking time derivative of the state
constraint function,

0 = C>ẋ,
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= C> (Ax+Bu) , (4.58)

then the input u(t) becomes a state feedback control law:

u(t) = −C
>A

C>B
x , −Kx, (4.59)

where K ∈ R1×3. Note that the input u is potentially discontinuous at t = τ . Plugging the
feedback control law into the dynamical system results in the following autonomous system:

ẋ(t) = (A− BK)x(t), t ∈ [τ+, tf ]. (4.60)

We claim that the feedback control law (4.59) is bounded for the input constraint, namely

−ub < −Kx(t) < ub. (4.61)

The system is autonomous for t ∈ [τ+, tf ] such that x(t) can be analytically derived,

−ub < −Ke(A−BK)tx0 < ub, t ∈ [τ+, tf ]. (4.62)

Notice that |−Ke(A−BK)tx0| ≤ |−Kx0|, ∀t ∈ [τ+, tf ] as eig(A − BK) ≤ 0 for given
electrochemical model. A bounded feedback control law ensures the Lagrange multipliers
associated with input constraints are zero, i.e., µ1 = 0, µ2 = 0 due to complimentary slackness.
Then (4.40) becomes

p>(t)B = 0, t ∈ [τ, tf ]. (4.63)

We aim to find γ at terminal time t = tf ,

0 = p>(tf )B = −γC>B, (4.64)

since C>B 6= 0, γ = 0. For the constrained optimal control case, we divide the time horizon
into two cases i) state constraint is not active, i.e., t ∈ [0, τ ] ii) state constraint becomes
active, i.e., t ∈ [τ+, tf ].

The next step is to compute the co-state trajectory for the following input,

u∗(t) =

{
−ub, t ∈ [0, τ ],

−Kx, t ∈ [τ+, tf ],
(4.65)

then the costate trajectory is obtained as follows:

p(t) =

{
e−Atp(0) + [0, 0,−t]> , t ∈ [0, τ ],[
eĀ(tf−t) − I

]
θ, t ∈ [τ+, tf ],

(4.66)
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where

Ā =

(
I − CB>

B>C

)
A, θ =

− c1
a1c3

− c2
a2c3

0

 . (4.67)

The derivation of the co-state trajectory for t ∈ [τ, tf ] is not trivial. The analytical
solution of costate dynamics for t ∈ [τ, tf ] is derived briefly as follows: The ODEs for the
costates are

ṗ1 = −p1a1 + ηc1, ṗ2 = −p1a2 + ηc2, ṗ3 = −1 + ηc3, (4.68)

where η ≥ 0. It is obvious that η(t) = 0 if t ≤ τ− due to complimentary slackness. We also
have γ = 0 as described in (4.64) Then,

p(tf ) = 0 ∈ R3. (4.69)

From (4.63), (4.68) can be written as:

0 = Bᵀṗ(t) = Bᵀ

(
− Ap(t) +

 0
0
−1

+ ηC

)
, (4.70)

thus we can compute η(t) such as:

η(t) =
BᵀA

BᵀC
p(t) + η(tf ), (4.71)

where

η(tf ) :=
Bᵀ
[
0 0 1

]ᵀ
BᵀC

. (4.72)

Substituting (4.71) to (4.68), we obtain

ṗ = −Ap+

 0
0
−1

+

(
BᵀA

BᵀC
p(t) + η(tf )

)
C.

= −(I − CBᵀ

BᵀC
)Ap(t) +

 0
0
−1

+ η(tf )C

=: −Āp(t) +

 0
0
−1

+ η(tf )C. (4.73)
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We can design a constant vector

θ =
[
− c1
a1c3

− c2
a2c3

0
]ᵀ
, (4.74)

such that the following costate equation is derived.

p(t) = [eĀ(tf−t) − I]θ. (4.75)

where Ā is defined in (4.67).
Given an allowable maximum current, i.e. ub ≥ |−Kx0|, we find the junction time τ when

the state constraint becomes active, i.e.

c1x1(τ) + c2x2(τ) + c3x3(τ) = Cb. (4.76)

Then we construct algebraic equations for unknowns ζ, p(0) from 1) jump condition form
of co-states in (4.18), 2) jump condition for Hamiltonian in (4.19), such as,

e−Aτp(0) +

 0
0
−τ

 =
[
eĀ(tf−τ) − I

]
θ + ζ(τ)C, (4.77)

e−Aτp(0) +

 0
0
−τ

> (Ax(τ) + Bu(τ−)
)

=
[(
eĀ(tf−τ) − I

)
θ
]> (

Ax(τ) + Bu(τ+)
)
, (4.78)

where

u(τ−) = −ub, u(τ+) = −C
>Ax(τ)

C>B
.

Then, the analytical solution of ζ is obtained as follows:

ζ(τ) =

[(
eĀ(tf−τ) − I

)
θ
]>
B
(
−CTAx(τ)

CTB
+ ub

)
CT (Ax(τ)− Bub)

. (4.79)

With ζ(t) computed above, the boundary condition for costate, p0 can be obtained as:

p(0) = eAτ
([

eĀ(tf−τ) − I
]
θ + ζ(τ)C +

0
0
τ

). (4.80)

Lastly, we check whether a switching time exists for t ∈ [0, σ]. First, τ is chosen between
τ ∈ [0, tf ], then Cb is obtained by Cb = C>x(τ). By solving the algebraic equations (4.77) –
(4.78), we find p0, and then check that b1p1(t) + b2p2(t) + b3p3(t) ≤ 0 for τ, t ∈ [0, tf ] for given
electrochemical parameters described in Table 4.1.
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Therefore, when the state constraint becomes active prior to the terminal time, the
optimal control input is to apply state feedback control law (4.59), which results in riding
the constraints boundary.

Remark 1. The optimal solution for u(t) in (4.34) is the global optimal solution as the
necessary conditions become necessary and sufficient conditions because (4.34) is convex.

The analytical solution of the optimal input, state trajectory, co-state trajectory, and
associated Lagrange multipliers for the constrained optimal control problem are summarized
in Table 4.2.

Interval t ∈ [0, τ ] t ∈ [τ, tf ]
u(t) −ub −Kx
x(t) eAtx0 −

∫ t
0
eA(t−s)Bub ds e(A−BK)(t−τ)x(τ)

p(t) e−Atp(0) +
[
0 0 −t

]> [
eĀ(tf−t) − I

]
θ

µ1(t) −pT (t)B 0
µ2(t) 0 0
η(t) 0 BᵀA

BᵀC
p(t) + η(tf )

Table 4.2: The analytical solution of constrained optimal control problem (4.34) for Cb ≤ C̄.
Unknown variables, ζ, p(0), and η(tf ) are derived in (4.79), (4.80), (4.72).

Numerical simulation results for the optimal fast charging problem (4.34) are presented in
Fig. 4.1 to validate the proposed analytical solution. The terminal time, tf , is chosen as 450
seconds, allowable maximum current, ub, is 5 C-rate, and constraint bound, Cb is chosen as 50%
of maximum concentration level (for illustration). The constrained optimal control solution
satisfies Cb < C̄ from (4.44), and thus the junction time occurs at t = τ = 317. Figure 4.1a
displays the optimal input, state constraint activation, and the normalized objective function,
which is SOC from (3.13). Figure 4.1b exhibits the corresponding trajectories for the states
and co-states. Although difficult to see in the plots, the co-states are discontinuous at the
junction time, and the trajectories satisfy the optimality conditions.

4.1.4 Summary

In this section, we analyze optimal fast charging control of Li-ion batteries. Pontryagin’s
Minimum Principle is used to derive the optimality conditions. We prove that the optimal
fast-charging control is a Bang-Ride control, which applies maximum allowable charging
current until the state constraint becomes active, and then rides the constraint bound to
ensure safety. PMP analysis provides theoretical evidence why optimal fast-charging protocols
are Bang-Ride control in the literature, at least for single particle models. Furthermore,
our theoretical proofs can explain why specific constant current-constant voltage (CCCV)
protocols are candidates for optimal for experimental design in fast charging problem [6],
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Figure 4.1: Numerical constrained optimal control results using analytical solutions in
Table 4.2.

different experimental current pulse profiles [105], and fast charging method design [131]. Due
to this analysis, the search space for optimal control solutions can be reduced to Bang-Ride
trajectories without loss of optimality. On-going work involves extending PMP analysis for
more sophisticated electrochemical models that are nonlinear with multiple constraints.

