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Abstract— Fluid administration, also called fluid
resuscitation, is a medical treatment to restore the lost blood
volume and optimize cardiac functions in critical care scenarios
such as burn, hemorrhage, and septic shock. Automated fluid
administration systems (AFAS), a potential means to improve
the treatment, employ computational control algorithms to
automatically adjust optimal fluid infusion dosages by targeting
physiological variables (e.g., blood volume or blood pressure).
Most of the existing AFAS control algorithms are model-based
approaches, and their performance is highly dependent on the
model accuracy, making them less desirable in real-world care
of critically ill patients due to complexity and variability of
modeling patients’ physiological states. This work presents a
novel model-free reinforcement learning (RL) approach for the
control of fluid infusion dosages in AFAS systems. The proposed
RL agent learns to adjust the blood volume to a desired value by
choosing the optimal infusion dosages using a Q-learning
algorithm. The RL agent learns the optimal actions by
interacting with the environment (without having the
knowledge of system dynamics). The proposed methodology (i)
overcomes the need for a precise mathematical model in AFAS
systems and (ii) provides a robust performance in rejecting
clinical noises and reaching desired hemodynamic states, as will
be shown by simulation results.
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I. INTRODUCTION

Intravenous fluid administration is a crucial treatment to
restore the blood volume (BV) and stabilize critically ill
patients in hypovolemic scenarios. Successful fluid
management depends on the type and dosage of infusion. A
small volume of fluid may be insufficient to meet the desired
outcomes, whereas an over-aggressive infusion regimen may
result in severe medical complications [1]. Automated fluid
administration systems (AFAS) are decision-making
algorithms that automatically adjust the fluid infusion
dosages based on the value of hemodynamic endpoints such
as BV or mean arterial pressure (MAP) [2], [3]. AFAS
systems have the potential to reduce the incidence of human
errors in clinical settings, lower the risk of under- and over-
dosing in fluid resuscitation, and act as the supportive care to
save lives during public health emergencies [4].

Model-based approaches for AFAS systems have been
studied in the last decade [2], [4], [5], [6], and [7]. A
comparison study between the performance of a fuzzy logic
and a decision table AFAS controller was performed for
different bleeding scenarios in [2]. In [5], a closed-loop
learning intravenous fluid resuscitation algorithm was
developed to optimize the cardiac output as the hemodynamic
endpoint. In [6], a proportional-integral (PI) control-oriented
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model was designed to replicate the change of BV in
hemorrhagic scenarios. In [7], a model-based adaptive
control algorithm was developed to regulate the MAP using
a hemodynamic model relating blood pressure to the fluid
gain and loss. The main drawback of model-based control
approaches is that the performance of the controller depends
on the accuracy of the model. Recent studies have indicated
that the existing model-based approaches have difficulties in
finding accurate dose-response models for AFAS systems
mainly due to complexity and variability of modeling
patients’ physiological states and the lack of a robust
identification tool to deal with uncertainties such as clinical
noises [4], [8]. A model-free approach based on machine
learning techniques may address this issue.

Reinforcement learning (RL) is a machine learning
approach for the control of complex uncertain, dynamical
systems [9]. An RL agent can learn the optimal actions
without having the knowledge of system dynamics by
interacting with the environment. Model-free RL has shown
promising results in the areas such as robotics [10],
transportation [11], air traffic management [12] and recently
healthcare domain, including anemia management [13]-[16],
insulin therapy [17], closed-loop anesthesia [18], and MAP
control [19].

Of particular interest, the application of RL in medical
autonomy was promising: In [13], an RL-based anemia
management algorithm was proposed to maintain the
hemoglobin concentration within the target range. In [17],
some of the key challenges related to the automated insulin
therapy was addressed using the RL. In [18], an RL-based
algorithm was successfully designed to keep the bispectral
index (BIS) and MAP in the desired range for ICU patients.
In [19], a closed-loop MAP control system was designed by
the RL for critical care patients.

In this work, we present a model-free RL control
approach for regulating fluid infusion dosages in bleeding
scenarios. To the best of Authors’ knowledge, this is the first
attempt at applying RL to AFAS systems. We designed a Q-
learning algorithm that proposes an optimal drug delivery
schedule for fluid administration. The proposed approach (i)
overcomes the need for a precise mathematical model in
AFAS systems and (ii) provides a robust performance in
rejecting clinical noises and reaching the desired
hemodynamic state, as will be shown in Section III.

The remainder of the paper is organized as follows:
Section II describes the model used as the virtual patient
generator in this study, as well as the proposed model-free RL
methodology; Simulation results are shown in Section III,
Discussions are presented in Section IV; And finally,
conclusions are drawn in Section V.
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II. MATERIALS AND METHOD

A. Hemodynamic Model

A lumped-parameter model of BV, characterizing the
patient’s response to fluid infusion, was developed in [6]. This
control-oriented model represents the fluid shift between the
intravascular and interstitial compartments, which can be
formulated as
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where a is target volume ratio between the intravascular and
extravascular volumetric changes in response to fluid gain and
loss, k is the feedback gain or the speed of fluid shift between
the two compartments, Vg, is the initial BV, Vz(t) is the
normalized value of change of BV (i.e., Vz(t) = (Vz(t) —
Vo) /Vso), u is the fluid infusion rate, and v represents the rate

of fluid loss due to hemorrhage. Also, Vg and V5 (t) represent
the first and second derivative of Vp with respect to time (for
more information about the model, see [6]).

