
LEARNING A MORE EFFICIENT BACKWARD-CHAINING REASONER

Learning a More Efficient Backward-Chaining Reasoner

Alex Arnold ALEXARNOLD2024@U.NORTHWESTERN.EDU

Northwestern University

Jeff Heflin JEH3@LEHIGH.EDU

Lehigh University, 113 Research Dr., Bethlehem, Pennsylvania 18015

Abstract

Neuro-symbolic AI and deep learning models have been used to mimic logical reasoning. In this

paper, we provide a path guidance system for logical inference. We train a feed-forward neural net-

work to provide a backward chaining reasoner with information on which order to attempt subgoals

and which rules to apply first. A key element of our approach is learning embeddings for logical

atoms that are informed by unification. By using these embeddings to construct a guided reasoner,

we saw large reductions in the number of nodes explored by the reasoner.

1. Introduction

Despite the recent breakthroughs in deep learning and neural networks, symbolic learning and

knowledge representation still play a vital role in AI advancements and practical uses in domains

such as the medical field. Statistical AI and deep learning are adept at finding trends in large data

samples, and can be applied without comprehensive preexisting knowledge about the subject mat-

ter. While the results they output are often convenient and easy to use, they are also known to be

black boxes in that it is difficult to generate a convincing explanation of these results. On the other

hand, symbolic AI systems can often provide human-readable proofs of their conclusions, but are

generally only useful when the problem is already well understood. These algorithms also can not

handle edge cases or exceptions well if they are not explicitly coded into the model. Neuro-symbolic

AI emerged to combine these two fields in order to harness the power of deep learning while also

remaining explainable.

This paper goes in a different direction than previous work in the field in that all actual reasoning

will be done by a traditional backward chaining reasoner. Backward chaining is sound with proper

implementation, but it is not complete as there are multiple issues that can lead to inefficiency or

even infinite loops. In a "pure" version of the algorithm, which rule to apply and which atom to

expand next is arbitrary. In languages like Prolog, the path through the search tree is a depth first

search, which requires knowledge base (KB) designers to order rules specifically and intentionally

in order to optimize the search. If a knowledge base is poorly designed, it can lead to cycles that

jeopardize the completeness of the algorithm. These issues require targeted human intervention, and

as knowledge bases grow larger, such engineering becomes increasingly difficult. Various heuristics

have been used to successfully speed up logical inference, but they often require training on all

1



A. ARNOLD AND J. HEFLIN

axioms in the knowledge base or storing information in a database (Sharma & Goolsbey, 2017).

Groundbreaking work such as AlphaGo (Silver et al., 2017) has provided insights into how deep

learning can be used to make a seemingly impossible graph search possible. Given the vast size of

current knowledge bases, incorrect backward chaining paths can lead to large inefficiencies. The

goal of this paper is to create a sub-symbolic representation using atom unification in order to then

design a path guidance system for reasoning algorithms, which would prevent some costly incorrect

choices that arbitrary searches would take. This is the first step in a larger research program that

aims to make it possible to design KBs in a purely declarative fashion, and to avoid optimizing them

for specific queries.

2. Background

2.1 Neuro-symbolic AI

One of the major ongoing research areas in neuro-symbolic AI is conducting logical inference us-

ing deep learning. Approaches like TransE (Bordes et al., 2013) and work based on it are able

to add new facts without inputting new knowledge into the system using novel representations of

symbolic relationships. Previous work has also attempted to create neural networks that function

as pseudo-reasoners on logic problems. Work like First Order Logical Neural Networks (Kijsirikul

& Lerdlamnaochai, 2016) have created feed-forward neural networks that can function on noisier

data than traditional reasoners, and therefore can deal with exceptions better than other reasoners.

Traditional reasoning techniques like backward chaining have been used as inspiration for recursive

neural networks that represent logical operations and replaces steps like unification with differen-

tiable processes (Rocktäschel & Riedel, 2017). Other work has taken inspiration from AlphaGo

and NLP systems by using reinforcement policy based learning and attention in order to improve

problem solvers (Crouse et al., 2021). Mathematical proofs have also been a subject of research,

with automated theorem provers being used to predict which proven statements will be needed to

prove a given theorem (Kaliszyk et al., 2015). Our work is most similar to these last two, in that we

seek to predict which rules will be needed to solve a given query and the best path through a search

tree.

2.2 Meta-reasoning

Our work also falls under the field of meta-reasoning. Meta-reasoning refers to the control of

time, effort, and strategies put towards reasoning, and the amount of each is chosen based on some

chosen heuristic (Ackerman & Thompson, 2017). Meta-reasoning approaches can take inspiration

from meta-cognition, or humans own reasoning about their own thought processes.

