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Abstract

We present TrialsSummarizer, a system that

aims to automatically summarize evidence pre-

sented in the set of randomized controlled trials

most relevant to a given query. Building on

prior work (Marshall et al., 2020), the system

retrieves trial publications matching a query

specifying a combination of condition, inter-

vention(s), and outcome(s), and ranks these

according to sample size and estimated study

quality. The top-k such studies are passed

through a neural multi-document summariza-

tion system, yielding a synopsis of these tri-

als. We consider two architectures: A standard

sequence-to-sequence model based on BART

(Lewis et al., 2019), and a multi-headed archi-

tecture intended to provide greater transparency

to end-users. Both models produce fluent and

relevant summaries of evidence retrieved for

queries, but their tendency to introduce unsup-

ported statements render them inappropriate

for use in this domain at present. The pro-

posed architecture may help users verify out-

puts allowing users to trace generated tokens

back to inputs. The demonstration video is

available at: https://vimeo.com/735605060

The prototype, source code, and model weights

are available at: https://sanjanaramprasad.

github.io/trials-summarizer/.

1 Introduction

Patient treatment decisions would ideally be in-

formed by all available relevant evidence. However,

realizing this aim of evidence-based care has be-

come increasingly difficult as the medical literature

(already vast) has continued to rapidly expand (Bas-

tian et al., 2010). Well over 100 new RCT reports

are now published every day (Marshall et al., 2021).

Language technologies Ð specifically automatic

summarization methods Ð have the potential to

provide concise overviews of all evidence relevant

to a given clinical question, providing a kind of

systematic review on demand (Wang et al., 2022;

DeYoung et al., 2021; Wallace et al., 2021).

We describe a demonstration system, TrialsSum-

marizer, which combines retrieval over clinical tri-

als literature with a summarization model to pro-

vide narrative overviews of current published evi-

dence relevant to clinical questions. Figure 1 shows

an illustrative query run in our system and the re-

sultant output. A system capable of producing ac-

curate summaries of the medical evidence on any

given topic could dramatically improve the ability

of caregivers to consult the whole of the evidence

base to inform care.

However, current neural summarization systems

are prone to inserting inaccuracies into outputs

(Kryscinski et al., 2020; Maynez et al., 2020;

Pagnoni et al., 2021; Ladhak et al., 2021; Choubey

et al., 2021). This has been shown specifically to

be a problem in the context of medical literature

summarization (Wallace et al., 2021; Otmakhova

et al., 2022), where there is a heightened need for

factual accuracy. A system that produces plausi-

ble but often misleading summaries of comparative

treatment efficacy is useless without an efficient

means for users to assess the validity of outputs.

Motivated by this need for transparency when

summarizing clinical trials, we implement a sum-

marization architecture and interface designed to

permit interactions that might instill trust in out-

puts. Specifically, the model associates each token

in a generated summary with a particular source

ªaspectº extracted from inputs. This in turn allows

one to trace output text back to (snippets of) inputs,

permitting a form of verification. The architecture

also provides functionality to ªin-fillº pre-defined

template summaries, providing a compromise be-

tween the control afforded by templates and the

flexibility of abstractive summarization. We realize

this functionality in our system demonstration.

2 Related Work

The (lack of) factuality of neural summarization

systems is an active area of research (Chen et al.,
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Figure 1: An example query (regarding use of statins to reduce risk of stroke) and output summary provided by the

system. In this example, the summary accurately reflects the evidence, but this is not always the case.

2021; Cao et al., 2020; Dong et al., 2020; Liu et al.,

2020; Goyal and Durrett, 2021; Zhang et al., 2021;

Kryscinski et al., 2020; Xie et al., 2021). This

demo paper considers this issue in the context of a

specific domain and application. We also explored

controllability to permit interaction, in part via tem-

plates. This follows prior work on hybrid tem-

plate/neural summarization (Hua and Wang, 2020;

Mishra et al., 2020; Wiseman et al., 2018).

