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Abstract

We consider the distributed learning setting where each agent or learner holds a specific
parametric model and a data source. The goal is to integrate information across a set of
learners and data sources to enhance the prediction accuracy of a given learner. A natural
way to integrate information is to build a joint model across a group of learners that shares
common parameters of interest. However, the underlying parameter sharing patterns across
a set of learners may not be known a priori. Misspecifying the parameter sharing patterns
or the parametric model for each learner often yields a biased estimator that degrades the
prediction accuracy. We propose a general method to integrate information across a set
of learners that is robust against misspecification of both models and parameter sharing
patterns. The main crux of our proposed method is to sequentially incorporate additional
learners that can enhance the prediction accuracy of an existing joint model based on user-
specified parameter sharing patterns across a set of learners. Theoretically, we show that
the proposed method can data-adaptively select a parameter sharing pattern that enhances
the predictive performance of a given learner. Extensive numerical studies are conducted
to assess the performance of the proposed method.

Keywords: Data integration; decentralized learning; federated learning; model linkage
selection; prediction efficiency.

1. Introduction

In recent years, there has been a growing interest in statistical learning problems with a set
of decentralized learners, where each learner encompasses a specific data modality and a
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statistical model built using domain-specific knowledge. The goal is to integrate information
across decentralized learners to achieve higher statistical efficiency and predictive accuracy.
Integrating information from different data sources is crucial in many scientific domains such
as environmental science (Blangiardo et al., 2011; Xingjian et al., 2015), epidemiology (Yang
et al., 2015; Guo et al., 2017), statistical machine learning problems (Ngiam et al., 2011;
Kong et al., 2016; Cao and Jin, 2007; Ye et al., 2020; Xian et al., 2020), and computational
biology (Simmonds and Higgins, 2007; Liu et al., 2009, 2015; Wen and Stephens, 2014).
For instance, in the context of epidemiology, a considerable amount of online search data
from different platforms are integrated and used to form accurate predictions of influenza
epidemics (Yang et al., 2015; Guo et al., 2017). The aforementioned applications raise
a critical question: how to reliably integrate information from different data sources to
enhance statistical efficiency in a robust manner?

We consider the setting in which there are a set of learners, each consisting of a data set
and a parametric statistical model. The learners may or may not share common parameters
among themselves. The goal is to develop a framework to enhance the statistical efficiency
of any particular learner, say L1, by integrating information from the other learners through
parameter sharing. In general, learner £; can be assisted explicitly or implicitly by build-
ing a joint model with the other learners with potentially different statistical models and
different data sources. Explicit assistance could be achieved by joint modeling with a set of
learners that share at least one parameter. On the other hand, implicit assistance could be
achieved by joint modeling with learners whose parameters are not directly related to Ly,
but are related to learners who could explicitly assist £1. In principle, if the true underlying
parameter sharing patterns among all learners are known a priori and that the parametric
statistical model for each learner is correctly specified, then one can build a joint model
with constraints on the shared parameters based on the joint likelihood function.

Many existing modeling methods can be formulated as special instances of the above
setting. For example, when multiple learners employ the same parametric model across
different data sources, it is usually studied in the context of data integration (Jensen et al.,
2007; Vonesh et al., 2006; Liu et al., 2015; Lee et al., 2017b; Jordan et al., 2019; Dana-
her et al., 2014; Ma and Michailidis, 2016; Tang and Song, 2016; Li and Li, 2018; Tang
et al., 2019; Maity et al., 2019; Shen et al., 2019), or in the context of distributed opti-
mization (Boyd et al., 2011; Shi et al., 2014; Lee et al., 2017a; Li et al., 2019). A recent
topic, referred to as federated learning, is also related to the above setting, where a central
server (interpreted as the main learner) sends the current global model to a set of clients
(interpreted as other learners), each client updates the model parameters with the local data
source, and then returns them to the central server (Shokri and Shmatikov, 2015; Kone¢ny
et al., 2016; McMahan et al., 2016).

Though it is often helpful to establish a joint model from multiple learners, naively
combining data sources and performing joint modeling can lead to severely degraded statis-
tical performance due to four possible reasons: (i) misspecified statistical models for some
learners; (ii) misspecified parameter sharing patterns among learners; (iii) heterogeneity
from different data sources (Simmonds and Higgins, 2007; Wen and Stephens, 2014; Liu
et al., 2015); and (iv) distinct learning objectives for different learners (Zuech et al., 2015;
Sivarajah et al., 2017; Xian et al., 2020; Wang et al., 2021). Most existing data integration
and distributed computing methods are based on the assumption that the statistical model
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for each learner is correctly specified and that the parameter sharing patterns are known a
priori. A systematic statistical approach for decentralized learning robust against the four
aspects mentioned above is relatively lacking.

In this paper, we propose a general approach to enhance the predictive performance
of a specific learner £; by integrating information from the other learners. We consider
the setting where there are M learners and that the learners may have different statistical
models and heterogeneous data sources. To characterize parameter sharing patterns among
all learners, we introduce the notion of a model linkage graph. A model linkage graph
G = (V,E) consists of a set of M vertices V' and a set of edges E, where each vertex
represents a learner, and an edge between a pair of vertices encodes a parameter sharing
pattern between the pair of learners. In addition, a pair of learners do not share any common
parameters if there is no edge between them. A joint model that enhances the predictive
performance of £ can then be fit given a model linkage graph. However, the ground truth or
the most suitable model linkage graph is not known a priori. Due to model misspecification
within each learner and misspecified model linkages between pairs of learners, the prediction
performance of £1 may degrade after incorporating information from other learners.

To enhance robustness against a misspecified model linkage graph, one could exhaus-
tively build joint models for all possible sets of learners that are connected to £1 within
a given model linkage graph. Then, the set of learners that yields the largest conditional
marginal likelihood of L4 is selected. However, such an approach is computationally infea-
sible since the number of possible sets of learners grows exponentially with the number of
learners. To address this challenge, we propose a greedy algorithm that is robust against a
misspecified model linkage graph. Our proposed algorithm sequentially incorporates addi-
tional learners based on the user-specified model linkage graph, starting from learner £;. In
each iteration of the algorithm, we utilize the joint model built with a group of learners from
the previous iteration and search for the next learner to improve the marginal likelihood of
the current group of learners. This process is continued until no more learners are included
in the joint model. This approach approximately reduces the number of possible sets of
model linkages from exponential to quadratic in the number of learners. Compared with
the joint modeling approach, our proposed method is of distributed nature and does not
require data sharing across learners.

To quantify the theoretical aspects of the proposed method, we introduce the notion of
model linkage selection consistency and asymptotic prediction efficiency. They are different
but conceptually parallel to asymptotic efficiency and selection consistency in the classical
model selection literature (see, e.g., Ding et al., 2018). We show that the proposed algorithm
achieves linkage selection consistency as long as the user-specified model linkage graph is a
superset of the underlying model linkage graph. In other words, the proposed method selects
data sources that are truly useful for enhancing the predictive performance of £ in a data-
adaptive manner as the sample size grows. In addition, we show that the proposed method
achieves asymptotic prediction efficiency, meaning that the predictive performance of the
selected model is asymptotically equivalent to that of the best joint model in hindsight.

The paper is outlined as follows. In Section 2, we provide the motivation, problem
description, and definitions related to the model linkage graph. In Section 3, we propose a
general method for integrating information from different learners to enhance the predictive
performance of £;. The theoretical results for the proposed framework are provided in
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Section 3.2.2. In Section 4, we perform numerical studies to evaluate the performance
of the proposed method under different scenarios such as data contamination and model
misspecification. We close with a discussion in Section 5, where we highlight some related
literature on data integration and federated learning. The technical proofs and the regularity
conditions needed for the main results are included in the Appendix.

2. Background and Motivation

Suppose that there are M learners, L1, Lo, ..., L. Each learner is a pair £, = (D), P,,),
where D®) is a set of n,, observations from the sample space D\®), and P, is a user-specified
class of parametric model for modeling D®), parameterized by a p,-dimensional parameter
0. € ©,. Our goal is to develop a framework for enhancing the predictive performance of
a particular learner, say L1, by integrating information from other learners, Lo, ..., L.
We will focus on the regression setting where D) = (), X(”)), with Y = R and X*) =
RF=. The covariates are allowed to have different dimensions across the M learners due
to different data sources. While we focus on the regression setting, the proposed approach
can be applied more generally to data of different forms. Let D(®) = (y(””),X(")) e D),
where y(”) € R™ is an n,-dimensional vector of response and X(®) ¢ R xkx ig an Ny X ki

matrix of covariates. Let P, = {pgz)(-wk, X®): 0, €0®,,X" ¢ X(“)} be a class of user-

specified parametric model for modeling y (%) given X () For each learner, assume that
the underlying response variable is generated independently according to the probability
law P described by a conditional density p%(-|x(*)), given the covariates x(*) € RF~. We
start with providing several definitions that will serve as a foundation of the proposed
framework: model misspecification, model linkage, and model linkage misspecification.

A class of user-specified model Py is said to be misspecified when it does not contain
the underlying conditional density p*(:|x(*)). In practice, model misspecification often
occurs due to an inappropriate functional form between the response and covariates, such
as underfitting the model or neglecting dependent random noise (see, e.g., Domowitz and
White, 1982; Clarke, 2005; Cawley and Talbot, 2010). We now provide a formal definition
of model misspecification.

Definition 1 A model P = {pg : 0 € O} is well-specified if there exists a 0* € © such that
po= = p* almost everywhere. A model P = {pg : 0 € O} is misspecified if supgcg P*{y :
po(y]|0,x) = p*(y|x)} < 1 for some covariates x, where P* denotes the probability measure
corresponding to p*.

Figure 1 provides several examples of well-specified and misspecified models in the con-
text of regression. The left panel of Figure 1 indicates that the learner £; is well-specified,
since the underlying linear model p] € Py, where P; is a class of user-specified linear model
with two covariates. On the other hand, the middle panel of Figure 1 presents a case
when the learner Ly is misspecified since pj ¢ Pa. Model misspecification also occurs when
the user-specified model class is different from the underlying data-generating process, as
illustrated in the right panel of Figure 1.

Next, we provide a new definition of model linkage. Suppose that there are two learners
L; and L;. A model linkage occurs between two learners £; and £; if they are restricted to
share some common parameters. A formal definition is given in Definition 2.
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Pyt = ﬁlz(ﬁf +ﬁ21$ +eW P : yfz) = ,3137522 + ﬂzftgg +e&® Pyy® = /ﬁ:rﬁ'?,) + Boxl) + 6@
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Figure 1: Three examples of well-specified and misspecified models. Left panel: well-
specified model. Middle panel: misspecified model. Right panel: misspecified
model.

Definition 2 (Model linkage) Suppose that two learners L; and L; are well-specified.
Let 0;s, and s, be subvectors of 0; and 0;, indexed by the subsets S; C {1,...,p;}
and S; C {1,...,p;}, respectively. There exists a model linkage between L; and L; if
0;s, = 0js,, also denoted by Bs, s; for notational convenience. We also refer to Os, s; as
the shared common parameter between L; and L;.

To put the idea of model linkage into perspective, we consider an example in the con-
text of an epidemiological study with two learners, illustrated in Figure 2. A similar ex-
ample was considered in (Plummer, 2015). Suppose that both learners are well-specified.
Learner £; concerns estimating the human papilomavirus (HPV) prevalence with data
DM = (y(l),x(l)), where y(M) and x(!) are both n-dimensional vectors recording the num-
ber of women infected with high-risk HPV and the population size in different states, re-
spectively. A binomial model is specified for yi(l) with a population size xgl) and HPV
prevalence parameter 6y ;, with i = 1,2,...,n. Learner £3 models the relationship between
the HPV prevalence 6 ; and cancer incidence in the form of Poisson regression. In Lo, let
D, = (y®,x®), where y?) is the number of cancer incidents and x(®) is the women-years
of follow up. Both £; and Ly are restricted to share the same HPV prevalence parameters
014, ©=1,2,...,n, and thus there is a model linkage between £ and L».

