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Abstract— Fluid administration, also called fluid 
resuscitation, is a medical treatment to restore the lost blood 
volume and optimize cardiac functions in critical care scenarios 
such as burn, hemorrhage, and septic shock. Automated fluid 
administration systems (AFAS), a potential means to improve 
the treatment, employ computational control algorithms to 
automatically adjust optimal fluid infusion dosages by targeting 
physiological variables (e.g., blood volume or blood pressure). 
Most of the existing AFAS control algorithms are model-based 
approaches, and their performance is highly dependent on the 
model accuracy, making them less desirable in real-world care 
of critically ill patients due to complexity and variability of 
modeling patients’ physiological states. This work presents a 
novel model-free reinforcement learning (RL) approach for the 
control of fluid infusion dosages in AFAS systems. The proposed 
RL agent learns to adjust the blood volume to a desired value by 
choosing the optimal infusion dosages using a Q-learning 
algorithm. The RL agent learns the optimal actions by 
interacting with the environment (without having the 
knowledge of system dynamics). The proposed methodology (i) 
overcomes the need for a precise mathematical model in AFAS 
systems and (ii) provides a robust performance in rejecting 
clinical noises and reaching desired hemodynamic states, as will 
be shown by simulation results. 
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I. INTRODUCTION 

Intravenous fluid administration is a crucial treatment to 
restore the blood volume (BV) and stabilize critically ill 
patients in hypovolemic scenarios. Successful fluid 
management depends on the type and dosage of infusion. A 
small volume of fluid may be insufficient to meet the desired 
outcomes, whereas an over-aggressive infusion regimen may 
result in severe medical complications [1]. Automated fluid 
administration systems (AFAS) are decision-making 
algorithms that automatically adjust the fluid infusion 
dosages based on the value of hemodynamic endpoints such 
as BV or mean arterial pressure (MAP) [2], [3]. AFAS 
systems have the potential to reduce the incidence of human 
errors in clinical settings, lower the risk of under- and over-
dosing in fluid resuscitation, and act as the supportive care to 
save lives during public health emergencies [4].   

Model-based approaches for AFAS systems have been 
studied in the last decade [2], [4], [5], [6], and [7]. A 
comparison study between the performance of a fuzzy logic 
and a decision table AFAS controller was performed for 
different bleeding scenarios in [2]. In [5], a closed-loop 
learning intravenous fluid resuscitation algorithm was 
developed to optimize the cardiac output as the hemodynamic 
endpoint. In [6], a proportional-integral (PI) control-oriented 

model was designed to replicate the change of BV in 
hemorrhagic scenarios. In [7], a model-based adaptive 
control algorithm was developed to regulate the MAP using 
a hemodynamic model relating blood pressure to the fluid 
gain and loss. The main drawback of model-based control 
approaches is that the performance of the controller depends 
on the accuracy of the model. Recent studies have indicated 
that the existing model-based approaches have difficulties in 
finding accurate dose-response models for AFAS systems 
mainly due to complexity and variability of modeling 
patients’ physiological states and the lack of a robust 
identification tool to deal with uncertainties such as clinical 
noises [4], [8]. A model-free approach based on machine 
learning techniques may address this issue. 

Reinforcement learning (RL) is a machine learning 
approach for the control of complex uncertain, dynamical 
systems [9]. An RL agent can learn the optimal actions 
without having the knowledge of system dynamics by 
interacting with the environment. Model-free RL has shown 
promising results in the areas such as robotics [10], 
transportation [11], air traffic management [12] and recently 
healthcare domain, including anemia management [13]-[16], 
insulin therapy [17], closed-loop anesthesia [18], and MAP 
control [19].  

Of particular interest, the application of RL in medical 
autonomy was promising: In [13], an RL-based anemia 
management algorithm was proposed to maintain the 
hemoglobin concentration within the target range. In [17], 
some of the key challenges related to the automated insulin 
therapy was addressed using the RL. In [18], an RL-based 
algorithm was successfully designed to keep the bispectral 
index (BIS) and MAP in the desired range for ICU patients. 
In [19], a closed-loop MAP control system was designed by 
the RL for critical care patients.  