We also note that this work draws upon prior

work on visualizing summarization system outputs

(Vig et al., 2021; Strobelt et al., 2018; Tenney et al.,

2020) and biomedical literature summarization

(Plaza and Carrillo-de Albornoz, 2013; Demner-

Fushman and Lin, 2006; Mollá, 2010; Sarker et al.,

2017; Wallace et al., 2021). However, to our knowl-

edge this is the first working prototype to attempt

to generate (draft) evidence reviews that are both

interpretable and editable on demand.

3 System Overview

Our interface is built on top of Trialstreamer (Mar-

shall et al., 2020), an automated system that iden-

tifies new reports of randomized controlled trials

(RCTs) in humans and then extracts and stores

salient information from these in a database of all

published trial information. Our system works by

identifying RCT reports relevant to a given query

using a straightforward retrieval technique (Section

3.1), and then passing the top-k of these through

a multi-document summarization model (Section

3.2). For the latter component we consider both a

standard sequence-to-sequence approach and a as-

pect structured architecture (Section 3.3) intended

to provide greater transparency.

3.1 Retrieving Articles

Trialstreamer (Marshall et al., 2020; Nye et al.,

2020) monitors research databases Ð specifically,

PubMed1 and the World Health Organization In-

ternational Clinical Trials Registry Platform Ð to

1
https://pubmed.ncbi.nlm.nih.gov/

automatically identify newly published reports of

RCTs in humans using a previously validated clas-

sifier (Marshall et al., 2018).

Articles describing RCTs are then passed

through a suite of machine learning models which

extract key elements from trial reports, including:

sample sizes; descriptions of trial populations, in-

terventions, and outcomes; key results; and the

reliability of the evidence reported (via an approxi-

mate risk of bias score; Higgins et al. 2019). This

extracted (semi-)structured information is stored in

the Trialstreamer relational database.

Extracted free-text snippets describing study

populations, interventions, and outcomes (PICO el-

ements) are also mapped onto MeSH terms,2 using

a re-implementation of MetaMap Lite (Demner-

Fushman et al., 2017).

To facilitate search, users can enter MeSH terms

for a subset of populations, interventions, and out-

comes, which is used to search for matches over the

articles and their corresponding extracted key data

in the database. Matched studies are then ranked

as a score function of sample size s and risk of bias

score rob: score = s/rob; that is, we prioritize

retrieval of large, high-quality trial reports.

The novelty on offer in this system demonstra-

tion is the inclusion of a summarization component,

which consumes the top-k retrieved trials (we use

k=5 here) and outputs a narrative summary of this

evidence in the style of a systematic review abstract

(Wallace et al., 2021). By combining this summa-

rization module with the Trialstreamer database,

we can provide real-time summarization of all tri-

als that match a given query (Figure 1).

3.2 Summarizing Trials

We consider two realizations of the summarization

module. We train both models on a dataset intro-

duced in prior work which comprises collections

2MeSH Ð short for Medical Subject Headings Ð is a
controlled vocabulary maintained by the National Library of
Medicine (NLM).
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decrease

Aspect-specific auto-regressive decoders; 

we induce aspect weights per time-step t

Encoder-Aspect Decoders

α
(t)

I

α
(t)

O

α
(t)

PL

……

Figure 2: Our proposed structured summarization approach entails synthesizing individual aspects (automatically

extracted in a pre-processing step), and conditionally generating text about each of these.

of RCT reports (PICO elements extracted from

abstracts) as inputs and Authors’ Conclusions sec-

tions of systematic review abstracts authored by

members of the Cochrane Collaboration as targets

(Wallace et al., 2021) (see Section 4).

As a first model, we adopt BART (Lewis et al.,

2019) with a Longformer (Beltagy et al., 2020)

encoder to accommodate the somewhat lengthy

multi-document inputs. As inputs to the model

we concatenate spans extracted from individual

trials containing salient information, including

populations, interventions, outcomes, and ªpunch-

lines.º The latter refers to extracted snippets

which seem to provide the main results or find-

ings, e.g., ªThere was a significant increase in

mortality ...º; see (Lehman et al., 2019) for more

details. We enclose these spans in special tags.

e.g., <population>Participants were diabetics ...