[ yl(l) ~ Binomial(rgl),el,i) ]7 Ql,z‘ 4[ yz@) ~ Poisson(@lﬁiﬁzwf)) ]

Figure 2: Learners £ and £y share common parameters ¢1;, ¢ =1,...,n.
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The definition and example above focus mainly on whether there is a model linkage
between two learners. Such an idea can be generalized to a set of model linkages among a
group of learners, which we refer to as model linkage graph in the following definition.

Definition 3 (Model linkage graph) Let G = (V,E) be an undirected model linkage
graph, where V is a set of M wvertices representing the M learners Li,..., Ly, and E is
an edge set encoding model linkages between pairs of learners.

In practice, the model linkage graph and linkages between pairs of learners are pre-specified
by the user, usually based on domain-specific knowledge, before model fitting. Therefore,
the prediction performance of a learner may not be improved after incorporating information
from the model linkage graph due to the potential misspecification of models and model
linkages. A concept in parallel with model misspecification in the context of model linkage
misspecification is provided in Definition 4.

Definition 4 (Model linkage misspecification) Suppose that there is a model linkage
between two learners L; and L;. In other words, a pair of subsets of parameters in two
learners are restricted to be the same, say 0;s;, = 0;s,. A model linkage is misspecified
if either L; or Lj is misspecified, or that 67 g % 0;775],. More generally, a model linkage
graph G = (V, E) is misspecified if there exists a misspecified model linkage between a pair
of learners.

Recall that we are interested in enhancing the predictive performance of £; by integrat-
ing information from other learners Lo, ..., Ly;. Thus far, it is clear that a model linkage
should exist between £; and L, if the pair of learners shares common parameters. We
now introduce the notion of information flow in which learners that do not share common
parameters directly with £; can also enhance its predictive performance by sharing com-
mon parameters with learners that can, in turn, assist £;. Consider an example with six
learners as illustrated in Figure 3. For simplicity, assume that the statistical models for all
learners are all well-specified and that the true model linkage graph is known. Learners Lo
and £4 share common parameters with £1, and thus there exist model linkages between
L1 and Lo, and £; and £4. In addition, learner L3 has a shared common parameter with
Lo, and thus in principle, £3 can help enhance the predictive performance of £ implicitly.
This process of positive feedback transmission is an information flow that enables implicit
assistance to £1. In Figure 3, there are two such information flows, namely £3 — Lo — £y
and L5 — L4 — L£1. Thus, in the model linkage graph, paths exist from L3 and L5 to L.
Learner Lg does not share common parameters with learners related to £, and thus there
is no model linkage between Lg and the others.

However, in practice, the true model linkage graph is not known a priori and needs to be
specified. A misspecified model linkage graph may hamper the predictive performance of L.
The following section proposes a data-adaptive framework to identify an appropriate model
linkage graph for prediction. The same idea can be used to improve parameter estimation
accuracy.
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Figure 3: A model linkage graph with six learners. Learner £; shares common parameters
with Lo and L4, and is implicitly connected to £3 and L5 through Lo and L4.

3. General Bayesian Framework for Model Linkage Selection
3.1 Proposed Method

We propose a Bayesian framework to enhance the predictive performance of learner £
by leveraging data from the other learners Lo, ..., Ly according to a user-specified model
linkage graph, G = (V, E). Suppose that there exists a model linkage between two learners,
say learners £; and £;. Some of the elements in 8; and 6; are restricted to be the same, say
0,5 = 9]'73]. = 95i75j. From the Bayesian perspective, a natural way to integrate information
is to compute the posterior distribution of the parameters 8 = (0;_ S0 03, S0 OjT7_ s )T, where
0; s, and 0; _s; are obtained by removing the elements from 6; and 6, indexed by the
sets S; and §j, respectively. Then, the posterior distribution of 8 can be computed as

(8| D DU)) = Py (v 016;, XD)p) (1|65, X D) (6)
T ) = p(y@, y0)|X @, X))

where 7(8) is a prior distribution on 8, and p(y®, y@|X® X)) is the marginal likelihood
obtained by integrating the numerator of the above equation with respect to 6.

More generally, one can compute the posterior distribution of the parameters according
to the user-specified model linkage graph. Let C(G) be a set of indices recording the vertices
that form a connected component with learner £; in the user-specified graph G, including
learner £1. That is, C(G) is a set containing all indices of learners that have at least a path
to £1 and learner £q. For brevity, throughout the paper, let 8 be a vector obtained by
concatenating the entries of 6, for all k € C(G) without duplication. That is, the shared
parameters between pairs of learners appear only once in 6. The posterior distribution for
0 under a specific model linkage can then be computed by

7(0) [1eco) Péi) (y*)|6,, X))
P(Uneca)y ™| Upeca) X))

Then, the posterior predictive distribution for a new observation in learner £; can be
computed as

(0 | Uyee()D™) =

p(7] Unee(ey) D™, %) = /@ P (101, %)7(6 | UneciyD™))d, (1)
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Algorithm 1 Greedy Algorithm for Model Linkage Selection.

Input: User-specified graph G, data D, parameter vector 8., parametric distribution p(e'?(~ | BH,X“)),
prior distribution () on parameters 6,, for k = 1,..., M.

1: Initialize the index £ = 1, linkage set ¢V = {1}.

2: for{=2,...,M do

3: Let NG(Q(Z_I)) denote the neighboring set of ("1 within G, namely the set of learners in G\C(e_l)
that have a model linkage with at least one learner in ¢*~%).

Calculate jopt = argmaxjeNG(C(g_n)p(unec(g_l)y(”) | Unec(e_l)xm),D(j)).

if p(Uneg(za)y(“” U, eete—1) X)) > p(Uned“l)y(K) | Uneg(zfl)X(”),D(]"’P‘)) break
Let ¢! = {jope} UV,

if ¢ =C(G) break

8: end for

9: For a new predictor X, let 5 = p(-| Upec® D" %) and 7 = 7(-| Uec® D).
Output: Predictive distribution p = p*), posterior distribution 7 = 7, and model linkage graph G.

where X denotes the future observed covariates and © is the parameter space. Note that the
posterior predictive distribution has integrated information from learners in C(G) through
the parameters in 6.

In practice, the true model linkage graph is not known a priori, and the user-specified
model linkage graph G may be misspecified, as defined in Definition 4. A joint model as
in (1) with a misspecified model linkage graph G can lead to severely biased parameter
estimation, which affects the predictive quality of £;. Let |C(G)| be the cardinality of the
set C(G). One way to address the aforementioned challenge is to exhaustively search all
possible sets of model linkages over a graph with |C(G)| learners, and pick the set of model
linkages that yields the largest marginal likelihood for £; conditioned on other learners.
However, the number of possible sets of model linkages grows exponentially with |C(G),
and it is computationally infeasible to evaluate all possible subgraphs of G.

To address the above challenge, we propose a greedy algorithm that is computationally
feasible with theoretical guarantees. The proposed algorithm reduces the possible sets
of model linkages from exponential in |C(G)| to quadratic in |C(G)|. The main idea is to
successively search for the next learner that will improve the conditional marginal likelihood
of the current group of learners, starting from a singleton set £1. The algorithm will
terminate and output an estimated model linkage graph G = (V, E) when adding any
further learner no longer increases the marginal likelihood of the maintained learners. The
greedy algorithm is outlined in Algorithm 1.

When the algorithm terminates at the fth iteration, £1 will integrate information from
learners in ¢, leading to the following posterior distribution of 6:

7(0) [Leccw pé*”;) (v, X (%))
P(Upeco Y] Upeer X))

(0] U, cr0 DW) =

re((
Recall that the above 8 is the vector obtained by concatenating free parameters of 8, for

all k € ¢ (©) without duplication. The posterior predictive distribution for a new observation
X in learner £; obtained from Algorithm 1 is computed as

(] Upecr D)%) = /@ P35 (5161, 3)7(8] Uy D) d6.
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Figure 4: A schematic diagram illustrating Algorithm 1 with four learners. Each learner
L. = (D", P,) consists of the data and a user-specified class of parametric
model. The algorithm starts with a user-specified graph that may or may not be
misspecified. At each iteration, the algorithm selects a learner that maximizes the
marginal likelihood of the current group of learners. The algorithm terminates
when no such learners can be found. Finally, the algorithm outputs an estimated
linkage graph @, predictive distribution p, and the posterior distribution 7 for 6.

We now illustrate Algorithm 1 with a toy example in Figure 4. In this example, there
are four learners, and the user-specified model linkage forms a connected component among
all learners, i.e., there is a path from one learner to another learner. Suppose that the
goal is to assist learner £;. It can be seen from the user-specified model linkage graph
G that L; is directly connected to Lo and L3, and implicitly connected with £4 through
L. At the first iteration of Algorithm 1, £; computes its marginal likelihood p(D(M)), and
conditional marginal likelihoods p(D™® | D®)) and p(D™ | D®)). If none of the conditional
marginal likelihoods is larger than the marginal likelihood, Algorithm 1 will be terminated;
otherwise, it includes the learner that produces the larger conditional marginal likelihood
into the model linkage set. In this case, learner Ly is included in the model linkage set.

At the second iteration, the linkage set {L£i, Lo} is treated as one learner since they
are linked together during the first iteration. On the other hand, the candidate learners to
establish a linkage are L3 and £4. In Figure 4, £, is included in the linkage set following a
similar argument as in the first iteration. Finally, £3 is not included in the linkage set based
on our criterion and the algorithm terminates. Consequently, £; will obtain a parameter
estimation and predictive model that are trained from the union of L1, Lo, and Ly4.
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Remark 5 Computation and Communication: In the above example, we note that L1 does
not need to access the raw data of the other learners during the first iteration. In particular,
Ly only requires Lo to share its likelihood function (e.g., in the form of an API) to calculate
the (conditional) marginal likelihoods required for decision-making. Moreover, one could de-
stgn more sophisticated protocols to increase the computation and communication efficiency
in the proposed algorithm. For instance, when L1 decides whom to collaborate with, it only
needs Lo and L3 to transmit their posterior distribution (in the form of, e.g., Monte Carlo
samples) computed locally, to calculate the conditional marginal likelihood. Once a collabo-
rator, say Lo, is determined, the likelihood function of Lo will be sent to L1 to calculate the
latest marginal likelthood and posterior.

We briefly comment on the computation complexity of £ in a general scenario. Suppose
that at each iteration £, each learner in Ng((~1) (following the notation in Algorithm 1)
will send their likelihood functions to the linkage set (V). Let us consider the complexity
of evaluating each candidate learner j in line 4 of Algorithm 1 as one unit. On the one
hand, if learner £; performs the computation alone, its total complexity units will be
O ey (M —€+1)) = O(M?) for large M. On the other hand, if everyone in the
current collaboration set shares the computation cost, the complexity of £; will be reduced
to O3 p—g (M — £+ 1)/(€ —1)) = O(MlogM). The second setting is reasonable,

because learners in (=1 are already collaborators of £; in the joint modeling.

3.2 Theoretical Results

We first provide definitions on asymptotic prediction efficiency and model linkage selection
consistency in Section 3.2.1. Theoretical results for the proposed framework are presented in
Section 3.2.2. Throughout the section, let G = (V, E) and G = (V, E) be the user-specified
and estimated model linkage graphs, respectively. The user-specified G = (V| F) is usually
specified based on prior scientific knowledge of practitioners, which may or may not be well-
specified. Let G* = (V, E*) be the largest subgraph of G, whose underlying model linkages
are all well-specified after the statistical model for each learner is specified. That is, for
any pair of learners £; and £; connected on G, their linkage is well-specified if and only if
there exists an edge between them in G*. Recall that more linkages imply a fewer number
of free parameters in the joint model from G. Thus, intuitively speaking, G* represents the
most parsimonious parameterization of the underlying data-generating process. Ideally, the
proposed algorithm can data-adaptively select G = G*, thus identifying the correct model
linkages and filtering out misspecified ones within G.

