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Abstract

We consider the distributed learning setting where each agent or learner holds a specific
parametric model and a data source. The goal is to integrate information across a set of
learners and data sources to enhance the prediction accuracy of a given learner. A natural
way to integrate information is to build a joint model across a group of learners that shares
common parameters of interest. However, the underlying parameter sharing patterns across
a set of learners may not be known a priori. Misspecifying the parameter sharing patterns
or the parametric model for each learner often yields a biased estimator that degrades the
prediction accuracy. We propose a general method to integrate information across a set
of learners that is robust against misspecification of both models and parameter sharing
patterns. The main crux of our proposed method is to sequentially incorporate additional
learners that can enhance the prediction accuracy of an existing joint model based on user-
specified parameter sharing patterns across a set of learners. Theoretically, we show that
the proposed method can data-adaptively select a parameter sharing pattern that enhances
the predictive performance of a given learner. Extensive numerical studies are conducted
to assess the performance of the proposed method.

Keywords: Data integration; decentralized learning; federated learning; model linkage
selection; prediction efficiency.

1. Introduction

In recent years, there has been a growing interest in statistical learning problems with a set
of decentralized learners, where each learner encompasses a specific data modality and a
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statistical model built using domain-specific knowledge. The goal is to integrate information
across decentralized learners to achieve higher statistical efficiency and predictive accuracy.
Integrating information from different data sources is crucial in many scientific domains such
as environmental science (Blangiardo et al., 2011; Xingjian et al., 2015), epidemiology (Yang
et al., 2015; Guo et al., 2017), statistical machine learning problems (Ngiam et al., 2011;
Kong et al., 2016; Cao and Jin, 2007; Ye et al., 2020; Xian et al., 2020), and computational
biology (Simmonds and Higgins, 2007; Liu et al., 2009, 2015; Wen and Stephens, 2014).
For instance, in the context of epidemiology, a considerable amount of online search data
from different platforms are integrated and used to form accurate predictions of influenza
epidemics (Yang et al., 2015; Guo et al., 2017). The aforementioned applications raise
a critical question: how to reliably integrate information from different data sources to
enhance statistical efficiency in a robust manner?

We consider the setting in which there are a set of learners, each consisting of a data set
and a parametric statistical model. The learners may or may not share common parameters
among themselves. The goal is to develop a framework to enhance the statistical efficiency
of any particular learner, say L1, by integrating information from the other learners through
parameter sharing. In general, learner L1 can be assisted explicitly or implicitly by build-
ing a joint model with the other learners with potentially different statistical models and
different data sources. Explicit assistance could be achieved by joint modeling with a set of
learners that share at least one parameter. On the other hand, implicit assistance could be
achieved by joint modeling with learners whose parameters are not directly related to L1,
but are related to learners who could explicitly assist L1. In principle, if the true underlying
parameter sharing patterns among all learners are known a priori and that the parametric
statistical model for each learner is correctly specified, then one can build a joint model
with constraints on the shared parameters based on the joint likelihood function.

Many existing modeling methods can be formulated as special instances of the above
setting. For example, when multiple learners employ the same parametric model across
different data sources, it is usually studied in the context of data integration (Jensen et al.,
2007; Vonesh et al., 2006; Liu et al., 2015; Lee et al., 2017b; Jordan et al., 2019; Dana-
her et al., 2014; Ma and Michailidis, 2016; Tang and Song, 2016; Li and Li, 2018; Tang
et al., 2019; Maity et al., 2019; Shen et al., 2019), or in the context of distributed opti-
mization (Boyd et al., 2011; Shi et al., 2014; Lee et al., 2017a; Li et al., 2019). A recent
topic, referred to as federated learning, is also related to the above setting, where a central
server (interpreted as the main learner) sends the current global model to a set of clients
(interpreted as other learners), each client updates the model parameters with the local data
source, and then returns them to the central server (Shokri and Shmatikov, 2015; Konečnỳ
et al., 2016; McMahan et al., 2016).

Though it is often helpful to establish a joint model from multiple learners, naively
combining data sources and performing joint modeling can lead to severely degraded statis-
tical performance due to four possible reasons: (i) misspecified statistical models for some
learners; (ii) misspecified parameter sharing patterns among learners; (iii) heterogeneity
from different data sources (Simmonds and Higgins, 2007; Wen and Stephens, 2014; Liu
et al., 2015); and (iv) distinct learning objectives for different learners (Zuech et al., 2015;
Sivarajah et al., 2017; Xian et al., 2020; Wang et al., 2021). Most existing data integration
and distributed computing methods are based on the assumption that the statistical model
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for each learner is correctly specified and that the parameter sharing patterns are known a
priori. A systematic statistical approach for decentralized learning robust against the four
aspects mentioned above is relatively lacking.

In this paper, we propose a general approach to enhance the predictive performance
of a specific learner L1 by integrating information from the other learners. We consider
the setting where there are M learners and that the learners may have different statistical
models and heterogeneous data sources. To characterize parameter sharing patterns among
all learners, we introduce the notion of a model linkage graph. A model linkage graph
G = (V,E) consists of a set of M vertices V and a set of edges E, where each vertex
represents a learner, and an edge between a pair of vertices encodes a parameter sharing
pattern between the pair of learners. In addition, a pair of learners do not share any common
parameters if there is no edge between them. A joint model that enhances the predictive
performance of L1 can then be fit given a model linkage graph. However, the ground truth or
the most suitable model linkage graph is not known a priori. Due to model misspecification
within each learner and misspecified model linkages between pairs of learners, the prediction
performance of L1 may degrade after incorporating information from other learners.

To enhance robustness against a misspecified model linkage graph, one could exhaus-
tively build joint models for all possible sets of learners that are connected to L1 within
a given model linkage graph. Then, the set of learners that yields the largest conditional
marginal likelihood of L1 is selected. However, such an approach is computationally infea-
sible since the number of possible sets of learners grows exponentially with the number of
learners. To address this challenge, we propose a greedy algorithm that is robust against a
misspecified model linkage graph. Our proposed algorithm sequentially incorporates addi-
tional learners based on the user-specified model linkage graph, starting from learner L1. In
each iteration of the algorithm, we utilize the joint model built with a group of learners from
the previous iteration and search for the next learner to improve the marginal likelihood of
the current group of learners. This process is continued until no more learners are included
in the joint model. This approach approximately reduces the number of possible sets of
model linkages from exponential to quadratic in the number of learners. Compared with
the joint modeling approach, our proposed method is of distributed nature and does not
require data sharing across learners.

To quantify the theoretical aspects of the proposed method, we introduce the notion of
model linkage selection consistency and asymptotic prediction efficiency. They are different
but conceptually parallel to asymptotic efficiency and selection consistency in the classical
model selection literature (see, e.g., Ding et al., 2018). We show that the proposed algorithm
achieves linkage selection consistency as long as the user-specified model linkage graph is a
superset of the underlying model linkage graph. In other words, the proposed method selects
data sources that are truly useful for enhancing the predictive performance of L1 in a data-
adaptive manner as the sample size grows. In addition, we show that the proposed method
achieves asymptotic prediction efficiency, meaning that the predictive performance of the
selected model is asymptotically equivalent to that of the best joint model in hindsight.

The paper is outlined as follows. In Section 2, we provide the motivation, problem
description, and definitions related to the model linkage graph. In Section 3, we propose a
general method for integrating information from different learners to enhance the predictive
performance of L1. The theoretical results for the proposed framework are provided in
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Section 3.2.2. In Section 4, we perform numerical studies to evaluate the performance
of the proposed method under different scenarios such as data contamination and model
misspecification. We close with a discussion in Section 5, where we highlight some related
literature on data integration and federated learning. The technical proofs and the regularity
conditions needed for the main results are included in the Appendix.

2. Background and Motivation

Suppose that there are M learners, L1,L2, . . . ,LM . Each learner is a pair Lκ = (D(κ),Pκ),
where D(κ) is a set of nκ observations from the sample space D(κ), and Pκ is a user-specified
class of parametric model for modeling D(κ), parameterized by a pκ-dimensional parameter
θκ ∈ Θκ. Our goal is to develop a framework for enhancing the predictive performance of
a particular learner, say L1, by integrating information from other learners, L2, . . . ,LM .

We will focus on the regression setting where D(κ) = (Y,X (κ)), with Y = R and X (κ) =
Rkκ . The covariates are allowed to have different dimensions across the M learners due
to different data sources. While we focus on the regression setting, the proposed approach
can be applied more generally to data of different forms. Let D(κ) = (y(κ),X(κ)) ∈ D(κ),
where y(κ) ∈ Rnκ is an nκ-dimensional vector of response and X(κ) ∈ Rnκ×kκ is an nκ × kκ
matrix of covariates. Let Pκ =

{
p

(κ)
θκ

(·|θk,X(κ)) : θκ ∈ Θκ,X
(κ) ∈ X (κ)

}
be a class of user-

specified parametric model for modeling y(κ) given X(κ). For each learner, assume that
the underlying response variable is generated independently according to the probability
law P∗κ described by a conditional density p∗κ(·|x(κ)), given the covariates x(κ) ∈ Rkκ . We
start with providing several definitions that will serve as a foundation of the proposed
framework: model misspecification, model linkage, and model linkage misspecification.

A class of user-specified model Pκ is said to be misspecified when it does not contain
the underlying conditional density p∗κ(·|x(κ)). In practice, model misspecification often
occurs due to an inappropriate functional form between the response and covariates, such
as underfitting the model or neglecting dependent random noise (see, e.g., Domowitz and
White, 1982; Clarke, 2005; Cawley and Talbot, 2010). We now provide a formal definition
of model misspecification.

Definition 1 A model P = {pθ : θ ∈ Θ} is well-specified if there exists a θ∗ ∈ Θ such that
pθ∗ = p∗ almost everywhere. A model P = {pθ : θ ∈ Θ} is misspecified if supθ∈Θ P∗{y :
pθ(y|θ,x) = p∗(y|x)} < 1 for some covariates x, where P∗ denotes the probability measure
corresponding to p∗.

Figure 1 provides several examples of well-specified and misspecified models in the con-
text of regression. The left panel of Figure 1 indicates that the learner L1 is well-specified,
since the underlying linear model p∗1 ∈ P1, where P1 is a class of user-specified linear model
with two covariates. On the other hand, the middle panel of Figure 1 presents a case
when the learner L2 is misspecified since p∗2 /∈ P2. Model misspecification also occurs when
the user-specified model class is different from the underlying data-generating process, as
illustrated in the right panel of Figure 1.

Next, we provide a new definition of model linkage. Suppose that there are two learners
Li and Lj . A model linkage occurs between two learners Li and Lj if they are restricted to
share some common parameters. A formal definition is given in Definition 2.
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Figure 1: Three examples of well-specified and misspecified models. Left panel: well-
specified model. Middle panel: misspecified model. Right panel: misspecified
model.

Definition 2 (Model linkage) Suppose that two learners Li and Lj are well-specified.
Let θi,Si and θj,Sj be subvectors of θi and θj, indexed by the subsets Si ⊆ {1, . . . , pi}
and Sj ⊆ {1, . . . , pj}, respectively. There exists a model linkage between Li and Lj if
θi,Si = θj,Sj , also denoted by θSi,Sj for notational convenience. We also refer to θSi,Sj as
the shared common parameter between Li and Lj.

To put the idea of model linkage into perspective, we consider an example in the con-
text of an epidemiological study with two learners, illustrated in Figure 2. A similar ex-
ample was considered in (Plummer, 2015). Suppose that both learners are well-specified.
Learner L1 concerns estimating the human papilomavirus (HPV) prevalence with data
D(1) = (y(1),x(1)), where y(1) and x(1) are both n-dimensional vectors recording the num-
ber of women infected with high-risk HPV and the population size in different states, re-

spectively. A binomial model is specified for y
(1)
i with a population size x

(1)
i and HPV

prevalence parameter θ1,i, with i = 1, 2, . . . , n. Learner L2 models the relationship between
the HPV prevalence θ1,i and cancer incidence in the form of Poisson regression. In L2, let
D2 = (y(2),x(2)), where y(2) is the number of cancer incidents and x(2) is the women-years
of follow up. Both L1 and L2 are restricted to share the same HPV prevalence parameters
θ1,i, i = 1, 2, . . . , n, and thus there is a model linkage between L1 and L2.
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Figure 2: Learners L1 and L2 share common parameters θ1,i, i = 1, . . . , n.
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The definition and example above focus mainly on whether there is a model linkage
between two learners. Such an idea can be generalized to a set of model linkages among a
group of learners, which we refer to as model linkage graph in the following definition.

Definition 3 (Model linkage graph) Let G = (V,E) be an undirected model linkage
graph, where V is a set of M vertices representing the M learners L1, . . . ,LM , and E is
an edge set encoding model linkages between pairs of learners.

In practice, the model linkage graph and linkages between pairs of learners are pre-specified
by the user, usually based on domain-specific knowledge, before model fitting. Therefore,
the prediction performance of a learner may not be improved after incorporating information
from the model linkage graph due to the potential misspecification of models and model
linkages. A concept in parallel with model misspecification in the context of model linkage
misspecification is provided in Definition 4.

Definition 4 (Model linkage misspecification) Suppose that there is a model linkage
between two learners Li and Lj. In other words, a pair of subsets of parameters in two
learners are restricted to be the same, say θi,Si = θj,Sj . A model linkage is misspecified
if either Li or Lj is misspecified, or that θ∗i,Si 6= θ∗j,Sj . More generally, a model linkage

graph G = (V,E) is misspecified if there exists a misspecified model linkage between a pair
of learners.

Recall that we are interested in enhancing the predictive performance of L1 by integrat-
ing information from other learners L2, . . . ,LM . Thus far, it is clear that a model linkage
should exist between L1 and Lκ if the pair of learners shares common parameters. We
now introduce the notion of information flow in which learners that do not share common
parameters directly with L1 can also enhance its predictive performance by sharing com-
mon parameters with learners that can, in turn, assist L1. Consider an example with six
learners as illustrated in Figure 3. For simplicity, assume that the statistical models for all
learners are all well-specified and that the true model linkage graph is known. Learners L2

and L4 share common parameters with L1, and thus there exist model linkages between
L1 and L2, and L1 and L4. In addition, learner L3 has a shared common parameter with
L2, and thus in principle, L3 can help enhance the predictive performance of L1 implicitly.
This process of positive feedback transmission is an information flow that enables implicit
assistance to L1. In Figure 3, there are two such information flows, namely L3 → L2 → L1

and L5 → L4 → L1. Thus, in the model linkage graph, paths exist from L3 and L5 to L1.
Learner L6 does not share common parameters with learners related to L1, and thus there
is no model linkage between L6 and the others.

However, in practice, the true model linkage graph is not known a priori and needs to be
specified. A misspecified model linkage graph may hamper the predictive performance of L1.
The following section proposes a data-adaptive framework to identify an appropriate model
linkage graph for prediction. The same idea can be used to improve parameter estimation
accuracy.
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Figure 3: A model linkage graph with six learners. Learner L1 shares common parameters
with L2 and L4, and is implicitly connected to L3 and L5 through L2 and L4.

3. General Bayesian Framework for Model Linkage Selection

3.1 Proposed Method

We propose a Bayesian framework to enhance the predictive performance of learner L1

by leveraging data from the other learners L2, . . . ,LM according to a user-specified model
linkage graph, G = (V,E). Suppose that there exists a model linkage between two learners,
say learners Li and Lj . Some of the elements in θi and θj are restricted to be the same, say
θi,Si = θj,Sj = θSi,Sj . From the Bayesian perspective, a natural way to integrate information
is to compute the posterior distribution of the parameters θ = (θT

i,−Si ,θ
T
Si,Sj ,θ

T
j,−Sj )

T, where
θi,−Si and θj,−Sj are obtained by removing the elements from θi and θj , indexed by the
sets Si and Sj , respectively. Then, the posterior distribution of θ can be computed as

π(θ | D(i),D(j)) =
p

(i)
θi

(y(i)|θi,X(i))p
(j)
θj

(y(j)|θj ,X(j))π(θ)

p(y(i),y(j)|X(i),X(j))

where π(θ) is a prior distribution on θ, and p(y(i),y(j)|X(i),X(j)) is the marginal likelihood
obtained by integrating the numerator of the above equation with respect to θ.