4.2 Learning-based fast-charging control

The model-based optimal control provides theoretical tools for the optimality of derived
input currents as discussed in previous section. However, batteries are generally partial-
observable system which requires expensive-computational power to estimate the parameters
and the internal states. This can be alleviated by using learning-based controller, such as
reinforcement learning. This learning-based approach does not require knowledge of the
system dynamics, but can achieve the control objective. In this section, we are going to
investigate this learning-based controller using deep reinforcement learning techniques and
perform comparative analysis with other existing model-based controller.
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4.2.1 Introduction

The most common charging procedure for Li-ion batteries is the well known Constant-Current
Constant-Voltage method (CC-CV). This is employed in industry due to its ability to provide
reasonable performance with a relatively simple implementation [27]. However, such a simple
charging algorithm is often based on excessively conservative constraints which reduce the
probability of safety hazards at the expense of higher charging times. Therefore, it does not
constitute an optimal policy for the problem that we aim to solve - at least not in all cases.
For these reasons, several advance battery management strategies have been employed. In
particular we can classify them as (i) Model-based strategies, and (ii) Model-free strategies.
The former seek to find an optimal input trajectory based on a specified battery model, while
the latter interact directly with the battery (denoted as the “environment” in the language
of RL).

The use of mathematical models for battery control is a large topic in the literature.
Equivalent circuit models are simple, intuitive, and mimic the battery behaviors through
lumped electrical parameters which can be easily identified [42]. Electrochemical Models (EM)
exhibit higher accuracy than equivalent circuit models, as well as the ability of describing
internal battery phenomena from the perspective of electrochemistry, and therefore are usually
preferred for simulation purposes [104]. There are a number of research to investigate the
health-aware fast charging strategy for EMs. The authors in [55] formulate a minimum-time
charging problem with health-related constraints and use nonlinear model predictive control.
Similarly, the authors in [91] propose a reference governor approach to solve a minimum-time
charging problem, and the authors in [121] propose a quadratic dynamic matrix control
formulation to design an optimal charging strategy for real-time model predictive control.
The authors in [137] synthesize a state estimation and model predictive control scheme for a
reduced electrochemical-thermal model, in order to design health-aware fast charging strategy.
The problem is formulated as a linear time-varying model predictive control scheme, with a
moving horizon state estimation framework. In the context of ageing mechanism for EMs,
the authors of [92] studied the trade-off between charging speed and degradation, based
on an electro-thermal-aging model. The authors in [94] minimizes the film layer growth
of an electrochemical model by formulating shrinking-horizon nonlinear model predictive
control. However, the exploitation of model-based charging procedure has to face some crucial
challenges. (i) Every model is subject to uncertainties and modeling mismatches, which affect
its accuracy. Since the controller’s performance depends on the model accuracy, a proper
parameter identification procedure has to be conducted based on experimentally collected
data. In the case of electrochemical models, there are typically dozens of parameters to
be identified. This motivates sophisticated optimally designed experiments for parameter
estimation [95, 86]. (ii) Electrochemical models usually consist of a large number of states,
thus leading to a large-scale optimization problem. Moreover, most states are not measurable
in a realistic scenario and, therefore, the presence of an observer is required to reconstruct
the full state information from the available measurements [127]. (iii) The model parameters
drift as the battery ages. It is important to notice that none of the model-based strategies
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proposed in the literature considers the adaptability of the control strategy to variations in
the parameters.

In order to overcome all the limitations of the model-based approach, there has been
substantial effort in the literature to design fast-charging strategies that do not rely on a
mathematical model. Some of them rely on rule-based adaptation of the CC-CV protocol [83,
135, 62]. The authors of [131] propose a charging algorithm that incorporates CC-CV charging
profile and battery health estimation using an extended Kalman filter, where the magnitude
of CC and threshold for CV are updated from the estimator. The authors of [6] propose an
optimal design of fast-charging procedures relying on machine learning. In particular, the
current profile is parametrized by six-steps of ten-minutes each, and Bayesian optimization
is used to select the optimal sequence which maximizes battery cycle life. The authors of
[90] propose closed-loop charging techniques called Constant-Current Constant-Temperature
Constant Voltage (CC-CT-CV), where a rule-based proportional-integral-derivative (PID)
controller is employed. This closed-loop charging strategy constitutes an output-feedback
control law which enables the CC-CV protocol to consider temperature constraints. It is
important to notice that the difficulty of the observability and identifiability is no longer
an issue as this strategy relies only on the output measurements. The main issues of this
outputs-based strategy are represented by the fact that (i) the optimality of the resulting
charging policy is no longer guaranteed, (ii) the controller gain should be obtained by trial
and error, and finally (iii) the controller does not adapt to parameter changes.

All these challenges can be addressed by using a charging procedure based on the
Reinforcement Learning (RL) framework [114]. An RL framework consists of an agent (the
battery management system) which interacts with the environment (the battery) by taking
specific actions (the applied current) according to the environment configuration (charging
time). The main idea is that that the agent learns the feedback control policy directly from
interactions with the environment, namely observations of the reward and state. The control
policy is iteratively updated to maximize the expected long-term reward. Notice that the
reward has to be properly designed so the agent learns how to accomplish the required
task. Most RL algorithms can be classified in two different groups: tabular methods, e.g.,
Q-learning, SARSA, and approximate solutions methods which is also called Approximate
Dynamic Programming (ADP). While the former performs well only in the presence of
small and discrete sets of actions and states, the latter can be used even with continuous
state and action spaces, thus solving the so-called “curse of dimensionality”. On the other
hand, the convergence of the former is proven under mild assumptions, while no proof of
convergence exists for the approximate methods in the general case. The recent success in
several applications of RL using deep neural networks as function approximators has greatly
increased expectations in the scientific community [74, 107, 124, 7]. From a control systems
perspective, the design of RL algorithms involves the computation of feedback control laws
for dynamical systems via optimal adaptive control methods [60]. RL can be regarded as an
indirect adaptive controller wherein the parameters of the value function are estimated, and
then the controller is improved based on the estimated value function.

In this paper, a fast-charging strategy subject to safety constraints, using a deep rein-
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forcement learning framework, is proposed as an extension of the authors’ previous work
[88]. In particular, Deep Deterministic Policy Gradient (DDPG) [61] is adopted. DDPG
is an actor-critic method that deals with continuous state and action spaces. The safety
constraints are considered as soft constraints where the agent (controller) receives penalties
in the reward function in case of violation.

We summarize our novel contributions to the relevant literature as follows. First of all,
reinforcement learning is adopted to overcome the challenges of the fast-charging problem
in battery management systems: computational complexity, observability, and adaptation.
To mitigate the computational complexity associated with feedback controller design for a
high-dimensional state space, we project the state onto a lower-dimensional feature space via
Principal Component Analysis (PCA). This approach, however, requires a state observer to
estimate the states in a real-world application, which motivates an output feedback controller
using voltage, temperature, and current measurements only. The validity of the state-feedback
and output-feedback controllers are tested in simulation and compared to other existing
charging algorithms, namely the reference governor and CC-CT-CV. Lastly, we show that RL
policies are capable of adaptation when the battery parameters are changing over the cycles.
This demonstrates that the use of the proposed methodology enables adaptation to uncertain
and drifting parameters, which is a distinct advantage over other conventional approaches.

4.2.2 Reinforcement Learning Framework

Markov Decision Process, Policy and Value Functions

In the following, we briefly review the Markov Decision Process (MDP) to provide the critical
background. A thorough exposition can be found in [115, 10]. In the MDP setting, we seek the
best policy that maximizes the total rewards received from the environment, E (i.e. the plant).
At each time step t ∈ R+ the environment conditions are described by a state vector, st ∈ S,
where S is the state space while the control policy picks an action at ∈ A, with A being
the action space, which is based on the observation of the state st. The action is therefore
applied to the environment, whose state evolves to st+1 ∈ S, according to the state-transition
probability p(st+1|st, at), and the agent receives a scalar reward rt+1 = r(st,at). The policy
is represented by π which maps the state to the action and can be either deterministic or
stochastic. The total discounted reward from time t onward can be expressed as:

Rt =
∞∑
k=0

γkr(st+k,at+k) (4.81)

where γ ∈ [0, 1] is the discounting factor.
The state value function, V π(st) is the expected total discounted reward starting from

state st. In the controls community, this is sometimes called the cost-to-go, or reward-to-go.
Importantly, note that the value function depends on the control policy. If the agent uses a
given policy π to select actions starting from the state st, the corresponding value function is
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given by:

V π(st) = E
[
Rt | st

]
(4.82)

Then, the optimal policy π∗ is the policy that corresponds to the maximum value V ∗(st)
of the value function

π∗ = arg max
π

V π(st) (4.83)

The solution of (4.83) is pursued by those methods which follow the Dynamic Programming
(DP) paradigm. Such paradigm, however, assumes a perfect knowledge of the environment E
(i.e, the state-transition probability as well as the reward function).