3.2.1 DEFINITIONS

Recall that the goal of the proposed framework is to enhance the predictive performance of
L1 by borrowing information from other learners, Lo,..., L. To evaluate the predictive
performance of L1, we consider a general class of proper scoring rules (Gneiting and Raftery,
2007; Parry et al., 2012; Shao et al., 2019). Examples of proper scoring functions are
the logarithmic score s(p,y,x) = —logp(y|x) and the Brier score s(p,y,x) = —p(y|x) +
0.5 [ p(yx)%dy (Parry, 2016).

10
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Definition 6 (Proper scoring function) Letp* be the true data-generating density func-
tion. A scoring function s : (p,y,x) — s(p,y,x) is proper if for any conditional density
function p, we have fy s(p,y, x)p*(y|x)dy > fy s(p*,y,x)p*(y|x)dy almost surely.

Let E be the expectation with respect to the data-generating distribution of y conditional
on x, denoted by p*. Let (y,X) be a new observation. The value E[s(p*,y,X) | X] is
referred to as the oracle score, and E[s(p,y,X) — s(p*,y,X) | X| is a non-negative expected
prediction loss since s(-) is a proper scoring rule. It can be seen that the non-negativity
of the Kullback-Leibler divergence from p*(-|x) to p(:|x), defined as Dy, {p*(-|x)||p(:|x)} =
fy p*(y|x)[log{p*(y|x)} — log{p(y|x)}|dy, implies that the logarithmic score is proper.

Recall that C(G) is a set of indices recording a set of learners that forms a connected
component with £; in a model linkage graph G. Next, we define linkage selection consis-
tency.

Definition 7 (Linkage selection consistency) Given a pre-specified model linkage graph
G, suppose that 1 : {D®) : k € C(Q)} — G isa linkage selection criterion in order to as-
sist Lq1. Then, the linkage selection criterion ¢ achieves linkage selection consistency if
Pr(E =E*) =1 asn — cc.

Here, the probability is defined over the observed data. In other words, a consistent linkage
selection criterion 1 selects all the correct model linkages present in the user-specified linkage
graphs. Next, we introduce the notion of asymptotic prediction efficiency. Suppose that C
denotes a generic set of learners other than £1. Let pc denote the predictive distribution
of L1 conditional all the learners in C.

Definition 8 (Asymptotic prediction efficiency) Let p be a constructed marginal pre-
dictive distribution for L1, and let s(-) be a proper scoring function. Then, D is asymptoti-
cally prediction efficient if

E[S(Z/)\C(G*)vgv i) - S(p*, g’ i)]
E[S(ﬁv yv SE) - S(p*7ﬂ7 i)}

(2)

converges in probability to one as the number of observations n, — oo for k =1,..., M.
Here, the expectation is taken over a new observation gﬂ, X). If\ﬁ 1s the posterior predic-
tive distribution for L1 under a certain model linkage G, then G is also referred to as an
asymptotically efficient model linkage graph.

The ratio (2) contrasts the expected prediction loss of the constructed predictive density
function p and that of the predictive density function induced by G*.

3.2.2 THEORETICAL PROPERTIES OF ALGORITHM 1

We now proceed to study the theoretical properties of Algorithm 1. For technical con-
venience, we assume that learner £; is well-specified. Note that, more generally, learner
L1 may or may not be well-specified. In either case, the predictive performance can be
evaluated by a proper scoring rule, e.g., the logarithmic rule. Throughout the theoretical
studies, we consider the regime in which the number of learners M is fixed and the number
of observations n,, satifies n,/n — ¢,, where n = ZQ/IZI n, and ¢, is a positive constant.

11
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Recall that G = (V, E) is a user-specified graph. Moreover, recall that G* = (V, E*) is the
true model linkage graph, defined as the largest subgraph of G with correct model linkages
between pairs of learners (given that each learner’s _model is specified). We denote the
estimated model linkage graph from Algorithm 1 as G= (V, E)

Theorem 9 Under some reqularity conditions in Appendiz A and given a user-specified
graph G, the estimated model linkage edge set E from Algorithm 1 achieves linkage selection
consistency, namely Pr(E = E*) — 1 as n — oo.

Theorem 9 indicates that the estimated model linkage graph E from Algorithm 1 is
consistent in linkage selection, only selecting all the well-specified model linkages from G.
Thus, the proposed approach is asymptotically robust against model linkage misspecifica-
tion. We will verify the finite sample performance of Algorithm 1 using numerical studies
in Section 4, by considering various settings such as model misspecification, model link-
age misspecification, and data contamination. The following theorem guarantees that the
predictive distribution constructed from Algorithm 1 is asymptotically prediction efficient.

Theorem 10 Let p be the constructed predictive distribution for L1 via Algorithm 1 based
on its selected model linkage graph G. Let s(-) be a proper scoring function. Under the same
conditions as in Theorem 9, p is asymptotically prediction efficient.

Note that Theorem 10 holds even when the statistical models for some learners are misspec-
ified due to the definition of G*. In other words, the proposed method yields a predictive
distribution that is robust to model misspecification and model linkage graph misspecifica-
tion.

4. Numerical Studies

4.1 Linear Regression Example

We consider a regression setting with six learners L1, ..., L. The goal is to enhance the
predictive performance of £ by incorporating information from other learners. The data
for the six learners are generated as follows:

Z] 1B (H) for k =1,3,4,
(k) Z BH) (7) for k = 2,
b Z] 16'{)( )—1—5) () for kK = 5,
z [3 '{) + e(ﬁ) for k = 6,
where all regression coefficients are set to equal 0.3 except that 5§4) =06forj=1,...,7.

(%)

Each covariate x; ; and the random noise are generated from a standard Gaussian distri-
bution for all the learners. Since learners L1, L9, and L3 share common parameters, and
L9 shares common parameters with Lg, there are model linkages among learners £, Lo, L3,
and Lg. The true underlying model linkage graph G* is illustrated on the right panel of
Figure 5. Note that there is a model linkage between L9 and L3 since both share the same

12
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Figure 5: The user-specified model linkage graph G and the largest well-specified model
linkage graph G* within G are shown on the left and right panels, respectively.

common parameters with £q. For simplicity, we set the sample size for each learner to be
n.

In practice, the user needs to specify a model linkage graph for the six learners and a
statistical model for each learner. For the numerical studies, we specify correct statistical
models for k = {1,2,3,4,6}, and we misspecify L5 by assuming that the covariates are

linearly related to the response y. We further restrict BJ(-E) to be the same for k = 1,...,5

and j =1,...,7. Moreover, we restrict BJ(-Q) = BJ(.G) to be the same for j = 8§,...,15. Hence,
the model linkage graph is misspecified in the sense that we assume that there exist model
linkages between L4 and {L1, Lo, L3, L5}, and between L5 and {L1, L2, L3}. The user-
specified graph G is illustrated on the left panel of Figure 5. We apply Algorithm 1 with
the aforementioned user-specified graph and impose a multivariate Gaussian distribution,
Np,(0,41,), as the prior distribution for the regression coefficients for all learners.

We will compare the proposed Algorithm 1 to fitting the model using data only from L1,
and using the combined data from £ and £4. Recall that the actual regression coefficients
in £4 are different from that of £, and thus combining data in £; and £4 can lead to
severely biased estimates of regression coefficients.

To assess the model linkage selection accuracy, we calculate the selection accuracy as
the proportion of times when the estimated model linkage graph G from Algorithm 1 is
equal to G*. To evaluate the performance across different models, we generate 50 test data
for L1, and calculate the mean squared error between the predicted response and the actual
response in the test data. Note that the mean squared error is a surrogate of the predictive
logarithmic score under the Gaussian noise assumption. The predicted response is obtained
by taking the mean of the posterior predictive distribution for each model. In addition, we
calculate the length of the 95% prediction interval obtained from the posterior predictive
distribution. The results for a range of sample sizes n € {50,75,...,150}, averaged over
200 replications, are shown in Figure 6.
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From the left panel of Figure 6, the selection accuracy from Algorithm 1 approaches
one as the sample size increases. This is in line with the selection consistency result of
Theorem 9. Notably, Algorithm 1 yields a consistent model linkage graph even though
the user-specified model linkage graph G is misspecified as shown in Figure 5. From the
middle panel of Figure 6, we see that the proposed greedy algorithm yields the lowest
prediction mean squared error across a range of sample sizes n. The results indicate that
combining data from £; and £4 imprudently can lead to higher prediction mean squared
errors. Meanwhile, properly integrating data can improve the predictive performance of a
single learner £;. Finally, the average length of the 95% prediction interval for the different
models is presented in the right panel of Figure 6. We see that the proposed algorithm
yields the narrowest prediction interval across the range of n.

e- greedy algorithm 14| « e- greedy algorithm
= Ly = Ly
. Ly, L4 . Ly, Ly

13

0.8 13.5

12

13
0.6

Selection accuracy

= 125
0.4 g

12 LIS o o

= " ]
e R G | pEEEY T e ]

Prediction mean squared error
.
Prediction interval length

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
n n n

Figure 6: The results for modeling based on the proposed algorithm (“greedy algorithm”),
modeling of the single agent £; (“£1”), and combined modeling of £; and L4
(“L1,L4”) in the regression experiment. The evaluation uses the selection ac-
curacy (left), prediction mean squared error (middle), and length of the 95%
prediction interval (right), averaged over 200 replications.

4.2 Logistic Regression Example

In this section, we illustrate that the proposed framework can be employed for classification
problems. We perform a numerical study with five learners Lq,...,Ls to enhance the
prediction accuracy of £q. For each learner, we generate the covariates independently from
a uniform distribution on the closed interval [—1, 1]. Then, the response variable is generated
as the following:

(K)\NT % o
logit(Pr(y™ | ")) = { X )BT fork=1,2,3,4,
0 for Kk = 5,

where 8* = {—0.8,-0.5,-0.2,0.1,0.4,0.7,1.0,1.3,1.6}. Learners L1, Lo, L3, and £, share
common parameters 3%, and there are model linkages among L1, Lo, L3, and L4. Learner L5
indicates that yZ(S) follows a Bernoulli distribution with probability 0.5 and is independent
of the covariates. Thus, there are no model linkages between L5 and the other learners. We
again set the sample sizes for all learners to the same n for simplicity.
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Figure 7: The results for modeling based on the proposed algorithm (“greedy algorithm”),
modeling of the single agent £1 (“£1”), and combined modeling of £; and Ls
(“L1,L5”) in the logistic regression experiment. The evaluation uses selection
accuracy and prediction mean squared error, averaged over 200 replications.

We compare Algorithm 1 to models that are based on the data from £, and combined
data from £1 and L5. To evaluate the performance across different methods, we calculate
the selection accuracy and prediction error. For Algorithm 1, we specify an incorrect model
linkage graph where all learners are connected and fit the same logistic regression model for
all learners. We set a multivariate normal distribution, A/(0,4I), as the prior distribution
for the regression coefficients for all learners. The results for a range of sample sizes n =
{100,150, ..., 350}, averaged over 200 replications, are shown in Figure 7.

From the left panel of Figure 7, we see that the selection accuracy converges to one
as we increase the sample size n for each learner. That is, the greedy algorithm chooses
not to include information from L5, even when the user-specified model linkage graph
contains model linkages between L5 and the other learners. In addition, the proposed
greedy algorithm yields the highest prediction error, whereas the modeling based on the
joint data from £q and L5 yields the lowest prediction error.

4.3 Logistic Regression with Data Contamination using Breast Cancer Data

Data contamination is an important issue when one decides whether to incorporate infor-
mation from other learners. In practice, when several data sources are collected to have the
same covariates, users tend to analyze the combined dataset to leverage more information.
However, if some data sources are corrupted or contaminated, it is crucial to discriminate
against them and avoid incorporating information from the contaminated learners. We
illustrate that Algorithm 1 is robust against data contamination on some data sources.
We consider the Wisconsin Breast Cancer database (Mangasarian et al., 1995). The data
consist of a response variable recording whether a cancer tissue is benign or malignant with
9 covariates from a total of 699 subjects. We randomly choose 100 samples as the test data
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for evaluating prediction accuracy. Then, the data are randomly divided into 10 learners, in
which each learner has n samples. Since the data from the 10 learners £1, Lo,..., Lig are
subsamples of the original data set, we assume that the regression coefficients are the same
across all learners. We then contaminate the data in £1¢ such that the binary response is
flipped.

