

Efficient first-order predictor-corrector multiple objective optimization

for fair misinformation detection

Eric Enouen1∗ and Katja Mathesius2∗ and Sean Wang3∗ and Arielle Carr4 and Sihong Xie4

Abstract— Multiple-objective optimization (MOO) aims to
simultaneously optimize multiple conflicting objectives and has
found important applications in machine learning, such as min-
imizing classification loss and discrepancy in treating different
populations for fairness. At an optimality, further optimizing
one objective will necessarily harm at least another objective,
and decision-makers need to comprehensively explore multiple
optima (called Pareto front) to pin-point one final solution. We
address the efficiency of finding the Pareto front. First, finding
the front from scratch using stochastic multi-gradient descent
(SMGD) is expensive with large neural networks and datasets.
We propose to explore the Pareto front as a manifold from a few
initial optima, based on a predictor-corrector method. Second,
for each exploration step, the predictor solves a large-scale
linear system that scales quadratically in the number of model
parameters, and requires one backpropagation to evaluate a
second-order Hessian-vector product per iteration of the solver.
We propose a Gauss-Newton approximation that only scales
linearly, and that requires only first-order inner-product per
iteration. This also allows for a choice between the MINRES
and conjugate gradient methods when approximately solving
the linear system. The innovations make predictor-corrector
possible for large networks. Experiments on multi-objective
(fairness and accuracy) misinformation detection task show that
1) the predictor-corrector method can find Pareto fronts better
than or similar to SMGD with less time; and 2) the proposed
first-order method does not harm the quality of the Pareto front
identified by the second-order method, while further reduce
running time.

I. INTRODUCTION

Multi-objective optimization aims to find optimal solutions

for multiple objective functions and has been an important

tool for data mining and machine learning. For example,

in multi-task learning, each learning task has an objective

function to be optimized and tasks can be optimized jointly;

in a recommendation system, content relevance and person-

alization are two important goals for the system to achieve

simultaneously; in financial investment, uncertainty and loss

are two objectives for an investor to minimize at the same

time. Usually the multiple objectives are conflicting and it is

impossible to find a solution that is optimal for all individual

objective functions. Rather, trade-offs among the objectives

are necessary and optimality in MOO can be characterized

by the Pareto optimality: an Pareto optimum is a solution

where improving any one objective function necessarily harm

at least another objective function, and jointly improving all

objectives is impossible.

1The Ohio State University
2Drake University
3Cornell University
4Computer Science and Engineering Department, Lehigh University
∗ Denotes equal contribution.

Previous work [3] aims to find a single Pareto opti-

mum without controlling the trade-off among the objectives.

This is undesirable since an objective function may not be

sufficiently minimized, while the users cannot access and

compare multiple trade-offs. To address this, the authors

of [23], [12] proposed multi-gradient descent methods and

can maintain a set of current best trade-offs and push them

towards the Pareto front. However, they still cannot control

which trade-offs to reach during the optimization and the

solutions can have similar objective function values. In [11],

[14], further constraints are added to the gradient-based

optimization so that preferences over the trade-offs can be

specified and the solutions are better spread across the front.

One common drawback of the above prior work is the

computational efficiency. One or a few optimal trade-offs

is not sufficient, as practitioners need to adjust trade-offs

in a fine-grainded manner to pinpoint the best trade-off.

It is necessary to comprehensively traverse the the Pareto

front. The above optimization algorithms start from arbitrary

initial points that can be quite far away from the fronts, and

many steps must be taken to reach the fronts. Furthermore,

recovering the fronts can take many random initializations.

As the cost per iteration can be high with large dataset

and neural networks, such methods are not feasible for

recovering the Pareto fronts. The continuation algorithms,

in particular the predictor-corrector methods, address this

issue. Intuitively, the optimal solutions are assumed to form

a low dimensional manifold, and near an optimal solution the

manifold can locally be approximated by a plane described

by a linear system. Therefore, moving from one optimal

solution to a neighboring optimal solution can be done by

first solving the approximating linear system (the predictor)

to find an exploration direction. Since the plane may not

fully approximate the non-linear manifold, moving along the

exploration direction can get off the manifold. The error can

be corrected by a few steps of multi-gradient descent back

to the manifold of optimal solutions. Since the Pareto front

is a low-dimensional manifold in the objective value space,

the predictor-corrector method is expected to travel less to

identify the Pareto front.