The next definition, known as the “Q-function”, is fundamental since it enables the concept
of model-free reinforcement learning. Consider the state-action value function, Qπ(st,at),
which is a function of the state-action pair that returns a real value. This latter corresponds
to the expected total discounted reward when the action at is taken in state st, and then the
policy π is followed henceforth. Mathematically,

Qπ(st,at) = E
[
Rt | st, at

]
(4.84)

The optimal Q-function is given by

Q∗(st,at) = arg max
π

Qπ(st,at) (4.85)

and represents the expected total discounted reward received by an agent that starts in st,
picks (possibly non-optimal) action at, and then behaves optimally afterwards. Since V ∗(st)
is the maximum expected total discounted reward starting from state st, it will also be the
maximum of Q∗(st,at) over all possible actions at ∈ A

V ∗(st) = max
at∈A

Q∗(st,at) (4.86)

If the optimal Q-function is known, then the optimal action a∗t can be extracted by choosing
the action at that maximizes Q∗(st,at) for state st (i.e. the optimal policy π∗ is retrieved),

a∗t = arg max
at∈A

Q∗(st,at) (4.87)

without requiring the knowledge of the environment dynamics.

4.2.3 Actor-Critic
Actor-critic is an ADP method which solves dynamic programming heuristically, as depicted
in Fig. 4.2. The actor-critic is a policy gradient approach, i.e. it seeks to model and optimize
the policy directly. Importantly, the actor-critic approach allows for continuous state/action
spaces by using a function approximator, e.g., a neural network. In RL, as well as in dynamic
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Figure 4.2: Actor-Critic Structure.

programming, the action is taken by a policy to maximize the expected total discounted
reward. By following a given policy and processing the rewards, one should estimate the
expected return given states from the value function. In the actor-critic approach, the actor
improves the policy based on the value function that is estimated by the critic. We specifically
focus on the policy gradient-based actor-critic algorithm in this work, and, in particular,
on the deep deterministic policy gradient (DDPG) [61]. This algorithm is an extension of
deep Q-network (DQN) [74] to continuous actions, maintaining the importance of features
such as: (i) random sampling from a replay buffer where tuples are saved, (ii) the presence
of target networks for stabilizing the learning process. The algorithm is characterized by
the parametrization of both the critic, Q(st,at|θQ), and the actor, π(st|θπ), as deep neural
network. In addition, the correspondent target networks are defined as Q′(st,at|θQ

′
) and

π′(st|θπ
′
), where the parameters θQ

′
and θπ

′
are slowly updated in order to track and filter

the ones of the actual network (θQ and θπ) thus reducing the chattering due to the learning
process and enhancing its convergence. In the next paragraphs the concepts of critic and
actor are explained in details. Both the actual and target parameters are initialized to the
random vectors θπ0 and θQ0 .

Critic

The role of the critic is to evaluate the current policy prescribed by the actor. The action is
taken as the sum of the actor network output, which is a function of the environment states,
and an exploration noise Nt, namely

at = π(st|θπ) +Nt (4.88)

where the exploration noise is a random variable, for instance an Ornstein-Uhlenbeck process
is considered in this paper. After applying the action, we observe the reward rt+1 and the
next state st+1. For each time step t, the tuple (st,at, rt+1, st+1) is stored in the replay buffer
memory. As soon as the number of tuples stored in the memory reaches a default threshold
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N , at each time step a random mini-batch of N transitions is sampled from the buffer and
for each of them we set

yi = ri+1 + γQ′(si+1, π
′(si+1|θπ

′
)|θQ′) i = 1, · · · , N (4.89)

where superscript ′ denotes the target network, whose parameters are slowly updated in
(4.95). The mini-batch, which is randomly extracted at each time step from the buffer if
enough tuples are stored in the memory, is exploited for updating the networks. In particular,
the critic is updated to minimize the loss function L(θQ):

L(θQ) =
1

N

∑
i

(
yi −Q(si, ai|θQ)

)2
(4.90)

θQk+1 = θQk − ηQ∇θQL(θQ) (4.91)

where index-k denotes the gradient descent algorithm iterates, and ηQ denotes the learning

rate of the critic network. Note that the subscript k in the network parameters θQk , θπk , θQ
′

k

and θπ
′

k is omitted when clear from the context.

Actor

The parameters of the actor network are updated in order to maximize the cumulative
expected reward V π(st). In this paragraph we refer to the cumulative reward with the
variable J (θπ), in order to highlight its dependency on the actor parametrization. The
update of the actor parameters is done as follows

θπk+1 = θπk + ηπ∇θπJ (θπ) (4.92)

where index-k denotes the gradient ascent algorithm iterates, and ηπ denotes the learning
rate of the actor network. Notice that according to the proof in [108], the policy gradient in
(4.92) can be expressed as

∇θπJ (θπ) ≈ E
[
∇aQ(st,at|θQ)∇θππ(st|θπ)

]
(4.93)

which is then approximated by samples as follows

∇θπJ (θπ) ≈ 1

N

∑
i

[
∇aQ(si,ai|θQ)∇θππ(si|θπ)

]
(4.94)

Once the parameters of critic and actor network given samples are updated, then the
target networks are also updated as follows:

θQ
′ ← τθQ + (1− τ)θQ

′

θπ
′ ← τθπ + (1− τ)θπ

′
(4.95)
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where τ is the level of “soft-update”. Equation (4.95) improves the stability of the learning
procedure. Note that convergence is no longer guaranteed, in general, when a value function
approximator is used. Since convergence of the critic network is not guaranteed, it is
important to note that these target networks should update slowly to avoid divergence. Thus
one should choose a small value of τ . This is a challenging point when the action space
becomes continuous unlike tabular Q-learning.

4.2.4 Fast-Charging Problem

The crucial role in battery management system is to the trade-off between fast-charging and
ageing while satisfying safety constraints. In this context, the fast charging problem can be
described as reaching the final SOC in minimum time without violating constraints. The
input current is limited by the hardware configuration of the battery charger, namely,

−Imax ≤ I(t) ≤ 0, (4.96)

with the convention that a negative current is charging the battery. In order to limit the
different degradation mechanism of the cell, we consider constraints that have to be satisfied
during the whole charging process. First, the cell temperature is not allowed to exceed a
maximum temperature, Tmax, since the temperature is closely related to the SEI layer growth
[120]

T (t) ≤ Tmax. (4.97)

Furthermore, we aim to avoid Lithium plating deposition by constraining the side-reaction
overpotential to be positive, which is defined as:

ηsr(x, t) = φ−s (x, t)− φ−e (x, t)− Usr. (4.98)

where Usr denotes the equilibrium potential of the side reaction and is assumed to be zero
[4]. It is known that main battery degradation mechanism, i.e., lithium plating [23, 120, 4],
are related to the side reaction overpotential ηsr. Lithium plating is a particularly harmful
phenomenon which happens when it becomes thermodynamically favorable for lithium to
plate onto the surface of the negative electrode particles instead of intercalating [120]. If
this phenomenon persists, then dendrites can form, grow, and pierce through the separator,
causing a short-circuit. Note that this degradation mechanism is aggravated when the battery
operates at low temperature. We impose the side-reaction overpotential constraint as follows:

ηsr(L
−, t) ≥ 0. (4.99)

In consideration of the preceding characteristics, we formulate an optimal control problem
as follows:

max
I(t)

− tf (4.100)
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subject to

battery dynamics, (2.1)− (2.9),

input constraint, (4.96)

state constraints, (4.97)− (4.99)

V (t0) = V0, T (t0) = T0

SOC−(tf ) = SOCref,

where t0 = 0 and tf are the initial and final time of the charging procedure, V0 and T0 are
the initial value for voltage and temperature respectively, and SOCref is the reference SOC
at which the charging is considered to completed.

For the case in which only output measurements are available (output feedback policy),
we cannot consider the positivity constraints on the side-reaction overpotential, since it is
based on unmeasured states. Therefore, (4.99) is replaced with a more conservative constraint
that limits the voltage below a predefined threshold Vmax, as follows:

V (t) ≤ Vmax. (4.101)

4.2.5 Results and Discussion

In this section, we assess in simulation the performance of the RL when applied to the battery
charging problem (see Section 4.2.4) for both states-based and outputs-based configurations.
The objective is to compare the proposed actor-critic approach with some benchmark algo-
rithms that have been discussed in the literature and exhibit satisfying results in accomplishing
the required task. We consider the modified reference governor technique [91] and CC-CT-CV
protocol based on PI controller. As previously stated, we rely on the electrochemical model
presented in Section 2.1.1 as a battery simulator. The battery considered here consists of a
cell with a graphite anode and a LiNiMnCoO2 (NMC) cathode chemistry.