We apply Algorithm 1 with a misspecified model linkage graph by assuming that all
learners are linked among each other. For each learner, we assume a logistic regression
model with an intercept and 9 covariates. For simplicity, we impose the prior distribution
N(0,42) on all regression coefficients. The prediction accuracy for the proposed method,
the method that uses £1, and the method that uses the combined data £q and L1, averaged
over 200 replications, are reported in Table 1.

From Table 1, we see that naively combining data from £; and Lo will lead to a much
lower prediction accuracy than the model using only data from £;. Our proposed method,
on the other hand, chooses not to incorporate information from Li9. Also, by combining
data sources adaptively, our proposed method yields a prediction accuracy that is much
higher than the model fit using data from £; alone, for both cases of n = {25, 50}.

Table 1: Performance results of the proposed approach, model of £, alone, and joint model
of £1 and L9, as evaluated by the prediction accuracy. The results are averaged
over 200 replications, with n = {25,50}.

number of samples proposed method L4 L1 and Ly

n =25 0.928 0.844 0.500
n = 50 0.952 0.894 0.498

4.4 Integrating Information on Kidney Cancer Data

In this section, we analyze the kidney cancer data considered in Maity et al. (2019). The
kidney cancer data consist of 33 different types of tumors, with a total of n = 8108 samples
and up to p = 198 proteins for the different types of tumors. Each tumor type may have
a different number of proteins. To study the association between patients’ survival time
and proteins, Maity et al. (2019) fit an accelerated failure time model with a log-normal
assumption, from which they identified eight proteins that are most related to patients’
survival time.

We now illustrate that integrating information from related cancer tumors using the
proposed method can improve the prediction accuracy of patients’ survival time. For sim-
plicity, we consider only patients that are not alive at the observed survival time and fit a
linear regression on the log-transformed survival time. We consider three types of tumors:
(i) kidney renal clear cell carcinoma (KIRC), £y, (ii) kidney renal papillary cell carcinoma
(KIRP), Lo, and (iii) uterine corpus endometrial carcinoma (UCEC), L3, each of which has
146, 24, and 34 samples, respectively. Moreover, we pick up three proteins “PCADHERIN”
“GAB2”, and “HER3_pY1298” as the covariates, following (Maity et al., 2019) . The three
proteins have been well studied and are all well-known for kidney tumor growth and in-
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vasion (Blaschke et al., 2002; Duckworth et al., 2016; Akbani et al., 2014). In particular,
the PCADHERIN has been considered as one of the most important proteins for kidney
cancer (Maity et al., 2019). Both KIRC and KIRP originate from cells in the proximal
convoluted tubules of the nephron (Chen et al., 2016). Thus, it is reasonable to assume
that PCADHERIN has a similar effect on the log-transformed survival time of patients with
KIRC and KIRP. On the other hand, PCADHERIN is expected to have a different effect on
UCEC since UCEC is a type of uterine cancer. Inspired by the above domain knowledge,
we set up a model linkage graph in the following way. We assume that there are linkages
among KIRP, KIRC, and UCEC by sharing the effect of PCADHERIN on survival time
across three tumor types.

(®)y =
1

Z?Zl :UZ(-;)BJ(-H) +el(-'{), where the indices i, j, and x denote the ith subject, the jth protein, and
the xkth tumor type. For simplicity, we assume that the random noise is normally distributed

with different variances to account for heterogeneity across different tumor types, namely

eg'{) ~N(0,02). Let ﬁ%l), 552), 6%3) be the regression coefficient for PCADHERIN across the
three cancer types, which are linked on the specified linkage graph.

We fit a linear regression model with a log-transformed response, namely log(y

We compare the prediction accuracy of the proposed greedy algorithm with the model
using only data from £; (namely KIRC). To that end, we sample 20 data points from
L1 such that the sample sizes across three tumor types are approximately the same. We
treat the remaining data points for test purposes. The prior distributions of the regression
coefficients are assumed to be standard normal, and the prior distributions for the three
intercepts are assumed to follow a normal distribution with a mean of 10 and variance
one. Moreover, we assume that o2 ~ InvGamma(2,1) for x = 1,2,3, where InvGamma
denotes the inverse gamma distribution. We replicate the experiments above 100 times by
sub-sampling 20 data observations from £; for training the models.

The results indicate that Algorithm 1 connects Lo to £1 in 65% of the replications, and
Ly to L3 20% of the replications. In this example, Algorithm 1 selects different linkages
across different replications due to randomness in the samples. The average prediction
mean squared error (with its standard error) of the proposed method is 1.69(0.027). In
comparison, the values are 1.74(0.031) if using data only from £, and 1.66(0.024) if using
the joint data from £; and L9 throughout the 100 replications. The results imply that
collaborating with Lo increases the predictive performance of £1, and Algorithm 1 tends to
favor such a collaboration.

4.5 Epidemiological Data Study

In this experiment, we revisit the example illustrated in Figure 2 of Section 2. Recall that £

(1) )

employs n Binomial models y;”’ ~ Binomial(x; ’, 01 ), and learner Ly has poisson models

yz@) ~ Poisson(@ljiﬁga;?)), with i =1,2,...,n. The datasets for the two learners are denoted
by DM = (yM, x(M) and D@ = (y? x?)). Note that the two learners are heterogeneous,
and the parameters of £, are not identifiable since 6 ;0o = cfy; - c¢ 10y for any positive
constant c. With a joint modeling of £; and Ly, the parameters become identifiable. We

first use the data in (Maucort-Boulch et al., 2008), where each learner has n = 13 data. For
(1

L1, the population size x; ’ ranges from 37 to 700 and the empirical infection rate yi(l) / xz(»l)
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Table 2: Predictive performance of using a joint modeling of £ and Ly (“Joint”), the
proposed method (“Proposed”), and a single-agent modeling (“£; or Lo alone”),
evaluated for each learner. The evaluation is based on the expected log-predictive
distribution, numerically computed from 1000 out-sample data and 100 replica-
tions. Standard errors are reported in the parentheses.

L1 (Binomial) Lo (Poisson)
Joint Proposed L1 alone Joint Proposed Lo alone

Case 1 -3.76(0.006) -3.86(0.016) -4.05(0.009) -3.76(0.002) -3.76(0.002) -3.76(0.002
Case 2 -4.29(0.033) -4.38(0.041) -4.87(0.019) -4.03(0.011) -4.03(0.011) -4.03(0.010
Case 3 -8.37(0.069) -4.58(0.135) -4.04(0.016) -3.62(0.009) -3.63(0.009) -3.63(0.009
Case 4 -3.56(0.033) -3.56(0.033) -4.05(0.016) -3.26(0.008) -3.26(0.008) -3.31(0.008

~— — — —

~— — — ~—

ranges from 0 to 0.2. For L9, the women-years follow up 2@ ranges from 20000 to 550000,

i
and the number of cancer incidences yz(z) ranges from 10 to 700. In this experiment, we

divided each $Z(-2) by 1000 for computation efficiency, and note that such a scaling does not
make an essential difference for parameter estimation. We used Uniform(0,1) as the prior
distribution for each #;; and Gamma(5,1) for 6. Algorithm 1 outputs that there is no
linkage established between £ and L.

To develop more insights into the nature of the above models and data size, we per-
form four cases of simulated data experiments. We use n = 13 and the identical prior
distributions as in the real-data experiment. In Case 1, we generated simulated data

12 13
——— —
with x() = (200,1000, ..., 1000) and x® = (1000, ...,1000), #s = 10, and 6;; = 0.1 for
i =1,2,...,n. It serves as a case with large data, which tends to produce an accurate
12
—N——
parameter estimation. Case 2 is similar to Case 1, except that x(!) = (20,100, ...,100) and
13

(2) / N . .

x'%) = (100, ..., 100). The latter two experimental cases are based on parameters estimated
from the real data. Case 3 simulates the setting where there exists no underlying linkage
between two learners. In particular, we simulate yfl) from the Binomial model with the

(1)

original population size x;’ and the empirical rate 0 ; that is calculated from the original

data observations. We simulate ygz) from the Poisson model with the expectation that
equals the original count observation. In contrast, Case 4 simulates the setting where there
exists an underlying linkage between two learners. In particular, we estimate a joint model
of the two learners, and use the posterior of 61 ;’s and 62 to generate y () in Binomial models

and y®) in Poisson models, with the original population sizes x() and x®.

To calculate the out-sample test performance of £1 or L2, whomever is being assisted,
we generate 1000 test data based on the underlying data distributions. In particular, we
numerically calculate E[log p(y/ | /)] where p is the predictive distribution and (yf, z)
denotes the test data. The results are shown in Table 2. Recall that in Cases 1, 2, and
4, there exists a model linkage between £; and L£5. In Case 3, there exists no underlying

18



MODEL LINKAGE SELECTION FOR COOPERATIVE LEARNING

model linkage. From the results, the test performance of the proposed method can data-
adaptively approach the better performance of two options, namely with and without a
linkage through the parameters 6 ;. Also, though £ alone is not identifiable, it can improve
L1’s performance in collaborative cases.

5. Conclusion and Further Remarks

With the rapid growth of low-cost data collection devices and decentralized learners, data
analysts are faced with an important challenge to integrate information across a set of
learners with diverse data sources. However, prudently combining data sources and fitting
a joint model on all data sources can lead to biased estimates with a low prediction ac-
curacy due to misspecified models or model linkages. We proposed a general approach to
enhance the predictive performance of learner £ by robustly integrating information across
a set of learners. Since information are integrated through parameter linkages by sharing
parameters, the data sources do not need to be transmitted across learners. As such, the
proposed method is naturally compatible with decentralized learning that involves internet-
of-things requiring low-energy consumption (Da Xu et al., 2014), smart sensors with limited
hardware capacities (Zhou et al., 2016), and decentralized networks with limited communi-
cation bandwidths (Xiao and Luo, 2005). We showed that the proposed method is linkage
selection-consistent and asymptotically prediction-efficient. The theoretical properties are
established under the regime in which the number of learners M and the parameter dimen-
sions are fixed. An interesting future problem is to study the theoretical properties of the
proposed framework under the regime in which the number of learners or the dimension of
parameters is allowed to diverge with the sample size.

In the following, we briefly describe the connection between the proposed framework
and existing methods on data integration and distributed learning.

Data Integration. Integrating information from different data sources has been stud-
ied in the context of data integration (see, for instance, Tang and Song, 2016; Li and Li, 2018,
and the references therein). When there is a unified model across multiple data sources, it is
possible to improve statistical efficiency through parameter sharing or fitting one model us-
ing the combined data. For instance, Tang and Song (2016) employed a fused lasso approach
to encourage the regression coefficients for different data sources to be similar. Li and Li
(2018) developed an integrative linear discriminant analysis method by combining different
data sources and showed that the classification accuracy could be improved compared with
using a single data source. Some other work pre-specified constraints on latent variables to
utilize heterogeneous data sources to address multiple parametric models. For example, in
the study of gene regulatory networks, Jensen et al. (2007) proposed a Bayesian hierarchical
model to integrate gene expression data, ChIP binding data, and promoter sequence data
to infer statistical relationships between transcription factors and genes. The uniqueness of
our work compared with existing methods is that our proposed method allows for a set of
learners with diverse learning objectives and distinct statistical models. Furthermore, the
set of learners share information only through linked parameters of interest. Therefore, the
method in Section 3 can be used to help any learner efficiently identify cooperative learners
when prior information is lacking.
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Lunn et al. (2000) and Plummer (2015) also studied data integrations in the context of
cut distributions, which can be seen as a probabilistic version of a two-step estimator. The
main idea is to cut the propagation from uncertain models to precise models during joint
learning to reduce biases propagated from incorrectly specified models (Lunn et al., 2009;
Ogle et al., 2013). Jacob et al. (2017) proposed a predictive score principle for choosing
the most appropriate joint modeling approach among the cut, full posterior, prior, and
two-step approaches over a set of learners. It is possible to incorporate cut distribution into
our proposed method to improve the finite-sample regime’s performance. Nevertheless, the
number of possible candidates exponentially increases with the number of learners, and thus
the search space of each greedy selection step can be computationally prohibitive. Also, a
systematic theoretical study of the cut distribution remains a challenging problem.