More generally, one can compute the posterior distribution of the parameters according
to the user-specified model linkage graph. Let C(G) be a set of indices recording the vertices
that form a connected component with learner L1 in the user-specified graph G, including
learner L1. That is, C(G) is a set containing all indices of learners that have at least a path
to L1 and learner L1. For brevity, throughout the paper, let θ be a vector obtained by
concatenating the entries of θκ for all κ ∈ C(G) without duplication. That is, the shared
parameters between pairs of learners appear only once in θ. The posterior distribution for
θ under a specific model linkage can then be computed by

π(θ | ∪κ∈C(G)D
(κ)) =

π(θ)
∏
κ∈C(G) p

(κ)
θκ

(y(κ)|θκ,X(κ))

p(∪κ∈C(G)y(κ)| ∪κ∈C(G) X(κ))

Then, the posterior predictive distribution for a new observation in learner L1 can be
computed as

p(ỹ| ∪κ∈C(G) D(κ), x̃) =

∫
Θ
p

(1)
θ1

(ỹ|θ1, x̃)π(θ | ∪κ∈C(G)D
(κ))dθ, (1)
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Algorithm 1 Greedy Algorithm for Model Linkage Selection.

Input: User-specified graph G, data D(κ), parameter vector θκ, parametric distribution p
(κ)
θκ

(· | θκ,X(κ)),
prior distribution πκ(·) on parameters θκ, for κ = 1, . . . ,M .

1: Initialize the index ` = 1, linkage set ζ(1) = {1}.
2: for ` = 2, . . . ,M do
3: Let NG(ζ(`−1)) denote the neighboring set of ζ(`−1) within G, namely the set of learners in G\ζ(`−1)

that have a model linkage with at least one learner in ζ(`−1).
4: Calculate jopt = argmaxj∈NG(ζ(`−1))p(∪κ∈ζ(`−1)y(κ) | ∪κ∈ζ(`−1)X(κ),D(j)).

5: if p(∪κ∈ζ(`−1)y(κ)| ∪κ∈ζ(`−1) X(κ)) ≥ p(∪κ∈ζ(`−1)y(κ) | ∪κ∈ζ(`−1)X(κ),D(jopt)) break

6: Let ζ(`) = {jopt} ∪ ζ(`−1).
7: if ζ(`) = C(G) break
8: end for
9: For a new predictor x̃, let p̂(`) = p(·| ∪κ∈ζ(`) D

(κ), x̃) and π̂(`) = π(·| ∪κ∈ζ(`) D
(κ)).

Output: Predictive distribution p̂ = p̂(`), posterior distribution π̂ = π̂(`), and model linkage graph Ĝ.

where x̃ denotes the future observed covariates and Θ is the parameter space. Note that the
posterior predictive distribution has integrated information from learners in C(G) through
the parameters in θ.

In practice, the true model linkage graph is not known a priori, and the user-specified
model linkage graph G may be misspecified, as defined in Definition 4. A joint model as
in (1) with a misspecified model linkage graph G can lead to severely biased parameter
estimation, which affects the predictive quality of L1. Let |C(G)| be the cardinality of the
set C(G). One way to address the aforementioned challenge is to exhaustively search all
possible sets of model linkages over a graph with |C(G)| learners, and pick the set of model
linkages that yields the largest marginal likelihood for L1 conditioned on other learners.
However, the number of possible sets of model linkages grows exponentially with |C(G)|,
and it is computationally infeasible to evaluate all possible subgraphs of G.

To address the above challenge, we propose a greedy algorithm that is computationally
feasible with theoretical guarantees. The proposed algorithm reduces the possible sets
of model linkages from exponential in |C(G)| to quadratic in |C(G)|. The main idea is to
successively search for the next learner that will improve the conditional marginal likelihood
of the current group of learners, starting from a singleton set L1. The algorithm will
terminate and output an estimated model linkage graph Ĝ = (V, Ê) when adding any
further learner no longer increases the marginal likelihood of the maintained learners. The
greedy algorithm is outlined in Algorithm 1.

When the algorithm terminates at the `th iteration, L1 will integrate information from
learners in ζ(`), leading to the following posterior distribution of θ:

π(θ| ∪κ∈ζ(`) D(κ)) =
π(θ)

∏
κ∈ζ(`) p

(κ)
θk

(y(κ)|θk,X(κ))

p(∪κ∈ζ(`)y(κ)| ∪κ∈ζ(`) X(κ))
.

Recall that the above θ is the vector obtained by concatenating free parameters of θκ for
all κ ∈ ζ(`) without duplication. The posterior predictive distribution for a new observation
x̃ in learner L1 obtained from Algorithm 1 is computed as

p(ỹ| ∪κ∈ζ(`) D(κ), x̃) =

∫
Θ
p

(1)
θ1

(ỹ|θ1, x̃)π(θ| ∪κ∈ζ(`) D(κ))dθ.
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✓S2,S4

<latexit sha1_base64="tyfLFkYDnETAHJIAsK3+OmEd8Iw=">AAAB9HicbVBNSwMxFHxbv2r9WvXoJVgET2UjBT0WvXjwUMHaQncp2TTbhmazS5IVytK/4cWDgnj1x3jz35ht96CtA4Fh5j3eZMJUcG0879uprK1vbG5Vt2s7u3v7B+7h0aNOMkVZhyYiUb2QaCa4ZB3DjWC9VDESh4J1w8lN4XefmNI8kQ9mmrIgJiPJI06JsZLvx8SMKRHoboAHbt1reHOgVYJLUocS7YH75Q8TmsVMGiqI1n3spSbIiTKcCjar+ZlmKaETMmJ9SyWJmQ7yeeYZOrPKEEWJsk8aNFd/b+Qk1noah3ayyKiXvUL8z+tnJroKci7TzDBJF4eiTCCToKIANOSKUSOmlhCquM2K6JgoQo2tqWZLwMtfXiXdiwZuNjC+b9Zb12UfVTiBUzgHDJfQgltoQwcopPAMr/DmZM6L8+58LEYrTrlzDH/gfP4A1f6RXQ==</latexit>L1
<latexit sha1_base64="B0b/NjvNp+xZEqjBBcYUR4maMFE=">AAAB9HicbVBNS8NAFHzxs9avqkcvi0XwVJJS0GPRiwcPFawtNKG8bDft0s0m7G6EUvo3vHhQEK/+GG/+GzdtDto6sDDMvMebnTAVXBvX/XbW1jc2t7ZLO+Xdvf2Dw8rR8aNOMkVZmyYiUd0QNRNcsrbhRrBuqhjGoWCdcHyT+50npjRP5IOZpCyIcSh5xCkaK/l+jGZEUZC7fr1fqbo1dw6ySryCVKFAq1/58gcJzWImDRWodc9zUxNMURlOBZuV/UyzFOkYh6xnqcSY6WA6zzwj51YZkChR9klD5urvjSnGWk/i0E7mGfWyl4v/eb3MRFfBlMs0M0zSxaEoE8QkJC+ADLhi1IiJJUgVt1kJHaFCamxNZVuCt/zlVdKp17xGzfPuG9XmddFHCU7hDC7Ag0towi20oA0UUniGV3hzMufFeXc+FqNrTrFzAn/gfP4A14ORXg==</latexit>L2

<latexit sha1_base64="/4IRWk6A/bTbhfhJJv/PkAoPQiI=">AAAB9HicbVBNS8NAFHzxs9avqkcvi0XwVBIt6LHoxYOHCtYWmlA22027dLMJuy9CKf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphKYdB1v52V1bX1jc3SVnl7Z3dvv3Jw+GiSTDPeYolMdCekhkuheAsFSt5JNadxKHk7HN3kfvuJayMS9YDjlAcxHSgRCUbRSr4fUxwyKsld76JXqbo1dwayTLyCVKFAs1f58vsJy2KukElqTNdzUwwmVKNgkk/LfmZ4StmIDnjXUkVjboLJLPOUnFqlT6JE26eQzNTfGxMaGzOOQzuZZzSLXi7+53UzjK6CiVBphlyx+aEokwQTkhdA+kJzhnJsCWVa2KyEDammDG1NZVuCt/jlZdI+r3n1mufd16uN66KPEhzDCZyBB5fQgFtoQgsYpPAMr/DmZM6L8+58zEdXnGLnCP7A+fwB2QiRXw==</latexit>L3
<latexit sha1_base64="eAp4n/1bvZ82bEwHey82kZIrUxA=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQY9FLx48VLC20ITyst20SzebsLsRSunf8OJBQbz6Y7z5b9y0OWjrwMIw8x5vdsJUcG1c99spra1vbG6Vtys7u3v7B9XDo0edZIqyNk1Eorohaia4ZG3DjWDdVDGMQ8E64fgm9ztPTGmeyAczSVkQ41DyiFM0VvL9GM2IoiB3/Ua/WnPr7hxklXgFqUGBVr/65Q8SmsVMGipQ657npiaYojKcCjar+JlmKdIxDlnPUokx08F0nnlGzqwyIFGi7JOGzNXfG1OMtZ7EoZ3MM+plLxf/83qZia6CKZdpZpiki0NRJohJSF4AGXDFqBETS5AqbrMSOkKF1NiaKrYEb/nLq6RzUfcadc+7b9Sa10UfZTiBUzgHDy6hCbfQgjZQSOEZXuHNyZwX5935WIyWnGLnGP7A+fwB2o2RYA==</latexit>L4
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Iteration 1

Iteration 2Output graph

<latexit sha1_base64="H42WoP7GrJFK+CL1IkTDS5RyZ9E=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VQkJJoQZdFNy4rWltoSphMJ+3QyYOZG6GEfoMbf8WNCwVx68adf+MkzaK2Hhg495x7mXuPFwuuwLJ+jNLS8srqWnm9srG5tb1j7u49qCiRlLVoJCLZ8YhigoesBRwE68SSkcATrO2NrjO//cik4lF4D+OY9QIyCLnPKQEtueaJExAYer4DQwbETfOSEoHvXPt0pjifuGbVqlk58CKxC1JFBZqu+e30I5oELAQqiFJd24qhlxIJnAo2qTiJYjGhIzJgXU1DEjDVS/OTJvhIK33sR1K/EHCuzk6kJFBqHHi6M1tSzXuZ+J/XTcC/7KU8jBNgIZ1+5CcCQ4SzfHCfS0ZBjDUhVHK9K6ZDIgkFnWJFh2DPn7xI2mc1u16z7dt6tXFV5FFGB+gQHSMbXaAGukFN1EIUPaEX9IbejWfj1fgwPqetJaOY2Ud/YHz9AmhPnbU=</latexit>

✓S1,S3

<latexit sha1_base64="6m0UPfvNIhLh8gtSfmu2wBbUjGg=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VQkJKUgi6LblxWtLbQlDCZTtqhkwczN0IJ/QY3/oobFwri1o07/8ZJmkVtPTBw7jn3MvceLxZcgWX9GKWV1bX1jfJmZWt7Z3fP3D94UFEiKWvTSESy6xHFBA9ZGzgI1o0lI4EnWMcbX2d+55FJxaPwHiYx6wdkGHKfUwJacs0zJyAw8nwHRgyIm+YlJQLfufb5XFGfumbVqlk58DKxC1JFBVqu+e0MIpoELAQqiFI924qhnxIJnAo2rTiJYjGhYzJkPU1DEjDVT/OTpvhEKwPsR1K/EHCuzk+kJFBqEni6M1tSLXqZ+J/XS8C/7Kc8jBNgIZ195CcCQ4SzfPCAS0ZBTDQhVHK9K6YjIgkFnWJFh2AvnrxMOvWa3ajZ9m2j2rwq8iijI3SMTpGNLlAT3aAWaiOKntALekPvxrPxanwYn7PWklHMHKI/ML5+AWbJnbQ=</latexit>

✓S1,S2

<latexit sha1_base64="DcxGsw80GDRbOkPu6WEryQuvgwI=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VQkJKUgi6LblxWtLbQlDCZTtqhkwczN0IJ/QY3/oobFwri1o07/8ZJmkVtPTBw7jn3MvceLxZcgWX9GKWV1bX1jfJmZWt7Z3fP3D94UFEiKWvTSESy6xHFBA9ZGzgI1o0lI4EnWMcbX2d+55FJxaPwHiYx6wdkGHKfUwJacs0zJyAw8nwHRgyIm+YlJQLfufXzuaIxdc2qVbNy4GViF6SKCrRc89sZRDQJWAhUEKV6thVDPyUSOBVsWnESxWJCx2TIepqGJGCqn+YnTfGJVgbYj6R+IeBcnZ9ISaDUJPB0Z7akWvQy8T+vl4B/2U95GCfAQjr7yE8Ehghn+eABl4yCmGhCqOR6V0xHRBIKOsWKDsFePHmZdOo1u1Gz7dtGtXlV5FFGR+gYnSIbXaAmukEt1EYUPaEX9IbejWfj1fgwPmetJaOYOUR/YHz9Amtonbc=</latexit>

✓S2,S4

<latexit sha1_base64="tyfLFkYDnETAHJIAsK3+OmEd8Iw=">AAAB9HicbVBNSwMxFHxbv2r9WvXoJVgET2UjBT0WvXjwUMHaQncp2TTbhmazS5IVytK/4cWDgnj1x3jz35ht96CtA4Fh5j3eZMJUcG0879uprK1vbG5Vt2s7u3v7B+7h0aNOMkVZhyYiUb2QaCa4ZB3DjWC9VDESh4J1w8lN4XefmNI8kQ9mmrIgJiPJI06JsZLvx8SMKRHoboAHbt1reHOgVYJLUocS7YH75Q8TmsVMGiqI1n3spSbIiTKcCjar+ZlmKaETMmJ9SyWJmQ7yeeYZOrPKEEWJsk8aNFd/b+Qk1noah3ayyKiXvUL8z+tnJroKci7TzDBJF4eiTCCToKIANOSKUSOmlhCquM2K6JgoQo2tqWZLwMtfXiXdiwZuNjC+b9Zb12UfVTiBUzgHDJfQgltoQwcopPAMr/DmZM6L8+58LEYrTrlzDH/gfP4A1f6RXQ==</latexit>L1
<latexit sha1_base64="B0b/NjvNp+xZEqjBBcYUR4maMFE=">AAAB9HicbVBNS8NAFHzxs9avqkcvi0XwVJJS0GPRiwcPFawtNKG8bDft0s0m7G6EUvo3vHhQEK/+GG/+GzdtDto6sDDMvMebnTAVXBvX/XbW1jc2t7ZLO+Xdvf2Dw8rR8aNOMkVZmyYiUd0QNRNcsrbhRrBuqhjGoWCdcHyT+50npjRP5IOZpCyIcSh5xCkaK/l+jGZEUZC7fr1fqbo1dw6ySryCVKFAq1/58gcJzWImDRWodc9zUxNMURlOBZuV/UyzFOkYh6xnqcSY6WA6zzwj51YZkChR9klD5urvjSnGWk/i0E7mGfWyl4v/eb3MRFfBlMs0M0zSxaEoE8QkJC+ADLhi1IiJJUgVt1kJHaFCamxNZVuCt/zlVdKp17xGzfPuG9XmddFHCU7hDC7Ag0towi20oA0UUniGV3hzMufFeXc+FqNrTrFzAn/gfP4A14ORXg==</latexit>L2

<latexit sha1_base64="/4IRWk6A/bTbhfhJJv/PkAoPQiI=">AAAB9HicbVBNS8NAFHzxs9avqkcvi0XwVBIt6LHoxYOHCtYWmlA22027dLMJuy9CKf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphKYdB1v52V1bX1jc3SVnl7Z3dvv3Jw+GiSTDPeYolMdCekhkuheAsFSt5JNadxKHk7HN3kfvuJayMS9YDjlAcxHSgRCUbRSr4fUxwyKsld76JXqbo1dwayTLyCVKFAs1f58vsJy2KukElqTNdzUwwmVKNgkk/LfmZ4StmIDnjXUkVjboLJLPOUnFqlT6JE26eQzNTfGxMaGzOOQzuZZzSLXi7+53UzjK6CiVBphlyx+aEokwQTkhdA+kJzhnJsCWVa2KyEDammDG1NZVuCt/jlZdI+r3n1mufd16uN66KPEhzDCZyBB5fQgFtoQgsYpPAMr/DmZM6L8+58zEdXnGLnCP7A+fwB2QiRXw==</latexit>L3
<latexit sha1_base64="eAp4n/1bvZ82bEwHey82kZIrUxA=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQY9FLx48VLC20ITyst20SzebsLsRSunf8OJBQbz6Y7z5b9y0OWjrwMIw8x5vdsJUcG1c99spra1vbG6Vtys7u3v7B9XDo0edZIqyNk1Eorohaia4ZG3DjWDdVDGMQ8E64fgm9ztPTGmeyAczSVkQ41DyiFM0VvL9GM2IoiB3/Ua/WnPr7hxklXgFqUGBVr/65Q8SmsVMGipQ657npiaYojKcCjar+JlmKdIxDlnPUokx08F0nnlGzqwyIFGi7JOGzNXfG1OMtZ7EoZ3MM+plLxf/83qZia6CKZdpZpiki0NRJohJSF4AGXDFqBETS5AqbrMSOkKF1NiaKrYEb/nLq6RzUfcadc+7b9Sa10UfZTiBUzgHDy6hCbfQgjZQSOEZXuHNyZwX5935WIyWnGLnGP7A+fwB2o2RYA==</latexit>L4