The proposed RL approach is model-free. We used the
model of (1) to represent patients’ response to fluid changes.
In other words, in the absence of a real patient (environment)
to interact with the RL agent, the hemodynamic model was
used to simulate virtual patients and generate the input/output
data.

B. Model-Free Reinforcement Learning Control

RL, a type of machine learning method, is concerned with
learning an optimal behavior by an agent to obtain maximum
reward when exploring a dynamic environment. A general RL
framework is shown in Fig. 1. Given the state of the
environment, an RL agent chooses an action and receives a
reward (either positive or negative). This choice of action
determines the next state of the environment and affects the
next action taken by the agent, iteratively. Over time, the RL
agent learns to choose an action that maximizes the sum of the
rewards in the long term.
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Fig. 1. The reinforcement learning (RL) framework

Finding a series of infusion dosages to track a desired
hemodynamic endpoint can be considered as a sequential,
goal-oriented, decision-making problem represented by a
finite Markov decision process (MDP). A finite MDP can be
defined as a 4-tuple (S,4,P,R), where s; €S is a set of
environment states, a; € A is a set of actions taken by an
agent, P is the state transition probability matrix with
P, (s;,si+1) representing the probability of transitioning from
S; t0 S;41 under an action a;, and R, (s;, S;+1) is the associated
reward function received by action a during the transition
from s; to s;,4 (action desirability).

RL methods are naturally suitable for solving MDP
problems. In a Q-learning algorithm [9], an RL agent learns
how to behave optimally using the action-value function, also

called Q-value, Q: S X A = R. Q-value function is defined as
the expected sum of rewards from action a in state s; and can
be updated during transition (s, a,r, $) as [9]:

Q(s,a) =« (1 =y)Q(s,a) +y x [r+ ﬂarifngQ(S', Q] (2

where y € [0,1) is the learning rate and u € (0,1) is the
discount factor for future rewards. Smaller values of u
highlight the importance of immediate rewards, whereas the
larger values of u signify the future rewards.

In the initial phase of learning process, the RL agent uses
e-greedy policy to choose actions while exploring the
environment. In an e-greedy policy, the agent performs
random actions with the probability of € and chooses an action
with the highest Q-value with the probability of (1 — €).

The state value at time step k is a function of e(k) which is
defined as follows:

e(kT) = |BV(kT) - BVtargetl 3)

where BV (kT) is the BV at step k, T is the sampling time, and
BViarget 1s the desired (target) BV. The reward function is
also a function of e(kT) as follows:
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According to (4), the RL agent receives a positive reward
when the error is decreasing and receives a 0 reward when the
error is increasing. After training the agent, it develops an
action selection policy that relies on the learnt action-value Q-
function as defined by

a(k) = argmax Q(s(k), a). %)
a€cA

III. SIMULATION RESULTS

The model-free RL controller was designed in Python for
various fluid administration cases. Simulation results for a
virtual patient are demonstrated here. This scenario was
incorporated from [1] where a moderate hypovolemia was
applied to volunteer human subjects by withdrawal of 900 mL
blood prior to fluid administration. Baseline and target BV
were set to 3,940 mL and 5,000 mL, respectively. Infusion
dosages of ringer’s acetate were limited to be between 0 and
25 mL/kg, a maximum dosage derived from [2]. The
simulation was run for 100 minutes, and 30,000 episodes were
recorded.

An episode represents a series of state-action pairs starting
from an arbitrary initial value to the final desired state. The
state mapping table is designed based on the value of the error
shown in Table I. During the training, it is desired for the RL
agent to meet all states in one episode. Once the agent is
trained and an optimal Q-value function is obtained, the agent
stops exploring the environment and chooses actions with the
best former performances using the optimal Q-value function.
The RL action set was defined corresponding to the different
infusion dosages, i.e., A = [0, 5,10, 15, 20, 25]. Simulations
were conducted by setting € = 0.5 (for e-greedy policy), y =
0.69, and AVz(t) = 0. The discount factor p = 0.2 was
assigned initially and halved every 1000 episodes, indicating
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that the agent tended to choose actions with immediate reward
over time. The performance of the RL controller was
compared against a proportional-integral-derivative (PID)
controller [8] in two simulated cases: without and with
observational errors. MATLAB PID Tuner app was used to
tune PID gains.