Distributed Learning. Data privacy has gained much attention recently, especially
in distributed learning, where data curators do not wish to share the original data. This
motivates some recent advances in distributed learning such as federated learning, where
a central server sends the current global statistical model to a set of selected clients, and
each client updates the model parameter with local data and returns the updates to the
central server (Shokri and Shmatikov, 2015; Kone¢ny et al., 2016; Diao et al., 2020b). The
objective function for federated learning is typically formulated as

M
min F(6):=) Fi(0), where F.(0)= Y [(B:xy), (3)
k=1 (x,y)ED(“)

where f denotes a global loss function, @ parameterizes a global model to learn, and D®*) is
a labeled dataset of the xth client. To optimize over 8, each client locally takes several iter-
ations of (stochastic) gradient descent on the current parameter using its local data. Then
the server takes a weighted average of the resulting parameters. Within a similar context,
Jordan et al. (2019) proposed a communication-efficient surrogate likelihood framework for
solving distributed statistical estimation problems, which provably improves upon simple
averaging schemes.

In the context of our proposed framework, consider a set of learners each holding a
data source D) and personal objective function f,., and a set of optimization constraints
C. A frequentist counterpart of our Bayesian approach is to minimize a proper scoring
function (Dawid and Musio, 2015), e.g., the negative log-likelihood function, added with
some form of regularization. The unknown parameters can be estimated by solving the
following optimization problem

M
. F (@) .= FH OH _’_R07’0 , biect t C’ 4
o5, F(0):= 3 Ful0) + F(Oy - 0ur), - subject to n

where Fj;(0) = Z fr(0;%,9),
(x,y)eD)

where R is a suitably chosen regularization function. The federated learning falls into the
above formulation when the models are restricted to be the same among different learners,
namely f. = f,0, = 0 for all k. Without the constraint C and regularization R, (4) is
equivalent to optimizing M individual objectives separately.
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Both the developed Bayesian formulation or the frequentist counterpart in (4) can also be
regarded as forms of personalized federated learning, where decentralized and heterogeneous
agents participate in joint learning with peer agents to boost local learning performance. A
key characteristic of personalization is that each agent has a specific local task, loss, model,
and data. As such, the order of establishing linkages and the selected set of collaborative
learners may depend on whom to assist. This is reflected through the asymmetric nature
of the proposed Algorithm 1 in finite-sample regimes. To illustrate this point, we provide
a toy example that involves three learners, each with a Gaussian model y*) ~ A (tw, 1),
k= 1,2,3. It can be regarded as a regression with z(*) = 1 and unknown parameters p,.’s.
Suppose that G is a fully connected graph, and the prior of ju, is A'(0,10?). The observed
data are y) =2, y@ = —0.3, y) = —2, respectively. One can verify that if £ is the one
to be assisted, Algorithm 1 will link it with Lo at the first step; Then, £; and Lo are not
linked with L3, terminating the algorithm. On the other hand, if £9 will be assisted, the
algorithm first links it with £3 and then stops. Consequently, £1 and Lo will not establish
a linkage in that case. The above indicates the asymmetric nature of collaboration: £
being assisted by Lo doest not mean that £q can assist L9 in the presence of other learners.
Nevertheless, it can be verified that there is no such asymmetry in the case of two learners,
meaning that £y selecting Lo is equivalent to Lo selecting £ in Algorithm 1.

Even in the context of vanilla federated learning, considerations of user misspecification
or adversarial attacks are relatively new (Bhagoji et al., 2019; Jere et al., 2020), and the
proposed notion of prediction efficiency and selection consistency are readily applicable.
Moreover, in a general learning scenario where parameters may lose interpretability, it is
still possible to build linkages among learners to reduce the overall model complexity and
generalization errors. For example, Diao et al. (2019, 2020a) recently showed that appropri-
ately restricting deep neural network parameters can significantly improve the performance
of multi-modal image generation, compared with state-of-the-art methods that train an im-
age generator separately from each data modality. From a theoretical perspective, the risk
bound can be reduced by restricting the size of the function spaces through C. When each
learner’s predictive performance is not severely biased by other learners compared with its
reduced variance, it is worth establishing a joint optimization in the form of (4).
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Appendix A. Notation and Regularity Conditions

We start with introducing some regularity conditions needed for the theoretical develop-
ment. These regularity conditions are generalizations of those in Walker (1969) from scalar
to multidimensional vector. Suppose that each observation (y;,x;), 1 < i < n, is mod-
eled via a joint distribution with a density function p(y,x | €) with respect to a o-finite
measure p. Moreover, x € R¥ is modeled using the density function h(x) that is indepen-
dent of the parameter 8 = (61,6s,...,0,)" € RP. The joint density can thus be written
as p(y,x | 8) = p(y | x,0)h(x). Let the true conditional density function of y given x be
p*(y | x), and thus the true joint density of (y,x) can be written as p*(y,x) = p*(y | x)h*(x).
Note that h(x) and h*(x) are not necessarily the same due to potential model misspecifi-
cation when modeling x.

Let @* be an interior value in the parameter space ® defined as the minimizer of the
Kullback-Leibler divergence between p(y | x,0*) and p*(y | x):

0
0" = argmax/ log wp*(y,x)d,u
OcRr  J{y.X} p*(y,%)

_ argmax / log ply | x,6) + log {A(x)}]p" (y | x)h*(x)dxdy
0crr  J{,x}

= argmax / h*(x) / logp(y | x,0)p*(y | x)dydx
oerr  J{x} )

= argmax / logp(y | x,0)p"(y | x)dy. (5)
ocrr  J{v}

Note that when the parametric model p(y | x,0) is well-specified, p(y | x,0%) = p*(y |
x). Let £(0) = > i, logp(yi,x; | 0) be the log-likelihood function for the n observations

o~

and let & = argmax ¢(0) be the maximum likelihood estimator (MLE) of 6. Let I,(0)

OcRP
be the observed Fisher information matrix with {I,,(0)},;, = —%gz;, and let I(6) be

the expected Fisher information matrix for a single observation (y,x) with {I(0)},,; =
921 x|0 al x|9) 91 |0
B { PREPXO L Let {J(0)}; = E{ 2shpxl0) 0ospuxO)}, W define T(n) = O1f(n)},
namely when n is large, there exist some fixed constants ¢; and ¢y such that ¢;f(n) <
T (n)| < caf(n).
Some regularity conditions that are needed in the theoretical development are listed in
the following.

(I) The parameter space ® C RP is compact.

) The set of points {V, X} = {(y,x) : p(y,x | @) > 0} is independent of 6.
(II) If 6o # O3, then p{(y,x) : p(y,x | Oa) # p(y,x | 63)} > 0.

) For all (y,x) € {V, X} and 6 > 0, we have |logp(y,x|0) — log p(y,x|0")| < Hs(y,x,0")

as long as || — 0’|z < §. Here, function Hy has the property that %in% Hs(y,x,0") =0
—
and that
lim Hs(y,x,0")p*(y,x)du = 0.
6—0 {,x}
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(V) If © is not bounded, then for any 6); € ©®, and sufficiently large A, we have

log p(y,x(0) — log p(y, x|0r) < Ka(y,%,0nr),

where ||0]|2 > A and Ka has the property that

lim Ka(y,x,0n)p*(y,x)dp < 0.
A—00 {y7X}

(VI) The maximum likelihood estimator (MLE), denoted by 8, exists, and the matrix I,,(8)
is positive definite almost surely.

(VII) The log-likelihood function log p(y,x|@) is twice continuously differentiable with re-
spect to @ in some neighborhood of 6*.

(VIII) The first and second derivatives with respect to €, and the integral of logp(y,x|@),
are exchangeable.

(IX) There exists a 6 > 0 such that

2 2 *
’8 logp(y,x|6) 9%logp(y,x | 67) < Mjs(y,x,6%)

96,00 06,00

for any pair (7,7) and ||@ — 6*||2 < §, where the function M;s satisfies

lim M;s(y,x,0")p*(y,x)dp = 0.
0—0 {y7X}

(X) The prior density function is continuous at @ = 8* and 7(6*) > 0.

(XI) If £1 has a well-specified model pg,, and Lo has misspecified model pg,, the model
linkage (defined in Definition 2) between £; and Lo is misspecified (Definition 4).

Conditions (I)-(V) ensure that when 6* is an interior value of ®, ¢(6) — ¢(0*) is suffi-
ciently small for values of 8 that are not in the vicinity of 8*, with probability tending to
one as n — co. We note that Condition (I) is a stronger than necessary assumption made to
simplify the technical arguments. Alternatively, one may remove this assumption and show
that the parameter estimate falls into a compact set with the probability increasing to one
as the sample size increases. Conditions (VI)~(IX) ensure that when 8 = 8*, n'/2(6 — 6*)
has a limiting distribution N (0, I(0*)~'J(6*)I(6*)~'). Conditions (VII)—(IX) assume that
I,,(0) is smooth in the vicinity of 8*. Condition (XI) is needed to guarantee that learn-
ers with misspecified models are not included in the joint model to enhance the statistical
performance of L.
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Appendix B. Assumptions on the Scoring Rule

Lety = {y1,%2,...,Yn} " be an n-dimensional vector of the response and X = {x1,X2,...,%,}*
€ R"** be the design matrix of covariates. In the following, we state some assumptions on
the score function s defined in Definition 6.

(A1) sup E[s(p, y,x)] € (0,00).
p’y7x

(A2) Assume that the model p(y|x,0) is well-specified. Let p(y|X,y,X) be the Bayesian
predictive distribution of i given the new predictor X and the data y, X. As n — oo,

E|s{p(fX,y. X),7.%} — s{p(I%,0%),5.X}| = O(n"2). (6)

The first assumption indicates that the expected loss is bounded by some positive constant
for any given density function and prediction point. The second assumption indicates that
the difference between the prediction score and oracle score is in the order of n=1/2. Many
commonly used scoring rules such as the Kullback-Leibler divergence and cross-entropy
satisfy the aforementioned assumptions.

Appendix C. Proof of Theorems 9-10

We start with some technical lemmas that will be helpful for the proof of Theorems 9—
10. Let L(0ly,X) = p(y,X|0) = [[;-, p(vi,x:|0) be the likelihood function for the n
observations and let £(6) be the log-likelihood function. Let p(y,X) = [ p(y,X|0)7(0)d6
be the marginal likelihood of (y, X). The following lemma is a multidimensional counterpart
of Walker (1969) that provides limiting properties for the maximum likelihood estimator
and marginal likelihood.

Lemma 11 Assume that the regularity conditions in Appendix A hold. Let 0* € RP be an
interior value in the parameter space ©, and assume that the data pair (y;,x;) € RF*! has
density p(yi,x;|0) fori=1,2,...,n. Let 0 be the mazimum likelihood estimator of 8. As
n — 00, the following results hold:

(i) Let N(§) = {0: |0 —0%||2 <} be a neighborhood of 8* contained in . For any
positive &, there exists a positive number k(3) depending on & such that

lim Pr| sup n '{{(0)—£0%)} <—k(5)]| =1
=00 OcO\N(5)

(ii) Let (?)71 = det|T,,(0)|, we have 71113;0 n~P {(?)71} = det|I(6%)].