</population>. As additional supervision we run

the same extraction models over the targets and

also demarcate these using the same set of tags.

An issue with standard sequence-to-sequence

models for this task is that they provide no natu-

ral means to assess the provenance of tokens in

outputs, which makes it difficult to verify the trust-

worthiness of generated summaries. Next we dis-

cuss an alternative architecture which is intended

to provide greater transparency and controllability.

3.3 Proposed Aspect Structured Architecture

to Increase Transparency

We adopt a multi-headed architecture similar to

(Goyal et al., 2021), which explicitly generates

tokens corresponding to the respective aspects (Fig-

ure 2). We assume inputs are segmented into texts

corresponding to a set of K fields or aspects. Here

these are descriptions of trial populations, inter-

ventions, and outcomes, and ªpunchlineº snippets

reporting the main study findings. We will denote

inputs for each of the K aspects by {xa1 , ..., xaK},

where xak denotes the text for aspect k extracted

from input x. Given that this is a multi-document

setting (each input consists of multiple articles),

xak is formed by concatenating aspect texts across

all documents using special tokens to delineate in-

dividual articles.

We encode aspect texts separately to obtain

aspect-specific embeddings xak
enc

. We pass these (re-

spectively) to aspect-specific decoders and a shared

language model head to obtain vocabulary distri-

butions ôakt . All model parameters are shared save

for the last two decoder layers which comprise

aspect-specific parameters. Importantly, the repre-

sentation for a given aspect is only based on the

text associated with this aspect (xak ).

We model the final output as a mixture

over the respective aspect distributions:

ôt =
∑

K

k=1
zakt (ôakt ). Mixture weights

zt = za1t , . . . , zaKt encode a soft selection

over aspects for timestep t and are obtained as a

dot product between each penultimate represen-

tation of the decoder yakt (prior to passing them

through a language model head) and a learnable

parameter, Wz ∈ RD. The K logits z̃akt are then

normalized via a Softmax before multiplying with

the aspect-specific vocabulary distributions ôakt

Tracing outputs to inputs This architecture per-

mits one to inspect the mixture weights associated

with individual tokens in a generated summary,

which suggests which aspect (most) influenced the

output. Further inspection of the corresponding

snippets from studies for this aspect may facilitate

verification of outputs, and/or help to resolve errors

and where they may have been introduced.
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Figure 3: Template generation. To in-fill, we force

generation from a specific head and monitor the model’s

mixture distribution to decide when to stop.

Controlled generation Neural summarization

models often struggle to appropriately synthesize

conflicting evidence to arrive at the correct overall

determination concerning a particular intervention

effectiveness. But while imperfect, summarization

models may be useful nonetheless by providing a

means to rapidly draft synopses of the evidence

to be edited. The multi-headed architecture natu-

rally permits template in-filling, because one can

explicitly draw tokens from heads corresponding

to aspects of interest. In our demo, we allow users

to toggle between different templates which corre-

spond to different conclusions regarding the overall

effectiveness of the intervention in question. (It

would be simple to extend this to allow users to

specify their own templates to be in-filled.)

To in-fill templates we use template text preced-

ing blanks as context and then generate text from

the language head corresponding to the designated

aspect. To determine span length dynamically we

monitor the mixture distribution and stop when the

it shifts to the another aspect (Figure 3).

3.4 User Interface

Figure 5 shows the interface we have built inte-

grating the multi-headed architecture. Highlighted

aspects in the summary provide a means of inter-

preting the source of output tokens by indicating

the aspects that informed their production. One can

in turn inspect the snippets associated with these

aspects, which may help to identify unsupported

content in the generated summary. To this end

when users click on a token we display the subset

of the input that most informed its production.

We provide additional context by displaying

overviews (i.e., ªpunchlinesº) communicating the

main findings of the trials. Because standard

sequence-to-sequence models do not provide a

mechanism to associate output tokens with input

aspects, we display all aspects (and punchlines) for

all trials alongside the summary for this model.

Capitalizing on the aforementioned in-filling

abilities of our model, we also provide pre-defined

templates for each possible ªdirectionº of aggre-

gate findings (significant vs. no effect). We discuss

the interface along with examples in Section 5.