However, in the predictor step, we still face two challenges

centering around solving a large scale linear system in

the form of Hv = b, where H is an n × n symmetric

matrix and v ∈ R
n is a vector of exploration direction

that moves the current Pareto optimum x to x + v, and

b =
∑m

j=1 ∇βjfj(x) is a linear combination of the gradients

of individual objective functions fj , j = 1, . . . ,m. First,

the system Hv = b requires an iterative solver, such as

the Krylov methods conjugate gradient (CG) or MINRES

[24], [20]. As the system needs to be solved per predictor

iteration, the cost associated with the solver can greatly

impact the overall running time of exploring a Pareto front.

Due to the unknown properties of the system under the

specific context, currently no study about the efficiency of

the solvers is available. Since we do not explicitly store the

Hessian, H , the use of Krylov methods is a natural choice

as such solvers require only a linear operator (or matrix-

vector product) to construct the Krylov subspace. In the

present study, we consider CG and MINRES since both can

be applied to symmetric coefficient matrices. CG, however,

requires that the matrix be symmetric positive definite (SPD)

and while H is guaranteed to be symmetric, we cannot

immediately assume it is SPD. When applying the Gauss-

Newton Hessian approximation as in [6] and based on the

Levenberg–Marquardt method described in [18], we achieve

an SPD approximation of H , affording the choice between

CG and MINRES.

Second, as indicated in [16], [13], the matrix H can

be the linear combination of the Hessian matrices of the

objective function. Direct evaluation of the Hessian matrices

can be costly or even infeasible for deep learning models.

One can apply the Pearlmutter trick and use a forward and

backward propagation implemented by auto-differentiation

to evaluate the left-hand-side Hv. This is still quite costly

for large networks and datasets, since one forward-backward

propagation is needed per iteration of the solver, which is

invoked to solve a linear system per iteration of the predictor

to find the next Pareto optimum. As a result, exploring the

entire Pareto front can be time-consuming.

We propose a different approach to approximate the Pareto

front, starting from an optimal solution and based on the

predictor-corrector method. Intuitively, the optimal solutions

are assumed to form a low dimensional manifold, and near

an optimal solution the manifold can locally be approximated

by a plane described by a linear system. Therefore, moving

from one optimal solution to a close-by neighboring optimal

solution can be done by first solving the approximating linear

system (the predictor) to find a direction. Since the plane

may not fully approximate the manifold if the move is far

away, the approximation error can be corrected by a few steps

of multi-gradient descent back to the manifold of optimal

solutions (the Pareto front).

The technical report is organized as follows. In Section II,

we review the background of GNN-based detector and multi-

objective optimization (MOO). In Section II-B, we describe

the predictor-corrector algorithm. In Section IV, we validate

our claims through empirical experiments on three datasets

for fake review detection.

II. PRELIMINARIES

In this section we review the basics of multi-objective opti-

mization, predictor-corrector methods, and iterative methods

for solving linear systems. The notation is in Table I.

TABLE I: Notations and definitions.

Notations Definitions

fi The i-th objective function to minimize
f The vector function of the m objectives
x Vector of parameters of f
J The Jacobian of f w.r.t. x
Hi The Hessian matrix of fi w.r.t. x

Hi The ith power of H

v
(i) The approximate solution at the ith iteration

JT The transpose of a matrix, J

A. MOO and Multi-gradient descent

We consider an MOO problem that has m objective func-

tions fi(x), i = 1, . . . ,m, where x ∈ R
n is the parameter

of the functions. For example, in fair machine learning, the

goal is to optimize a predictive model’s parameter x so

as to minimize classification loss (measured by f1) while

reducing the discrepancy (measured by f2) between the

treatment of different populations. We let f = [f1, . . . , fm]⊤ :
R

n → R
m be the vector of the m objective functions.