(iii) £(6%) — £(8) = O(1).

o~ -1 »
(iv) lim {p(y, XIB)E}  ply.X) = (2m)En(6").
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Lemma 11(i) indicates that the difference between £(0) and ¢(6*) will be large when 6 is not
in the §-neighborhood of 8*. Lemma 11(ii) establishes that the determinant of the observed
Fisher information matrix converges to the determinant of the expected Fisher information
matrix. Lemma 11(iii) shows that the log-likelihood function evaluated at 8* and 6 are at
the same order. The proof of Lemma 11 is provided in Appendix D.1.

Next, we present a key lemma that provides similar results as those of Lemma 11, but
under the setting with non-identically distributed data that arise from two different data
sources from two different learners. To this end, we define some notation. Without loss of
generality, we consider two learners £; and Lo with sample size n; and ng, respectively.
In particular, for each learner £, with k = 1,2, the user—speciﬁed density function of the
data pair (ygﬁ),xg'{)) € R¥=*+1 is denoted as p(@'z) (yl( , Z \0 ). Let pﬁ(yz(n), (H)) be the true
underlying density function. Similar to Lemma 11, let 87 € RP* be an interior value in the
parameter space ©.

As defined in Definition 2, let 615, = 025, = 05,5, € RP* be the shared parame-
ter between £q and Lo. Moreover, let O = (9;751,0§1’32,0;782)T € RP¢ be the vec-
tor obtained by concatenating entries of 6, and 62 without duplication, which has a di-
mension of pc = p1 + p2 — ps. Let 6; € RPC be its corresponding interior value in Gc¢.
We denote 0; = (01T’_51,HE1’52)T and 6, = (0;_32,9§1732)T as the parameters for £
and Lo after incorporating information from the model linkage between the two learners.
We note that 51 and 52 are equivalent to 61 and 6., respectively, after some reorder-
ing of the elements. The notation are simply defined to facilitate the proof of the the-
oretical results. Let y*) = (y1,92,...,yn.)" and X(#) = (xg'{),xg{), x,(%))T. Denote
L6 [y®, XD, L(6,]y?,X?), and L(0C|y y® X(l) X(Q)) as the hkehhood functions
of L1, L, and (L1, L2), where L(6;[yV),X ) )(y M16,), L(Bo]y®,X?) =

P (v, X)), and

L(6ely ™.y, XD, X)) = pif) (1,32, X1, X|6)

p
= v (v X181 (v, XP16y).

Let 41, ¢2, and f¢ be their corresponding log-likelihood functions and let 51, ég, and 55 be
the MLEs obtained from maximizing ¢1, {5, and {¢, respectively. Let I,(l'z) (0 ) and I (k) (0 )
be the observed Fisher information matrix and expected Fisher information matrix on single
observation, respectively, for k = 1,2. Let I,,(6¢) be the matrix with element {I,,(0¢)}i; =

—g;fj# where ¢ ; is the ith element of §¢. Next, let 7r(§1) (52) and 7r(Gc) be the prior
density of 01, 05, and 6, respectively. Let p(y( fp("6 ]9 ) ( )d0 be

the marginal likelihood of (y(”), X (% )), for kK = 1, 2. Moreover, the margmal likelihood of
(1), y® XM X)) is expressed as

Py, y@, X0 /<1> 1, X0161)p (), X2 |65)7(6c) d6c.

We now present the results in the following lemma.
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Lemma 12 Assume that the reqularity conditions in Appendiz A hold. Suppose that n =
ny + ng2, and ni/n — c1, na/n — ¢, as n — oo, where ci,cy € (0,1). Then, the following
results hold:

(i) Let Nc(6) = {0 : (|0 — 65||2 < 8} be a neighborhood of 6} contained in O¢. For any
d > 0, there exists a positive number k() depending on 0 such that

lim Pr sup  n L {le(0) — Le(05)} < —k(0)| = 1.
nree 6€O©c\Nc (9)

(ii) Let (€2) = det |I,(8¢)|, we have lim n—Pe {(?C)*l} —0(1).

(iii) Lc(85) — le(Bc) = O(1).

(iv) lim {pf,cc)(y(l),y(2),X(1),X(2)!§c)§c}_ p(y®,y®@ XM X)) = (27) 7 7(8}).

Lemmas 13-14 concern the magnitudes of the joint marginal likelihood and marginal
likelihood for each learner, under the case when the model linkage is well-specified or mis-
specified. Similar results were established in the context of change point detection (Du
et al., 2016). Both lemmas will be used to prove that Algorithm 1 will select the correct
model linkage in each iteration of the algorithm.

Lemma 13 Assume that the regularity conditions in Appendiz A hold. Let 05, s, € RP* be
the shared parameter between L1 and Lo as defined in Definition 2. Let the interior value
of 0s,.s, in L1 and L be 8] 5 and 03 g, , respectively. If 07 g = 603 s, , and ny/ng = O(1),
as m = min {ni,na} — oo, we have

p(y(l) ,y@ ]X(l), X(2))

p ps
meXmWW®m@>%@““>

Lemma 14 Under the same conditions as in Lemma 13, if 07 g # 05 5., as min{ny,na} —
00, we have

p(y ™, y@ X1, X @)
plyM[XW)p(y>[XE)

(7)

C.1 Proof of Theorem 9

Proof The main idea of the proof is to show that in each iteration, the proposed algorithm
will integrate information from one additional learner based on the linkage set £*, and avoid
incorporating information from the learner that is not in the linkage set £*. Consequently,
the final output of the algorithm E = E*. We start the proof at the fth iteration.

At the fth iteration, let ¢~ be the set of learners that are already included in the
joint model built from the previous £ — 1 iterations. Let Cég(al) C{2,...,M})\¢“ " be a
non-empty set of learners with at least a path to £1 as defined in the user-specified model
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linkage graph G. Note that Cél@;) is non-empty, otherwise, the algorithm would have been
terminated at the (¢ — 1)th iteration.

There are two cases: (i) there is at least a j € Céig,;) and an i € ¢~V such that
the model linkage between £; and L; is well-specified; and (ii) there are no well-specified

linkages between pairs of learners in Cg*l) and (1),

Case (i): Suppose that there is a well-specified model linkage between L; for a j € ¢ (l;G;

and L; for an ¢ 6 C (=1 By Lemma 13, Step 2 of Algorithm 1 will hold, and £; will form a
new set With ¢ namely ¢ = ¢(*=Y U {j}. More generally, if there are more than one

learner in CC Y that have well-specified linkages with learners in (=1, the algorithm will

select jopt = argmax C(z DP(Upecte—1 yy®y)) and form a new set ¢ = ¢ U {jopt }-

Case (ii): On the other hand, if the model linkages between L; for j € Céia;) and L;

for i € ¢~ are misspecified for all i and j, Lemma 14 ensures that Algorithm 1 will be
terminated, and hence, the misspecified model linkages are not included into ¢ (1),

As a result, the algorithm terminates when all well-specified linkages are included, and
no misspecified linkages and misspecified models will be included, namely E = E*. This
concludes the proof. [ ]

C.2 Proof of Theorem 10

Proof Recall that C(G) is the set of indices recording the vertices that form a connected
component with learner £; in the user-specified graph G, and G* is the true underlying
graph after the statistical models for all learners and G are specified. Let G = {G = (V, E) :
E € E, E # E*} be a set of graphs that is a subgraph of G, but £ # E*. Let Pe(q) be the
posterior predictive distribution constructed based on learners in C(G) as defined in (1),
and let G; = (V, E;) be a graph with edge set E;. We consider the prediction efficiency
ratio defined as follows:

E{S(ﬁC(G*% g? i) - S<p*7 ga i)}

Pr(E = E*)E{s(Be(c+) 5, %) — 50", 5. %)} + Lg,eq Pr(E = E)E{s(Be(a), 5, %) — s, 5.3)}
To prove Theorem 10, it suffices to show that
Pr(E=E") -1 (8)

and
Pr(E = E)E{s(Be(c,), I, %) — s(p*, §, %)}
E{S(pC(G*)7 y7 ) - S(p 7gv i)}

for all G; € G. Equation (8) is a direct consequence of the result in Theorem 1. In the
remaining of the proof, we focus on establishing (9).

To show (9), we consider two cases: (1) all learners in C(G;) are well-specified and that
the model linkages that form a connected component with £; are well-specified; (2) there
exist at least one learner with misspecified models or misspecified model linkages in C(G;).

-0 9)

27



Zuou, DING, TAN, TAROKH

For case (1), Assumption (A2) in Section B indicates that E{s(p¢(a,), ¥,X)—s(p",¥,%X)} =
@(ng(léf)), and E{s(pe(g+, ¥, %) — s(p*,9,%X)} = @(ng(lG/f)), where n¢(q,) and ne(g+) are the
sample sizes of C(G;) and C(G*), respectively. Combining the above and the result from
Theorem 9 that Pr(E = E;) — 0 leads to (9).

For case (2), consider a learner £,, € C(G;) that has misspecified model linkages with
some other learners in C(G;), denoted as C(G;)miss- By definition, C(G;)miss C C(G;). If
E = E;, then G; must include the path between L£,, and the learners in C(G;)miss, which
further indicates that

(10)

Y™, Uree(@omie¥ XY, Unee@mn X™)
) )

Pr(F =F;) <Pr
( ) {p(y(w) |X(w) )p(UHEC(Gi)miSS y(l{) | UHGC(Gi)miSS X(N)

where the right side of the equation can be interpreted as the probability of including L,
in Step 2 of Algorithm 1 to build a joint model.
From the proof of Lemma 14, we have

p(y(w)7 UK/GC(Gi)missy(K/) ’X(w)7 UNGC(Gi)missX(H))

=0 nﬁj/Q exp(—nq,Chy 11
p(y(w) |X('LU) )p(UHGC(Gi)missy(K” UKJGC(Gi)miSS X(K)) { ( )} ( )

for some positive finite constants Cy, and p’, where n,, is the number of samples in £,,. By
an application of the Markov’s inequality and (11), we have

Y™, Urec(GiminY ™ 1X ™) Upce @ X))
>1 (12)
POy XN D(Ue(Gs)miesY | UneC(Gi)mine X))
- { Y™, Urec(Gimin ™ 1X ™) Upee @ X)) } (13)
o p(y(w) |X(U)) )p(UHGC(Gi)miSS y(ﬁ) | UHGC(Gi)miss X(K/))
, 1
< nﬁ;m eXp(_ianw)a (14)

implying Pr(E = E;) < nb/? exp(—0.51,Cl).

Due to the existence of misspecified linkages in C(G;), Assumption (A2) is no longer
applicable to bound E{s(p¢(a,), ¥, X) — s(p*, ¥,X)}. We instead employ Assumption (A1) to
bound E{s(p¢(q,), ¥, X) — s(p*, ¥, X)} by a finite constant C’. Combining the above, we have

~ . o . o~ ~ , 1
Pr(E = E)E{s(Pe(c,), §. %) — s(p", 7. %)} < C'nb/? exp(—5mC)- (15)

By Assumption (A2) in Section B and (15), we conclude that

PI‘(E = E’L/)\E{S(ﬁi(%ﬁ gv SE) _j(f*a :’77 i)} < C,,n8+p/)/2
E{S(pC(G*)a Y, X) - S(p*7 Y, X)}

exp(—%nwcw) S0 (16)

as n,, — 00, where C” is some positive finite constant. This concludes the proof.
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Appendix D. Proof of Lemmas 11-14
D.1 Proof of Lemma 11

Proof Proof of Lemma 11(i): Let 8 € ® \ 6* and let Z; = log {p(v;,x:|0)/p(yi,x:|0*)}
be the log ratio between two joint densities evaluated under 8 and 6*. Let E(Z;) be the
expectation of Z; with respect to the density function p(y;,x; | €*). We start with proving
the following intermediate result that is helpful for the proof of Lemma 11(i):

lim Pr %{e(e)—ao*)y—c(e) _1, (17)

n—0o0

where ¢(0) is a positive finite number that may depend on 6.
We consider two cases when E(Z;) is finite and infinite, respectively. When E(Z;) is
finite, it follows from the Jensen’s inequality that

E(Z;) < logE{exp(Z;)} = 0. (18)

Thus, by the law of large number, we have

n
n 'y 72 HE(Z) <0,
i=1

implying Pr{n=! > | Z; > 0.5E(Z;)} — 0. That is, Pr{n='>"" | Z; < 0.5E(Z;)} — 1.
Pick ¢(0) = —0.5E(Z;), and (17) is satisfied. If E(Z;) is not finite, then we have E(Z;) =
—o00. Let Z = max{Z;, k}, where k < 0. Then E(|Z}|) < oo. By the strong law of large

number, we obtain
fzz* 5 B 7) (19)

As k — —o0, by the monotone convergence theorem, we obtain E(Z') — E(Z;) = —oc.
Moreover, (19) implies

n

1
li Z; = i — Z; < i zr =KE(Z)=— 20
b nZ L Z S g L =R = (0)
almost surely . Thus, we obtain limsup n~" Yoiy Zi = —oo almost surely. In other words,

n—oo
n~IY" | Z; “3 —o0o. Any positive finite number ¢(8) guarantees that (17) will hold.