<latexit sha1_base64="H42WoP7GrJFK+CL1IkTDS5RyZ9E=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VQkJJoQZdFNy4rWltoSphMJ+3QyYOZG6GEfoMbf8WNCwVx68adf+MkzaK2Hhg495x7mXuPFwuuwLJ+jNLS8srqWnm9srG5tb1j7u49qCiRlLVoJCLZ8YhigoesBRwE68SSkcATrO2NrjO//cik4lF4D+OY9QIyCLnPKQEtueaJExAYer4DQwbETfOSEoHvXPt0pjifuGbVqlk58CKxC1JFBZqu+e30I5oELAQqiFJd24qhlxIJnAo2qTiJYjGhIzJgXU1DEjDVS/OTJvhIK33sR1K/EHCuzk6kJFBqHHi6M1tSzXuZ+J/XTcC/7KU8jBNgIZ1+5CcCQ4SzfHCfS0ZBjDUhVHK9K6ZDIgkFnWJFh2DPn7xI2mc1u16z7dt6tXFV5FFGB+gQHSMbXaAGukFN1EIUPaEX9IbejWfj1fgwPqetJaOY2Ud/YHz9AmhPnbU=</latexit>

✓S1,S3

<latexit sha1_base64="6m0UPfvNIhLh8gtSfmu2wBbUjGg=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VQkJKUgi6LblxWtLbQlDCZTtqhkwczN0IJ/QY3/oobFwri1o07/8ZJmkVtPTBw7jn3MvceLxZcgWX9GKWV1bX1jfJmZWt7Z3fP3D94UFEiKWvTSESy6xHFBA9ZGzgI1o0lI4EnWMcbX2d+55FJxaPwHiYx6wdkGHKfUwJacs0zJyAw8nwHRgyIm+YlJQLfufb5XFGfumbVqlk58DKxC1JFBVqu+e0MIpoELAQqiFI924qhnxIJnAo2rTiJYjGhYzJkPU1DEjDVT/OTpvhEKwPsR1K/EHCuzk+kJFBqEni6M1tSLXqZ+J/XS8C/7Kc8jBNgIZ195CcCQ4SzfPCAS0ZBTDQhVHK9K6YjIgkFnWJFh2AvnrxMOvWa3ajZ9m2j2rwq8iijI3SMTpGNLlAT3aAWaiOKntALekPvxrPxanwYn7PWklHMHKI/ML5+AWbJnbQ=</latexit>

✓S1,S2

<latexit sha1_base64="DcxGsw80GDRbOkPu6WEryQuvgwI=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VQkJKUgi6LblxWtLbQlDCZTtqhkwczN0IJ/QY3/oobFwri1o07/8ZJmkVtPTBw7jn3MvceLxZcgWX9GKWV1bX1jfJmZWt7Z3fP3D94UFEiKWvTSESy6xHFBA9ZGzgI1o0lI4EnWMcbX2d+55FJxaPwHiYx6wdkGHKfUwJacs0zJyAw8nwHRgyIm+YlJQLfufXzuaIxdc2qVbNy4GViF6SKCrRc89sZRDQJWAhUEKV6thVDPyUSOBVsWnESxWJCx2TIepqGJGCqn+YnTfGJVgbYj6R+IeBcnZ9ISaDUJPB0Z7akWvQy8T+vl4B/2U95GCfAQjr7yE8Ehghn+eABl4yCmGhCqOR6V0xHRBIKOsWKDsFePHmZdOo1u1Gz7dtGtXlV5FFGR+gYnSIbXaAmukEt1EYUPaEX9IbejWfj1fgwPmetJaOYOUR/YHz9Amtonbc=</latexit>

✓S2,S4

<latexit sha1_base64="tyfLFkYDnETAHJIAsK3+OmEd8Iw=">AAAB9HicbVBNSwMxFHxbv2r9WvXoJVgET2UjBT0WvXjwUMHaQncp2TTbhmazS5IVytK/4cWDgnj1x3jz35ht96CtA4Fh5j3eZMJUcG0879uprK1vbG5Vt2s7u3v7B+7h0aNOMkVZhyYiUb2QaCa4ZB3DjWC9VDESh4J1w8lN4XefmNI8kQ9mmrIgJiPJI06JsZLvx8SMKRHoboAHbt1reHOgVYJLUocS7YH75Q8TmsVMGiqI1n3spSbIiTKcCjar+ZlmKaETMmJ9SyWJmQ7yeeYZOrPKEEWJsk8aNFd/b+Qk1noah3ayyKiXvUL8z+tnJroKci7TzDBJF4eiTCCToKIANOSKUSOmlhCquM2K6JgoQo2tqWZLwMtfXiXdiwZuNjC+b9Zb12UfVTiBUzgHDJfQgltoQwcopPAMr/DmZM6L8+58LEYrTrlzDH/gfP4A1f6RXQ==</latexit>L1
<latexit sha1_base64="B0b/NjvNp+xZEqjBBcYUR4maMFE=">AAAB9HicbVBNS8NAFHzxs9avqkcvi0XwVJJS0GPRiwcPFawtNKG8bDft0s0m7G6EUvo3vHhQEK/+GG/+GzdtDto6sDDMvMebnTAVXBvX/XbW1jc2t7ZLO+Xdvf2Dw8rR8aNOMkVZmyYiUd0QNRNcsrbhRrBuqhjGoWCdcHyT+50npjRP5IOZpCyIcSh5xCkaK/l+jGZEUZC7fr1fqbo1dw6ySryCVKFAq1/58gcJzWImDRWodc9zUxNMURlOBZuV/UyzFOkYh6xnqcSY6WA6zzwj51YZkChR9klD5urvjSnGWk/i0E7mGfWyl4v/eb3MRFfBlMs0M0zSxaEoE8QkJC+ADLhi1IiJJUgVt1kJHaFCamxNZVuCt/zlVdKp17xGzfPuG9XmddFHCU7hDC7Ag0towi20oA0UUniGV3hzMufFeXc+FqNrTrFzAn/gfP4A14ORXg==</latexit>L2

<latexit sha1_base64="/4IRWk6A/bTbhfhJJv/PkAoPQiI=">AAAB9HicbVBNS8NAFHzxs9avqkcvi0XwVBIt6LHoxYOHCtYWmlA22027dLMJuy9CKf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphKYdB1v52V1bX1jc3SVnl7Z3dvv3Jw+GiSTDPeYolMdCekhkuheAsFSt5JNadxKHk7HN3kfvuJayMS9YDjlAcxHSgRCUbRSr4fUxwyKsld76JXqbo1dwayTLyCVKFAs1f58vsJy2KukElqTNdzUwwmVKNgkk/LfmZ4StmIDnjXUkVjboLJLPOUnFqlT6JE26eQzNTfGxMaGzOOQzuZZzSLXi7+53UzjK6CiVBphlyx+aEokwQTkhdA+kJzhnJsCWVa2KyEDammDG1NZVuCt/jlZdI+r3n1mufd16uN66KPEhzDCZyBB5fQgFtoQgsYpPAMr/DmZM6L8+58zEdXnGLnCP7A+fwB2QiRXw==</latexit>L3
<latexit sha1_base64="eAp4n/1bvZ82bEwHey82kZIrUxA=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQY9FLx48VLC20ITyst20SzebsLsRSunf8OJBQbz6Y7z5b9y0OWjrwMIw8x5vdsJUcG1c99spra1vbG6Vtys7u3v7B9XDo0edZIqyNk1Eorohaia4ZG3DjWDdVDGMQ8E64fgm9ztPTGmeyAczSVkQ41DyiFM0VvL9GM2IoiB3/Ua/WnPr7hxklXgFqUGBVr/65Q8SmsVMGipQ657npiaYojKcCjar+JlmKdIxDlnPUokx08F0nnlGzqwyIFGi7JOGzNXfG1OMtZ7EoZ3MM+plLxf/83qZia6CKZdpZpiki0NRJohJSF4AGXDFqBETS5AqbrMSOkKF1NiaKrYEb/nLq6RzUfcadc+7b9Sa10UfZTiBUzgHDy6hCbfQgjZQSOEZXuHNyZwX5935WIyWnGLnGP7A+fwB2o2RYA==</latexit>L4

<latexit sha1_base64="H42WoP7GrJFK+CL1IkTDS5RyZ9E=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VQkJJoQZdFNy4rWltoSphMJ+3QyYOZG6GEfoMbf8WNCwVx68adf+MkzaK2Hhg495x7mXuPFwuuwLJ+jNLS8srqWnm9srG5tb1j7u49qCiRlLVoJCLZ8YhigoesBRwE68SSkcATrO2NrjO//cik4lF4D+OY9QIyCLnPKQEtueaJExAYer4DQwbETfOSEoHvXPt0pjifuGbVqlk58CKxC1JFBZqu+e30I5oELAQqiFJd24qhlxIJnAo2qTiJYjGhIzJgXU1DEjDVS/OTJvhIK33sR1K/EHCuzk6kJFBqHHi6M1tSzXuZ+J/XTcC/7KU8jBNgIZ1+5CcCQ4SzfHCfS0ZBjDUhVHK9K6ZDIgkFnWJFh2DPn7xI2mc1u16z7dt6tXFV5FFGB+gQHSMbXaAGukFN1EIUPaEX9IbejWfj1fgwPqetJaOY2Ud/YHz9AmhPnbU=</latexit>

✓S1,S3

<latexit sha1_base64="6m0UPfvNIhLh8gtSfmu2wBbUjGg=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VQkJKUgi6LblxWtLbQlDCZTtqhkwczN0IJ/QY3/oobFwri1o07/8ZJmkVtPTBw7jn3MvceLxZcgWX9GKWV1bX1jfJmZWt7Z3fP3D94UFEiKWvTSESy6xHFBA9ZGzgI1o0lI4EnWMcbX2d+55FJxaPwHiYx6wdkGHKfUwJacs0zJyAw8nwHRgyIm+YlJQLfufb5XFGfumbVqlk58DKxC1JFBVqu+e0MIpoELAQqiFI924qhnxIJnAo2rTiJYjGhYzJkPU1DEjDVT/OTpvhEKwPsR1K/EHCuzk+kJFBqEni6M1tSLXqZ+J/XS8C/7Kc8jBNgIZ195CcCQ4SzfPCAS0ZBTDQhVHK9K6YjIgkFnWJFh2AvnrxMOvWa3ajZ9m2j2rwq8iijI3SMTpGNLlAT3aAWaiOKntALekPvxrPxanwYn7PWklHMHKI/ML5+AWbJnbQ=</latexit>
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Figure 4: A schematic diagram illustrating Algorithm 1 with four learners. Each learner
Lκ = (D(κ),Pκ) consists of the data and a user-specified class of parametric
model. The algorithm starts with a user-specified graph that may or may not be
misspecified. At each iteration, the algorithm selects a learner that maximizes the
marginal likelihood of the current group of learners. The algorithm terminates
when no such learners can be found. Finally, the algorithm outputs an estimated
linkage graph Ĝ, predictive distribution p̂, and the posterior distribution π̂ for θ.

We now illustrate Algorithm 1 with a toy example in Figure 4. In this example, there
are four learners, and the user-specified model linkage forms a connected component among
all learners, i.e., there is a path from one learner to another learner. Suppose that the
goal is to assist learner L1. It can be seen from the user-specified model linkage graph
G that L1 is directly connected to L2 and L3, and implicitly connected with L4 through
L2. At the first iteration of Algorithm 1, L1 computes its marginal likelihood p(D(1)), and
conditional marginal likelihoods p(D(1) | D(2)) and p(D(1) | D(3)). If none of the conditional
marginal likelihoods is larger than the marginal likelihood, Algorithm 1 will be terminated;
otherwise, it includes the learner that produces the larger conditional marginal likelihood
into the model linkage set. In this case, learner L2 is included in the model linkage set.

At the second iteration, the linkage set {L1,L2} is treated as one learner since they
are linked together during the first iteration. On the other hand, the candidate learners to
establish a linkage are L3 and L4. In Figure 4, L4 is included in the linkage set following a
similar argument as in the first iteration. Finally, L3 is not included in the linkage set based
on our criterion and the algorithm terminates. Consequently, L1 will obtain a parameter
estimation and predictive model that are trained from the union of L1, L2, and L4.
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Remark 5 Computation and Communication: In the above example, we note that L1 does
not need to access the raw data of the other learners during the first iteration. In particular,
L1 only requires L2 to share its likelihood function (e.g., in the form of an API) to calculate
the (conditional) marginal likelihoods required for decision-making. Moreover, one could de-
sign more sophisticated protocols to increase the computation and communication efficiency
in the proposed algorithm. For instance, when L1 decides whom to collaborate with, it only
needs L2 and L3 to transmit their posterior distribution (in the form of, e.g., Monte Carlo
samples) computed locally, to calculate the conditional marginal likelihood. Once a collabo-
rator, say L2, is determined, the likelihood function of L2 will be sent to L1 to calculate the
latest marginal likelihood and posterior.

We briefly comment on the computation complexity of L1 in a general scenario. Suppose
that at each iteration `, each learner in NG(ζ(`−1)) (following the notation in Algorithm 1)
will send their likelihood functions to the linkage set ζ(`−1). Let us consider the complexity
of evaluating each candidate learner j in line 4 of Algorithm 1 as one unit. On the one
hand, if learner L1 performs the computation alone, its total complexity units will be
O(
∑

`=2,...,M (M − ` + 1)) = O(M2) for large M . On the other hand, if everyone in the
current collaboration set shares the computation cost, the complexity of L1 will be reduced
to O(

∑
`=2,...,M (M − ` + 1)/(` − 1)) = O(M logM). The second setting is reasonable,

because learners in ζ(`−1) are already collaborators of L1 in the joint modeling.

3.2 Theoretical Results

We first provide definitions on asymptotic prediction efficiency and model linkage selection
consistency in Section 3.2.1. Theoretical results for the proposed framework are presented in
Section 3.2.2. Throughout the section, let G = (V,E) and Ĝ = (V, Ê) be the user-specified
and estimated model linkage graphs, respectively. The user-specified G = (V,E) is usually
specified based on prior scientific knowledge of practitioners, which may or may not be well-
specified. Let G∗ = (V,E∗) be the largest subgraph of G, whose underlying model linkages
are all well-specified after the statistical model for each learner is specified. That is, for
any pair of learners Li and Lj connected on G, their linkage is well-specified if and only if
there exists an edge between them in G∗. Recall that more linkages imply a fewer number
of free parameters in the joint model from G. Thus, intuitively speaking, G∗ represents the
most parsimonious parameterization of the underlying data-generating process. Ideally, the
proposed algorithm can data-adaptively select Ĝ = G∗, thus identifying the correct model
linkages and filtering out misspecified ones within G.

3.2.1 Definitions

Recall that the goal of the proposed framework is to enhance the predictive performance of
L1 by borrowing information from other learners, L2, . . . ,LM . To evaluate the predictive
performance of L1, we consider a general class of proper scoring rules (Gneiting and Raftery,
2007; Parry et al., 2012; Shao et al., 2019). Examples of proper scoring functions are
the logarithmic score s(p, y,x) = − log p(y|x) and the Brier score s(p, y,x) = −p(y|x) +
0.5
∫
R p(ỹ|x)2dỹ (Parry, 2016).
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Definition 6 (Proper scoring function) Let p∗ be the true data-generating density func-
tion. A scoring function s : (p, y,x) 7→ s(p, y,x) is proper if for any conditional density
function p, we have

∫
Y s(p, y,x)p∗(y|x)dy ≥

∫
Y s(p

∗, y,x)p∗(y|x)dy almost surely.

Let E be the expectation with respect to the data-generating distribution of y conditional
on x, denoted by p∗. Let (ỹ, x̃) be a new observation. The value E[s(p∗, ỹ, x̃) | x̃] is
referred to as the oracle score, and E[s(p̂, ỹ, x̃) − s(p∗, ỹ, x̃) | x̃] is a non-negative expected
prediction loss since s(·) is a proper scoring rule. It can be seen that the non-negativity
of the Kullback-Leibler divergence from p∗(·|x) to p̂(·|x), defined as Dkl{p∗(·|x)||p̂(·|x)} =∫
Y p
∗(y|x)[log{p∗(y|x)} − log{p̂(y|x)}]dy, implies that the logarithmic score is proper.
Recall that C(G) is a set of indices recording a set of learners that forms a connected

component with L1 in a model linkage graph G. Next, we define linkage selection consis-
tency.

Definition 7 (Linkage selection consistency) Given a pre-specified model linkage graph
G, suppose that ψ : {D(κ) : κ ∈ C(G)} 7→ Ĝ is a linkage selection criterion in order to as-
sist L1. Then, the linkage selection criterion ψ achieves linkage selection consistency if
Pr(Ê = E∗)→ 1 as n→∞.