One would like to find an optimal x
∗ that minimizes all

the m objectives simultaneously. Since the objectives can be

conflicting and no single solution x can attain all the minima

of individual objectives, one has to resort to some trade-

offs among the objectives. To characterize the optimality

with multiple conflicting objectives, a Pareto optimum is

a solution where simultaneously reducing all m objectives

is impossible, and reducing one objective will necessarily

increase at least another objective. We say that the solution

x dominates another solution x
′ if fi(x) ≤ fi(x

′) for all

i = 1, . . . ,m and at least one strict inequality holds. A Pareto

optimum is optimal in the sense that it is not dominated by

any other solutions.

There can be multiple Pareto optima and the image of set

of Pareto optima under the mapping f in the space R
m is

called the Pareto front. The goal of many MOO problems

is to generate a Pareto front for f so a user can select

the optimal solution that has the desired trade-offs for the

problem at hand. For example, for fair machine learning, a

user wants to find a predictive model with accuracy higher

than a given threshold while minimizing unfairness. Without

searching for a Pareto front, the user may not be able

to find solution with the desired levels of accuracy and

fairness. To find a Pareto front, the multi-gradient descent

algorithm [4] starts from a random initial solution and for

each iterate, calculates a descent direction that can jointly

reduce all objective functions. The iterations continue until

a Pareto optimum is reached where such a descent direction

is impossible. For example, in [4], if the current solution x

is not on the Pareto front, the following quadratic program

optimizes the weights (λi, i = 1, . . . ,m) of the gradients of

the objectives so that the linear combination of the gradients

using the optimal weights is a descent direction for all

product. The innovative techniques will rely on the Gauss-

Newton approximation [22], which uses a low-rank positive

semi-definite matrix to approximate H for optimizing a

single scalar function f(x). Specifically for minimizing a

classification loss ℓ = ℓ(h(x)) where h is the machine

learning model that output a real value for regression or

a class probability distribution for classification, and ℓ is

a convex loss function, such as square error for linear

regression or negative log-likelihood for classification, that

takes h(x) as input. The Gauss-Newton approximation is

based on the following

ℓ′ = ℓ′(h(x))∇xh(x),

ℓ′′ = ∇xh(x)ℓ
′′(h(x))(∇xh(x))

⊤ + ℓ′(h(x))∇2
x
h(x),

where the second line follows from the chain rule of deriva-

tives. The Gauss-Newton approximation replaces the Hessian

H with ∇xh(x)ℓ
′
′

(h(x))(∇xh(x))
⊤. This is reasonable

when ℓ′(h(x)) is near 0 or h(x) is near linear around x [22].

Inspired by the above analysis, we will exploit the Gauss-

Newton approximation to speed up solving Eq. (3) within

the predictor. However, the objective functions that we adopt

are loss functions that may not be convex with respect to the

output of the model h(x), and the term ℓ′′(h(x)) may not be

positive to ensure that the Gauss-Newton approximation is

positive definite. For example, various fairness loss functions

are non-convex [25]. Another issue with the second-order

term is when the loss is piece-wise linear, so that the term,

and the Gauss-Newton approximation, becomes zero in some

regions, leading to an invalid linear system in Eq. (3). We

propose to use the following Gauss-Newton approximation

for the i-th objective function fi:

GNi = ∇xf(x)∇xf(x)
⊤ = J⊤

i Ji, (5)

where the Jacobian matrix Ji is the matrix of rows of

partial derivative of fi(x) with respect to x. Then the matrix

H(x) =
∑n

i=1 αHi(x) in Eq. (3) is then replaced with

GN(x) =
∑n

i=1 αGNi(x). This approximation is guaranteed

to be positive definite so long as not all gradients are zeros.

This property is beneficial to the iterative solvers, such as

CG.

Regarding the computation complexity, we are no long

required to use backpropagation that go through the training

data once to evaluate H(x)v per iteration of the solvers.

Instead, we can go through training data just once to evaluate

and then cache the Jacobian matrices, which scales only

linearly n, the dimension of x, and in m, the number

of objectives. Per iteration, only m vector inner product

(evaluating Jiv) and m scalar-vector product (evaluating

J⊤

i (Jiv)) are needed. The Jacobian matrices can be updated

at the next iteration of the Predictor-Corrector method where

one reaches the next Pareto optimum.