Notice that the structure of the actor-critic networks remain consistent for different
charging problems. The actor-critic networks are based on neural network architectures [61]
with different numbers of neurons. Specifically, the actor network uses two hidden layers with
20 - 20 neurons while the critic network uses two hidden layers with 100 - 75 neurons. Hyper
parameters are detailed in Table 4.3.

Variable Description Value
γ Discount factor 0.99

ηπ, ηQ Learning rate of actor, critic 10−4, 10−3

τ Soft update of target networks 10−3

Table 4.3: Actor-critic hyper parameters.
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The reward function is designed according to the optimization problem in (4.100) with
the aim of achieving fast charging while guaranteeing safety,

rt+1 = rfast + rsafety(st,at), (4.102)

where rfast is an instantaneous penalty for each time step which passes before the reference
SOC is achieved. In addition, a penalty is also introduced at each time step when the
safety constraints are violated by means of linear penalty functions [109]. As discussed
in Section 4.2.4, the safety constraints enforced in the case of a states-based framework
and in the case of a outputs-based one are different, due to the fact that the side-reaction
overpotential measurement is not available in the latter case. Therefore, in the states-based
configuration we have the following safety term in the reward function

rsafety(st,at) = rηsr(st,at) + rtemp(st,at), (4.103)

where

rηsr(st,at) =

{
λsr ηsr(t), if ηsr(t) < 0

0, otherwise
(4.104)

rtemp(st,at) =

{
λtemp(T (t)− Tmax), if T (t) ≥ Tmax

0, otherwise
(4.105)

where the temperature threshold is set to Tmax = 40◦C. The fast charging term and penalty
function coefficients have been tuned as rfast = −0.1, λsr = 10 and λtemp = −5.

For the outputs-based setting we substitute the limit on the side-reaction overpotential
with the more conservative constraint on the voltage, such as

rsafety(st,at) = rvolt(st,at) + rtemp(st,at), (4.106)

where rtemp is equivalent to (4.105), and

rvolt(st,at) =

{
λvolt(V (t)− Vmax), if V (t) ≥ Vmax

0, otherwise
(4.107)

where Vmax = 4.2V as specified in the datasheet and the coefficient in the voltage constraint
is set to λvolt = −100.

The current is limited within the range [−2.5C, 0], where C is the C-rate related to the
considered cell. In particular, the current constraint is imposed by considering the agent’s
action is inherently bounded within the open-interval (−1, 1) due to the choice of its last
layer as an hyperbolic tangent operator.
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Figure 4.3: PCA results on the electrochemical model.

States-based Learning Policy

We first consider the states-based RL approach. Although deep RL has the distinct advantage
of side-stepping Bellman’s curse of dimensionality for tabular optimal control, it is also
known in the literature that a proper features selection procedure can significantly increase
the performance [40]. Therefore, due to the fact that the electrochemical model presented
in Section 2.1.1 presents a large number of states after discretization, we transform the
state-space into a reduced observation space through principal component analysis (PCA)
[139].

Principal Component Analysis
Suppose we have m time-series data samples for the states, s ∈ Rn, represented as matrix

S ∈ Rn×m. Consider a so-called “principal component” which can be expressed as:

P = wTS, (4.108)

where w ∈ Rn×1 is a vector of weights, P ∈ R1×m is an arbitrary principal component. If we
consider S as a random matrix, then we seek to choose w to maximize the variance of P

var(P ) = wTSSTw. (4.109)

We then formulate the following optimization problem while constraining w to have unit
length:

max
w

wTSSTw (4.110)

subject to wTw = 1.

whose solution w? yields the first principal component according to P = (w?)TS. This
method can be extended to compute q principal components, in which the original data
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Figure 4.4: States-based learning policy results with different initializations of the Actor-Critic
networks at Tamb = 25◦C and Tamb = 15◦C.

s ∈ Rn is projected onto a reduced basis of dimension q that maximizes variance [20]. The
number of principal components is determined by calculating the ratio of each eigen-value to
the sum of eigen-values. The most significant principal component is the one with the largest
eigenvalue, which is the most informative. To see how much information we retain through
PCA, we calculate the explained variance ratio of the principal components as follows:

Explained variance ratio =
λj∑
j λj

. (4.111)

Figure 4.3 describes the PCA results on the electrochemical model. We are specifically
interested in the dynamical states in differential equations (2.1) – (2.9) that are comprised of
hundreds of states after spatial discretization. In this manuscript, we choose five principal
components that explain 99.8% of the original states’ evolution data. Based on the states
reduction technique, the learned policy maps the PCA states to input current by interacting
with the environment.

Training Results of States-based Policy
In the following we discuss the performance of the states-based RL approach applied in

two different settings of environment temperature, Tamb = 25◦C and Tamb = 15◦C. Figure 4.4
shows the training results of the actor-critic approach, where the shaded region represents the
variance of the different variables for each episode over 5 different initializations of the networks
parameters. The solid lines describe their average value. During the training an exploration
noise is added to the agent’s action and the electrochemical model is randomly initialized with
SOC−(t0) ∈ [0.2, 0.4] and T (t0) ∈ [25◦C, 32◦C], thus increasing the exploration capability.
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Figure 4.4a depicts the cumulative reward by evaluating the policy every 10 episodes without
the exploration noise. As it can be noticed, the cumulative reward approaches -3.08 for
Tamb = 25◦C and -3.51 for Tamb = 15◦C. It is important to consider that, although 3000
training episodes are considered, the cumulative reward converges already after 500 cycles.
This number of episodes however constitutes a large part of the life-time of a standard Li-ion
cell (which is about 1000 cycle). For this reason, it is impossible to conduct a complete
training process directly on a real cell, but, as it is common in RL, the training phase is
carried out on a very detailed simulator and then only a fine tuning of the network parameters
is done on-line on the real cell during the first few cycles. Figures 4.4b – 4.4c describe the
constraint violations during training. The constraint violation scores are computed according
to max {T (t)− Tmax, ∀t ∈ [0, tf ]}, max {0− ηsr(t), ∀t ∈ [0, tf ]}, for each episode. Positive
values imply that the constraints are violated during that particular episode. We can see
the constraint violation scores approach zero as the episodes increase, which implies that
the optimal control policy involves a boundary solution in which these constraints are active
(i.e. true with equality during segments of the optimal trajectory). Another interesting
interpretation of these figures comes by analyzing which constraint has a greater impact
in achieving a fast charging protocol. For instance, the cell temperature constraint is the
dominant factor when the ambient temperature is 25◦C while side-reaction overpotential
dominates the charging at Tamb = 15◦C. This fact is also reported by the literature stating
that low temperatures lead to lithium plating and subsequent lithium dendritic growth [128].
Lastly, Fig. 4.4d displays the charging time versus episode number. The charging time
decreases to around 15 minutes at Tamb = 25◦C and 17 minutes at Tamb = 15◦C, on average.
Note that lower ambient temperature takes more time to reach the target SOC as the side
reaction overpotential constraint is prone to violation when the battery is in charging. Note,
upon convergence the proposed actor-critic approach achieves the minimum time goal without
violating the safety constraints.

It is also informative to examine the charging profiles of SOC, voltage, temperature and
side-reaction overpotential that are obtained by testing the agent after the training process.
We consider the initial conditions SOC−(t0) = 0.2 and T (t0) = Tamb (for both the cases of
Tamb = 25◦C and Tamb = 15◦C). The results of this analysis are shown in Fig. 4.5. Moreover,
a comparison with a modified reference governor (MRG) approach [91] is provided. In the
MRG approach, the applied current I(t) and reference current Ir(t) are related according to

I(t+ 1) = β(t)Ir(t), β ∈ [0, 1]

where β(t) is the ratio of reference value that maintains the states in the admissible set. Note
that the reference value is equivalent to the allowable charging current in the RL framework,
i.e., −2.5C for comparative analysis. For 25◦C ambient temperature case, MRG/RL take 19/20
minutes to reach the target SOCref = 0.8. For 15◦C ambient temperature case, MRG/RL
take 21.5/22.5 minutes to reach the 0.8 target. The proposed actor-critic approach performs
similar to this MRG benchmark. Note that the MRG assumes perfect knowledge of the model,
and computes the forward dynamics in the optimization to achieve the goal. In contrast
the states-based actor-critic method is completely model-free. Now, this requires careful
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Figure 4.5: Validation of states-based learning policy compared with modified reference
governor at Tamb = 25◦C and Tamb = 15◦C.

qualification. The actor-critic method in this study obviously interacts with a simulation
model via iterative episodes. In practice, the actor-critic method could interact with a physical
battery, thus avoiding the modeling step. In either case, the results in Fig. 4.5 assume full
state measurement. In a realistic scenario in which only outputs – voltage, temperature and,
in the case of coulomb-counting approximation, also SOC – can be measured, the use of a
model-based observer becomes necessary if the states-based RL configuration is adopted. Due
to the fact that the development of such a model-based states estimator is a challenging task,
we provide in the subsequent section an alternative, a completely model-free RL strategy
which relies on outputs measurements only.