Here, the probability is defined over the observed data. In other words, a consistent linkage
selection criterion ψ selects all the correct model linkages present in the user-specified linkage
graphs. Next, we introduce the notion of asymptotic prediction efficiency. Suppose that C
denotes a generic set of learners other than L1. Let p̂C denote the predictive distribution
of L1 conditional all the learners in C.

Definition 8 (Asymptotic prediction efficiency) Let p̂ be a constructed marginal pre-
dictive distribution for L1, and let s(·) be a proper scoring function. Then, p̂ is asymptoti-
cally prediction efficient if

E[s(p̂C(G∗), ỹ, x̃)− s(p∗, ỹ, x̃)]

E[s(p̂, ỹ, x̃)− s(p∗, ỹ, x̃)]
(2)

converges in probability to one as the number of observations nκ → ∞ for κ = 1, . . . ,M .
Here, the expectation is taken over a new observation (ỹ, x̃). If p̂ is the posterior predic-
tive distribution for L1 under a certain model linkage Ĝ, then Ĝ is also referred to as an
asymptotically efficient model linkage graph.

The ratio (2) contrasts the expected prediction loss of the constructed predictive density
function p̂ and that of the predictive density function induced by G∗.

3.2.2 Theoretical Properties of Algorithm 1

We now proceed to study the theoretical properties of Algorithm 1. For technical con-
venience, we assume that learner L1 is well-specified. Note that, more generally, learner
L1 may or may not be well-specified. In either case, the predictive performance can be
evaluated by a proper scoring rule, e.g., the logarithmic rule. Throughout the theoretical
studies, we consider the regime in which the number of learners M is fixed and the number
of observations nκ satifies nκ/n → cκ, where n =

∑M
κ=1 nκ and cκ is a positive constant.
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Recall that G = (V,E) is a user-specified graph. Moreover, recall that G∗ = (V,E∗) is the
true model linkage graph, defined as the largest subgraph of G with correct model linkages
between pairs of learners (given that each learner’s model is specified). We denote the
estimated model linkage graph from Algorithm 1 as Ĝ = (V, Ê).

Theorem 9 Under some regularity conditions in Appendix A and given a user-specified
graph G, the estimated model linkage edge set Ê from Algorithm 1 achieves linkage selection
consistency, namely Pr(Ê = E∗)→ 1 as n→∞.

Theorem 9 indicates that the estimated model linkage graph Ê from Algorithm 1 is
consistent in linkage selection, only selecting all the well-specified model linkages from G.
Thus, the proposed approach is asymptotically robust against model linkage misspecifica-
tion. We will verify the finite sample performance of Algorithm 1 using numerical studies
in Section 4, by considering various settings such as model misspecification, model link-
age misspecification, and data contamination. The following theorem guarantees that the
predictive distribution constructed from Algorithm 1 is asymptotically prediction efficient.

Theorem 10 Let p̂ be the constructed predictive distribution for L1 via Algorithm 1 based
on its selected model linkage graph Ĝ. Let s(·) be a proper scoring function. Under the same
conditions as in Theorem 9, p̂ is asymptotically prediction efficient.

Note that Theorem 10 holds even when the statistical models for some learners are misspec-
ified due to the definition of G∗. In other words, the proposed method yields a predictive
distribution that is robust to model misspecification and model linkage graph misspecifica-
tion.

4. Numerical Studies

4.1 Linear Regression Example

We consider a regression setting with six learners L1, . . . ,L6. The goal is to enhance the
predictive performance of L1 by incorporating information from other learners. The data
for the six learners are generated as follows:

y
(κ)
i =



∑7
j=1 β

(κ)
j x

(κ)
ij + ε

(κ)
i for κ = 1, 3, 4,∑15

j=1 β
(κ)
j x

(κ)
ij + ε

(κ)
i for κ = 2,∑7

j=1 β
(κ)
j (x

(κ)
ij + 5)2 + ε

(κ)
i for κ = 5,∑15

j=8 β
(κ)
j x

(κ)
ij + ε

(κ)
i for κ = 6,

where all regression coefficients are set to equal 0.3 except that β
(4)
j = 0.6 for j = 1, . . . , 7.

Each covariate x
(κ)
ij and the random noise are generated from a standard Gaussian distri-

bution for all the learners. Since learners L1, L2, and L3 share common parameters, and
L2 shares common parameters with L6, there are model linkages among learners L1,L2,L3,
and L6. The true underlying model linkage graph G∗ is illustrated on the right panel of
Figure 5. Note that there is a model linkage between L2 and L3 since both share the same

12



Model Linkage Selection for Cooperative Learning

Figure 5: The user-specified model linkage graph G and the largest well-specified model
linkage graph G∗ within G are shown on the left and right panels, respectively.

common parameters with L1. For simplicity, we set the sample size for each learner to be
n.

In practice, the user needs to specify a model linkage graph for the six learners and a
statistical model for each learner. For the numerical studies, we specify correct statistical
models for κ = {1, 2, 3, 4, 6}, and we misspecify L5 by assuming that the covariates are

linearly related to the response y. We further restrict β
(κ)
j to be the same for κ = 1, . . . , 5

and j = 1, . . . , 7. Moreover, we restrict β
(2)
j = β

(6)
j to be the same for j = 8, . . . , 15. Hence,

the model linkage graph is misspecified in the sense that we assume that there exist model
linkages between L4 and {L1, L2, L3, L5}, and between L5 and {L1,L2,L3}. The user-
specified graph G is illustrated on the left panel of Figure 5. We apply Algorithm 1 with
the aforementioned user-specified graph and impose a multivariate Gaussian distribution,
Np(0, 4Ip), as the prior distribution for the regression coefficients for all learners.

We will compare the proposed Algorithm 1 to fitting the model using data only from L1,
and using the combined data from L1 and L4. Recall that the actual regression coefficients
in L4 are different from that of L1, and thus combining data in L1 and L4 can lead to
severely biased estimates of regression coefficients.

To assess the model linkage selection accuracy, we calculate the selection accuracy as
the proportion of times when the estimated model linkage graph Ĝ from Algorithm 1 is
equal to G∗. To evaluate the performance across different models, we generate 50 test data
for L1, and calculate the mean squared error between the predicted response and the actual
response in the test data. Note that the mean squared error is a surrogate of the predictive
logarithmic score under the Gaussian noise assumption. The predicted response is obtained
by taking the mean of the posterior predictive distribution for each model. In addition, we
calculate the length of the 95% prediction interval obtained from the posterior predictive
distribution. The results for a range of sample sizes n ∈ {50, 75, . . . , 150}, averaged over
200 replications, are shown in Figure 6.
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From the left panel of Figure 6, the selection accuracy from Algorithm 1 approaches
one as the sample size increases. This is in line with the selection consistency result of
Theorem 9. Notably, Algorithm 1 yields a consistent model linkage graph even though
the user-specified model linkage graph G is misspecified as shown in Figure 5. From the
middle panel of Figure 6, we see that the proposed greedy algorithm yields the lowest
prediction mean squared error across a range of sample sizes n. The results indicate that
combining data from L1 and L4 imprudently can lead to higher prediction mean squared
errors. Meanwhile, properly integrating data can improve the predictive performance of a
single learner L1. Finally, the average length of the 95% prediction interval for the different
models is presented in the right panel of Figure 6. We see that the proposed algorithm
yields the narrowest prediction interval across the range of n.

Figure 6: The results for modeling based on the proposed algorithm (“greedy algorithm”),
modeling of the single agent L1 (“L1”), and combined modeling of L1 and L4

(“L1,L4”) in the regression experiment. The evaluation uses the selection ac-
curacy (left), prediction mean squared error (middle), and length of the 95%
prediction interval (right), averaged over 200 replications.

4.2 Logistic Regression Example

In this section, we illustrate that the proposed framework can be employed for classification
problems. We perform a numerical study with five learners L1, . . . ,L5 to enhance the
prediction accuracy of L1. For each learner, we generate the covariates independently from
a uniform distribution on the closed interval [−1, 1]. Then, the response variable is generated
as the following:

logit(Pr(y
(κ)
i | x(κ)

i )) =

{
(x

(κ)
i )Tβ∗ for κ = 1, 2, 3, 4,

0 for κ = 5,

where β∗ = {−0.8,−0.5,−0.2, 0.1, 0.4, 0.7, 1.0, 1.3, 1.6}T. Learners L1, L2, L3, and L4 share
common parameters β∗, and there are model linkages among L1, L2,L3, and L4. Learner L5

indicates that y
(5)
i follows a Bernoulli distribution with probability 0.5 and is independent

of the covariates. Thus, there are no model linkages between L5 and the other learners. We
again set the sample sizes for all learners to the same n for simplicity.
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Figure 7: The results for modeling based on the proposed algorithm (“greedy algorithm”),
modeling of the single agent L1 (“L1”), and combined modeling of L1 and L5

(“L1,L5”) in the logistic regression experiment. The evaluation uses selection
accuracy and prediction mean squared error, averaged over 200 replications.

We compare Algorithm 1 to models that are based on the data from L1, and combined
data from L1 and L5. To evaluate the performance across different methods, we calculate
the selection accuracy and prediction error. For Algorithm 1, we specify an incorrect model
linkage graph where all learners are connected and fit the same logistic regression model for
all learners. We set a multivariate normal distribution, N (0, 4I), as the prior distribution
for the regression coefficients for all learners. The results for a range of sample sizes n =
{100, 150, . . . , 350}, averaged over 200 replications, are shown in Figure 7.

From the left panel of Figure 7, we see that the selection accuracy converges to one
as we increase the sample size n for each learner. That is, the greedy algorithm chooses
not to include information from L5, even when the user-specified model linkage graph
contains model linkages between L5 and the other learners. In addition, the proposed
greedy algorithm yields the highest prediction error, whereas the modeling based on the
joint data from L1 and L5 yields the lowest prediction error.

4.3 Logistic Regression with Data Contamination using Breast Cancer Data

Data contamination is an important issue when one decides whether to incorporate infor-
mation from other learners. In practice, when several data sources are collected to have the
same covariates, users tend to analyze the combined dataset to leverage more information.
However, if some data sources are corrupted or contaminated, it is crucial to discriminate
against them and avoid incorporating information from the contaminated learners. We
illustrate that Algorithm 1 is robust against data contamination on some data sources.

We consider the Wisconsin Breast Cancer database (Mangasarian et al., 1995). The data
consist of a response variable recording whether a cancer tissue is benign or malignant with
9 covariates from a total of 699 subjects. We randomly choose 100 samples as the test data
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for evaluating prediction accuracy. Then, the data are randomly divided into 10 learners, in
which each learner has n samples. Since the data from the 10 learners L1, L2, . . . , L10 are
subsamples of the original data set, we assume that the regression coefficients are the same
across all learners. We then contaminate the data in L10 such that the binary response is
flipped.

We apply Algorithm 1 with a misspecified model linkage graph by assuming that all
learners are linked among each other. For each learner, we assume a logistic regression
model with an intercept and 9 covariates. For simplicity, we impose the prior distribution
N (0, 42) on all regression coefficients. The prediction accuracy for the proposed method,
the method that uses L1, and the method that uses the combined data L1 and L10, averaged
over 200 replications, are reported in Table 1.

From Table 1, we see that naively combining data from L1 and L10 will lead to a much
lower prediction accuracy than the model using only data from L1. Our proposed method,
on the other hand, chooses not to incorporate information from L10. Also, by combining
data sources adaptively, our proposed method yields a prediction accuracy that is much
higher than the model fit using data from L1 alone, for both cases of n = {25, 50}.

Table 1: Performance results of the proposed approach, model of L1 alone, and joint model
of L1 and L10, as evaluated by the prediction accuracy. The results are averaged
over 200 replications, with n = {25, 50}.

number of samples proposed method L1 L1 and L10

n = 25 0.928 0.844 0.500
n = 50 0.952 0.894 0.498

4.4 Integrating Information on Kidney Cancer Data

In this section, we analyze the kidney cancer data considered in Maity et al. (2019). The
kidney cancer data consist of 33 different types of tumors, with a total of n = 8108 samples
and up to p = 198 proteins for the different types of tumors. Each tumor type may have
a different number of proteins. To study the association between patients’ survival time
and proteins, Maity et al. (2019) fit an accelerated failure time model with a log-normal
assumption, from which they identified eight proteins that are most related to patients’
survival time.

We now illustrate that integrating information from related cancer tumors using the
proposed method can improve the prediction accuracy of patients’ survival time. For sim-
plicity, we consider only patients that are not alive at the observed survival time and fit a
linear regression on the log-transformed survival time. We consider three types of tumors:
(i) kidney renal clear cell carcinoma (KIRC), L1, (ii) kidney renal papillary cell carcinoma
(KIRP), L2, and (iii) uterine corpus endometrial carcinoma (UCEC), L3, each of which has
146, 24, and 34 samples, respectively. Moreover, we pick up three proteins “PCADHERIN”,
“GAB2”, and “HER3 pY1298” as the covariates, following (Maity et al., 2019) . The three
proteins have been well studied and are all well-known for kidney tumor growth and in-
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vasion (Blaschke et al., 2002; Duckworth et al., 2016; Akbani et al., 2014). In particular,
the PCADHERIN has been considered as one of the most important proteins for kidney
cancer (Maity et al., 2019). Both KIRC and KIRP originate from cells in the proximal
convoluted tubules of the nephron (Chen et al., 2016). Thus, it is reasonable to assume
that PCADHERIN has a similar effect on the log-transformed survival time of patients with
KIRC and KIRP. On the other hand, PCADHERIN is expected to have a different effect on
UCEC since UCEC is a type of uterine cancer. Inspired by the above domain knowledge,
we set up a model linkage graph in the following way. We assume that there are linkages
among KIRP, KIRC, and UCEC by sharing the effect of PCADHERIN on survival time
across three tumor types.

We fit a linear regression model with a log-transformed response, namely log(y
(κ)
i ) =∑3

j=1 x
(κ)
ij β

(κ)
j +ε

(κ)
i , where the indices i, j, and κ denote the ith subject, the jth protein, and

the κth tumor type. For simplicity, we assume that the random noise is normally distributed
with different variances to account for heterogeneity across different tumor types, namely

ε
(κ)
i ∼ N (0, σ2

κ). Let β
(1)
1 , β

(2)
1 , β

(3)
1 be the regression coefficient for PCADHERIN across the

three cancer types, which are linked on the specified linkage graph.

We compare the prediction accuracy of the proposed greedy algorithm with the model
using only data from L1 (namely KIRC). To that end, we sample 20 data points from
L1 such that the sample sizes across three tumor types are approximately the same. We
treat the remaining data points for test purposes. The prior distributions of the regression
coefficients are assumed to be standard normal, and the prior distributions for the three
intercepts are assumed to follow a normal distribution with a mean of 10 and variance
one. Moreover, we assume that σ2

κ ∼ InvGamma(2, 1) for κ = 1, 2, 3, where InvGamma
denotes the inverse gamma distribution. We replicate the experiments above 100 times by
sub-sampling 20 data observations from L1 for training the models.

The results indicate that Algorithm 1 connects L2 to L1 in 65% of the replications, and
L2 to L3 20% of the replications. In this example, Algorithm 1 selects different linkages
across different replications due to randomness in the samples. The average prediction
mean squared error (with its standard error) of the proposed method is 1.69(0.027). In
comparison, the values are 1.74(0.031) if using data only from L1, and 1.66(0.024) if using
the joint data from L1 and L2 throughout the 100 replications. The results imply that
collaborating with L2 increases the predictive performance of L1, and Algorithm 1 tends to
favor such a collaboration.

4.5 Epidemiological Data Study

In this experiment, we revisit the example illustrated in Figure 2 of Section 2. Recall that L1

employs n Binomial models y
(1)
i ∼ Binomial(x

(1)
i , θ1,i), and learner L2 has poisson models

y
(2)
i ∼ Poisson(θ1,iθ2x

(2)
i ), with i = 1, 2, . . . , n. The datasets for the two learners are denoted

by D(1) = (y(1),x(1)) and D(2) = (y(2),x(2)). Note that the two learners are heterogeneous,
and the parameters of L2 are not identifiable since θ1,iθ2 = cθ1,i · c−1θ2 for any positive
constant c. With a joint modeling of L1 and L2, the parameters become identifiable. We
first use the data in (Maucort-Boulch et al., 2008), where each learner has n = 13 data. For

L1, the population size x
(1)
i ranges from 37 to 700 and the empirical infection rate y

(1)
i /x

(1)
i
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Table 2: Predictive performance of using a joint modeling of L1 and L2 (“Joint”), the
proposed method (“Proposed”), and a single-agent modeling (“L1 or L2 alone”),
evaluated for each learner. The evaluation is based on the expected log-predictive
distribution, numerically computed from 1000 out-sample data and 100 replica-
tions. Standard errors are reported in the parentheses.