B. CG and MINRES

In order to compute v in (3), we want to avoid explicitly

taking the inverse of the Hessian (i.e., we avoid directly

solving the system) since this is generally far too expensive

for our purposes, particularly as the number of parameters

becomes very large. Instead, we employ computationally-less

expensive iterative methods for approximately solving linear

systems, and in particular the Krylov methods MINRES and

CG, which can be implemented in a matrix-free fashion. In

other words, we do not need to explicitly store the matrix in

memory; rather, we simply need the matrix-vector product,

or linear operator, defined. A major contribution of previous

work was introducing the use of the iterative solver, MINRES

[13]. The residual is guaranteed to be monotonically decreas-

ing in MINRES, enabling early termination of the method.

In the present study, we aim to expand the user’s choice to

include CG and we provide a novel comparative analysis

of these two iterative solvers when performing multiple-

objective optimization.

CG and MINRES are iterative solvers for symmetric

linear equations Hv = b. CG [7] was developed as a

more computationally efficient variant of the gradient descent

method and specifically requires that H also be positive

definite. Both methods operate by finding the gradient at

the current solution point and then moving in the in the

conjugate direction in the H-orthogonal direction. That is,

at iteration k, given a point v
(k) and a direction p(k), CG

performs a line search to find the value α to update the

solution as v(k+1) = v
(k)+αp(k). Then, a new direction that

is conjugate to p(k) is computed such that at each iteration

r(k) ⊥ Kk. This method is guaranteed to converge in at most

n iterations when H is an n×n matrix, but it is well-known

that CG often reaches an acceptable tolerance in far fewer

iterations. For ease of reference, we provide the CG method

following that in [20] in Algorithm 1.2

The MINRES method solves the system Hv = b by

choosing the update to the approximate solution v(k) such

that ‖r(k)‖ = ‖b−Hv(k)‖ is minimized. One of the key fea-

tures of this method is due to the symmetry of H: MINRES

saves significant memory costs, requiring the storage of only

the two previously computed basis vectors from the Krylov

space. This is performed via the Lanczos algorithm using

what is referred to as a three-term recurrence; we omit the

details here but refer the reader to Section 6.6 in [20]. Since

the practical implementation of MINRES can become quite

complicated, we provide the algorithm for the algebraically

equivalent conjugate residual (CR) method [20] for brevity.

The major computational steps (and costs) of MINRES for

our purposes can be easily highlighted in the CR algorithm.

In both Algorithms 1 and 2, we let tol denote the user-

defined convergence tolerance, maxIter represent the max-

allowable iterations, and v
(0) be the initial guess.

In general, CG is used for SPD matrices, while MINRES is

reserved for symmetric indefinite matrices. While we provide

a comparative analysis of these methods in the present study,

the development of a specific recipe for when to choose

one method over the other for these applications is part

of ongoing work. Our results demonstrate flexibility in the

2Note that in the iterative method literature, H is often used to denote
an upper Hessenberg matrix, especially for methods like GMRES [21]. For
consistency, we use H to denote a general coefficient for our application.

Algorithm 1 Conjugate Gradient Method for Hv = b

1: r(0) = b−Hv
(0)

2: p(0) = r(0)

3: i = 0
4: while i < maxIter and ‖r(i)‖ > tol do

5: αi =
‖r(i)‖2

(p(i))THp(i)

6: x(i+1) = x(i) + αip
(i)

7: r(i+1) = r(i) − αiHp(i)

8: βi =
‖r(i+1)‖2

‖r(i)‖2

9: p(i+1) = r(i+1) + βip
(i)

10: i = i+ 1
11: end while

Algorithm 2 Conjugate Residual Method for Hv = b

1: r(0) = b−Hv
(0)

2: p(0) = r(0)

3: i = 0
4: while i < maxIter and ‖r(i)‖ > tol do

5: αi =
(Hr(i))T r(i)

‖Hp(i)‖2

6: x(i+1) = x(i) + αip
(i)

7: r(i+1) = r(i) − αiHp(i)

8: βi =
(Hr(i+1))T r(i+1)

(Hr(i))T r(i)

9: p(i+1) = r(i+1) + βip
(i)

10: i = i+ 1
11: end while

choice of solver, depending on user preference, without

sacrificing computational time.