We now apply (17) to prove Lemma 11(i) holds in some open balls, where the union
of these finite number of open balls covers ® \ N(J). Consider §; € © and let N;(d;) =
{6 : |6 — 0;]2 < ,} be a ball of size §; centered at 8;. By the regularity condition (IV) in
Appendix A, we have

L {6(0) (07} = s [1{ae)—e<0j>}+i{e<ej>—e<o*>}

0cN;(5;) T GeN-(& n

<1 zﬂayz,xz, o {(0) ~ 1(6"))

(21)
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By the weak law of large number, as n — co, we have

o 1¢ P
1 - H, 12 7;70' E{H 12 ’iao' = 22
i 3 Hal . 07) 5 B0, 0,)) =0 2

6—0

Applying (17) with 8 = 8, we obtain

lim Pr [le (0(0;) — £(6°)} < —cj] _1, (23)

n—oo

where ¢; is a positive constant that depends on 6;. Applying (22) and (23), we get the
upper bound in (21), which is shown below:

n—00 OcN;(6;)T

lim Pr{ sup l{5(9) —4(0%)} < %{6(0]-) — (0"} + % ZHg(yi,xi,Oj) < —c]} =1.
=1

Then we get
1
lim Pr¢ sup —{¢(0)—4(6")} < —cjp =1 (24)
oo 0eN;(5;)™

thereafter.

If ® is bounded, the compact set ® \ N(J) can be covered by a finite number of
balls, namely Ni(01), N2(d2), ..., Nim(0m), centered at 61,609, ...,0,,, respectively. Then
Lemma 11(i) holds by (24) with

k(0) = min{cy, ca, ..., cm}-

If ® is unbounded, we apply the same argument to the bounded compact set © \
{N(0)US(A)}, where S(A) = {6 : /0|2 > A} for sufficiently large A, from (V) in Ap-
pendix A, we have

1 1<
sup —{4(0) —£(0")} < — Ka(yi,x;,0%). 25
210 (00~ 0} < S Kafuixi ) (25)

IfE{ KA (yi,xi,0)} > —00, by the weak law of large number, we get n =" 37| Ka (i, x;, 0%) 2

E{Ka(yi,x;,0%)} <0, thus we have

lim Pr| sup —{£(8) — £(67)} < E{Ka(y:,x:,67)}| = 1. (26)
n—0 ocs(a)m

Under this case, Lemma 11(i) holds with k(d) = min [c1,. .., ¢m, —E{Ka(yi, %, 0%)}] .
If E{Ka(yi,x;,0%)} = —o0, using the similar argument in (19) and (20), we can derive
the conclusion that

1< 6.8 .
S Ky xi,07) 5 B{Ka(yi,xi,0°)} = —oc.
=1
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Lemma 11(i) still holds with k(0) = min{c1,...,cm}- |

Proof of Lemma 11(ii): Since 0 can be sufficiently small and lim Pr { 16 — 6% < (5} =
n—oo

1, we have n~!|{(I,.(0) — L,(0%)} 1 < n 1Y Ms(yi, xi, 0%) from (IX) in Appendix A,
the limiting property

Jim 2M5(yi,xi,9 ) = E{Ms(yi,x;,0")} = 0
1=
and the weak law of large number imply that

n—oo n

1 1 0 3 1 * D, *
Jm {L@)} = lm (L), 1), o)
Finally, by continuous mapping theorem, we obtain nPdet|I,(8)| % det|I(6%)].

Proof of Lemma 11(iii): Recall that 6 is the maximum likelihood estimator of 6.

~

Thus, V{(0) = 0. By a second-order Taylor expansion, for 8* € ©, there exists a t € [0, 1]
such that

0(6*) = () — %(e* -0)" [In{é +t(6*—6)}| (6*—0). (28)

It suffices to show (6* — 6)T [In{§+ (0" — 5)}} (6* — 8) = O(1). Since 6 5 6%, by (27) in
the proof of Lemma 11(ii), we have n_l[In{§+ tO* — 5)}]ZJ LS {1(67)}, ;. Also, we have
6 = 6* + ©(n~1/2). Consequently, we obtain

Proof of Lemma 11(iv): Recall that p(y,X|0) = exp{f(0)}. Thus, the marginal
likelihood can be written as

Py, X) = / (O exp{t(0)}0
— ply. X|6) / 7(8) exp{((0) — ((B)}d6
0cO

~ p(y. X|0) / 7(8) exp{£(6) — £(8)}d6 + p(y, X|6) / 7(8) exp{£(0) — ((6)}d6
0cO®\N(4) 6EN(6)

= Il + IQ.
(30)

-1 -1
It suffices to show that {p(y,X\B){} I & 0 and {p(y,X!O)ﬁ} I, & (2m) 27 (0%),
respectively.
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-1
We first show {p(y,X\B)ﬁ} I; 2 0. Note that
b =ply XP)exp {66~ £8)} [ w(6)exp{1(6) ~ (6} do.
0cO\N(5)
We start the proof by conditioning on the event exp {£(0) — ¢(6*)} < exp{—nk(d)}. Thus,

/ () exp {£(0) — £(6%)} d6 < exp {—nk(5)} / 7(8)d6 < exp {—nk(5)} .
0cO\N(5) 0cO\N(5)
(31)

-1
Multiplying I7 with {p(y, X|0)§} and by (31), we obtain { p(y, X\ } I < exp{l(6*)—

0(0)}e L exp {—nk(6)}. By Lemma 11(iii), we have £(6*) — £(8) = O(1). Moreover, by
Lemma 11(ii) and Slutsky’s Theorem, we obtain

lim & exp {—nk(9)} = lim 0 P(E7%) 20?2 exp {—nk(5)}
- <det|1<e*>\>1/igggo fexp {—nk(3) + plog(n)/2}]  (32)
= 0.
Finally, by Lemma 11(i), the event exp {£(0) — ¢(0*)} < exp{—nk(J)} holds with probabil-
ity one as n — oo for any 8 € ® \ N(9). Combining the above, we have

{oy XI8)E} " 1 Lo

-1
Next, we show that {p(y,X\O)g} I & (27)?/27(6*). By a second-order Taylor ex-

pansion, we have

-~

6(0) = £(0) -

~

(9 0)"1,{6+t(6—6)}0—8)

-~

=4(0) -

~ ~

(60— 6)"I( ><e—0>—§<e—§>T [1.{6+t(6 - 8)} — I.(8)| (6 - B).

[\')\l—ll\')\

For notational simplicity, let R, = 0.5(8 —8)T [In{é—i— (0 —6)} — In(é)} (6—6). By (33),
I> can be rewritten as

I =p(y, X|[0) /o ) 7(6) exp {aa) — e(e)} o "
=p(y, X|6) /OEN((S) m(0) exp [—;(9 ~0)"1,(0)(0 —6) — Rn] de.

Under (X) in Appendix A, given any ¢ > 0, let € = 2¢//7(6*), since the prior function ()
is continuous around 6*, thus, we can choose a § such that

IT(0) — 7(0%)]| < € <em(0*) if 6 e N(J). (35)
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Let
I = / exp {—1(9 —0)"1,(6)(6 - §) Rn} . (36)
0EN(5) 2

By (35), we obtain
(1 - 9m(07)Is < {ply. X[0)} I < (1+ (0I5 (37)

It suffices to obtain lower and upper bounds for fA 1. R

We divide the derivation of upper and lower bounds for £~!I3 into two parts, we first
show that &1 feeN(é) exp {—%(9 - é)TIn(é)(O - OA)} d® — (2m)P/2, and prove later that
|Rn| < € for some proper §.
Recall that £~! = det |AIn(0)|1/ 2 and by the regularity condition (VI) in Appendix A,

~

{I,,(8)} ! exists since I,,(0) is non-singular. We have

~

! ex —1 _TT (A\(p_ A
‘ /0€N(5) p{ 50— 0) 1.(0)(6 9)} do
0)I,,(6 0 38
~ /@ p/ eXp{_é(g—9)T1n(0)(0—0)}d9. (38)
0cN(6) \/(Qw)pdeﬂ{In(g)},l’

Because the part inside the integral is the density function of multivariate normal distribu-
tion @ ~ N(0,{I,(0)}~1), we have that (38) will be less than

exp {—%(9 —9)T1,(0)(0 — 5)}

V (2m)pdet|{1,(8)} !

ya
2

do = (2m)z.

Yeo|

(39)

~

Moreover, the symmetry property of I,,(0) indicates that there exists a p x p matrix V' such
that I,,(8) = VTV. Change variable 8 = V@, (38) will be greater than

exp {—%(0' N V§)}

\/(271')19/ det|V a0’
0'eN'(5) » ~1-1

V/ (@m)pdet| {1,(0)} | w0)

exp {-%(0' . Va)}
= \/(271’)1)/ de’,
0’eN’'(8) (2m)P
where N'(0") = {0": |0 — VO*||2 < '}, and ¢ is determined by ¢ = o ||0m6}nH 6HV0 -
|@—60*||2=

V6*|ls. We show that § = min  ||[VO — VO*||s — oo. Let §(0) = [|[VO — VO*|,

6:]16—6%||]2=6
under the condition that ||@ — 8|2 = 4, if 6(0) < oo, then VO — VO* and 8 — 6* are both
elementwise finite, and their lengths are both finite number p, we conclude from above that
det |(VO — VO*)(0 — 0*)"| < co. However, det|V| = (det |In(§)])% — oo from Lemma
11(ii), thus det (VO — VO*)(0 — 6")T| = det|V| - det |(8 — 6*)(8 — 8*)"| — oo, which
is a contradiction. All the above indicates that §(68) — oo for any ||@ — 6*||s = 6, which
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concludes ¢’ = min VO—-V0*||y — co. Therefore, we have (40) converging to (27)?/2
0:]|0—0+|2=5
:|@—0%*|[o=

in probability. The conclusion & fOEN(§) exp {—%(0 - é)TIn(é\)(B - 5)} de — (2m)P/? is
then derived.
We next derive the upper bound of |R,|. By the triangle inequality, we have

LR = 2|50~ 8)T1,(0 10 - 9) - 1,00 - 6)
<5 (9 — ) [, {0+ (6 — )} — I,(6")](6 — é‘)) (41)
to- [0 -8 {r.e) - 1.0)} 0-9).