4 Dataset and Training Details

We aim to consume collections of titles and ab-

stracts that describe RCTs addressing the same

clinical question to abstractive summaries that syn-

thesize the evidence presented in these. We train

all models on an RCT summarization dataset (Wal-

lace et al., 2021) where we extract clinically salient

elements Ð i.e., our aspects Ð from each of the

(unstructured) inputs as a pre-processing step using

existing models (Marshall et al., 2020).

Training We use the Huggingface Transformers li-

brary (Wolf et al., 2020) to implement both models.

We initalize both models to bart-base (Lewis et al.,

2019). We fine-tune the models with a batch size of

2 for 3 epochs, using the Adam optimizer (Kingma

and Ba, 2014) with a learning rate of 3e-5.

Inference We use beam search with a beam size of

3. We set the min and max length of generated text

to be 10 and 300, respectively.

5 Case Study: Verification and

Controllability

To demonstrate the potential usefulness of the in-

terface (and the architecture which enables it), we

walk through two case studies. We highlight the

type of interpretability for verification our proposed

approach provides, also demonstrate the ability to

perform controllable summarization to show how

this might be useful. The queries used in these

case studies along with the investigation were per-

formed by a co-author IJM, a medical doctor with

substantial experience in evidence-based medicine.

We also compare the models and report automatic

scores for ROUGE and factuality in the Appendix

section A and find that the two models perform

comparably.

Model Interpretability As an example to high-

light the potential of the proposed architecture and

interface to permit verification, we consider a query

regarding the effect of Oseltamivir as an interven-

tion for patients infected with influenza. The stan-

dard architecture produces a summary of the top
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Figure 4: Example output and interface using a standard BART (Lewis et al., 2019) model.

Figure 5: Qualitative example where the structured summarization model (and associated interface) permits token-

level verification of the summary generated regarding the use of oseltamivir on influenza-infected patients. This

approach readily indicates support for the claim that it is ªeffectiveº (top; yellow) and for the description of the

population as individuals at risk of ªcomplicationsº (bottom; purple).

most relevant RCTs to this query shown in Figure

4. This comprises two claims: (1) The intervention

has been shown to reduce the risk of adverse events

among adults and children, and, (2) There is no

consensus as to the most effective dosage. One can

inspect the inputs to attempt to verify these. Doing

so, we find that reported results do tend to indicate a

reduced risk of adverse events and that adolescents

and adults were included in some of these studies,

indicating that the first claim is accurate. The sec-

ond claim is harder to verify on inspection; no such

uncertainty regarding dosage is explicitly commu-

nicated in the inputs. Verifying these claims using

the standard seq2seq architecture is onerous be-

cause the abstractive nature of such models makes

it difficult to trace parts of the output back to inputs.

Therefore, verification requires reading through en-

tire inputs to verify different aspects.

The multi-headed architecture allows us to pro-

vide an interactive interface intended to permit eas-

ier verification. In particular, associating each out-

put token with a particular aspect provides a natural
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Figure 6: Inaccurate summaries generated by the structured model regarding the effect of Chloroquine on patients

with COVID-19 (top). Template-controlled summary using the structured model (bottom).

mechanism for one to inspect snippets of the inputs

that might support the generated text. Figure 5 il-

lustrates this for the aforementioned Oseltamivir

and flu example. Here we show how the ªeffec-

tiveº token in the output can be clicked on to reveal

the aspect that influenced its production (Figure 2),

in this case tracing back to the extracted ªpunch-

linesº conveying main study findings. This readily

reveals that the claim is supported. Similarly, we

can verify the bit about the population being indi-

viduals at risk of complications by tracing back to

the population snippets upon which this output was

conditioned.

Controllability As mentioned above, another po-

tential benefit of the proposed architecture is the

ability to ªin-fillº templates to imbue neural genera-

tive models with controllability. In particular, given

that the overall (aggregate) treatment efficacy is of

primary importance in this context, we pre-define

templates which convey an effect direction. The

idea is that if upon verification one finds that the

model came to the wrong aggregate effect direction,

they can use a pre-defined template corresponding

to the correct direction to generate a more accurate

summary on-demand.