Outputs-based Learning Policy

The previously discussed states-based RL charging strategy requires a state estimator to
estimate the internal states from the output measurements. However, this is a formidable
task as the mathematical structure of DFN model is formulated as nonlinear DAEs. For
this reason, most of the relevant works in the literature on design estimators and controllers
are based on reduced order models. As an alternative we present, for the first time to the
authors’ knowledge, a model-free RL charging algorithm based on output measurements only.
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Figure 4.6: Outputs-based learning policy results with different initialization of Actor-Critic
networks at Tamb = 25◦C and Tamb = 15◦C.

In particular, in this section we provide voltage, temperature and the SOC (retrieved through
coulomb-counting) as observations to the deep RL agent.

Figure 4.6 presents the training results for outputs-based learning policy using the actor-
critic approach at 25◦C and 15◦C ambient temperature. All the settings are consistent with
previous case studies, except for the observations provided to the actor-critic networks, that
here consist of output measurements only. Also, it is important to notice that the safety
constraint which enforces a positive side-reaction overpotential is substituted with the more
conservative one that limits the terminal voltage below a predefined threshold, as discussed in
Section 4.2.4. In Fig. 4.6a the performance of the learned policy are tested every 10 episodes
with exploration noise removed. The cumulative reward approaches -3.79 and -4.13 for the two
ambient temperatures respectively. Simulation results confirm that the proposed actor-critic
approach can be applied for outputs-based controller design without safety violations.

In particular, Fig. 4.6b – 4.6c describe the constraint violations during training. The
violation scores are calculated according to

max {V (t)− Vmax, ∀t ∈ [0, tf ]}
max {T (t)− Tmax, ∀t ∈ [0, tf ]}

for each episode. For the outputs-based policy, the voltage constraint is dominant, at least
for the battery model and parameters considered here. The agent is able to learn to ride
the voltage constraint while minimizing the charging time. This is not surprising, since it is
known that the voltage constraint is particularly conservative. Lastly, Fig. 4.6d displays the
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Figure 4.7: Validation of outputs-based learning policy compared with CC-CT-CV at Tamb =
25◦C and Tamb = 15◦C.

charging time for achieving the reference SOC. The charging time decreases to around 19
minutes at Tamb = 25◦C and 21 minutes at Tamb = 15◦C ambient temperature, on average.
We also observe that the charging time takes longer when the ambient temperature is lower,
which is consistent with the states-based policy.

In the following, we focus on the profiles of the key battery variables that are obtained
by applying the optimal policy achieved at the end of the training process. Moreover, we
compare to another output-feedback model-free scheme that is based on PI controller and
implements a CC-CT-CV protocol. The CC-CT-CV algorithm is defined as

I(t) =


Iref , t ≤ tpk

Iref +Kpe(t) +Ki

∑t
τ=0 e(τ), tpk ≤ t ≤ tcv

Icv, t > tcv

where e(t) is the controller error, i.e., e(t) = T (t)− T ∗, tpk is the period where constant peak
current is applied, i.e., −2.5C, and tcv is the time when the voltage reaches its maximum.
In CV mode, the current is decreasing in an exponential-like fashion, while the voltage is
kept constant until the target SOC is reached. The control gains, Kp and Ki are obtained by
human trial and error. The main defining feature of CC-CT-CV method is the fact that a
temperature constraint is considered, thus enabling a safer charging procedure compared to
the conventional CC-CV approach [90]. In this study, we are interested in assessing the RL
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Figure 4.8: Adaptive outputs-based learning policy results with different initialization of
Actor-Critic networks at Tamb = 25◦C and Tamb = 15◦C.

performance in terms of charging time and state violations when compared to the CC-CT-CV
approach.

We use the same configuration of the previous case study for the initial conditions of the
battery. The comparison is shown in Fig. 4.7. For 25◦C ambient temperature case, CC-CT-
CV/RL take 23/23.5 minutes to reach SOCref = 0.8, while for the case of Tamb = 15◦C the
charging time increases to 25/25 minutes. We conclude that the outputs-based actor-critic
approach can be used to design an output feedback control for battery fast-charging with
similar performance to CC-CT-CV. This is due to the fact that the CC-CT-CV profile seems
to be the optimal charging procedure in presence of temperature and voltage constraints.
However, the main limitation of the CC-CT-CV relies in the fact that an accurate tuning
of the controller is required. Therefore, a possible solution may be the exploitation of RL
strategies for the automatic tuning of the PID coefficients in the CC-CT-CV framework.
Although we have shown that RL only provided equivalent performance to existing methods
when addressing the charging of a fresh battery, we aim to highlight in the next section its
ability to adapt the charging control policy in the face of battery aging.

Adaptive Outputs-based Learning Policy

One of the main challenges facing battery management system development is the controller’s
adaptability to changes in the cell behavior as it cycles. The proposed deep reinforcement
learning framework exhibits the advantage of learning the optimal policy by directly interacting
with the surrounding environment. Specifically, it can adapt to slow changes in the battery
parameters due to aging. First, we analyze the adaptability of RL by comparing the fixed
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Figure 4.9: Validation of adaptive outputs-based learning policy compared with CC-CT-CV
at Tamb = 25◦C and R−f = 0.04Ω.

parameters of actor-critic called static RL policy with an adaptive RL policy that continues
to adjust the actor-critic network parameters as the cell ages. Note that exploration noise is
not considered in this adaptive study because the controller is updated from the estimates of
the critic, not an exploration.

Figure 4.8 describes the results in terms of rewards, state violation, and average charging
time. To emulate the ageing mechanism, we increase the film resistance in the anode, R−f ,
every 100 cycles. The actor-critic networks are initialized by the last training results from
previous study. Both the static and adaptive RL policies achieve the same cumulative return
for the first 100 cycles, since there is no parameter changes in the environment. The static
outputs-based controller fails as the battery is aged, while the adaptive one adapts its control
policy through learning as shown in Fig. 4.8a. The drops in the reward can be explained by
states violation in figures 4.8b – 4.8c. We can observe that the RL policy is capable of adapting
by updating the parameters of actor-critic from the reward (penalty). Figure 4.8d indicates
that the charging time increases from 23.4 minutes to 27.1 minutes on average due to battery
aging. Secondly, we validate the adaptability of RL method by comparing with CC-CT-CV,
as shown in Fig. 4.9. From the figure, we can clearly see that adaptive RL can satisfy the
constraints while static RL and CC-CT-CV violate the temperature constraint during the
charging process. Consequently, RL (actor-critic) demonstrates a distinct advantage as an
adaptive battery fast-charging controller that adjust as the cell ages.
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Discussion and Remarks

We show that the proposed RL framework can be utilized for solving the battery fast charging
problem using both states-based and outputs-based frameworks. The overall results are
summarized in Table 4.4. We make several remarks in this section for readers. First, the
availability of full state information enables faster charge times than output feedback only, since
one can consider the side-reaction overpotential constraint instead of the more conservative
voltage constraint. This motivates the design of state/parameter estimators as a very
important component for reducing the charging time, and carefully monitoring immeasurable
degradation mechanisms such as lithium plating. Second, temperature plays a significant role
in the battery management system, as it affects both side-reaction overpotential and terminal
voltage. Thermal management is another key component for battery management systems.
Lastly, deep reinforcement learning, commonly associated with artificial intelligence, can be
applied to battery management systems. This work demonstrates that RL is comparable with
other existing approaches and its adaptability to aging is well-suited for battery fast-charging
application.