To further derive the upper bound of (41), consider the length p vector b = (b1, ba, . .., b,)T
and p x p matrix A with {A};; = a;j, 4,7 € {1,2,...,p}. Let g(A,b) = tr(bTAb), this
function can be formalized as g(A,b) = tr(bbTA) = Zpﬂ P bibja;j. Let b=6—6 and
A = I,{6+1(0—-0)}—1,(8%), we have [|b]|y = [[(§—-6")+(6"—8)||s < [|6—0"[2+[|6"—6]]> <
J in probability, because 8 € N(9) and 60— 0" = O(n~12). Thus, |b;| <dfori=1,2,...,p.
We can get the inequality that |g(A,b)| < &2 p DY |al |- From triangle inequality we
have |0 +¢(6 —8) — 6|2 < |0 — 6|2+ (1 —t)||0 0%y B t6 < 9, thus 0—|—t(0 6) € N(5)
in probability. From (IX) in Appendix A, we have \aw| = |[I.{6+t(6—8)} — I, (0%)];] <
oy Ms(yi,xi,0%). Thus we have bTAb < §? ]:1 S >0 Ms(yi, x4,0%). Note that
this inequality also holds when A = I,,(6%) — In(é\), since 6 — % = O(n~1/?), which indi-
cates @ € N(9) almost surely, thus (IX) in Appendix A can be applied and get the same
conclusion as well. Based on (41) and the weak law of large number, n~!|R,,| is less than

P P n
52ZZZM5 (yi, x,0%) L p25%E {M;(y;,x;,0")} when n — oo. (42)
j=1 k=1 i=1

S|

Under (IX) in Appendix A, (lsin% E{M;(yi,x;,0%)} = 0, given the condition that § is chosen
—
to make (35) hold, then for any € > 0, if J is also chosen such that

. €
E {M5(yi7 X4y 0 )} <

2np262’
Therefore
lim Pr< sup |[R,|<ep=1. (43)
n—00 0N ()
Hence, we get the conclusion
lim Pr{(zw)% xp(—¢) < £ < (2m)5 e p(e)} ~1. (44)
n—oo

Since ¢ can be chosen so that (44) and (37) both hold for arbitrary small €, we deduce the
result

lim Pr|(27)27(6)(1 — €) exp(—¢) < {p(y,X\é){A}_l I < (2m)27(6*)(1 + €) exp(e) | = 1,

n—oo
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-1
which leads to {p(y, X\H)g} Iy % (27)P/27(6*) when n — oo. Then we get the conclusion

-1 »
Jim {(v, X8} ply.X) = 2m)ix(6). (45)

D.2 Proof of Lemma 12

Proof We start with the proof of Lemma 12(i). Recall that ©¢ is the parameter space
of B¢, and 6 = (0;781,9§1732)T and 6y = (0;732,9§1732)T as the parameters for £;
and Ly after incorporating information from the model linkage between the two learners.
Let Ni(6x) = {0:]/@ —6}||2 < 6.} be the neighborhood of 8}, and let ©;; = {6c¢ :
01 € N1(51), 02’_5‘2 = 0;,_32} and @2752 = {0(; . 02 S Ng(ég), 01’_51 = 01_31}. The
parameter space ¢ can be divided into @1 5,, @25,, and O¢ \ (@15, UO2;,). For a fixed
J, there exist d; and Jz, such that ®,s. € Ne(d), x = 1,2. Lemma 11(i) indicates that
sup n, ! {E,{(g,i) - EH(B,’;)} < —k(0) for some positive functions ki (dx), k = 1,2.
0,.,€0,.\N,(6x)
Let k((5> =cC1- kl(él) +co - kg((sg). Then,

sup ' {le(8c) — Le(67)} (46)

6c€Oc\Ne (9)

< sup n~ {le(0c) — le(62)} (47)
0c€®C\(®,5,UO35,)

< s o {a@)-a6n)+ s 0 {60:) - 605)] (48)
01€0@1\N(51) 02602\ N2 (d2)

o swp ap {a@) -a@) e sw o {6@) -6} (19)

0,€©1\N,(61) 02€02\N2(d2)
<c1 X {—kl(él)} + c2 X {—k2(52)} (50)
= —k(9), (51)

where (48) holds by the fact that f¢(0c) — €c(05) = {01(0,) — £1(07)} + {£2(02) — £2(63)}
and (50) holds by applications of Lemma 11(i). Therefore, Lemma 12(i) is proved.

For Lemma 12(ii), we prove that n_lIn(éc) is positive definite by showing that n_lIn(é\c)
can be rewritten as a sum of two matrices, namely nflIn(Gc) = M 4+ M>, where M, M>
are positive definite matrices. The proof can then be concluded by the fact that all elements
in My and My are bounded by some finite constants.

Recall that 8, = (OIT’_S1 , Ggl Sy 0%?_52)T € RP¢. Let écﬁ be the MLE of 5,6 obtained by

maximizing f¢, k = 1,2. Let A\, be the smallest eigenvalue in n;lIT(L'Z) (é\cy,ﬁ). By Condition

VI in Appendix A (VI, the positive definite property of Iéi)(écﬁ) indicates that \; > 0,
k = 1,2. In the following proof, we will focus on constructing M;. Construction of My is
similar as M7 and is omitted.

We now define the elements in My. For 4,7 < py, let
1

A1 (52)

1 —~
{M};; = Clnfl{fﬁll)(ec,l)}i,j —3
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for i = j and ¢ < p; — ps, and let
L
{Mi}i; = o {15,/ (6c,1)}i; (53)

for the other elements.
When p1 +1<i<p;+p2—psorpr+1<7<p+ p2 — ps, all the elements are zeros
except when i = j, we set

C
{My};; = 5%2. (54)

By construction, M is a 2 x 2 block diagonal matrix, where each block matrix is positive
definite. The upper left diagonal block is the difference between clnfl{I,(lll)(é\cyl)} and a
diagonal matrix, with the first p; — ps diagonal entries are set to equal 0.5¢1A1. The bottom
right block matrix is a diagonal matrix with all diagonal entries equaling 0.5¢c2A2. Thus My
is positive definite. The matrix Mps is constructed in a similar fashion and can be shown to
be positive definite.

We now proceed to prove the limiting property of n; I, (1 )(0071). We have

f\{ D(@c,) — m<01}”|<—ZM& V. x{V, 67) (55)

from (IX) in Appendix A. Moreover, the limiting property

lim ZM Vx( 6 =5 {0, (7, xM, 61) b = 0 (56)

ny—oo nl

implies that

lim ! {17(111)(66,1)} = lim —{ (1)(0*)}Z

n1—oo M1 %] ni1—oo N

;= {I(U(e{)}i’j. (57)

’,

Equations (52)—(57) imply that M; and My, are positive definite and elementwise finite.
Combining this with the continuous mapping theorem, we obtain the conclusion that
det | My + M| = det [n~'I,,(8¢)| = O(1), which concludes Lemma 12(ii).
Lemma 12(iii) is implied by Lemma 11(iii). The proof of Lemma 12(iv) is similar to the
proof of Lemma 11(iv), and is omitted.
|

D.3 Proof of Lemma 13

Proof Recall from Lemma 11(iv) and Lemma 12(iv) that (5/?)_1 = det|I7sll)(§1)|, (8)_1 =
det|I$2 (6,)|, and (£2)~! = det|I,,(B¢)| with n = 1y + ny. Let hy(XD) and hy(X®) be the
density function of X(1) and X2, respectively. Since the covariates between two learners
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are independent, as m — oo, we have

plyD,y@ X X®)  py®, y@ XO X@)/hy (XD)hy(X @)
YO XD)p(y@X@) — py® X(l))/hl( D) x p(y@,X@))/hy(X(2)
py®,y@ X1, x(@)

Py, XD)p(y®, X@)

C
6 P(ec)(y( ), y@ x1) x(2 )yoc) 1% (58)
Ay 0, X0 6)pY (v, XD [6;) &6

where the third equality holds by an application of Lemma 11(iv) and Lemma 12(iv).
Since the model linkages are well-specified, the joint density can be factored as

C * * *
pg (v, y®, XD, XP0z) = pl (v, XDj07)p) (v, X263,
Thus, we have

péc)( ) y@ x1) XQ)\@;)
Py (), XD[81)pl (v(2), X(2)]6,)

~ 1
péi)(yu),y(2>,X(1>7X<2),9C) {pé?(y() y@ X1 X |9*)}

1 ~ -1
Py, X010 {p (v, X010} (v, X2182) {p2 (v), X@)]05) }
= e(1), (59)

where the second equality holds by Lemma 11(iii).
Also, Lemma 11(ii) and Lemma 12(ii) imply that

p1+p2—ps P11 P2 P1 P2

S > 2, 2 2, 2
/\Eg\ = §C(7:L\1 +ﬂn2l ; ) & 71214'1’2—175 &@(1)' & anl-O-Pz Ps _Q(m%s)
5152 flnf . §2n22 (n1 + 77,2) 2 (m + ng) 2
(60)
Substituting (59) and (60) into (58) concludes the proof. [ |
D.4 Proof of Lemma 14
Proof From the proof of Lemma 13, we have
pyM y@XO, X)) py,y®, XU, X))
Py DXy X)) ~ plyD, XD )p(y®, XO))
and it remains to show that
D 2 x@) x(2)
p(y",y®, XM, X)) (61)

Py, XD )p(y®, X) "
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By definition, p(y™®,y® X1 x( fG)c X(l)lél)pg?)(y@),X(Q)\gg)ﬂ(ec)dec.
Choose a 6 > 0 such that N;(6) and N2(5) are non- overlapping neighborhoods of 6] and
63, respectively. We split p(y(), y), X1 X)) into three integrals, I;, I, and I3, taken
on sets ©1 5, Og5, and O¢ \ (@15 U Oy 5) where ©;5 = {6¢ : 0, Ni(6)} and ©Oy5 =
{6¢ : 92 € N3(6)}. Note that 01 C O¢ and 02 C 6.

For the first integral, we have

1

I = /@ Py (v, X1161)p) (v, X218 (8c) dc
1,8

=1y (v, X102)E exp { £2(65) — £2(62) } (62)
<, & oxp {(2(82) — 2(03) } ) vV, X(V161)7(8c ) dbc.
1,6

Since By ¢ Ni(6) in (62), according to Lemma 11(i), the integral on the right hand side in
(62) is less than

& exp {£2(02) — 2(09) } b)) (v, X V|01 (Oc) B

Oy 5
< & exp{—nzka(8)} pﬁ,”(y X1161)m(8c)dbe

O, 1 (63)
< & ' exp{—naks(8)} / y, XM16,)7(6,)d6,

= {n} 252} 2”2 exp{—nz2ka(0) }p(y(l)ax(l))

with probability tending to 1 as ng — oo. From Lemmas 11(ii)—(iv), as ns — 0o, we have

[NIES

{nh263) 2 B (det [1®)(05)])
exp {(2(605) ~ (:(02) } = ©(1); (64
vy (v, XP10:)62} 'p(y®, X)) B (2m) 7 7(63).

It follows that

L _ vz .
piy®, XD)p(y@, X@) O(ny’ exp{—nak2(d)}) = 0. (65)

Using a similar argument for I, as n; — oo, we have

I _ a1 .
Dy Xy @, x@) ~ O expl=niki(9)}) = 0. (66)
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For the integral I3, we apply a similar argument as in the proof of I; and I>. Specifically,

- [ Py, x<l>\51>p§> (., X2|G,)m(0c)d6c
Oc\{®; sUO; s} ! 2
= pgl) (y®,x® 151)5111%22)( )16,)&5 exp {fl — b 91)} exp {52(95) - 52(52)}

x / €16 exp {e 0187 }exp {52 0,) 52(0;)}7r(90)d06,
Oc\{O®,UO; s}

<5y, XD1B)EE (v, X219, 2€XP{ —0(00) fexp { £2(65) — £2(62) }

xgl—lg}—l/@ exp {51(51)—51(99}9,@ {£2(02)—@<9;)}ﬂ(06)dec.

Since the region O¢ \ {®1,5U O3 s} contains neither the neighborhood of 87 nor the neigh-
borhood of 83, by an application of Lemma 11(i), we have

I < (v, XD 10)E S (v, X2182) exp {1(87) — (1(61) | exp {£2(63) — £2(0) |
x €716 exp {—niki(6)} exp {~naka(8)}
Using an argument similar to that of I; and Lemmas 12(ii)—(iv), we have

I3 Pl P2

T Xy @ x@) = O’ exp{omihi(8) —naka(0)) B 0. (67
Combining the above, we have
Py y®XOX®) 4B+l .
Py XM)p(y®, X@) ~ p(yM, XD)p(y®, XB)
This concludes the proof of Lemma 14. |
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