2.3 Horn Logic and Unification

In First Order Logic, atomic sentences are the most basic statements. They consist of a predicate or

function and a list of arguments that can be either constants (denoted with lowercase characters in

Datalog) or variables (denoted with upper case characters in Datalog). For example, the intended

interpretation of daughterOf(arya_stark, ned_stark) is that “Arya is the daughter of Ned.” If

2



LEARNING A MORE EFFICIENT BACKWARD-CHAINING REASONER

an atom appears in the knowledge base as a fact (or can be inferred through the use of other rules) it

is said to be true. We used a subset of first order logic known as Horn logic. Horn logic clauses can

be written as an implication of the form A1 ∧ A2 ∧ ... ∧ Ai → B, where An and B are all positive

atoms. The atoms on the left are body, while the single positive atom is the head. If the body is

empty, then the rule is considered a fact. An added benefit of using Horn logic is that contradictions

are impossible, as negation is not a valid logical operator.

Datalog is a function-free version of Horn logic that uses a Prolog syntax. Additionally, existen-

tial variables are not allowed in the head of the clause.Like Prolog, the head of a rule is written on

the left hand side and the “:-” symbol is used for implication. Terms that begin with a capital letter

are variable, while all other terms are constants. A short example knowledge base is listed bellow.

Example Knowledge Base

• childOf(arya_stark, ned_stark).

• childOf(ned_stark, rickard_stark).

• childOf(arya_stark, catelyn_stark).

• parentOf(X,Y) :- childOf(Y,X).

• grandparentOf(X,Y) :- parentOf(Z,Y), parentOf(X,Z).

This small knowledge contains four facts and two inference rules. Additional facts, such as par-

entOf(rickard_stark, ned_stark), can be inferred using reasoning algorithms.

Reasoning in first-order logic (and its fragments) depends on the concept of unification to deter-

mine if a one atom can be substituted for another. Formally, two logical expression unify if there is a

substitution that makes them syntactically identical. For two Datalog atoms, this means they have to

have the same predicate and cannot have different constants in the same term position. Furthermore,

a variable cannot appear in the same position as different constants. For example, p(X,X) would

unify with p(a, Y ) or p(a, a), but not m(X,X) or p(a, b).

2.4 Forward and Backward Chaining Reasoners

Two of the most common reasoners for horn logic knowledge bases are forward and backward

chaining (Poole & Mackworth, 2018). Each start with an atomic query, but work towards an answer

in opposite ways. Forward chaining starts with all the facts (rules with no body) and uses inference

rules to generate facts until it can no longer generate any new facts. Backward chaining starts with

the query and attempts to unify it with heads of rules and recursively prove the sub-goals until all

sub-goals are proven. Backward chaining tends to be preferable when there is a specific query in

mind while forward chaining is more useful to infer all of the new facts from an existing knowledge

base. Each can be represented as a tree search problem. Backward chaining starts at the root,

while forward chaining starts at the leaves. Forward chaining is less efficient when trying to prove

only one query, but is better at inferring many or all possible facts in a knowledge base. Backward

chaining will therefore be the algorithm this work seeks to optimize.

2.5 Logical Embeddings

In order to apply neural networks to the problem, one must first find a way to convert facts and rules

into a numeric vector form. The result of such a conversion is called an embedding. We argue that

3



A. ARNOLD AND J. HEFLIN

logical embeddings have to meet two criteria: they have to be accurate representations, and they

have to be applicable to multiple knowledge bases. Structure must be the only feature that embed-

dings take into account, and they must not take into account any semantic meaning of the symbols

themselves. The embeddings of childOf(arya_stark, ned_stark) should not rely on the meaning

of arya_stark, since this can lead to the model over-fitting to the knowledge base used in training

(Ebrahimi et al., 2021). Therefore, all names should be represented as meaningless symbols, as that

is more representative of how actual reasoners interpret them. The order of arguments in atoms must

be preserved to retain properties for unification, but the order of rule bodies is irrelevant, although

in contemporary knowledge bases order is integral to backward chaining execution. Previously,

rules have been represented using a bag-of-words style approach and “chain-based vectorization”

for atoms based on unity (Crouse et al., 2021) and others utilized the semantic meanings of words

in the knowledge base to create embeddings of symbols (Socher et al., 2013).

The method used by Crouse et al. (2021) is most similar to ours. Their approach involved

breaking down clauses into multiple different “patterns” that are each linear chains from a predicate

symbol to a variable or constant. These were intended to provide representations that could be used

to determine structural similarity. This approach to vectorization is carefully engineered based on

intuitions about first-order reasoning, and the final vector was created by hashing the pattern and

setting specific bits of the vector based on how many times each pattern appeared in a clause. If not

careful, this approach can either results in vectors that are much larger than needed, or in collisions

between different patterns.