We note that simple optimizations can be immediately

taken advantage of in both algorithms. Since both require

the initial residual, r(0), using an initial guess of v(0) =
[0 0 · · · 0]T allows us to avoid the matrix-vector product in

line 1 of each algorithm and we simply let r(0) = b. Further,

and as we will demonstrate in our experiments, basing

termination of CG and MINRES on maximum iterations

alone is sufficient for generating an accurate Pareto front,

allowing us to remove the test for convergence in future

implementations (i.e., the computation of ‖r(j)‖ at every

iteration). While this is not a significant cost alone, when

solving a large number of linear systems, the accumulated

cost may no longer be negligible. Ongoing work focuses

on continued improvements to our implementations to take

advantage of these, and other, opportunities for speed-up in

the convergence of these iterative methods.

We note that in our results (Section IV), we provide data

from experiments using CG with the Hessian matrix for

comparison purposes only. Because we cannot guarantee

that the Hessian matrix is SPD, we would naturally choose

MINRES as our iterative solver. As we later show, we

still generate a similar Pareto front (in terms of quality)

using CG with the Hessian, suggesting that some of these

matrices may be (close to) SPD or that CG does not suffer

as dramatically as the theory suggests for (slightly) indefinite

matrices. Though, we do highlight that, in many cases, CG

with the Hessian results in the largest overall runtime.

C. Predictor-Corrector based on Gauss-Newton approxima-

tion

Algorithms 3 and 4 describe how we generate a Pareto

front. After training an initial Pareto optimal network with

parameter x, we use Algorithm 3 to explore the Pareto

front in a breadth-first style. Algorithm 4 describes the

Hessian-vector product computation using the Gauss-Newton

approximation. Algorithm 4 is used at each iteration of

MINRES and CG in the predictor step of the Predictor-

Corrector algorithm. We take advantage of the fact that we

compute a weighted gradient of the objective functions, so J

and JT can be represented as vectors. We can then use the

Gauss-Newton approximation to compute the product H(x)v
using only a single gradient computation, followed by m

inner products and scalar-vector product. Note that in our

method, we use K = 1, α = 0.1 and predetermined values

for β. However, one could also store and reuse the computed

weighted gradient and instead randomly sample β to generate

more than 1 child networks from a single parent.

Algorithm 3 PC-GN

1: x = An initial Pareto optimal network
2: N = Total number of networks to generate
3: K = Number of children to generate per network
4: β: moving directions of the objective function values.
5: count = 0
6: Initialize a queue q and list output
7: Add x to q and output
8: while count < N do
9: Pop a network parent from q

10: numChildren = 0
11: while numChildren < K do
12: Use MINRES/CG to solve H(x)v = JTβ.
13: x = x+ αv
14: Correct x with one step of SMGD
15: optimize child using a single training epoch
16: add child to q and output
17: count = count+ 1
18: numChildren = numChildren+ 1
19: end while
20: end while
21: repeat 8-18 for β = (0, 1)T

22: remove dominated points from output

Algorithm 4 HVP computation using GN

1: x = A Pareto optimal network
2: v = The vector to multiply H by
3: Use automatic differentiation to compute the gradients of the

objective functions
4: J = weighted sum of gradients
5: dot = inner product 〈J,v〉
6: return H(x)v = dot ∗ J

IV. EXPERIMENTS

A. MOO tasks and datasets

We use multiple MOO tasks and datasets to demonstrate

the efficiency and effectiveness of the proposed GN-PC-

MOO method. Table II shows the sizes of the datasets and the

TABLE II: Dataset and model sizes

Datasets |VP | |VR| |VU | Model size

YelpChi 201 67395 38063 1234
YelpNYC 923 358911 160220 1234

YelpZip 5044 608598 260277 1234

number of parameters in the corresponding neural networks.

Fair fake review detection with GNN. Reviews on e-

commerce, such as Amazon and Yelp, are important to

customers and business owners, and there are many mis-

leading fake reviews that need to be detected to ensure

the trustworthiness of the reviews. The review data can be

represented as a review-graph defined as G = (V, E), where

V = {v1, . . . , vN} denotes the set of nodes and E ⊆ V × V
represents the set of undirected edges. There are three types

of nodes in G, i.e., user, review, and product, respectively, and

each node can be of only one of the three types. We denote

the subsets of nodes of the three types as VU ,VR,VP ⊂ V ,

respectively. Each node vi ∈ V has a feature vector xi, where

the subscript is the node index. The neighbor of the node vi
is N (i) = {vj ∈ V|ei,j ∈ E}.