Strategy Condition States-based Outputs-based
RL MRG RL CC-CT-CV

Model-based
25◦C 20 min 19 min - -
15◦C 22.5 min 21.5 min - -

Model-free
25◦C - - 23.5 min 23 min
15◦C - - 25 min 25 min

Adaptability 25◦C YES - YES NO

Table 4.4: Summary of charging time [min.] and adaptability

4.2.6 Summary

In this paper, we propose a model-free deep reinforcement learning framework for solving
the battery fast-charging problem in the presence of safety constraints, when a detailed
electrochemical model is used as a battery simulator. Among the RL paradigms, the actor-
critic scheme and specifically the DDPG algorithm has been adopted due to its ability to
deal with continuous state and action spaces. To address the state constraints, the reward
function has been designed such that the agent learns constraint violations. First, we assume
full state measurements and compare a states-based RL algorithm with a reference governor
approach considered as state-of-the-art benchmark. Subsequently, a more realistic scenario in
which only output measurements are available is taken into account. In this case, instead of
relying on a state estimator, which is challenging to design, we formulate an outputs-based
configuration of the same RL approach. This relies on measurements of voltage, temperature,
and SOC (via columb counting). This latter strategy is compared against a CC-CT-CV
approach, which can be considered a benchmark state-of-the-art output feedback model-free
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approach. For both the RL formulations, simulation results show that RL performs similarly
to the state-of-the-art benchmarks. Finally, the main advantage of RL is adaptation. Namely,
we analyze the outputs-based RL strategy in the presence of changing battery parameters
that mimic battery aging. The results highlight that the proposed approach is able to achieve
reasonable performance as the environment changes according to ageing throughout the whole
battery life, while the CC-CT-CV approach eventually violates safety constraints. Future
work involves experimental validation of proposed framework using hardware-in-the-loop
testing environment with different objectives.
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Chapter 5

Conclusion

This dissertation presents electrochemical model-based estimation, control, and learning tech-
niques for lithium-ion batteries. The main contribution of this dissertation and opportunities
for future work are discussed in this chapter.

5.1 Contributions

• The full-order electrochemical model provides highly reliable and accurate modeling
scheme for lithium-ion batteries which comprises of coupled partial differential equations,
ordinary differential equations, and algebraic equations. The model gives physical
insights to understand the mechanisms inside the battery, however, it is too complicated
to apply micro controller in real time. The reduced-order models can be constructed
for control/estimation purposes with mild assumptions on the electrochemical model.
Furthermore the gap between reduced-order model and actual battery can be filled
with data-driven modeling techniques using dynamical neural networks.

• The system identification of lithium-ion battery cell is crucial aspect to the battery
system management. The convergence speed of identification for electrochemical
parameters can be accelerated by designing optimal input profiles that maximize Fisher
information matrix. The sensitivity analysis for given dynamical system ranks the
parameter’s identifiability and provides confidence interval for estimated parameters
via nonlinear regression. The batter cell characterization framework is experimentally
validated with the conventional characterization process. This sensitivity analysis
can be further expanded to battery health, namely, capacity and power fade due to
degradation mechanisms during operation.

• Optimal charging strategy can prolong the battery’s life span. For identified electro-
chemical models, the optiaml control problem for battery fast charging is formulated.
The goal of battery fast charging is to reach to the target state of charge as soon as
possible while critical electrochemical variables are not violated. The model-based
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optimal control provides theoretical optimality of derived charging current, however,
the model needs to be simple. The learning-based controller facilitates states/outputs
feedback controller scheme under the model uncertainty. It has unique feature of
adaptability for which model-based controller can not afford.

5.2 Future Research Directions

• Hybrid electrochemical modeling can be further extended to capture the degradation
mechanisms by learning from data. The initial model can be identified by the proposed
characterization framework, however, the model accuracy is depreciated throughout
the cycles. This is because the electrochemcial properties of the lithium-ion battery
have changed due to degradation mechanism. There are many factors to describe the
aging mechanisms, but it’s difficult to predict the remaining of useful lifetime for the
battery because the speed of aging process is usually determined by user behavior. For
instance, heavy user might experience faster battery degradation because the battery
is used aggressively. So, this user-oriented battery degradation mechanisms can be
explained by the historical data.

• Thermal management of lithium ion battery is another key aspect of advanced battery
management system. It is highly recommended considering the thermal model parame-
ters simultaneously with the dynamical electrochemical parameters, since their dynamics
are tightly coupled. To further advance battery characterization work discussed in
Chapter 3, thermal parameters, i.e., activation energy, heat capacity, etc should be
estimated by designing optimal thermal & current inputs.

• State of charge estimation has been active research topic for previous decade, now the
research focus has moved on to the state of health estimation. The battery degradation
mechanisms are complicated and hard to predict. Electrochemcial model-based state
of health (SoH) estimation is the future of battery management system. This can be
captured by data-driven models or by estimating the key parameters that constitute
battery health.
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Appendix A

Nomenclature

Table A.1: List of symbols (1/2).

Symbol Description [SI units]
as Specific interfacial surface area [m2 m−3]
A Electrode Area [m2]
cs Lithium concentration in solid phase [mol m−3]
css Lithium concentration at surface in solid phase [mol m−3]
ce Lithium concentration in electrolyte phase [mol m−3]
C Heat capacity [J/(m2-K)]
d ln fc/a
d ln ce

Activity coefficient [-]

Ds Diffusion coefficient in solid phase [m2 s−1]
De Diffusion coefficient in electrolyte phase [m2 s−1]
E Activation energy [kJ/mol]
F Faraday constant [ 96487 Coulomb mol−1]
h Heat transfer coefficients [W/(m2-K)]
i Ionic current [A m−2]
I Applied current density [A m−2]
j Molar ion flux [mol (m2 s)−1]
k Kinetic rate constants [(A m−2)(m3 mol−1)(1+α)]
L Thickness of electrode [m]
nLi,s cyclable lithium in the solid phase [mol]

Q̇ Heat generation [W (m−2)]
Q± Electrode capacity [Ah]
Q Voltage output variance [V2]
R Universal gas constant [8.3145 J (mol K)−1]
Rc Resistance of connectors [Ω m2]
Rs Radius of solid particles [m]
Rf Solid-electrolyte inter-phase film resistance [Ω m2]
t Time [seconds]
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Table A.2: List of symbols (2/2).

Symbol Description [SI units]
t0c Transference number [-]
T Temperature [K]
T1 Temperature at core [K]
T2 Temperature at surface [K]
Tamb Ambient temperature [K]
u Input magnitude [-]
U Open circuit potential of solid material [V]
V Terminal voltage [V]
α Charge transfer coefficients [-]
εs Volume fraction in solid phase [-]
εe Volume fraction in electrolyte phase [-]
η Overpotential of an electrode [V]
θ− Negative electrode stoichiometry [-]
θ+ Positive electrode stoichiometry [-]
κ Electrolyte conductivity [S m−1]
σ Solid phase conductivity [S m−1]
φ Electric potential [V]
x State variable vector [-]
y Output vector [-]
z Algebraic variable vector [-]
S Sensitivity vector w.r.t parameters [-]
θ Parameter vector [-]
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Appendix B

DFN Simulator

In this section, we describe the process how to solve DFN model numerically, and exhibit the
states evolution over time.

B.1 Numerical Implementation

The DFN model described in Section 2.1 can be formulated as DAE system such as:

ẋ = f(x, z, u), (B.1)

0 = g(x, z, u) (B.2)

with initial conditions x(0), z(0) that are consistent. That is, they verify (B.2). The function
f(x, z, u) and g(x, z, u) are computed in Matlab/Python function. The time-stepping is done
by solving the nonlinear equation

0 = F (x(t+ ∆t), z(t+ ∆t)), (B.3)

0 =

[
x(t)− x(t+ ∆t) + 1

2
∆t [f(x(t), z(t), u(t)) + f(x(t+ ∆t), z(t+ ∆t), u(t+ ∆t))]
g (x(t+ ∆t), z(t+ ∆t), u(t+ ∆t))

]
(B.4)

for x(t + ∆t), z(t + ∆t). The function returns the solution (x(t+ ∆t), z(t+ ∆t)) of (B.3)-
(B.4), given x(t), z(t), u(t), u(t+ ∆t). Note that we solve (B.3)-(B.4) using Newton’s method,
meaning analytic Jacobians of F (·, ·) are required w.r.t. x, z.

J =

[
F 1
x F 1

z

F 2
x F 2

z

]
(B.5)

=

[
−I + 1

2
∆t · ∂f

∂x
(x(t+ ∆t), z(t+ ∆t), u(t+ ∆t)) 1

2
∆t · ∂f

∂z
(x(t+ ∆t), z(t+ ∆t), u(t+ ∆t))

∂g
∂x

(x(t+ ∆t), z(t+ ∆t), u(t+ ∆t)) ∂g
∂z

(x(t+ ∆t), z(t+ ∆t), u(t+ ∆t))

]
(B.6)

The analytic Jacobian can be computed by hands or automatic differential toolbox.
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DAE System

To perform the time-stepping in the previous section, we must compute functions f(x, z, u)
and g(x, z, u). These functions, which represent the RHS of (B.1)-(B.2), are calculated given
the inputs x, z, u. The role of variables x, z, u are played by the DFN variables shown in
Table B.1.