3. Methods

In order to created a guided reasoning system, we first created embeddings of atoms that were

informed by unification. We then created random knowledge bases to reason on, and represented

the rules and facts using the previously created embedding model. A feed-forward neural network

was then created to score goal/rule pairs in the random knowledge base by how likely that path was

to lead to a solution. A guided reasoner then used this model to choose which paths to attempt first.

3.1 Embeddings that Respect Unification

The first step to generating embeddings based on unification was to create a vector encoding of an

atom. This work is most similar to Crouse et al. (2021), who were also inspired by atom unity as

a basis for atom representation. However, our key contribution is that the embeddings are actually

learned, rather than engineering. Since the semantic content of the atoms are not important, we

created random atoms from a pool of ten predicates (p0, p1, . . . p9) with a random arity from one

to four, ten variables (X0, X1, . . . X9), and 100 constants (a0, a1, . . . a99).1 Unary and binary

predicates were set to be more common to reflect conditions in real-world knowledge bases. Other

work has allowed semantically similar predicates such as "grandpaOf" and "grandfatherOf" to unify

(Rocktäschel & Riedel, 2017), but this is not possible in classical logic (where predicates must

match exactly) and will not be considered here since the random predicates lack any meaning at all.

1. More complex KBs could be supported by starting with a larger pool, but this will lead to larger training times

4





A. ARNOLD AND J. HEFLIN

possible unifying pairs were found to create the anchors and positive cases, and the anchor atom was

“corrupted” by randomly changing the arguments in order to create a negative case. If this process

was not able to create a non-unifying case with the same predicate, a random atom was selected to

be the negative case.

3.2 Knowledge Bases and Reasoners

We generated random knowledge bases using the same predicates as those used to train the atom

embedding model. They were kept to a limited rule length to reflect real world knowledge bases

that do not tend to have overly long or complex rules (Russell & Norvig, 2009). Generated facts

also only contained constants to retain a manageable computation time. Due to the properties of

Horn logic stated above, these random knowledge bases could not contain contradictions that would

complicate the generation process. A random knowledge base of size 150 was created with 80%

facts and 20% rules with body lengths of up to 4, with smaller rules being more likely than larger

rules to reflect conditions in many real world knowledge bases.

In order to create a model that predicts the best path, both forward and backward chaining

reasoners were needed to construct training examples. All possible facts that could be inferred

from a knowledge base were inferred using forward chaining, and a random fact was selected and

random arguments replaced with variables to create new queries. The main advantage of using

Datalog is that the deductive closure of any knowledge base is finite since Datalog lacks functions.

This guarantees that forward chaining will eventually complete and find all possible facts. Backward

chaining was then used to find all possible solutions to the query and generate a representation of

the search tree. In the tree, a node consists of subgoals that remain to be proven. We choose one

subgoal at random and then find all rules that apply to this subgoal (i.e., the head of the rules unify

with the subgoal). We also selected the rules in a random order for each subgoal. This process is

repeated recursively until a solution is found or a depth limit is reached. We extracted all (g, r) pairs

from the tree, where g was a chosen subgoal and r was the rule that was chosen to expand the node.

If a (g, r) pair was extracted from a path that eventually led to a solution (regardless of depth), we

assigned it a score of 1. Otherwise, we assigned it a score of 0. We used a dynamic depth limiter

to prevent infinite cycles. Since paths to shallower solutions are more efficient than those to deeper

ones, so deeper paths were less pertinent than shallower ones. When the reasoner finds a solution,

it only searches up to 1.5 times deeper in the search tree from then on.

The output of this process is a set of training examples, each consisting of a subgoal g, a rule r,

and a binary classification of whether the rule ultimately leads to a solution of the original problem.

Note, that this process will produce many more negative examples (where the rule does not lead to a

solution) than positive ones. This an example of a class imbalance problem, which will be addressed

in the next section. Additionally, we cannot sample the entire answer space, and the initial queries

used in the test set were not present in the training data generated from this process. That being

said, it is possible for them to share sub-trees within each search tree.

6



LEARNING A MORE EFFICIENT BACKWARD-CHAINING REASONER

3.3 Binary Classifier for Path Guidance

Given our set of training examples, we can learn a binary classifier that determines whether a par-

ticular rule is a good step in the search for a solution to reasoning problem. This model would

determine a “score” for how likely it is that a particular rule will lead to an overall solution for

each subgoal. We used the data generated from the previous process to train this model, where the

inputs to model are the subgoal atom and the rule used, and the target is a binary variable indicat-

ing whether the subgoal/rule combination led to a solution. All inputs were constructed using the

embeddings generated with the model we introduced in 3.1.