GNN [10] is the state-of-the-art method for node predic-

tion. For each node, a GNN model summarizes a node’s

neighborhood via message passing to predict if a review node

is fake (positive) or genuine (negative). We let ŷi = h(vi;x)
be the predicted probability of node vi being fake, and train

the model by minimizing the first objective, the cross-entropy

loss on the set of labeled training reviews VTr :

f1(x) = −
1

l

l∑

i=1

yi log ŷi + (1− yi) log(1− ŷi), (6)

where yi ∈ {0, 1} is the label of a labeled review node

vi ∈ VTr ∩ VR and l is the total number of such labeled

review nodes.

We use the normalized discounted cumulative gain

(NDCG) loss to measure the overall detection accuracy

across all reviews:

1

Z

l∑

j=1

1[yj = 1]
1

log(r0j + 1)
, (7)

where ri is the ranking position of the i-th labeled node

among all m nodes and Z is the maximal possible NDCG

score as a normalization factor.

We also aim to reduce unfair treatment in the detection

as the second objective. In particular, there are two groups

of nodes, the favored group (indicated by A = 0, consisting

of reviewers each of which posts the most reviews) and the

remaining reviewers posting less reviews are in the protected

group (indicated by A = 1). On the training data, the

protected group are labeled as spammers more often, biasing

the trained GNN model to have a higher false positive rate

over the protected group and leading to unfair detection.

To measure the discrepancy in the detection accuracies over

the two groups, we measure the NDCG on the two groups

separately and take the absolute difference between the two

NDCG scores as the second objective function f2. Overall,

we aim to optimize the GNN model h(x) to find Pareto fronts

of classification loss vs. detection discrepancy tradeoffs.

B. Baselines and settings

We have two regular fair machine learning baselines that

can find a solution that aims to minimize both objectives.

Fairness regularization [26], [27], [9] minimizes f1(x) +
λf2(x) where the second term is for fairness regularization.

Adversarial training [2] trains an adversary that classify data

into two groups, while our goal is to minimize f1 while

maximize the adversary’s classification classification error.

We also include the following MOO methods as baselines.

• SMGD: the baseline proposed in [1]. It starts from several

random initial solutions and then match towards a Pareto

front, and it is supposed to be more time-consuming

than the predictor-corrector methods as it can take many

iterations to reach the front, though it use only first-order

derivatives only.

• PC-Hessian-CG: use the Pearlmutter trick [19] to evaluate

the Hessian-vector product and use CG to solve the linear

system for finding an exploration step in the predictor.

If the Hessian matrices are PSD, the CG should be a

suitable choice. Though there is no guarantee that the

Hessian matrices will be PSD, we include this baseline for

a comprehensive comparison. The corrector use multiple

SMGD steps.

• PC-Hessian-MINRES: same as PC-Hessian-CG, except

that the CG method is replaced with a MINRES solver.

We compare these baselines to two variants of the proposed

method, PC-GN-CG and PC-GN-MINRES, that use Gauss-

Newton approximation of the Hessian matrices. It is expected

that the Gauss-Newton approximation will reduce the run-

ning time of methods that rely on Hessian-vector products, as

we analyzed in Section III-A. while we use different solvers

to study whether the properties of the linear systems can

influence the number of iterations, the running time, and the

Pareto front quality.

Hyperparameter setting. We vary the λ in f1(x)+λf2(x)
for the fairness regularization method. For the PC methods,

we generate one initial solution using 75 optimization steps

by SMGD, followed by 100 predictor-corrector steps in

both directions (β = [−1, 1]⊤ and β = [1,−1]⊤). For the

predictor we used a step size of 0.1 and 50 max iterations for

the solvers following the ablation studies explored in [13],

and for the corrector we used a step size of 0.01. We ran

SMGD [12] for different number of expanding iterations (20,

30, and 40 epochs). The best step size was found to be 0.005

for the descent step.

C. Pareto front Quality

The closer a Pareto front to the minimal values of indi-

vidual objectives, the better. From Figure 2, We have the

following observations.

• As shown in Figure 2, on the YelpChi dataset, the two PC

methods (Predictor-Corrector and PC-GN-MINRES) are