We show an example of a summary generated

by the structured model in the top part of Figure

6. By using the interpretability features for veri-

fication discussed above, we find that the model

inaccurately communicates that the intervention

Chloroquine is effective for treating COVID-19.

However, with the interactive interface we are able

to immediately generate a new summary featur-

ing the corrected synthesis result (direction), as

depicted in the bottom of Figure 6, without need

for manual drafting.

We provide additional case studies in Appendix

Section B.

6 Conclusions

We have described TrialsSummarizer, a prototype

system for automatically summarizing RCTs rel-

evant to a given query. Neural summarization

models produce summaries that are readable and

(mostly) relevant, but their tendency to introduce

unsupported or incorrect information into outputs

means they are not yet ready for use in this domain.

We implement a multi-headed architecture in-

tended to provide greater transparency. We pro-

vided qualitative examples intended to highlight

its potential to permit faster verification and con-

trollable generation. Future work is needed to test

the utility of this functionality in a user trial, and

to inform new architectures that would further in-

crease the accuracy and transparency of models for

summarizing biomedical evidence.
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Limitations and Ethical Issues

Limitations This work has several limitations.

First, as stated above, while the prospect of auto-

matic summarization of biomedical evidence is tan-

talizing, existing models are not yet fit for the task

due to their tendency to introduce factual errors.

Our working prototype serves in part to highlight

this and motivate work toward resolving issues of

reliability and trusworthiness.

In this demo paper we have also attempted to

make some progress in mitigating such issues by

way of the proposed structured summarization

model and accompanying interface and provided

qualitative examples highlighting its potential, but

really a formal user study should be conducted to

assess the utility of this. This is complicated by

the difficulty of the task: To evaluate the factual-

ity of automatic summaries requires deep domain

expertise and considerable time to read through

constituent inputs and determine the veracity of a

generated summary.

Another limitation of this work is that we have

made some ad-hoc design decisions in our current

prototype system. For example, at present we (ar-

bitrarily) pass only the top-5 (based on trial sample

size and estimated reliability) articles retrieved for

a given query through the summarization system.

Future work might address this by considering bet-

ter motivated methods to select which and how

many studies ought to be included.

Ethics Accurate summaries of the biomedical

evidence have the potential to ultimately improve

patient care by supporting the practice of evidence-

based medicine. However, at present such models

bring inherent risks. In particular, one may be

tempted to blindly trust model outputs; given the

limitations of current summarization technologies,

this would be ill-advised.

Our prototype demonstration system is designed

in part to highlight existing challenges that must

be solved in this space before any model might ac-

tually be adopted (and beyond this, we emphasize

that need for verification of outputs, which has been

the focus of the present effort). In the interface we

indicate with a hard-to-miss warning message that

this system should only be used for research pur-

poses and these summaries are unreliable and not

to be trusted.
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Appendix

A Automatic Evaluation

We report ROUGE scores with respect to the tar-

get (manually composed) Cochrane summaries, for

both the development and test sets. We report

scores for both the vanilla standard BART model

along with our proposed multi-headed model in-

tended to aid verifiability and controllability. The

models perform about comparably with respect to

this metric as can be seen in Table 1.

However ROUGE measures are based on (exact)

n-gram overlap, and cannot measure the factuality

of generated texts. Measuring factuality is in gen-

eral an open problem, and evaluating the factual

accuracy of biomedical reviews in particular is fur-

ther complicated by the complexity of the domain

and texts. Prior work has, however, proposed au-

tomated measures for this specific task (Wallace

et al., 2021; DeYoung et al., 2021). These met-

rics are based on models which infer the reported

directionality of the findings, e.g., whether or not

a summary indicates that the treatment being de-

scribed was effective. More specifically, we make

binary predictions regarding whether generated and

reference summaries report significant results (or

not) and then calculate the F1 score of the former

with respect to the latter.

Model ROUGE-L (dev) ROUGE-L(test)

BART 20.4 19.7

Multi-head 19.9 19.3

Table 1: ROUGE scores achieved by the standard BART

model and our proposed multi-headed architecture on

the dev and test sets.