In this work, we present a model-free RL control 
approach for regulating fluid infusion dosages in bleeding 
scenarios. To the best of Authors’ knowledge, this is the first 
attempt at applying RL to AFAS systems. We designed a Q-
learning algorithm that proposes an optimal drug delivery 
schedule for fluid administration. The proposed approach (i) 
overcomes the need for a precise mathematical model in 
AFAS systems and (ii) provides a robust performance in 
rejecting clinical noises and reaching the desired 
hemodynamic state, as will be shown in Section III.  

The remainder of the paper is organized as follows: 
Section II describes the model used as the virtual patient 
generator in this study, as well as the proposed model-free RL 
methodology; Simulation results are shown in Section III; 
Discussions are presented in Section IV; And finally, 
conclusions are drawn in Section V.  

This material is based upon work supported by the National Science 
Foundation under Grant No. 2138929. 
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II. MATERIALS AND METHOD 

A. Hemodynamic Model

A lumped-parameter model of BV, characterizing the
patient’s response to fluid infusion, was developed in [6]. This 
control-oriented model represents the fluid shift between the 
intravascular and interstitial compartments, which can be 
formulated as 

𝑉෨ሷ஻ሺ𝑡ሻ ൅ 𝑘𝑉෨ሶ
஻ሺ𝑡ሻ ൌ ଵ

௏ಳబ
ሾ𝑢ሶ െ 𝑣ሶ ሿ ൅ ௞

௏ಳబ ሺଵାఈሻ
ሾ𝑢 െ 𝑣ሿ   (1) 

where 𝛼  is target volume ratio between the intravascular and 
extravascular volumetric changes in response to fluid gain and 
loss, 𝑘  is the feedback gain or the speed of fluid shift between 
the two compartments, 𝑉஻଴ is  the initial BV, 𝑉෨஻ሺ𝑡ሻ is the 
normalized value of change of BV (i.e., 𝑉෨஻ሺ𝑡ሻ ൌ ሺ𝑉஻ሺ𝑡ሻ െ
𝑉஻଴ሻ/𝑉஻଴), 𝑢 is the fluid infusion rate, and 𝑣 represents the rate 
of fluid loss due to hemorrhage. Also, 𝑉෨ሶ

஻ and 𝑉෨ሷ
஻ሺ𝑡ሻ represent 

the first and second derivative of 𝑉෨஻ with respect to time (for 
more information about the model, see [6]). 

The proposed RL approach is model-free. We used the 
model of (1) to represent patients’ response to fluid changes. 
In other words, in the absence of a real patient (environment) 
to interact with the RL agent, the hemodynamic model was 
used to simulate virtual patients and generate the input/output 
data. 

B. Model-Free Reinforcement Learning Control

RL, a type of machine learning method, is concerned with
learning an optimal behavior by an agent to obtain maximum 
reward when exploring a dynamic environment. A general RL 
framework is shown in Fig. 1. Given the state of the 
environment, an RL agent chooses an action and receives a 
reward (either positive or negative). This choice of action 
determines the next state of the environment and affects the 
next action taken by the agent, iteratively. Over time, the RL 
agent learns to choose an action that maximizes the sum of the 
rewards in the long term. 

Fig. 1. The reinforcement learning (RL) framework 

Finding a series of infusion dosages to track a desired 
hemodynamic endpoint can be considered as a sequential, 
goal-oriented, decision-making problem represented by a 
finite Markov decision process (MDP). A finite MDP can be 
defined as a 4-tuple ሺ𝑆, 𝐴, 𝑃, 𝑅ሻ, where 𝑠௜ ∈ 𝑆 is a set of 
environment states, 𝑎௜ ∈ 𝐴 is a set of actions taken by an 
agent, 𝑃 is the state transition probability matrix with 
𝑃௔ሺ𝑠௜, 𝑠௜ାଵሻ representing the probability of transitioning from 
𝑠௜ to 𝑠௜ାଵ under an action 𝑎௜, and 𝑅௔ሺ𝑠௜, 𝑠௜ାଵሻ is the associated 
reward function received by action 𝑎 during the transition 
from 𝑠௜ to 𝑠௜ାଵ (action desirability). 