An important question is how to create an embedding of a rule, given that we have embeddings

for its constituent atoms. For a (g, r) pair, our algorithm constructs the embedding by concatenating

the unity embedding of subgoal g, the unity embedding of the head of rule r, and the sum of

unity embeddings of each atom in the body of r. We hypothesize that adding them together will

still capture the semantics of all of the body atoms while also having the desirable property of

ignoring the ordering of the atoms in the body. Since our embedding process of each atom tends to

place unifiable atoms close together, our rule embeddings will also tend to have close embeddings

if they only differ in a variable renaming. We selected a supervised learning approach and used

feed-forward neural networks. The network contained three linear layers and sigmoid activation

functions.

As mentioned above, our training data has a class imbalance problem, where there were many

more negative examples than positive examples. It is well-known that unbalanced classes can lead

to problems in machine learning. We used a common solution, which is to oversample the examples

(add additional copies of them).

In a reasoner guided by these results, both the query/subgoal and rule used would be chosen in

accordance to the model above. The score given by the binary classification will rank all possible

subgoal/rule combinations, and the reasoner will search the tree in that order as opposed to from left

to right as in a standard reasoner or randomly as in our data generation reasoner. To test if this is

more efficient, we evaluated against a traditional depth first search backward chaining reasoner. We

then utilized the same methods with embeddings generated via an autoencoder as a baseline. Our

evaluation metric was the number of nodes explored, and runtime was not considered.

4. Experiment and Results

4.1 Unification Embeddings

To learn the embeddings of atoms, we created a dataset with 53k atom triplets (anchor, positive

example, negative example). The model was trained for 30 epochs and achieved a training loss

of 0.2022. We then compared the embeddings of unifying pairs with those of non-unfying pairs

(Figure 2). As desired, unifying atoms tended to have a very high cosine similarity, while non-

unifying atoms tends tended to have a cosine similarity closer to 0.

A Kolmogorov-Smirnov two sample test was run to determine if the two samples are signifi-

cantly different. With a test statistic of 0.755 and p < 0.001, there is statistically significant evidence

that the two distributions are different. This indicates that the embeddings were able to sufficiently

7











A. ARNOLD AND J. HEFLIN

Acknowledgements

We thank Dr. Mohamed Trabelsi for his help in the design of the project. This work was con-

ducted as part of an REU site supported by the National Science Foundation under Grant No. CNS-

2051037.

References

Ackerman, R., & Thompson, V. A. (2017). Meta-Reasoning: Monitoring and Control of Think-

ing and Reasoning. Trends in Cognitive Sciences, 21, 607–617. From https://www.

sciencedirect.com/science/article/pii/S1364661317301055.

Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., & Yakhnenko, O. (2013). Translating embed-

dings for modeling multi-relational data. Advances in Neural Information Processing Systems,

26.

Chechik, G., Sharma, V., Shalit, U., & Bengio, S. (2010). Large scale online learning of image

similarity through ranking. Journal of Machine Learning Research, 11, 1109–1135.

Crouse, M., et al. (2021). A Deep Reinforcement Learning Approach to First-Order Logic Theorem

Proving. 35th AAAI Conference on Artificial Intelligence, AAAI 2021, 7, 6279–6287.

Ebrahimi, M., Eberhart, A., Bianchi, F., & Hitzler, P. (2021). Towards bridging the neuro-symbolic

gap: deep deductive reasoners. Applied Intelligence, 51.

Kaliszyk, C., Urban, J., & Vyskocil, J. (2015). Efficient semantic features for automated reasoning

over large theories. Twenty-fourth International Joint Conference on Artificial Intelligence.

Kijsirikul, B., & Lerdlamnaochai, T. (2016). First-Order Logical Neural Networks. International

Journal of Hybrid Intelligent Systems, 2.

Poole, D. L., & Mackworth, A. K. (2018). Artificial intelligence: Foundations of computational

agents. Cambridge University Press, 2 edition.

Rocktäschel, T., & Riedel, S. (2017). End-to-end differentiable proving. Advances in Neural Infor-

mation Processing Systems, 31.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations

by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive

Science.

Russell, S. J., & Norvig, P. (2009). Artificial intelligence: A modern approach. Prentice Hall, 3rd

edition.

Sharma, A., & Goolsbey, K. (2017). Identifying useful inference paths in large commonsense

knowledge bases by retrograde analysis. Proceedings of the 31st AAAI Conference on Artificial

Intelligence.

Silver, D., et al. (2017). Mastering the game of Go without human knowledge. Nature, 550.

Socher, R., Chen, D., Manning, C. D., & Ng, A. Y. (2013). Reasoning with neural tensor networks

for knowledge base completion. Advances in Neural Information Processing Systems, (pp. 1–10).

12