L1 (Binomial) L2 (Poisson)
Joint Proposed L1 alone Joint Proposed L2 alone

Case 1 -3.76(0.006) -3.86(0.016) -4.05(0.009) -3.76(0.002) -3.76(0.002) -3.76(0.002)
Case 2 -4.29(0.033) -4.38(0.041) -4.87(0.019) -4.03(0.011) -4.03(0.011) -4.03(0.010)
Case 3 -8.37(0.069) -4.58(0.135) -4.04(0.016) -3.62(0.009) -3.63(0.009) -3.63(0.009)
Case 4 -3.56(0.033) -3.56(0.033) -4.05(0.016) -3.26(0.008) -3.26(0.008) -3.31(0.008)

ranges from 0 to 0.2. For L2, the women-years follow up x
(2)
i ranges from 20000 to 550000,

and the number of cancer incidences y
(2)
i ranges from 10 to 700. In this experiment, we

divided each x
(2)
i by 1000 for computation efficiency, and note that such a scaling does not

make an essential difference for parameter estimation. We used Uniform(0, 1) as the prior
distribution for each θ1,i and Gamma(5, 1) for θ2. Algorithm 1 outputs that there is no
linkage established between L1 and L2.

To develop more insights into the nature of the above models and data size, we per-
form four cases of simulated data experiments. We use n = 13 and the identical prior
distributions as in the real-data experiment. In Case 1, we generated simulated data

with x(1) = (200,

12︷ ︸︸ ︷
1000, ..., 1000) and x(2) = (

13︷ ︸︸ ︷
1000, ..., 1000), θ2 = 10, and θ1,i = 0.1 for

i = 1, 2, . . . , n. It serves as a case with large data, which tends to produce an accurate

parameter estimation. Case 2 is similar to Case 1, except that x(1) = (20,

12︷ ︸︸ ︷
100, ..., 100) and

x(2) = (

13︷ ︸︸ ︷
100, ..., 100). The latter two experimental cases are based on parameters estimated

from the real data. Case 3 simulates the setting where there exists no underlying linkage

between two learners. In particular, we simulate y
(1)
i from the Binomial model with the

original population size x
(1)
i and the empirical rate θ1,i that is calculated from the original

data observations. We simulate y
(2)
i from the Poisson model with the expectation that

equals the original count observation. In contrast, Case 4 simulates the setting where there
exists an underlying linkage between two learners. In particular, we estimate a joint model
of the two learners, and use the posterior of θ1,i’s and θ2 to generate y(1) in Binomial models
and y(2) in Poisson models, with the original population sizes x(1) and x(2).

To calculate the out-sample test performance of L1 or L2, whomever is being assisted,
we generate 1000 test data based on the underlying data distributions. In particular, we
numerically calculate E[log p(yf | xf )] where p is the predictive distribution and (yf ,xf )
denotes the test data. The results are shown in Table 2. Recall that in Cases 1, 2, and
4, there exists a model linkage between L1 and L2. In Case 3, there exists no underlying
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model linkage. From the results, the test performance of the proposed method can data-
adaptively approach the better performance of two options, namely with and without a
linkage through the parameters θ1,i. Also, though L2 alone is not identifiable, it can improve
L1’s performance in collaborative cases.

5. Conclusion and Further Remarks

With the rapid growth of low-cost data collection devices and decentralized learners, data
analysts are faced with an important challenge to integrate information across a set of
learners with diverse data sources. However, prudently combining data sources and fitting
a joint model on all data sources can lead to biased estimates with a low prediction ac-
curacy due to misspecified models or model linkages. We proposed a general approach to
enhance the predictive performance of learner L1 by robustly integrating information across
a set of learners. Since information are integrated through parameter linkages by sharing
parameters, the data sources do not need to be transmitted across learners. As such, the
proposed method is naturally compatible with decentralized learning that involves internet-
of-things requiring low-energy consumption (Da Xu et al., 2014), smart sensors with limited
hardware capacities (Zhou et al., 2016), and decentralized networks with limited communi-
cation bandwidths (Xiao and Luo, 2005). We showed that the proposed method is linkage
selection-consistent and asymptotically prediction-efficient. The theoretical properties are
established under the regime in which the number of learners M and the parameter dimen-
sions are fixed. An interesting future problem is to study the theoretical properties of the
proposed framework under the regime in which the number of learners or the dimension of
parameters is allowed to diverge with the sample size.

In the following, we briefly describe the connection between the proposed framework
and existing methods on data integration and distributed learning.

Data Integration. Integrating information from different data sources has been stud-
ied in the context of data integration (see, for instance, Tang and Song, 2016; Li and Li, 2018,
and the references therein). When there is a unified model across multiple data sources, it is
possible to improve statistical efficiency through parameter sharing or fitting one model us-
ing the combined data. For instance, Tang and Song (2016) employed a fused lasso approach
to encourage the regression coefficients for different data sources to be similar. Li and Li
(2018) developed an integrative linear discriminant analysis method by combining different
data sources and showed that the classification accuracy could be improved compared with
using a single data source. Some other work pre-specified constraints on latent variables to
utilize heterogeneous data sources to address multiple parametric models. For example, in
the study of gene regulatory networks, Jensen et al. (2007) proposed a Bayesian hierarchical
model to integrate gene expression data, ChIP binding data, and promoter sequence data
to infer statistical relationships between transcription factors and genes. The uniqueness of
our work compared with existing methods is that our proposed method allows for a set of
learners with diverse learning objectives and distinct statistical models. Furthermore, the
set of learners share information only through linked parameters of interest. Therefore, the
method in Section 3 can be used to help any learner efficiently identify cooperative learners
when prior information is lacking.
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Lunn et al. (2000) and Plummer (2015) also studied data integrations in the context of
cut distributions, which can be seen as a probabilistic version of a two-step estimator. The
main idea is to cut the propagation from uncertain models to precise models during joint
learning to reduce biases propagated from incorrectly specified models (Lunn et al., 2009;
Ogle et al., 2013). Jacob et al. (2017) proposed a predictive score principle for choosing
the most appropriate joint modeling approach among the cut, full posterior, prior, and
two-step approaches over a set of learners. It is possible to incorporate cut distribution into
our proposed method to improve the finite-sample regime’s performance. Nevertheless, the
number of possible candidates exponentially increases with the number of learners, and thus
the search space of each greedy selection step can be computationally prohibitive. Also, a
systematic theoretical study of the cut distribution remains a challenging problem.

Distributed Learning. Data privacy has gained much attention recently, especially
in distributed learning, where data curators do not wish to share the original data. This
motivates some recent advances in distributed learning such as federated learning, where
a central server sends the current global statistical model to a set of selected clients, and
each client updates the model parameter with local data and returns the updates to the
central server (Shokri and Shmatikov, 2015; Konečnỳ et al., 2016; Diao et al., 2020b). The
objective function for federated learning is typically formulated as

min
θ

F (θ) :=
M∑
κ=1

Fκ(θ), where Fκ(θ) =
∑

(x,y)∈D(κ)

f(θ; x, y), (3)

where f denotes a global loss function, θ parameterizes a global model to learn, and D(κ) is
a labeled dataset of the κth client. To optimize over θ, each client locally takes several iter-
ations of (stochastic) gradient descent on the current parameter using its local data. Then
the server takes a weighted average of the resulting parameters. Within a similar context,
Jordan et al. (2019) proposed a communication-efficient surrogate likelihood framework for
solving distributed statistical estimation problems, which provably improves upon simple
averaging schemes.

In the context of our proposed framework, consider a set of learners each holding a
data source D(κ) and personal objective function fκ, and a set of optimization constraints
C. A frequentist counterpart of our Bayesian approach is to minimize a proper scoring
function (Dawid and Musio, 2015), e.g., the negative log-likelihood function, added with
some form of regularization. The unknown parameters can be estimated by solving the
following optimization problem

min
θ1,...,θM

F (θ) :=

M∑
κ=1

Fκ(θκ) +R(θ1, . . . , θM ), subject to C, (4)

where Fκ(θ) =
∑

(x,y)∈D(κ)

fκ(θ; x, y),

where R is a suitably chosen regularization function. The federated learning falls into the
above formulation when the models are restricted to be the same among different learners,
namely fκ = f,θκ = θ for all κ. Without the constraint C and regularization R, (4) is
equivalent to optimizing M individual objectives separately.
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Both the developed Bayesian formulation or the frequentist counterpart in (4) can also be
regarded as forms of personalized federated learning, where decentralized and heterogeneous
agents participate in joint learning with peer agents to boost local learning performance. A
key characteristic of personalization is that each agent has a specific local task, loss, model,
and data. As such, the order of establishing linkages and the selected set of collaborative
learners may depend on whom to assist. This is reflected through the asymmetric nature
of the proposed Algorithm 1 in finite-sample regimes. To illustrate this point, we provide
a toy example that involves three learners, each with a Gaussian model y(κ) ∼ N (µκ, 1),
κ = 1, 2, 3. It can be regarded as a regression with x(κ) = 1 and unknown parameters µκ’s.
Suppose that G is a fully connected graph, and the prior of µκ is N (0, 102). The observed
data are y(1) = 2, y(2) = −0.3, y(3) = −2, respectively. One can verify that if L1 is the one
to be assisted, Algorithm 1 will link it with L2 at the first step; Then, L1 and L2 are not
linked with L3, terminating the algorithm. On the other hand, if L2 will be assisted, the
algorithm first links it with L3 and then stops. Consequently, L1 and L2 will not establish
a linkage in that case. The above indicates the asymmetric nature of collaboration: L1

being assisted by L2 doest not mean that L1 can assist L2 in the presence of other learners.
Nevertheless, it can be verified that there is no such asymmetry in the case of two learners,
meaning that L1 selecting L2 is equivalent to L2 selecting L1 in Algorithm 1.

Even in the context of vanilla federated learning, considerations of user misspecification
or adversarial attacks are relatively new (Bhagoji et al., 2019; Jere et al., 2020), and the
proposed notion of prediction efficiency and selection consistency are readily applicable.
Moreover, in a general learning scenario where parameters may lose interpretability, it is
still possible to build linkages among learners to reduce the overall model complexity and
generalization errors. For example, Diao et al. (2019, 2020a) recently showed that appropri-
ately restricting deep neural network parameters can significantly improve the performance
of multi-modal image generation, compared with state-of-the-art methods that train an im-
age generator separately from each data modality. From a theoretical perspective, the risk
bound can be reduced by restricting the size of the function spaces through C. When each
learner’s predictive performance is not severely biased by other learners compared with its
reduced variance, it is worth establishing a joint optimization in the form of (4).
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Appendix A. Notation and Regularity Conditions

We start with introducing some regularity conditions needed for the theoretical develop-
ment. These regularity conditions are generalizations of those in Walker (1969) from scalar
to multidimensional vector. Suppose that each observation (yi,xi), 1 ≤ i ≤ n, is mod-
eled via a joint distribution with a density function p(y,x | θ) with respect to a σ-finite
measure µ. Moreover, x ∈ Rk is modeled using the density function h(x) that is indepen-
dent of the parameter θ = (θ1, θ2, . . . , θp)

T ∈ Rp. The joint density can thus be written
as p(y,x | θ) = p(y | x,θ)h(x). Let the true conditional density function of y given x be
p∗(y | x), and thus the true joint density of (y,x) can be written as p∗(y,x) = p∗(y | x)h∗(x).
Note that h(x) and h∗(x) are not necessarily the same due to potential model misspecifi-
cation when modeling x.

Let θ∗ be an interior value in the parameter space Θ defined as the minimizer of the
Kullback-Leibler divergence between p(y | x,θ∗) and p∗(y | x):

θ∗ = argmax
θ∈Rp

∫
{Y,X}

log
p(y,x | θ)

p∗(y,x)
p∗(y,x)dµ

= argmax
θ∈Rp

∫
{Y,X}

[log p(y | x,θ) + log{h(x)}]p∗(y | x)h∗(x)dxdy

= argmax
θ∈Rp

∫
{X}

h∗(x)

∫
{Y}

log p(y | x,θ)p∗(y | x)dydx

= argmax
θ∈Rp

∫
{Y}

log p(y | x,θ)p∗(y | x)dy. (5)

Note that when the parametric model p(y | x,θ) is well-specified, p(y | x,θ∗) = p∗(y |
x). Let `(θ) =

∑n
i=1 log p(yi,xi | θ) be the log-likelihood function for the n observations

and let θ̂ = argmax
θ∈Rp

`(θ) be the maximum likelihood estimator (MLE) of θ. Let In(θ)

be the observed Fisher information matrix with {In(θ)}i,j = − ∂2`(θ)
∂θi∂θj

, and let I(θ) be

the expected Fisher information matrix for a single observation (y,x) with {I(θ)}i,j =

−E
{
∂2 log p(y,x|θ)

∂θi∂θj

}
. Let {J(θ)}i,j = E{∂ log p(y,x|θ)

∂θi

∂ log p(y,x|θ)
∂θj

}. We define T (n) = Θ{f(n)},
namely when n is large, there exist some fixed constants c1 and c2 such that c1f(n) ≤
|T (n)| ≤ c2f(n).

Some regularity conditions that are needed in the theoretical development are listed in
the following.

(I) The parameter space Θ ⊆ Rp is compact.

(II) The set of points {Y,X} = {(y,x) : p(y,x | θ) > 0} is independent of θ.

(III) If θα 6= θβ , then µ {(y,x) : p(y,x | θα) 6= p(y,x | θβ)} > 0.

(IV) For all (y,x) ∈ {Y,X} and δ > 0, we have |log p(y,x|θ)− log p(y,x|θ′)| < Hδ(y,x,θ
′)

as long as ‖θ−θ′‖2 < δ. Here, function Hδ has the property that lim
δ→0

Hδ(y,x,θ
′) = 0

and that

lim
δ→0

∫
{Y,X}

Hδ(y,x,θ
′)p∗(y,x)dµ = 0.
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(V) If Θ is not bounded, then for any θM ∈ Θ, and sufficiently large ∆, we have

log p(y,x|θ)− log p(y,x|θM ) < K∆(y,x,θM ),

where ‖θ‖2 > ∆ and K∆ has the property that

lim
∆→∞

∫
{Y,X}

K∆(y,x,θM )p∗(y,x)dµ < 0.

(VI) The maximum likelihood estimator (MLE), denoted by θ̂, exists, and the matrix In(θ̂)
is positive definite almost surely.

(VII) The log-likelihood function log p(y,x|θ) is twice continuously differentiable with re-
spect to θ in some neighborhood of θ∗.

(VIII) The first and second derivatives with respect to θ, and the integral of log p(y,x|θ),
are exchangeable.

(IX) There exists a δ > 0 such that∣∣∣∣∂2 log p(y,x | θ)

∂θi∂θj
− ∂2 log p(y,x | θ∗)

∂θi∂θj

∣∣∣∣ < Mδ(y,x,θ
∗)

for any pair (i, j) and ‖θ − θ∗‖2 < δ, where the function Mδ satisfies

lim
δ→0

∫
{Y,X}

Mδ(y,x,θ
∗)p∗(y,x)dµ = 0.

(X) The prior density function is continuous at θ = θ∗ and π(θ∗) > 0.

(XI) If L1 has a well-specified model pθ1 , and L2 has misspecified model pθ2 , the model
linkage (defined in Definition 2) between L1 and L2 is misspecified (Definition 4).

Conditions (I)–(V) ensure that when θ∗ is an interior value of Θ, `(θ) − `(θ∗) is suffi-
ciently small for values of θ that are not in the vicinity of θ∗, with probability tending to
one as n→∞. We note that Condition (I) is a stronger than necessary assumption made to
simplify the technical arguments. Alternatively, one may remove this assumption and show
that the parameter estimate falls into a compact set with the probability increasing to one
as the sample size increases. Conditions (VI)–(IX) ensure that when θ = θ∗, n1/2(θ̂− θ∗)
has a limiting distribution N

(
0, I(θ∗)−1J(θ∗)I(θ∗)−1

)
. Conditions (VII)–(IX) assume that

In(θ) is smooth in the vicinity of θ∗. Condition (XI) is needed to guarantee that learn-
ers with misspecified models are not included in the joint model to enhance the statistical
performance of L1.
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Appendix B. Assumptions on the Scoring Rule

Let y = {y1, y2, . . . , yn}T be an n-dimensional vector of the response and X = {x1,x2, . . . ,xn}T
∈ Rn×k be the design matrix of covariates. In the following, we state some assumptions on
the score function s defined in Definition 6.

(A1) sup
p,y,x

E[s(p, y,x)] ∈ (0,∞).