RL methods are naturally suitable for solving MDP 
problems. In a Q-learning algorithm [9], an RL agent learns 
how to behave optimally using the action-value function, also 

called Q-value, 𝑄: 𝑆 ൈ 𝐴 → 𝑅. Q-value function is defined as 
the expected sum of rewards from action 𝑎 in state 𝑠௜ and can 
be updated during transition ሺ𝑠, 𝑎, 𝑟, 𝑠́ሻ as [9]: 

𝑄ሺ𝑠, 𝑎ሻ ← ሺ1 െ 𝛾ሻ𝑄ሺ𝑠, 𝑎ሻ ൅ 𝛾 ൈ ሾ𝑟 ൅ 𝜇 max
௔೔శభ∈஺

𝑄ሺ𝑠́, 𝑎́ሻሿ 

where 𝛾 ∈ ሾ0,1ሻ is the learning rate and 𝜇 ∈ ሺ0,1ሻ is the 
discount factor for future rewards. Smaller values of 𝜇 
highlight the importance of immediate rewards, whereas the 
larger values of 𝜇 signify the future rewards. 

In the initial phase of learning process, the RL agent uses 
𝜖-greedy policy to choose actions while exploring the 
environment. In an 𝜖-greedy policy, the agent performs 
random actions with the probability of 𝜖 and chooses an action 
with the highest Q-value with the probability of ሺ1 െ 𝜖ሻ. 

The state value at time step 𝑘 is a function of 𝑒ሺ𝑘ሻ which is 
defined as follows:  

𝑒ሺ𝑘𝑇ሻ ൌ ห𝐵𝑉ሺ𝑘𝑇ሻ െ 𝐵𝑉௧௔௥௚௘௧ห 

where 𝐵𝑉ሺ𝑘𝑇ሻ is the BV at step k, T is the sampling time, and 
𝐵𝑉௧௔௥௚௘௧ is the desired (target) BV. The reward function is 
also a function of 𝑒ሺ𝑘𝑇ሻ as follows: 

𝑟௞ାଵ ൌ ൝
௘ሺ௞்ሻି௘ሺሺ௞ାଵሻ୘ሻ

௘ሺ௞ሻ
,   𝑒ሺሺ𝑘 ൅ 1ሻTሻ ൏ 𝑒ሺ𝑘𝑇ሻ

  0,          𝑒ሺሺ𝑘 ൅ 1ሻTሻ ൒ 𝑒ሺ𝑘𝑇ሻ
 

According to (4), the RL agent receives a positive reward 
when the error is decreasing and receives a 0 reward when the 
error is increasing. After training the agent, it develops an 
action selection policy that relies on the learnt action-value Q-
function as defined by 

𝑎ሺ𝑘ሻ ൌ argmax
௔∈஺

𝑄ሺ𝑠ሺ𝑘ሻ, 𝑎ሻ. 

III. SIMULATION RESULTS

The model-free RL controller was designed in Python for 
various fluid administration cases. Simulation results for a 
virtual patient are demonstrated here. This scenario was 
incorporated from [1] where a moderate hypovolemia was 
applied to volunteer human subjects by withdrawal of 900 mL 
blood prior to fluid administration. Baseline and target BV 
were set to 3,940 mL and 5,000 mL, respectively. Infusion 
dosages of ringer’s acetate were limited to be between 0 and 
25 mL/kg, a maximum dosage derived from [2]. The 
simulation was run for 100 minutes, and 30,000 episodes were 
recorded.  