TABLE L. THE STATE MAPPING TABLE

BV error<0 BV error>0

State number e(kT) (L) State number e(kT) (L)

1 [0,0.01) 11 [0,0.01)

2 [0.01,0.03) 12 [0.01,0.03)

3 [0.03,0.06) 13 [0.03,0.06)

4 [0.06,0.150) 14 [0.06,0.150)

5 [0.0150,0.400) 15 [0.0150,0.400)
6 [0.0400,0.700) 16 [0.0400,0.700)
7 [0.0700,1.100) 17 [0.0700,1.100)
8 [1.100,1.500) 18 [1.100,00)

9 [1.500,2.00)

10 [2.000,00)

A. BV Measurement without Observational Error

Fig. 2 demonstrates the achieved BV and the
recommended fluid infusion dosages from the RL and PID
without observational errors. Achieved BV of the RL
algorithm increased from the initial state to the target level
with a smooth transition in less than 60 minutes. The infusion
started with reasonably safe, low dosages and increased to the
maximum permissible rate to take the BV to the desired level
in the shortest amount of time. After reaching the BV target,
the infusion decreased significantly to the minimum level and
the BV remained in its desired range. After reaching the BV
target, the infusion rate of RL method fluctuated between 0
and 20 ml/kg every few minutes to keep the BV at the desired
level. Compared to the RL-based algorithm, the PID controller
spent more time at the maximum infusion level. Also, the
steady-state BV from the PID was higher than the desired
level, which might be an indicator of overdosing in clinical
settings.

B. BV Measurement with Observational Error

A white noise with the maximum amplitude of £250 mL
was applied to the output (BV) to simulate the clinical noises
caused by different measurement methods, e.g., gravimetric,
bag calibration, or dye dilution technique [3]. As
demonstrated in Fig. 3a, the proposed controller was capable
of achieving the desired BV, despite fluctuations caused by
the white noise. In contrast, the BV level from the PID
reached a value higher than the BV target (overdosing), as
shown in Fig. 3b. Also, comparing Figs. 3b and 2b indicates
that the infusion dosages recommended by the RL were the
same as those suggested without measurement errors
verifying the robustness of the proposed algorithm against the
measurement noise. However, the infusion regimen of the
PID was negatively affected by the clinical noise, as shown
by the fluctuations in Fig. 3b.

C. Performance Assessment

To further investigate the efficacy of the proposed
algorithm in closed-loop control of BV, the median
performance error (MDPE), median absolute performance
error (MDAPE), and root mean square error (RMSE) were
used as the performance metrics. MDPE, the observed control
bias, is defined as
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Fig. 2. (a) Achieved blood volume levels and (b) Fluid dose adjustments

from the RL and PID controllers without BV measurement error

MDPE = median(PE(i)), i=1,..,N (6)

where PE is the performance error computed as

_ BV()- BVtarget

BVtarget

PE x100,i =1,..,N 7

where N represent the number of BV measurements during
the simulation. Also, MDAPE and RMSE are calculated as

MDPAE = median(|PE()|),i =1, ...,N ®)

N _ 2
RMSE = \[Zl=1(BV(t)NBVtarget) . (9)

Table II shows the performance metrics computed for both
RL and PID during the simulation. The results of Table II
clearly indicate the superior performance of RL compared to
the PID, in terms of all three performance metrics.

TABLE II. PERFORMANCE ASSESSMENT OF THE RL AND PID
Performance metrics RL PID
MDPE (%) 0.37 1.75
MDAPE (%) 0.37 1.87
RMSE (L) 0.50 0.53
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Fig. 3. (a) Achieved blood volume levels and (b) Fluid dose adjustments
from the RL and PID controllers with BV measurement error

IV. DISCUSSION

We proposed a model-free RL algorithm to control the
fluid infusion dosages in critical care scenarios. The proposed
RL agent develops an optimal action selection policy using
the Q-learning algorithm without having an explicit
knowledge about system dynamics. Simulation results
showed a smooth transition of BV from the initial to the
desired state in the presence and absence of observational
error. Comparison studies between the RL and PID
demonstrated the higher performance of the RL in terms of
MDPE, MDAPE, and RMSE performance metrics.

This study considered BV as the design endpoint. The
performance of the model-free RL for other hemodynamic
endpoints such as MAP and cardiac output can be examined
in the future to further assess the proposed algorithm.
Leveraging multiple hemodynamic endpoints in multiple
medication infusions (e.g., fluid and vasopressors) are a
common practice in critical care. Extending the proposed
approach to multiple medication infusion scenarios will
enable observing the effect of drug interactions in critical care
patients. While simulation results are promising, further
investigations are needed to assess the robustness of the
algorithm against parameter uncertainties and clinical
disturbances. In addition, the RL-based controller can be
optimized and fine-tuned with a hardware-in-the-loop fluid
administration test bed [4], [20] for feasibility assessment and
performance testing. Further, the potential of Model-free RL
methods to address inter-patient variability in dose-response
relationships can be thoroughly examined in future studies.

V. |CONCLUSIONS

A model-free RL-based algorithm was designed for the
automated control of fluid administration in hemorrhagic
scenarios. The simulation results demonstrated the superior
performance of the proposed controller compared to the PID
in presence and absence of the observational errors.
Extending the proposed method to other hemodynamic
endpoints and evaluating its performance against other fluid
administration controllers will be studied in the near future.
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