(A2) Assume that the model p(y|x,θ) is well-specified. Let p(ỹ|x̃,y,X) be the Bayesian
predictive distribution of ỹ given the new predictor x̃ and the data y, X. As n→∞,

E
[
s{p(ỹ|x̃,y,X), ỹ, x̃} − s{p(ỹ|x̃,θ∗), ỹ, x̃}

]
= Θ(n−

1
2 ). (6)

The first assumption indicates that the expected loss is bounded by some positive constant
for any given density function and prediction point. The second assumption indicates that
the difference between the prediction score and oracle score is in the order of n−1/2. Many
commonly used scoring rules such as the Kullback-Leibler divergence and cross-entropy
satisfy the aforementioned assumptions.

Appendix C. Proof of Theorems 9–10

We start with some technical lemmas that will be helpful for the proof of Theorems 9–
10. Let L(θ|y,X) = p(y,X|θ) =

∏n
i=1 p(yi,xi|θ) be the likelihood function for the n

observations and let `(θ) be the log-likelihood function. Let p(y,X) =
∫
p(y,X|θ)π(θ)dθ

be the marginal likelihood of (y,X). The following lemma is a multidimensional counterpart
of Walker (1969) that provides limiting properties for the maximum likelihood estimator
and marginal likelihood.

Lemma 11 Assume that the regularity conditions in Appendix A hold. Let θ∗ ∈ Rp be an
interior value in the parameter space Θ, and assume that the data pair (yi,xi) ∈ Rk+1 has
density p(yi,xi|θ) for i = 1, 2, . . . , n. Let θ̂ be the maximum likelihood estimator of θ. As
n→∞, the following results hold:

(i) Let N(δ) = {θ : ‖θ − θ∗‖2 < δ} be a neighborhood of θ∗ contained in Θ. For any
positive δ, there exists a positive number k(δ) depending on δ such that

lim
n→∞

Pr

[
sup

θ∈Θ\N(δ)
n−1 {`(θ)− `(θ∗)} < −k(δ)

]
= 1.

(ii) Let (ξ̂2)
−1

= det|In(θ̂)|, we have lim
n→∞

n−p
{

(ξ̂2)
−1
}

= det|I(θ∗)|.

(iii) `(θ∗)− `(θ̂) = Θ(1).

(iv) lim
n→∞

{
p(y,X|θ̂)ξ̂

}−1
p(y,X) = (2π)

p
2π(θ∗).
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Lemma 11(i) indicates that the difference between `(θ) and `(θ∗) will be large when θ is not
in the δ-neighborhood of θ∗. Lemma 11(ii) establishes that the determinant of the observed
Fisher information matrix converges to the determinant of the expected Fisher information
matrix. Lemma 11(iii) shows that the log-likelihood function evaluated at θ∗ and θ̂ are at
the same order. The proof of Lemma 11 is provided in Appendix D.1.

Next, we present a key lemma that provides similar results as those of Lemma 11, but
under the setting with non-identically distributed data that arise from two different data
sources from two different learners. To this end, we define some notation. Without loss of
generality, we consider two learners L1 and L2 with sample size n1 and n2, respectively.
In particular, for each learner Lκ with κ = 1, 2, the user-specified density function of the

data pair (y
(κ)
i ,x

(κ)
i ) ∈ Rkκ+1 is denoted as p

(κ)
θκ

(y
(κ)
i ,x

(κ)
i |θκ). Let p∗κ(y

(κ)
i ,x

(κ)
i ) be the true

underlying density function. Similar to Lemma 11, let θ∗κ ∈ Rpκ be an interior value in the
parameter space Θκ.

As defined in Definition 2, let θ1,S1 = θ2,S2 = θS1,S2 ∈ Rps be the shared parame-
ter between L1 and L2. Moreover, let θC = (θT

1,−S1 ,θ
T
S1,S2 ,θ

T
2,−S2)T ∈ RpC be the vec-

tor obtained by concatenating entries of θ1 and θ2 without duplication, which has a di-
mension of pC = p1 + p2 − ps. Let θ∗C ∈ RpC be its corresponding interior value in ΘC .

We denote θ̃1 = (θT
1,−S1 ,θ

T
S1,S2)T and θ̃2 = (θT

2,−S2 ,θ
T
S1,S2)T as the parameters for L1

and L2 after incorporating information from the model linkage between the two learners.
We note that θ̃1 and θ̃2 are equivalent to θ1 and θ2, respectively, after some reorder-
ing of the elements. The notation are simply defined to facilitate the proof of the the-

oretical results. Let y(κ) = (y1, y2, . . . , ynκ)T and X(κ) = (x
(κ)
1 ,x

(κ)
2 , . . . ,x

(κ)
nκ )T. Denote

L(θ̃1|y(1),X(1)), L(θ̃2|y(2),X(2)), and L(θC |y(1),y(2),X(1),X(2)) as the likelihood functions

of L1, L2, and (L1, L2), where L(θ̃1|y(1),X(1)) = p
(1)

θ̃1
(y(1),X(1)|θ̃1), L(θ̃2|y(2),X(2)) =

p
(2)

θ̃2
(y(2),X(2)|θ̃2), and

L(θC |y(1),y(2),X(1),X(2)) = p
(C)
θC

(y(1),y(2),X(1),X(2)|θC)
= p

(1)

θ̃1
(y(1),X(1)|θ̃1)p

(2)

θ̃2
(y(2),X(2)|θ̃2).

Let `1, `2, and `C be their corresponding log-likelihood functions and let θ̂1, θ̂2, and θ̂C be

the MLEs obtained from maximizing `1, `2, and `C , respectively. Let I
(κ)
nκ (θ̃κ) and I(κ)(θ̃κ)

be the observed Fisher information matrix and expected Fisher information matrix on single
observation, respectively, for κ = 1, 2. Let In(θC) be the matrix with element {In(θC)}i,j =

− ∂2`C(θC)
∂θC,i∂θC,j

, where θC,i is the ith element of θC . Next, let π(θ̃1), π(θ̃2), and π(θC) be the prior

density of θ̃1, θ̃2, and θC , respectively. Let p(y(κ),X(κ)) =
∫
p

(κ)

θ̃κ
(y(κ),X(κ)|θ̃κ)π(θ̃κ)dθ̃κ be

the marginal likelihood of (y(κ),X(κ)), for κ = 1, 2. Moreover, the marginal likelihood of
(y(1),y(2),X(1),X(2)) is expressed as

p(y(1),y(2),X(1),X(2)) =

∫
p

(1)

θ̃1
(y(1),X(1)|θ̃1)p

(2)

θ̃2
(y(2),X(2)|θ̃2)π(θC)dθC .

We now present the results in the following lemma.

25



Zhou, Ding, Tan, Tarokh

Lemma 12 Assume that the regularity conditions in Appendix A hold. Suppose that n =
n1 + n2, and n1/n → c1, n2/n → c2, as n → ∞, where c1, c2 ∈ (0, 1). Then, the following
results hold:

(i) Let NC(δ) = {θ : ‖θ − θ∗C‖2 < δ} be a neighborhood of θ∗C contained in ΘC . For any
δ > 0, there exists a positive number k(δ) depending on δ such that

lim
n→∞

Pr

[
sup

θ∈ΘC\NC(δ)
n−1 {`C(θ)− `C(θ∗C)} < −k(δ)

]
= 1.

(ii) Let (ξ̂2
C)
−1

= det |In(θ̂C)|, we have lim
n→∞

n−pC
{

(ξ̂2
C)
−1
}

= Θ(1).

(iii) `C(θ
∗
C)− `C(θ̂C) = Θ(1).

(iv) lim
n→∞

{
p

(C)
θC

(y(1),y(2),X(1),X(2)|θ̂C)ξ̂C
}−1

p(y(1),y(2),X(1),X(2)) = (2π)
pC
2 π(θ∗C).

Lemmas 13–14 concern the magnitudes of the joint marginal likelihood and marginal
likelihood for each learner, under the case when the model linkage is well-specified or mis-
specified. Similar results were established in the context of change point detection (Du
et al., 2016). Both lemmas will be used to prove that Algorithm 1 will select the correct
model linkage in each iteration of the algorithm.

Lemma 13 Assume that the regularity conditions in Appendix A hold. Let θS1,S2 ∈ Rps be
the shared parameter between L1 and L2 as defined in Definition 2. Let the interior value
of θS1,S2 in L1 and L2 be θ∗1,S1 and θ∗2,S2, respectively. If θ∗1,S1 = θ∗2,S2, and n1/n2 = Θ(1),
as m = min {n1, n2} → ∞, we have

p(y(1),y(2)|X(1),X(2))

p(y(1)|X(1))p(y(2)|X(2))

p→ Θ(m
ps
2 ).

Lemma 14 Under the same conditions as in Lemma 13, if θ∗1,S1 6= θ∗2,S2, as min{n1, n2} →
∞, we have

p(y(1),y(2)|X(1),X(2))

p(y(1)|X(1))p(y(2)|X(2))

p→ 0. (7)

C.1 Proof of Theorem 9

Proof The main idea of the proof is to show that in each iteration, the proposed algorithm
will integrate information from one additional learner based on the linkage set E∗, and avoid
incorporating information from the learner that is not in the linkage set E∗. Consequently,
the final output of the algorithm Ê = E∗. We start the proof at the `th iteration.

At the `th iteration, let ζ(`−1) be the set of learners that are already included in the

joint model built from the previous ` − 1 iterations. Let ζ
(`−1)
C(G) ⊆ {2, . . . ,M}\ζ(`−1) be a

non-empty set of learners with at least a path to L1 as defined in the user-specified model
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linkage graph G. Note that ζ
(`−1)
C(G) is non-empty, otherwise, the algorithm would have been

terminated at the (`− 1)th iteration.

There are two cases: (i) there is at least a j ∈ ζ
(`−1)
C(G) and an i ∈ ζ(`−1) such that

the model linkage between Lj and Li is well-specified; and (ii) there are no well-specified

linkages between pairs of learners in ζ
(`−1)
C(G) and ζ(`−1).

Case (i): Suppose that there is a well-specified model linkage between Lj for a j ∈ ζ(`−1)
C(G)

and Li for an i ∈ ζ(`−1). By Lemma 13, Step 2 of Algorithm 1 will hold, and Lj will form a
new set with ζ(`−1), namely ζ(`) = ζ(`−1) ∪ {j}. More generally, if there are more than one

learner in ζ
(`−1)
C(G) that have well-specified linkages with learners in ζ(`−1), the algorithm will

select jopt = argmax
j∈ζ(`−1)
C(G)

p(∪κ∈ζ(`−1)y(κ)|y(j)) and form a new set ζ(`) = ζ(`−1) ∪ {jopt}.

Case (ii): On the other hand, if the model linkages between Lj for j ∈ ζ(`−1)
C(G) and Li

for i ∈ ζ(`−1) are misspecified for all i and j, Lemma 14 ensures that Algorithm 1 will be
terminated, and hence, the misspecified model linkages are not included into ζ(`−1).

As a result, the algorithm terminates when all well-specified linkages are included, and
no misspecified linkages and misspecified models will be included, namely Ê = E∗. This
concludes the proof.

C.2 Proof of Theorem 10

Proof Recall that C(G) is the set of indices recording the vertices that form a connected
component with learner L1 in the user-specified graph G, and G∗ is the true underlying
graph after the statistical models for all learners and G are specified. Let G = {Ḡ = (V, Ē) :
Ē ∈ E, Ē 6= E∗} be a set of graphs that is a subgraph of G, but Ē 6= E∗. Let p̂C(G) be the
posterior predictive distribution constructed based on learners in C(G) as defined in (1),
and let Gi = (V,Ei) be a graph with edge set Ei. We consider the prediction efficiency
ratio defined as follows:

E{s(p̂C(G∗), ỹ, x̃)− s(p∗, ỹ, x̃)}
Pr(Ê = E∗)E{s(p̂C(G∗), ỹ, x̃)− s(p∗, ỹ, x̃)}+

∑
Gi∈G Pr(Ê = Ei)E{s(p̂C(Gi), ỹ, x̃)− s(p∗, ỹ, x̃)}

.

To prove Theorem 10, it suffices to show that

Pr(Ê = E∗)→ 1 (8)

and
Pr(Ê = Ei)E{s(p̂C(Gi), ỹ, x̃)− s(p∗, ỹ, x̃)}

E{s(p̂C(G∗), ỹ, x̃)− s(p∗, ỹ, x̃)} → 0 (9)

for all Gi ∈ G. Equation (8) is a direct consequence of the result in Theorem 1. In the
remaining of the proof, we focus on establishing (9).

To show (9), we consider two cases: (1) all learners in C(Gi) are well-specified and that
the model linkages that form a connected component with L1 are well-specified; (2) there
exist at least one learner with misspecified models or misspecified model linkages in C(Gi).
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For case (1), Assumption (A2) in Section B indicates that E{s(p̂C(Gi), ỹ, x̃)−s(p∗, ỹ, x̃)} =

Θ(n
−1/2
C(Gi)), and E{s(p̂C(G∗), ỹ, x̃)− s(p∗, ỹ, x̃)} = Θ(n

−1/2
C(G∗)), where nC(Gi) and nC(G∗) are the

sample sizes of C(Gi) and C(G∗), respectively. Combining the above and the result from
Theorem 9 that Pr(Ê = Ei)→ 0 leads to (9).

For case (2), consider a learner Lw ∈ C(Gi) that has misspecified model linkages with
some other learners in C(Gi), denoted as C(Gi)miss. By definition, C(Gi)miss ⊂ C(Gi). If
Ê = Ei, then Gi must include the path between Lw and the learners in C(Gi)miss, which
further indicates that

Pr(Ê = Ei) ≤ Pr

{
p(y(w),∪κ∈C(Gi)miss

y(κ)|X(w),∪κ∈C(Gi)miss
X(κ))

p(y(w)|X(w))p(∪κ∈C(Gi)miss
y(κ)| ∪κ∈C(Gi)miss

X(κ))
> 1

}
, (10)

where the right side of the equation can be interpreted as the probability of including Lw
in Step 2 of Algorithm 1 to build a joint model.

From the proof of Lemma 14, we have

p(y(w),∪κ∈C(Gi)miss
y(κ)|X(w),∪κ∈C(Gi)miss

X(κ))

p(y(w)|X(w))p(∪κ∈C(Gi)miss
y(κ)| ∪κ∈C(Gi)miss

X(κ))
= Θ{np′/2w exp(−nwCw)} (11)

for some positive finite constants Cw and p′, where nw is the number of samples in Lw. By
an application of the Markov’s inequality and (11), we have

Pr

{
p(y(w),∪κ∈C(Gi)miss

y(κ)|X(w),∪κ∈C(Gi)miss
X(κ))

p(y(w)|X(w))p(∪κ∈C(Gi)miss
y(κ)| ∪κ∈C(Gi)miss

X(κ))
> 1

}
(12)

≤ E
{

p(y(w),∪κ∈C(Gi)miss
y(κ)|X(w),∪κ∈C(Gi)miss

X(κ))

p(y(w)|X(w))p(∪κ∈C(Gi)miss
y(κ)| ∪κ∈C(Gi)miss

X(κ))

}
(13)

< np
′/2
w exp(−1

2
nwCw), (14)

implying Pr(Ê = Ei) < n
p′/2
w exp(−0.5nwCw).

Due to the existence of misspecified linkages in C(Gi), Assumption (A2) is no longer
applicable to bound E{s(p̂C(Gi), ỹ, x̃)− s(p∗, ỹ, x̃)}. We instead employ Assumption (A1) to
bound E{s(p̂C(Gi), ỹ, x̃)−s(p∗, ỹ, x̃)} by a finite constant C ′. Combining the above, we have

Pr(Ê = Ei)E{s(p̂C(Gi), ỹ, x̃)− s(p∗, ỹ, x̃)} < C ′np
′/2
w exp(−1

2
nwCw). (15)

By Assumption (A2) in Section B and (15), we conclude that

Pr(Ê = Ei)E{s(p̂C(Gi), ỹ, x̃)− s(p∗, ỹ, x̃)}
E{s(p̂C(G∗), ỹ, x̃)− s(p∗, ỹ, x̃)} ≤ C ′′n(1+p′)/2

w exp(−1

2
nwCw)→ 0 (16)

as nw →∞, where C ′′ is some positive finite constant. This concludes the proof.
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Appendix D. Proof of Lemmas 11–14

D.1 Proof of Lemma 11

Proof Proof of Lemma 11(i): Let θ ∈ Θ \ θ∗ and let Zi = log {p(yi,xi|θ)/p(yi,xi|θ∗)}
be the log ratio between two joint densities evaluated under θ and θ∗. Let E(Zi) be the
expectation of Zi with respect to the density function p(yi,xi | θ∗). We start with proving
the following intermediate result that is helpful for the proof of Lemma 11(i):

lim
n→∞

Pr

[
1

n
{`(θ)− `(θ∗)} < −c(θ)

]
= 1, (17)

where c(θ) is a positive finite number that may depend on θ.
We consider two cases when E(Zi) is finite and infinite, respectively. When E(Zi) is

finite, it follows from the Jensen’s inequality that

E(Zi) < logE {exp(Zi)} = 0. (18)

Thus, by the law of large number, we have

n−1
n∑
i=1

Zi
p→ E(Zi) < 0,

implying Pr{n−1
∑n

i=1 Zi ≥ 0.5E(Zi)} → 0. That is, Pr{n−1
∑n

i=1 Zi ≤ 0.5E(Zi)} → 1.
Pick c(θ) = −0.5E(Zi), and (17) is satisfied. If E(Zi) is not finite, then we have E(Zi) =
−∞. Let Z∗i = max{Zi, k}, where k < 0. Then E(|Z∗i |) < ∞. By the strong law of large
number, we obtain

1

n

n∑
i=1

Z∗i
a.s.→ E(Z∗i ). (19)

As k → −∞, by the monotone convergence theorem, we obtain E(Z∗i ) → E(Zi) = −∞.
Moreover, (19) implies

lim sup
n→∞

1

n

n∑
i=1

Zi = lim
n→∞

sup
n≥m

1

m

m∑
i=1

Zi ≤ lim
n→∞

1

n

n∑
i=1

Z∗i = E(Z∗i ) = −∞ (20)

almost surely . Thus, we obtain lim sup
n→∞

n−1
∑n

i=1 Zi = −∞ almost surely. In other words,

n−1
∑n

i=1 Zi
a.s.→ −∞. Any positive finite number c(θ) guarantees that (17) will hold.