Model Direc (dev) Direc(test)

BART 49.6 51.8

Multi-head 49.3 52.7

Table 2: Directionality scores on the vanilla BART

model and our proposed multi-headed architecture on

the dev and test sets.

B Additional Case Studies

In this section we highlight a few more use cases

that demonstrate the need for interpretability and

controllability.

Interpretability We first highlight a set of exam-

ples where verifying model generated summaries

is difficult without an interface explicitly designed

to provide interpretability capabilities. In Figure 7

(a) we show an example where the model generates

a summary that accurately synthesized a summary

on the effect of using Mirtazapine for patients with

depression. However, the summary also includes

a statement that states the need for adequate, well-

designed trials. Because this statement is generic

and does not point to discussing any of the PICO el-

ements, it is unclear what element was responsible

for the generation of the statement. A user would

therefore need to review all (raw) input texts.

In the case of Figure 7 (b), the model gener-

ated summaries has two contradicting sentences.

The first sentence indicates a reduction in hospital

admission and death among COVID-19 patients
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Figure 7: a) BART generated summary when queried about the use of Mirtazapine to treat depression b) BART

generated summary when queried about the use of Ivermectin to treat COVID-19)
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Figure 8: The summary on top shows the default summary generated by the multi-headed model when queried for

the effect of Mirtazapine on depression. The bottom summary shows the controlled summary using a pre-defined

template.

when Ivermectin was used and the second sentence

claims there is insufficient evidence for the same.

However without interpretability capabilities it is

not possible to debug and verify if the same set of

elements were responsible for contradicting state-

ments or not.

The example in Figure 7 (c) shows a case where

the model first accurately synthesizes the findings

in the studies of the effect of glucosamine in com-

bination of chondroitin sulfate on knee pain. How-

ever, the following statement talks about the rela-

tive effects of the two. Again, in this case it is is

not intuitive which element led to the generation

of the statement and verification requires careful

reviewing of all the text and their implication in all

elements.

Controllability We next highlight examples

where one can effectively control the generation of

summaries that would otherwise be incorrect using

the template in-filling capabilities afforded by our

model. While the interpretability features may per-

mit efficient verification, models still struggle to

consistently generate factual accurate summaries.

We showcase instances where one can arrive at

more accurate summaries quickly via the control-

lability (template in-filling) made possible by our

model.

In the example shown in Figure 8 the default

summary synthesizes the effect accurately. How-

ever, the model summary discusses the effect on

short-term and long-term benefits generated from

the punchlines of the studies. Reading through ex-

tracted ‘punchlines’, we find that the studies indi-

cate issues upon withdrawal but do not necessarily

provide information on long-term use of the med-

ication. In-filling templates constrains the output,

and can be used to produce more accurate sum-

maries while still taking some advantage of the

flexibility afforded by generation. For instance in

this case we can see that the edited summary in-

duced using the template is more accurate.

Similarly, in Figure 9 when the multi-headed

model is queried for the effect of Glucosamine on

Osteoarthritis of knee, we observe that the model

on its own produces a summary conveying an in-

correct aggregate effect of studies. We can verify

this by inspecting the elements responsible for the

generation, as discussed above. We then arrive at a

more accurate summary using the template shown.

The example in Figure 10 is an interesting mis-

take made by the model. Because the outcomes

can be presented with the same information but in

a positive or negative direction (e.g., weight loss
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Figure 9: The summary on top shows the default summary generated by the multi-headed model when queried

for the effect of Glucosamine on Osteoarthritis of knee. The bottom summary shows the edited summary using a

pre-defined template

Figure 10: The summary on top shows the default summary generated by the multi-headed model when queried for

the effect of Semaglutide on obese patients. The bottom summary shows the edited summary using a pre-defined

template

vs weight gain), the model has to accurately infer

the effect of all studies. In this case, the model gen-

erates a summary with the right effect but views

weight loss as an undesirable effect. Here again

we select a template and allow the model quickly

in-fill, yielding a more accurate summary.
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