Table B.1: DAE notation for DFN states.

DAE Variable DFN Variable
x c−s , c

+
s , ce, T

z φ−s , φ
+
s , i
−
e , i

+
e , φe, j

−
n , j

+
p

u I

In the subsequent sections, we go through each DFN variable listed in Table B.1 and
document its numerical implementation.

Solid Concentration, c−s , c
+
s

The PDEs (2.1) and boundary conditions (2.15) governing Fickian diffusion in the solid phase
are implemented using third order Padé approximations of the transfer function from j±n to
c±ss [37, 97]:

C±ss(s)

J±n (s)
=
− (R±s )3

165(D±s )2
s2 − 4R±s

11D±s
s− 3

R±s

(R±s )4

3465(D±s )2
s3 + 3(R±s )2

55D±s
s2 + s

, (B.7)

which we notate more simply by

C±ss(s)

J±n (s)
=

b2s
2 + b1s+ b0

a3s3 + a2s2 + a1s+ a0

. (B.8)

Next we multiply top and bottom by 1
a3

to yield a unity coefficient on the highest-order term
in the denominator, yielding

C±ss(s)

J±n (s)
=

b̄2s
2 + b̄1s+ b̄0

s3 + ā2s2 + ā1s+ ā0

, (B.9)

where b̄i = bi/a3 and āi = ai/a3.
The transfer function (B.9) is converted into controllable canonical state-space form, thus

producing the subsystem:

d

dt

 c±s1(t)
c±s2(t)
c±s3(t)

 =

 0 1 0
0 0 1
−ā0 −ā1 −ā2

 c±s1(t)
c±s2(t)
c±s3(t)

+

 0
0
1

 j±n (t) (B.10)
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[
c±ss(t)

]
=

[
b̄0 b̄1 b̄2

]  c±s1(t)
c±s2(t)
c±s3(t)

 (B.11)

for each discrete point in x.
To simplify analytical applications for the DFN model, we seek a different state-space

realization in which bulk concentration c̄±s (t) is expressed as a state. This can be found
by pursuing a Jordan-form state-space realization, which diagonalizes the system matrix.
The diagonal elements represent the system eigenvalues. The zero eigenvalue corresponds to
bulk concentration. All the aforementioned calculations are performed in Matlab function
c s mats.m. The final result produces system matrices:

d

dt

 c±s1(t)
c±s2(t)
c±s3(t)

 = A±cs

 c±s1(t)
c±s2(t)
c±s3(t)

+B±cs j
±
n (t) (B.12)

[
c±ss(t)
c̄±s (t)

]
= C±cs

 c±s1(t)
c±s2(t)
c±s3(t)

 (B.13)

where the second row of C±cs is [C±cs]2 = [0, 0, 1]. Note we have abused notation. The states in
(B.12)-(B.13) are not the same as those in (B.10)-(B.11), due to the different realizations.
Also, these matrices must be computed online, due to the temperature dependence of D±s
described in (2.48).

Electrolyte Concentration, ce

The electrolyte concentration PDE (2.2) combined with (2.5), and BCs (2.16)-(2.20) are
implemented using the central difference method, which ultimately produces the matrix
differential equation:

d

dt
cje(t) =

dDeff,j
e

dce
(cje)

[
M j,1

ce c
j
e(t) +M j,2

ce c
j
e,bc(t)

]2
+Deff,j

e (cje)
[
M j,3

ce c
j
e(t) +M j,4

ce c
j
e,bc(t)

]
+M j,5

ce j
j
n(t)

(B.14)
where ce, j

j
n are vectors whose elements represent discrete points along the x-dimension of

the DFN model. The variable cje,bc represents the boundary values for region j, namely

c−e,bc = [ce,bc,1, ce,bc,2]T , csep
e,bc = [ce,bc,2, ce,bc,3]T , c+

e,bc = [ce,bc,3, ce,bc,4]T . The boundary values are

computed by: ce,bc(t) = Cce ce(t) where ce,bc = [ce,bc,1, ce,bc,2, ce,bc,3, ce,bc,4]T .

Note that the effective diffusivity, Deff,j
e (cje), and its derivative, dDeff,j

e

dce
(cje), are state-

dependent and must be computed online. The matrices M j,1
ce ,M

j,2
ce ,M

j,3
ce ,M

j,4
ce ,M

j,5
ce , Cce are
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computed offline by Matlab/Python function block. These matrices are given by

M j,1
ce =

1

2Lj∆xj



0 1 0 . . . 0
−1 0 1 . . . 0
0 −1 0 . . . 0
...

...
...

0 0 · · · · · · 1
0 0 · · · −1 0


, M j,2

ce =
1

2Lj∆xj


−1 0
0 0
...

...
0 0
0 1

 , (B.15)

M j,3
ce =

1

(Lj∆xj)2


1 −2 1 . . . 0
0 1 −2 . . . 0
...

...
...

...
0 0 · · · 1 −2 1
0 0 · · · 0 1 −2

 , M j,4
ce =

1

(Lj∆xj)2


1 0
0 0
...

...
0 0
0 1

 ,
(B.16)

M j,5
ce =

(1− t0c)ajs
εje

I. (B.17)

for j ∈ {−, sep,+}. The matrix Cce is given by

Cce = −(N2
ce)
−1(N1

ce) (B.18)

where

N1
ce =


4 −1 · · · 0 0 0 0 · · ·
0 0 · · · (ε−e )brug

2L−∆x−
−4 (ε−e )brug

2L−∆x−
−4 (ε

sep
e )brug

2Lsep∆xsep
(ε

sep
e )brug

2Lsep∆xsep · · ·
4 0 · · · 0 0 0 0 · · ·
0 0 · · · 0 0 0 0 · · ·
· · · 0 0 0 0 · · · 0 0
· · · 0 0 0 0 · · · 0 0

· · · (ε
sep
e )brug

2Lsep∆xsep −4 (ε
sep
e )brug

2Lsep∆xsep −4 (ε+e )brug

2L+∆x+
(ε+e )brug

2L+∆x+
· · · 0 0

· · · 0 0 0 0 · · · 1 −4

 (B.19)

N2
ce =


−3 0 0 0

0 3 (ε−e )brug

2L−∆x−
+ 3 (ε

sep
e )brug

2Lsep∆xsep 0 0

0 0 3 (ε
sep
e )brug

2Lsep∆xsep + 3 (ε+e )brug

2L+∆x+
0

0 0 0 3

 . (B.20)

Note, we have used second-order accurate finite difference approximations for the boundary
conditions.
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Temperature, T

For lumped thermal dynamics, the temperature is scalar, so the ODE is directly implemented
as:

ρavgcP
dT

dt
(t) = hcell [Tamb(t)− T (t)] + I(t)V (t)−

∫ 0+

0−
asFjn(x, t)∆T (x, t)dx, (B.21)

∆T (x, t) = U±(c±s (x, t))− T (t)
∂U±

∂T
(c±s (x, t)), (B.22)

c±s (x, t) =
3

(R±s )3

∫ R±s

0

r2c±s (x, r, t)dr (B.23)

Solid Potential, φ−s , φ
+
s

The solid potential ODE (2.3) and BCs (2.21) are implemented using the central difference
method, which ultimately produces the matrix equation:

d

dt
φ−s (t) = F 1

psn φ
−
s (t) + F 2

psn i
−
e,aug(t) +Gpsn I(t) = 0 (B.24)

d

dt
φ+
s (t) = F 1

psp φ
+
s (t) + F 2

psp i
+
e,aug(t) +Gpsp I(t) = 0. (B.25)

where i±e,aug are

i−e,aug(t) =

 0
i−e (x, t)
I(t)

 , i+e,aug(t) =

 I(t)
i+e (x, t)

0

 (B.26)

This section also computes the terminal voltage V (t) from (2.27) using matrix equations

φ−s,bc(t) = Cpsn φ
−
s (t) +Dpsn I(t), (B.27)

φ+
s,bc(t) = Cpsp φ

+
s (t) +Dpsp I(t), (B.28)

V (t) = φ+
s,bc,2(t)− φ−s,bc,1(t)−RcI(t) (B.29)

where the following matrices are computed a priori by Matlab/Python function

(F1n) = (M1n)− (M2n)(N2n)−1(N1n), (B.30)

(F2n) = (M3n), (B.31)

(Gn) = (M4n)− (M2n)(N2n)−1(N3n), (B.32)

(F1p) = (M1p)− (M2p)(N2p)−1(N1p), (B.33)

(F2p) = (M3p), (B.34)

(Gp) = (M4p)− (M2p)(N2p)−1(N3p), (B.35)

(Cn) = −(N2n)−1(N1n), (B.36)

(Dn) = −(N2n)−1(N3n), (B.37)
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(Cp) = −(N2p)−1(N1p), (B.38)

(Dp) = −(N2p)−1(N3p), (B.39)

where the (Mij) and N(ij) matrices result from central difference approximations of the
ODE in space (2.3) and boundary conditions (2.21).