An episode represents a series of state-action pairs starting 
from an arbitrary initial value to the final desired state. The 
state mapping table is designed based on the value of the error 
shown in Table I. During the training, it is desired for the RL 
agent to meet all states in one episode. Once the agent is 
trained and an optimal Q-value function is obtained, the agent 
stops exploring the environment and chooses actions with the 
best former performances using the optimal Q-value function. 
The RL action set was defined corresponding to the different 
infusion dosages, i.e., Α ൌ ሾ0, 5, 10, 15, 20, 25ሿ. Simulations 
were conducted by setting 𝜖 ൌ 0.5 (for 𝜖-greedy policy), 𝛾 ൌ
0.69, and ∆𝑉෨஻ሺ𝑡ሻ ൌ 0. The discount factor 𝜇 ൌ 0.2 was 
assigned initially and halved every 1000 episodes, indicating 
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that the agent tended to choose actions with immediate reward 
over time. The performance of the RL controller was 
compared against a proportional-integral-derivative (PID) 
controller [8] in two simulated cases: without and with 
observational errors. MATLAB PID Tuner app was used to 
tune PID gains.  

TABLE I.  THE STATE MAPPING TABLE 

BV error < 0 BV error > 0 

State number 𝒆ሺ𝒌𝑻ሻ (L) State number 𝒆ሺ𝒌𝑻ሻ (L) 
1 [0,0.01) 11 [0,0.01)
2 [0.01,0.03) 12 [0.01,0.03)
3 [0.03,0.06) 13 [0.03,0.06)
4 [0.06,0.150) 14 [0.06,0.150)
5 [0.0150,0.400) 15 [0.0150,0.400)
6 [0.0400,0.700) 16 [0.0400,0.700)
7 [0.0700,1.100) 17 [0.0700,1.100)
8 [1.100,1.500) 18 [1.100,∞)
9 [1.500,2.00) 
10 [2.000,∞) 

A. BV Measurement without Observational Error

Fig. 2 demonstrates the achieved BV and the
recommended fluid infusion dosages from the RL and PID 
without observational errors. Achieved BV of the RL 
algorithm increased from the initial state to the target level 
with a smooth transition in less than 60 minutes. The infusion 
started with reasonably safe, low dosages and increased to the 
maximum permissible rate to take the BV to the desired level 
in the shortest amount of time. After reaching the BV target, 
the infusion decreased significantly to the minimum level and 
the BV remained in its desired range. After reaching the BV 
target, the infusion rate of RL method fluctuated between 0 
and 20 ml/kg every few minutes to keep the BV at the desired 
level. Compared to the RL-based algorithm, the PID controller 
spent more time at the maximum infusion level. Also, the 
steady-state BV from the PID was higher than the desired 
level, which might be an indicator of overdosing in clinical 
settings. 

B. BV Measurement with Observational Error

A white noise with the maximum amplitude of ±250 mL
was applied to the output (BV) to simulate the clinical noises 
caused by different measurement methods, e.g., gravimetric, 
bag calibration, or dye dilution technique [3]. As 
demonstrated in Fig. 3a, the proposed controller was capable 
of achieving the desired BV, despite fluctuations caused by 
the white noise. In contrast, the BV level from the PID 
reached a value higher than the BV target (overdosing), as 
shown in Fig. 3b. Also, comparing Figs. 3b and 2b indicates 
that the infusion dosages recommended by the RL were the 
same as those suggested without measurement errors 
verifying the robustness of the proposed algorithm against the 
measurement noise. However, the infusion regimen of the 
PID was negatively affected by the clinical noise, as shown 
by the fluctuations in Fig. 3b. 