We now apply (17) to prove Lemma 11(i) holds in some open balls, where the union
of these finite number of open balls covers Θ \ N(δ). Consider θj ∈ Θ and let Nj(δj) =
{θ : ‖θ − θj‖2 < δj} be a ball of size δj centered at θj . By the regularity condition (IV) in
Appendix A, we have

sup
θ∈Nj(δj)

1

n
{`(θ)− `(θ∗)} = sup

θ∈Nj(δj)

[
1

n
{`(θ)− `(θj)}+

1

n
{`(θj)− `(θ∗)}

]

<
1

n

n∑
i=1

Hδ(yi,xi,θj) +
1

n
{`(θj)− `(θ∗)} .

(21)
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By the weak law of large number, as n→∞, we have

lim
δ→0

1

n

n∑
i=1

Hδ(yi,xi,θj)
p→ E{Hδ(yi,xi,θj)} = 0 (22)

Applying (17) with θ = θj , we obtain

lim
n→∞

Pr

[
1

n
{`(θj)− `(θ∗)} < −cj

]
= 1, (23)

where cj is a positive constant that depends on θj . Applying (22) and (23), we get the
upper bound in (21), which is shown below:

lim
n→∞

Pr

{
sup

θ∈Nj(δj)

1

n
{`(θ)− `(θ∗)} < 1

n
{`(θj)− `(θ∗)}+

1

n

n∑
i=1

Hδ(yi,xi,θj) < −cj
}

= 1.

Then we get

lim
n→∞

Pr

{
sup

θ∈Nj(δj)

1

n
{`(θ)− `(θ∗)} < −cj

}
= 1. (24)

thereafter.

If Θ is bounded, the compact set Θ \ N(δ) can be covered by a finite number of
balls, namely N1(δ1), N2(δ2), . . . , Nm(δm), centered at θ1,θ2, . . . , θm, respectively. Then
Lemma 11(i) holds by (24) with

k(δ) = min{c1, c2, . . . , cm}.

If Θ is unbounded, we apply the same argument to the bounded compact set Θ \
{N(δ) ∪ S(∆)}, where S(∆) = {θ : ‖θ‖2 > ∆} for sufficiently large ∆, from (V) in Ap-
pendix A, we have

sup
θ∈S(∆)

1

n
{`(θ)− `(θ∗)} < 1

n

n∑
i=1

K∆(yi,xi,θ
∗). (25)

If E{K∆(yi,xi,θ
∗)} > −∞, by the weak law of large number, we get n−1

∑n
i=1K∆(yi,xi,θ

∗)
p→

E{K∆(yi,xi,θ
∗)} < 0, thus we have

lim
n→∞

Pr

[
sup

θ∈S(∆)

1

n
{`(θ)− `(θ∗)} < E {K∆(yi,xi,θ

∗)}
]

= 1. (26)

Under this case, Lemma 11(i) holds with k(δ) = min [c1, . . . , cm,−E{K∆(yi,xi,θ
∗)}] .

If E{K∆(yi,xi,θ
∗)} = −∞, using the similar argument in (19) and (20), we can derive

the conclusion that

1

n

n∑
i=1

K∆(yi,xi,θ
∗)

a.s.→ E{K∆(yi,xi,θ
∗)} = −∞.
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Lemma 11(i) still holds with k(δ) = min {c1, . . . , cm} .

Proof of Lemma 11(ii): Since δ can be sufficiently small and lim
n→∞

Pr
{
‖θ̂ − θ∗‖2 < δ

}
=

1, we have n−1|{(In(θ̂) − In(θ∗)}i,j | < n−1
∑n

i=1Mδ(yi,xi,θ
∗) from (IX) in Appendix A,

the limiting property

lim
n→∞

1

n

n∑
i=1

Mδ(yi,xi,θ
∗) = E {Mδ(yi,xi,θ

∗)} → 0

and the weak law of large number imply that

lim
n→∞

1

n

{
In(θ̂)

}
i,j

= lim
n→∞

1

n
{In(θ∗)}i,j

p→ {I(θ∗)}i,j , (27)

Finally, by continuous mapping theorem, we obtain n−pdet|In(θ̂)| p→ det|I(θ∗)|.

Proof of Lemma 11(iii): Recall that θ̂ is the maximum likelihood estimator of θ.
Thus, ∇`(θ̂) = 0. By a second-order Taylor expansion, for θ∗ ∈ Θ, there exists a t ∈ [0, 1]
such that

`(θ∗) = `(θ̂)− 1

2
(θ∗ − θ̂)T

[
In{θ̂ + t(θ∗ − θ̂)}

]
(θ∗ − θ̂). (28)

It suffices to show (θ∗− θ̂)T
[
In{θ̂ + t(θ∗ − θ̂)}

]
(θ∗− θ̂) = Θ(1). Since θ̂

p→ θ∗, by (27) in

the proof of Lemma 11(ii), we have n−1[In{θ̂ + t(θ∗ − θ̂)}]i,j p→ {I(θ∗)}i,j . Also, we have

θ̂ = θ∗ + Θ(n−1/2). Consequently, we obtain

(θ∗ − θ̂)T
[
In{θ̂ + t(θ∗ − θ̂)}

]
(θ∗ − θ̂)

p→
{
n

1
2 (θ̂ − θ∗)

}T
I(θ∗)

{
n

1
2 (θ̂ − θ∗)

}
= Θ(1)I(θ∗)Θ(1)

= Θ(1).

(29)

Proof of Lemma 11(iv): Recall that p(y,X|θ) = exp{`(θ)}. Thus, the marginal
likelihood can be written as

p(y,X) =

∫
θ∈Θ

π(θ) exp{`(θ)}dθ

= p(y,X|θ̂)

∫
θ∈Θ

π(θ) exp{`(θ)− `(θ̂)}dθ

= p(y,X|θ̂)

∫
θ∈Θ\N(δ)

π(θ) exp{`(θ)− `(θ̂)}dθ + p(y,X|θ̂)

∫
θ∈N(δ)

π(θ) exp{`(θ)− `(θ̂)}dθ

:= I1 + I2.

(30)

It suffices to show that
{
p(y,X|θ̂)ξ̂

}−1
I1

p→ 0 and
{
p(y,X|θ̂)ξ̂

}−1
I2

p→ (2π)p/2π(θ∗),

respectively.
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We first show
{
p(y,X|θ̂)ξ̂

}−1
I1

p→ 0. Note that

I1 = p(y,X|θ̂) exp
{
`(θ∗)− `(θ̂)

}∫
θ∈Θ\N(δ)

π(θ) exp {`(θ)− `(θ∗)} dθ,

We start the proof by conditioning on the event exp {`(θ)− `(θ∗)} ≤ exp{−nk(δ)}. Thus,∫
θ∈Θ\N(δ)

π(θ) exp {`(θ)− `(θ∗)} dθ ≤ exp {−nk(δ)}
∫
θ∈Θ\N(δ)

π(θ)dθ ≤ exp {−nk(δ)} .

(31)

Multiplying I1 with
{
p(y,X|θ̂)ξ̂

}−1
and by (31), we obtain

{
p(y,X|θ̂)ξ̂

}−1
I1 ≤ exp{`(θ∗)−

`(θ̂)}ξ̂−1 exp {−nk(δ)}. By Lemma 11(iii), we have `(θ∗) − `(θ̂) = Θ(1). Moreover, by
Lemma 11(ii) and Slutsky’s Theorem, we obtain

lim
n→∞

ξ̂−1 exp {−nk(δ)} = lim
n→∞

n−p/2(ξ̂−2)1/2np/2 exp {−nk(δ)}

= (det|I(θ∗)|)1/2 lim
n→∞

[exp {−nk(δ) + p log(n)/2}]
= 0.

(32)

Finally, by Lemma 11(i), the event exp {`(θ)− `(θ∗)} ≤ exp{−nk(δ)} holds with probabil-
ity one as n→∞ for any θ ∈ Θ \N(δ). Combining the above, we have{

p(y,X|θ̂)ξ̂
}−1

I1
p→ 0.

Next, we show that
{
p(y,X|θ̂)ξ̂

}−1
I2

p→ (2π)p/2π(θ∗). By a second-order Taylor ex-

pansion, we have

`(θ) = `(θ̂)− 1

2
(θ − θ̂)TIn{θ̂ + t(θ − θ̂)}(θ − θ̂)

= `(θ̂)− 1

2
(θ − θ̂)TIn(θ̂)(θ − θ̂)− 1

2
(θ − θ̂)T

[
In{θ̂ + t(θ − θ̂)} − In(θ̂)

]
(θ − θ̂).

(33)

For notational simplicity, let Rn = 0.5(θ− θ̂)T
[
In{θ̂ + t(θ − θ̂)} − In(θ̂)

]
(θ− θ̂). By (33),

I2 can be rewritten as

I2 =p(y,X|θ̂)

∫
θ∈N(δ)

π(θ) exp
{
`(θ)− `(θ̂)

}
dθ

=p(y,X|θ̂)

∫
θ∈N(δ)

π(θ) exp

[
−1

2
(θ − θ̂)TIn(θ̂)(θ − θ̂)−Rn

]
dθ.

(34)

Under (X) in Appendix A, given any ε′ > 0, let ε = 2ε′/π(θ∗), since the prior function π(θ)
is continuous around θ∗, thus, we can choose a δ such that

|π(θ)− π(θ∗)| < ε′ < επ(θ∗) if θ ∈ N(δ). (35)
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Let

I3 =

∫
θ∈N(δ)

exp

{
−1

2
(θ − θ̂)TIn(θ̂)(θ − θ̂)−Rn

}
dθ. (36)

By (35), we obtain

(1− ε)π(θ∗)I3 <
{
p(y,X|θ̂)

}−1
I2 < (1 + ε)π(θ∗)I3. (37)

It suffices to obtain lower and upper bounds for ξ̂−1I3.
We divide the derivation of upper and lower bounds for ξ̂−1I3 into two parts, we first

show that ξ̂−1
∫
θ∈N(δ) exp

{
−1

2(θ − θ̂)TIn(θ̂)(θ − θ̂)
}
dθ → (2π)p/2, and prove later that

|Rn| < ε for some proper δ.
Recall that ξ̂−1 = det |In(θ̂)|1/2, and by the regularity condition (VI) in Appendix A,

{In(θ̂)}−1 exists since In(θ̂) is non-singular. We have

ξ̂−1

∫
θ∈N(δ)

exp

{
−1

2
(θ − θ̂)TIn(θ̂)(θ − θ̂)

}
dθ

=
√

(2π)p
∫
θ∈N(δ)

exp
{
−1

2(θ − θ̂)TIn(θ̂)(θ − θ̂)
}

√
(2π)pdet|{In(θ̂)}−1|

dθ.

(38)

Because the part inside the integral is the density function of multivariate normal distribu-
tion θ ∼ N(θ̂, {In(θ̂)}−1), we have that (38) will be less than

√
(2π)p

∫ exp
{
−1

2(θ − θ̂)TIn(θ̂)(θ − θ̂)
}

√
(2π)pdet|{In(θ̂)}−1|

dθ = (2π)
p
2 . (39)

Moreover, the symmetry property of In(θ̂) indicates that there exists a p×p matrix V such
that In(θ̂) = V TV . Change variable θ′ = V θ, (38) will be greater than

√
(2π)p

∫
θ′∈N ′(δ′)

exp
{
−1

2(θ′ − V θ̂)T(θ′ − V θ̂)
}

√
(2π)pdet|{In(θ̂)}−1|

det|V −1|dθ′

=
√

(2π)p
∫
θ′∈N ′(δ′)

exp
{
−1

2(θ′ − V θ̂)T(θ′ − V θ̂)
}

√
(2π)p

dθ′,

(40)

where N ′(δ′) = {θ′ : ‖θ′ − V θ∗‖2 < δ′}, and δ′ is determined by δ′ = min
θ:‖θ−θ∗‖2=δ

‖V θ −
V θ∗‖2. We show that δ′ = min

θ:‖θ−θ∗‖2=δ
‖V θ − V θ∗‖2 → ∞. Let δ(θ) = ‖V θ − V θ∗‖2

under the condition that ‖θ − θ∗‖2 = δ, if δ(θ) <∞, then V θ − V θ∗ and θ − θ∗ are both
elementwise finite, and their lengths are both finite number p, we conclude from above that
det |(V θ − V θ∗)(θ − θ∗)T| < ∞. However, det |V | = (det |In(θ̂)|) 1

2 → ∞ from Lemma
11(ii), thus det |(V θ − V θ∗)(θ − θ∗)T| = det |V | · det |(θ − θ∗)(θ − θ∗)T| → ∞, which
is a contradiction. All the above indicates that δ(θ) → ∞ for any ‖θ − θ∗‖2 = δ, which
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concludes δ′ = min
θ:‖θ−θ∗‖2=δ

‖V θ−V θ∗‖2 →∞. Therefore, we have (40) converging to (2π)p/2

in probability. The conclusion ξ̂−1
∫
θ∈N(δ) exp

{
−1

2(θ − θ̂)TIn(θ̂)(θ − θ̂)
}
dθ → (2π)p/2 is

then derived.
We next derive the upper bound of |Rn|. By the triangle inequality, we have

1

n
|Rn| =

1

n

∣∣∣∣12(θ − θ̂)T[In{θ̂ + t(θ − θ̂)} − In(θ̂)](θ − θ̂)

∣∣∣∣
≤ 1

2n

∣∣∣(θ − θ̂)T[In{θ̂ + t(θ − θ̂)} − In(θ∗)](θ − θ̂)
∣∣∣

+
1

2n

∣∣∣(θ − θ̂)T
{
In(θ∗)− In(θ̂)

}
(θ − θ̂)

∣∣∣ .
(41)

To further derive the upper bound of (41), consider the length p vector b = (b1, b2, . . . , bp)
T

and p × p matrix A with {A}i,j = ai,j , i, j ∈ {1, 2, . . . , p}. Let g(A, b) = tr(bTAb), this

function can be formalized as g(A, b) = tr(bbTA) =
∑p

j=1

∑p
i=1 bibjai,j . Let b = θ− θ̂ and

A = In{θ̂+t(θ−θ̂)}−In(θ∗), we have ‖b‖2 = ‖(θ−θ∗)+(θ∗−θ̂)‖2 ≤ ‖θ−θ∗‖2+‖θ∗−θ̂‖2 ≤
δ in probability, because θ ∈ N(δ) and θ̂−θ∗ = Θ(n−1/2). Thus, |bi| ≤ δ for i = 1, 2, . . . , p.
We can get the inequality that |g(A, b)| ≤ δ2

∑p
j=1

∑p
i=1 |ai,j |. From triangle inequality we

have ‖θ̂+ t(θ− θ̂)−θ∗‖2 ≤ t‖θ−θ∗‖2 +(1− t)‖θ̂−θ∗‖2 p→ tδ ≤ δ, thus θ̂+ t(θ− θ̂) ∈ N(δ)
in probability. From (IX) in Appendix A, we have |ai,j | = |[In{θ̂+ t(θ− θ̂)}− In(θ∗)]i,j | ≤∑n

i=1Mδ(yi,xi,θ
∗). Thus we have bTAb ≤ δ2

∑p
j=1

∑p
k=1

∑n
i=1Mδ(yi,xi,θ

∗). Note that

this inequality also holds when A = In(θ∗) − In(θ̂), since θ̂ − θ∗ = Θ(n−1/2), which indi-
cates θ̂ ∈ N(δ) almost surely, thus (IX) in Appendix A can be applied and get the same
conclusion as well. Based on (41) and the weak law of large number, n−1|Rn| is less than

1

n
δ2

p∑
j=1

p∑
k=1

n∑
i=1

Mδ(yi,xi,θ
∗)

p→ p2δ2E {Mδ(yi,xi,θ
∗)} when n→∞. (42)

Under (IX) in Appendix A, lim
δ→0

E {Mδ(yi,xi,θ
∗)} = 0, given the condition that δ is chosen

to make (35) hold, then for any ε > 0, if δ is also chosen such that

E {Mδ(yi,xi,θ
∗)} < ε

2np2δ2
.