(M1j) =



0 αj 0 . . . 0
−αj 0 αj . . . 0

0 −αj 0 . . . 0
...

...
...

0 0 · · · · · · αj
0 0 · · · −αj 0


, (M2j) =


−αj 0

0 0
...

...
0 0
0 αj

 , (B.40)

(M3j) =
1

σref,±


0 −1 0 . . . 0
0 0 −1 . . . 0
...

...
...

...
0 0 · · · −1 0 0
0 0 · · · 0 −1 0

 , (M4j) =
1

σref,± I (B.41)

(N1j) =

[
4αj −αj 0 . . . 0 0
0 0 0 . . . 1αj −4αj

]
, (N2j) =

[
−3αj 0

0 3αj

]
, (B.42)

(N3n) =

[
1
0

]
, (N3p) =

[
0
1

]
(B.43)

for j ∈ {n, p}, αj = 1/(2Lj∆xj). Note, we have used second-order accurate finite difference
approximations for the boundary conditions.

Electrolyte Current, i−e , i
+
e

The electrolyte current ODE (2.5) and BCs (2.25) are implemented using the central difference
method, which ultimately produces the matrix equation:

d

dt
i−e (t) = F 1−

ien i
−
e (t) + F 2−

ien j
−
n (t) + F 3−

ien I(t) (B.44)

d

dt
i+e (t) = F 1+

iep i
+
e (t) + F 2+

iep j
+
n (t) + F 3+

iep I(t) (B.45)

where the following matrices are computed a priori by Matlab/Python function

F 1−
ien = (M1n)− (M2n)(N2n)−1(N1n), (B.46)

F 2−
ien = (M3n)− (M2n)(N2n)−1(N3n), (B.47)

F 3−
ien = (M2n)(N2n)−1(N4n), (B.48)

F 1+
iep = (M1p)− (M2p)(N2p)−1(N1p), (B.49)
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F 2+
iep = (M3p)− (M2p)(N2p)−1(N3p), (B.50)

F 3+
iep = (M2p)(N2p)−1(N4p) (B.51)

where the (Mij) and N(ij) matrices result from central difference approximations of the
ODE in space (2.5) and boundary conditions (2.25).

(M1j) =



0 αj 0 . . . 0
−αj 0 αj . . . 0

0 −αj 0 . . . 0
...

...
...

0 0 · · · · · · αj
0 0 · · · −αj 0


, (M2j) =


−αj 0

0 0
...

...
0 0
0 αj

 , (M3j) = −βjI,

(B.52)

(N1j) =

[
0 0 0 . . . 0
0 0 0 . . . 0

]
, (N2j) = I, (N3j) = (N1j), (B.53)

(N4n) =

[
0
1

]
, (N4p) =

[
1
0

]
(B.54)

for j ∈ {n, p}, αj = (2Lj∆xj)−1, βj = ajsF .

Electrolyte Potential, φe

The electrolyte potential is implemented using the central difference method, which ultimately
produces the matrix equation:

d

dt
φ−e (t) = F 1

pe(ce,x) · φe(t) + F 2
pe(ce,x) · ie,x(t) + F 3

pe(ce,x) · ln(ce,x(t)) (B.55)

where vectors ie,x and ce,x represent the entire electrolyte current and concentration, respec-
tively, across the entire battery, including boundary values,

ie,x(t) =
[
0, i−e (x, t), I(x, t), i+e (x, t), 0

]T
, (B.56)

ce,x(t) =
[
ce,bc,1(t), c−e (x, t), ce,bc,2(t), csepe (x, t), ce,bc,3(t), c+

e (x, t), ce,bc,4(t)
]T
,(B.57)

ce,bc(t) = Cce ce(t) (B.58)

Note that the system matrices F 1
pe, F

2
pe, F

3
pe are state-varying. These state matrices are

computed online as follows:

F 1
pe = κeff(ce) ·Mpe,1 +Mpe,2Cpe, (B.59)

F 2
pe = Mpe,3, (B.60)

F 3
pe = κeff

D (ce)Mpe,4 (B.61)
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where

κeff(ce) = κ(ce) · (εje)brug, (B.62)

κeff
D (ce) = κeff(ce)

2RT

F
(t0c − 1)

(
1 +

d ln fc/a
d ln ce

(x, t)

)
. (B.63)

The matricesMpe,1,Mpe,2,Mpe,3,Mpe,4, Cpe are computed offline by Matlab function phi e mats.m

as follows. Let

αj =
1

2Lj∆xj
(B.64)

Molar ion fluxes, i.e. Butler-Volmer Current, j−n , j
+
n

Since the Butler-Volmer equation (2.6) is algebraic, and we always assume αa = αc = 0.5 = α,
it is trivially implemented as:

d

dt
j−n (t) =

2

F
i−0 (t) sinh

[
αF

RT
η−(t)

]
− j−n (t), (B.65)

d

dt
j+
n (t) =

2

F
i+0 (t) sinh

[
αF

RT
η+(t)

]
− j+

n (t) (B.66)

where

i±0 (t) = k±
[
c±ss(t)ce(t)

(
c±s,max − c±ss(t)

)]α
, (B.67)

η±(t) = φ±s (t)− φe(t)− U±(c±ss(t))− FR±f j
±
n (t) (B.68)

for each discrete point in x, in the electrodes only. Note that d
dt
j±n (t) is a dummy variable used

to save the corresponding element of vector g(x, z, t). Note that the surface concentration is
not allowed to increase more than its maximum, otherwise it’s not feasible to solve the whole
dynamical system equations.

In the next section, we visualize the evolution of the system when a simple input current,
i.e., constant current is applied to this model.
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B.2 Visualization

(a) Time-derivative states and associated state trajectory.

(b) Algebraic state evolution and associated algebraic state trajectory.

Figure B.1: The visualization of DFN simulator when a constant current is applied to the
simulator.
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Appendix C

Sensitivity Validation

In this section, we plot the sensitivity results in comparison to perturbation results. First,
below Table C.1 is the parameter list to calculate the sensitivity. In this test, we give a simple
pulse current.

Params of Interest
ID # Symbol Description Unit

1 D−s Solid-phase diffusion coefficients [m2/sec]
2 D+

s Solid-phase diffusion coefficients [m2/sec]
3 R−s Solid-phase particle radii [m]
4 R+

s Solid-phase particle radii [m]
5 ε−s Solid-phase volume fraction [-]
6 ε+s Solid-phase volume fraction [-]
7 1/σ− Solid-phase conductivity [Ω m]
8 1/σ+ Solid-phase conductivity [-]
9 De(·) Electrolyte diffusion coefficient [m2/sec]
10 ε−e Electrolyte volume fraction [-]
11 εsep

e Electrolyte volume fraction [-]
12 ε+e Electrolyte volume fraction [-]
13 κ(·) Electrolyte conductivity [Ω m]
14 t0c Transference number [-]

15
d ln fc/a

d ln ce
(·) Activity coefficient [-]

16 k− Kinetic rate constants [(A/m2)(mol3/mol(1+α)]
17 k+ Kinetic rate constants [(A/m2)(mol3/mol(1+α)]
18 R−f Film resistance [Ω]

19 R+
f Film resistance [Ω]

20 nLi,s Moles of cyclable lithium in solid phase [mol]
21 ce(x, 0) Initial Li-ion concentration in electrolyte [mol/m3]

Table C.1: Parameter list for sensitivity validation
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C.1 Sensitivity Dynamics vs Perturbation

(a) D−s (b) D+
s

(c) R−s (d) R+
s

Figure C.1: Sensitivity validations for D−s , D+
s , R−s , and R+

s .
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(a) σ− (b) σ+

(c) De(·) (d) ε−e

Figure C.2: Sensitivity validations for σ−, σ+, De(·), and ε−e .
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(a) εsepe (b) ε+
e

(c) κ(·) (d) t0c

Figure C.3: Sensitivity validations for εsepe , ε+
e , κ(·), and t0c .
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(a)
d ln fc/a
d ln ce

(b) k−

(c) k+ (d) R−f

Figure C.4: Sensitivity validations for
d ln fc/a
d ln ce

, k−, k+ and R−f .
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(a) R+
f (b) ce(x, 0)

Figure C.5: Sensitivity validations for R+
f and ce(x, 0).
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