C. Performance Assessment

To further investigate the efficacy of the proposed
algorithm in closed-loop control of BV, the median 
performance error (MDPE), median absolute performance 
error (MDAPE), and root mean square error (RMSE) were 
used as the performance metrics. MDPE, the observed control 
bias, is defined as  

(a) 

(b) 

Fig. 2. (a) Achieved blood volume levels and (b) Fluid dose adjustments 
from the RL and PID controllers without BV measurement error 

𝑀𝐷𝑃𝐸 ൌ 𝑚𝑒𝑑𝑖𝑎𝑛൫𝑃𝐸ሺ𝑖ሻ൯, 𝑖 ൌ 1, … , 𝑁 

where 𝑃𝐸 is the performance error computed as 

𝑃𝐸 ൌ
஻௏ሺ௧ሻି ஻௏೟ೌೝ೒೐೟

஻௏೟ೌೝ೒೐೟
ൈ 100, 𝑖 ൌ 1, … , 𝑁 

where 𝑁 represent the number of BV measurements during 
the simulation. Also, 𝑀𝐷𝐴𝑃𝐸 and 𝑅𝑀𝑆𝐸 are calculated as 

𝑀𝐷𝑃𝐴𝐸 ൌ 𝑚𝑒𝑑𝑖𝑎𝑛ሺ|𝑃𝐸ሺ𝑖ሻ|ሻ, 𝑖 ൌ 1, … , 𝑁 

𝑅𝑀𝑆𝐸 ൌ ට∑ ሺ஻௏ሺ௧ሻି஻௏೟ೌೝ೒೐೟ሻమಿ
೔సభ

ே
 

Table II shows the performance metrics computed for both 
RL and PID during the simulation. The results of Table II 
clearly indicate the superior performance of RL compared to 
the PID, in terms of all three performance metrics. 

TABLE II.  PERFORMANCE ASSESSMENT OF THE RL AND PID 

Performance metrics  RL PID 
𝑀𝐷𝑃𝐸 (%) 0.37 1.75 
𝑀𝐷𝐴𝑃𝐸 (%) 0.37 1.87 
𝑅𝑀𝑆𝐸 (L) 0.50 0.53 
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(a) 

 

(b) 

Fig. 3. (a) Achieved blood volume levels and (b) Fluid dose adjustments 
from the RL and PID controllers with BV measurement error  

IV. DISCUSSION

We proposed a model-free RL algorithm to control the 
fluid infusion dosages in critical care scenarios. The proposed 
RL agent develops an optimal action selection policy using 
the Q-learning algorithm without having an explicit 
knowledge about system dynamics. Simulation results 
showed a smooth transition of BV from the initial to the 
desired state in the presence and absence of observational 
error. Comparison studies between the RL and PID 
demonstrated the higher performance of the RL in terms of 
𝑀𝐷𝑃𝐸, 𝑀𝐷𝐴𝑃𝐸, and 𝑅𝑀𝑆𝐸 performance metrics. 

This study considered BV as the design endpoint. The 
performance of the model-free RL for other hemodynamic 
endpoints such as MAP and cardiac output can be examined 
in the future to further assess the proposed algorithm. 
Leveraging multiple hemodynamic endpoints in multiple 
medication infusions (e.g., fluid and vasopressors) are a 
common practice in critical care. Extending the proposed 
approach to multiple medication infusion scenarios will 
enable observing the effect of drug interactions in critical care 
patients. While simulation results are promising, further 
investigations are needed to assess the robustness of the 
algorithm against parameter uncertainties and clinical 
disturbances. In addition, the RL-based controller can be 
optimized and fine-tuned with a hardware-in-the-loop fluid 
administration test bed [4], [20] for feasibility assessment and 
performance testing. Further, the potential of Model-free RL 
methods to address inter-patient variability in dose-response 
relationships can be thoroughly examined in future studies. 

V. CONCLUSIONS 

A model-free RL-based algorithm was designed for the 
automated control of fluid administration in hemorrhagic 
scenarios. The simulation results demonstrated the superior 
performance of the proposed controller compared to the PID 
in presence and absence of the observational errors. 
Extending the proposed method to other hemodynamic 
endpoints and evaluating its performance against other fluid 
administration controllers will be studied in the near future. 
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