Therefore

lim
n→∞

Pr

{
sup

θ∈N(δ)
|Rn| < ε

}
= 1. (43)

Hence, we get the conclusion

lim
n→∞

Pr
{

(2π)
p
2 exp(−ε) < ξ̂−1I3 < (2π)

p
2 exp(ε)

}
= 1. (44)

Since δ can be chosen so that (44) and (37) both hold for arbitrary small ε, we deduce the
result

lim
n→∞

Pr

[
(2π)

p
2π(θ∗)(1− ε) exp(−ε) <

{
p(y,X|θ̂)ξ̂

}−1
I2 < (2π)

p
2π(θ∗)(1 + ε) exp(ε)

]
= 1,
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which leads to
{
p(y,X|θ̂)ξ̂

}−1
I2

p→ (2π)p/2π(θ∗) when n→∞. Then we get the conclusion

lim
n→∞

{
(y,X|θ̂)ξ̂

}−1
p(y,X) = (2π)

p
2π(θ∗). (45)

D.2 Proof of Lemma 12

Proof We start with the proof of Lemma 12(i). Recall that ΘC is the parameter space
of θC , and θ̃1 = (θT

1,−S1 ,θ
T
S1,S2)T and θ̃2 = (θT

2,−S2 ,θ
T
S1,S2)T as the parameters for L1

and L2 after incorporating information from the model linkage between the two learners.
Let Nκ(δκ) = {θ : ‖θ − θ∗κ‖2 < δκ} be the neighborhood of θ∗κ, and let Θ1,δ1 = {θC :

θ̃1 ∈ N1(δ1), θ2,−S2 = θ∗2,−S2} and Θ2,δ2 = {θC : θ̃2 ∈ N2(δ2), θ1,−S1 = θ∗1,−S1}. The
parameter space ΘC can be divided into Θ1,δ1 , Θ2,δ2 , and ΘC \ (Θ1,δ1 ∪Θ2,δ2). For a fixed
δ, there exist δ1 and δ2, such that Θκ,δκ ∈ NC(δ), κ = 1, 2. Lemma 11(i) indicates that

sup
θ̃κ∈Θκ\Nκ(δκ)

n−1
κ

{
`κ(θ̃κ)− `κ(θ∗κ)

}
< −kκ(δκ) for some positive functions kκ(δκ), κ = 1, 2.

Let k(δ) = c1 · k1(δ1) + c2 · k2(δ2). Then,

sup
θC∈ΘC\NC(δ)

n−1 {`C(θC)− `C(θ∗C)} (46)

≤ sup
θC∈ΘC\(Θ1,δ1

∪Θ2,δ2
)
n−1 {`C(θC)− `C(θ∗C)} (47)

≤ sup
θ̃1∈Θ1\N1(δ1)

n−1
{
`1(θ̃1)− `1(θ∗1)

}
+ sup

θ̃2∈Θ2\N2(δ2)

n−1
{
`2(θ̃2)− `2(θ∗2)

}
(48)

= c1 sup
θ̃1∈Θ1\N1(δ1)

n−1
1

{
`1(θ̃1)− `1(θ∗1)

}
+ c2 sup

θ̃2∈Θ2\N2(δ2)

n−1
2

{
`2(θ̃2)− `2(θ∗2)

}
(49)

≤ c1 × {−k1(δ1)}+ c2 × {−k2(δ2)} (50)

= −k(δ), (51)

where (48) holds by the fact that `C(θC) − `C(θ∗C) = {`1(θ̃1) − `1(θ∗1)} + {`2(θ̃2) − `2(θ∗2)}
and (50) holds by applications of Lemma 11(i). Therefore, Lemma 12(i) is proved.

For Lemma 12(ii), we prove that n−1In(θ̂C) is positive definite by showing that n−1In(θ̂C)
can be rewritten as a sum of two matrices, namely n−1In(θ̂C) = M1 +M2, where M1, M2

are positive definite matrices. The proof can then be concluded by the fact that all elements
in M1 and M2 are bounded by some finite constants.

Recall that θC = (θT
1,−S1 ,θ

T
S1,S2 ,θ

T
2,−S2)T ∈ RpC . Let θ̂C,κ be the MLE of θ̃κ obtained by

maximizing `C , κ = 1, 2. Let λκ be the smallest eigenvalue in n−1
κ I

(κ)
nκ (θ̂C,κ). By Condition

VI in Appendix A (VI, the positive definite property of I
(κ)
nκ (θ̂C,κ) indicates that λκ > 0,

κ = 1, 2. In the following proof, we will focus on constructing M1. Construction of M2 is
similar as M1 and is omitted.

We now define the elements in M1. For i, j ≤ p1, let

{M1}i,j = c1
1

n1
{I(1)
n1

(θ̂C,1)}i,j −
c1

2
λ1 (52)
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for i = j and i ≤ p1 − ps, and let

{M1}i,j = c1
1

n1
{I(1)
n1

(θ̂C,1)}i,j (53)

for the other elements.

When p1 + 1 ≤ i ≤ p1 + p2 − ps or p1 + 1 ≤ j ≤ p1 + p2 − ps, all the elements are zeros
except when i = j, we set

{M1}i,j =
c2

2
λ2. (54)

By construction, M1 is a 2× 2 block diagonal matrix, where each block matrix is positive

definite. The upper left diagonal block is the difference between c1n
−1
1 {I

(1)
n1 (θ̂C,1)} and a

diagonal matrix, with the first p1−ps diagonal entries are set to equal 0.5c1λ1. The bottom
right block matrix is a diagonal matrix with all diagonal entries equaling 0.5c2λ2. Thus M1

is positive definite. The matrix M2 is constructed in a similar fashion and can be shown to
be positive definite.

We now proceed to prove the limiting property of n−1
1 I

(1)
n1 (θ̂C,1). We have

1

n1
|{I(1)

n1
(θ̂C,1)− I(1)

n1
(θ∗1)}i,j | <

1

n1

n1∑
i=1

Mδ1(y
(1)
i ,x

(1)
i ,θ∗1) (55)

from (IX) in Appendix A. Moreover, the limiting property

lim
n1→∞

1

n1

n1∑
i=1

Mδ1(y
(1)
i ,x

(1)
i ,θ∗1) = E

{
Mδ1(y

(1)
i ,x

(1)
i ,θ∗1)

}
→ 0 (56)

implies that

lim
n1→∞

1

n1

{
I(1)
n1

(θ̂C,1)
}
i,j

= lim
n1→∞

1

n1

{
I(1)
n1

(θ∗1)
}
i,j

=
{
I(1)(θ∗1)

}
i,j
. (57)

Equations (52)–(57) imply that M1 and M2 are positive definite and elementwise finite.
Combining this with the continuous mapping theorem, we obtain the conclusion that
det |M1 +M2| = det |n−1In(θ̂C)| = Θ(1), which concludes Lemma 12(ii).

Lemma 12(iii) is implied by Lemma 11(iii). The proof of Lemma 12(iv) is similar to the
proof of Lemma 11(iv), and is omitted.

D.3 Proof of Lemma 13

Proof Recall from Lemma 11(iv) and Lemma 12(iv) that (ξ̂2
1)−1 = det|I(1)

n1 (θ̂1)|, (ξ̂2
2)−1 =

det|I(2)
n2 (θ̂2)|, and (ξ̂2

C)
−1 = det|In(θ̂C)| with n = n1 +n2. Let h1(X(1)) and h2(X(2)) be the

density function of X(1) and X(2), respectively. Since the covariates between two learners
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are independent, as m→∞, we have

p(y(1),y(2)|X(1),X(2))

p(y(1)|X(1))p(y(2)|X(2))
=

p(y(1),y(2),X(1),X(2))/h1(X(1))h2(X(2))

p(y(1),X(1))/h1(X(1))× p(y(2),X(2))/h2(X(2))

=
p(y(1),y(2),X(1),X(2))

p(y(1),X(1))p(y(2),X(2))

= Θ

 p
(C)
θC

(y(1),y(2),X(1),X(2))|θ̂C)
p

(1)

θ̃1
(y(1),X(1)|θ̂1)p

(2)

θ̃2
(y(2),X(2)|θ̂2)

· ξ̂C
ξ̂1ξ̂2

 , (58)

where the third equality holds by an application of Lemma 11(iv) and Lemma 12(iv).
Since the model linkages are well-specified, the joint density can be factored as

p
(C)
θC

(y(1),y(2),X(1),X(2)|θ∗C) = p
(1)

θ̃1
(y(1),X(1)|θ∗1)p

(2)

θ̃2
(y(2),X(2)|θ∗2).

Thus, we have

p
(C)
θC

(y(1),y(2),X(1),X(2)|θ̂C)
p

(1)

θ̃1
(y(1),X(1)|θ̂1)p

(2)

θ̃2
(y(2),X(2)|θ̂2)

=
p

(C)
θC

(y(1),y(2),X(1),X(2)|θ̂C)
{
p

(C)
θC

(y(1),y(2),X(1),X(2)|θ∗C)
}−1

p
(1)

θ̃1
(y(1),X(1)|θ̂1)

{
p

(1)

θ̃1
(y(1),X(1)|θ∗1)

}−1
p

(2)

θ̃2
(y(2),X(2)|θ̂2)

{
p

(2)

θ̃2
(y(2),X(2)|θ∗2)

}−1

= Θ(1), (59)

where the second equality holds by Lemma 11(iii).
Also, Lemma 11(ii) and Lemma 12(ii) imply that

ξ̂C

ξ̂1ξ̂2

=
ξ̂C(n1 + n2)

p1+p2−ps
2

ξ̂1n
p1
2

1 · ξ̂2n
p2
2

2

· n
p1
2

1 n
p2
2

2

(n1 + n2)
p1+p2−ps

2

p→ Θ(1) · n
p1
2

1 n
p2
2

2

(n1 + n2)
p1+p2−ps

2

= Θ(m
ps
2 ).

(60)

Substituting (59) and (60) into (58) concludes the proof.

D.4 Proof of Lemma 14

Proof From the proof of Lemma 13, we have

p(y(1),y(2)|X(1),X(2))

p(y(1)|X(1))p(y(2)|X(2))
=

p(y(1),y(2),X(1),X(2))

p(y(1),X(1))p(y(2),X(2))
,

and it remains to show that

p(y(1),y(2),X(1),X(2))

p(y(1),X(1))p(y(2),X(2))

p→ 0. (61)
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By definition, p(y(1),y(2),X(1),X(2)) =
∫
ΘC

p
(1)

θ̃1
(y(1),X(1)|θ̃1)p

(2)

θ̃2
(y(2),X(2)|θ̃2)π(θC)dθC .

Choose a δ > 0 such that N1(δ) and N2(δ) are non-overlapping neighborhoods of θ∗1 and
θ∗2, respectively. We split p(y(1),y(2),X(1),X(2)) into three integrals, I1, I2, and I3, taken

on sets Θ1,δ, Θ2,δ, and ΘC \ (Θ1,δ ∪Θ2,δ), where Θ1,δ = {θC : θ̃1 ∈ N1(δ)} and Θ2,δ =

{θC : θ̃2 ∈ N2(δ)}. Note that θ̃1 ⊆ θC and θ̃2 ⊆ θC
For the first integral, we have

I1 =

∫
Θ1,δ

p
(1)

θ̃1
(y(1),X(1)|θ̃1)p

(2)

θ̃2
(y(2),X(2)|θ̃2)π(θC)dθC

= p
(2)

θ̃2
(y(2),X(2)|θ̂2)ξ̂2 exp

{
`2(θ∗2)− `2(θ̂2)

}
×
∫

Θ1,δ

ξ̂−1
2 exp

{
`2(θ̃2)− `2(θ∗2)

}
p

(1)

θ̃1
(y(1),X(1)|θ̃1)π(θC)dθC .

(62)

Since θ̃2 /∈ N1(δ) in (62), according to Lemma 11(i), the integral on the right hand side in
(62) is less than

∫
Θ1,δ

ξ̂−1
2 exp

{
`2(θ̃2)− `2(θ∗2)

}
p

(1)

θ̃1
(y(1),X(1)|θ̃1)π(θC)dθC

≤ ξ̂−1
2 exp{−n2k2(δ)}

∫
Θ1,δ

p
(1)

θ̃1
(y(1),X(1)|θ̃1)π(θC)dθC

≤ ξ̂−1
2 exp{−n2k2(δ)}

∫
Θ1

p
(1)

θ̃1
(y(1),X(1)|θ̃1)π(θ̃1)dθ̃1

= {np22 ξ̂
2
2}−

1
2n

p2
2

2 exp{−n2k2(δ)}p(y(1),X(1))

(63)

with probability tending to 1 as n2 →∞. From Lemmas 11(ii)–(iv), as n2 →∞, we have

{np22 ξ̂
2
2}−

1
2

p→ (det |I(2)(θ∗2)|) 1
2 ;

exp
{
`2(θ∗2)− `2(θ̂2)

}
→ Θ(1);

{p(2)

θ̃2
(y(2),X(2)|θ̂2)ξ̂2}−1p(y(2),X(2))

p→ (2π)
p2
2 π(θ∗2).

(64)

It follows that

I1

p(y(1),X(1))p(y(2),X(2))
= Θ(n

p2
2

2 exp{−n2k2(δ)}) p→ 0. (65)

Using a similar argument for I2, as n1 →∞, we have

I2

p(y(1),X(1))p(y(2),X(2))
= Θ(n

p1
2

1 exp{−n1k1(δ)}) p→ 0. (66)
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For the integral I3, we apply a similar argument as in the proof of I1 and I2. Specifically,

I3 =

∫
ΘC\{Θ1,δ∪Θ2,δ}

p
(1)

θ̃1
(y(1),X(1)|θ̃1)p

(2)

θ̃2
(y(2),X(2)|θ̃2)π(θC)dθC

= p
(1)

θ̃1
(y(1),X(1)|θ̂1)ξ̂1p

(2)

θ̃2
(y(2),X(2)|θ̂2)ξ̂2 exp

{
`1(θ∗1)− `1(θ̂1)

}
exp

{
`2(θ∗2)− `2(θ̂2)

}
×
∫

ΘC\{Θ1,δ∪Θ2,δ}
ξ̂−1

1 ξ̂−1
2 exp

{
`1(θ̃1)− `1(θ∗1)

}
exp

{
`2(θ̃2)− `2(θ∗2)

}
π(θC)dθC ,

≤ p(1)

θ̃1
(y(1),X(1)|θ̂1)ξ̂1p

(2)

θ̃2
(y(2),X(2)|θ̂2)ξ̂2 exp

{
`1(θ∗1)− `1(θ̂1)

}
exp

{
`2(θ∗2)− `2(θ̂2)

}
× ξ̂−1

1 ξ̂−1
2

∫
ΘC

exp
{
`1(θ̃1)− `1(θ∗1)

}
exp

{
`2(θ̃2)− `2(θ∗2)

}
π(θC)dθC .

Since the region ΘC \ {Θ1,δ ∪Θ2,δ} contains neither the neighborhood of θ∗1 nor the neigh-
borhood of θ∗2, by an application of Lemma 11(i), we have

I3 ≤ p(1)

θ̃1
(y(1),X(1)|θ̂1)ξ̂1p

(2)

θ̃2
(y(2),X(2)|θ̂2)ξ̂2 exp

{
`1(θ∗1)− `1(θ̂1)

}
exp

{
`2(θ∗2)− `2(θ̂2)

}
× ξ̂−1

1 ξ̂−1
2 exp {−n1k1(δ)} exp {−n2k2(δ)} .

Using an argument similar to that of I1 and Lemmas 12(ii)–(iv), we have

I3

p(y(1),X(1))p(y(2),X(2))
= Θ(n

p1
2

1 n
p2
2

2 exp{−n1k1(δ)− n2k2(δ)}) p→ 0. (67)

Combining the above, we have

p(y(1),y(2),X(1),X(2))

p(y(1),X(1))p(y(2),X(2))
=

I1 + I2 + I3

p(y(1),X(1))p(y(2),X(2))

p→ 0. (68)

This concludes the proof of Lemma 14.
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