
Assessment of Turbulent Boundary Layer Detachment due to
Wall-Curvature-Driven Pressure Gradient

by
David Paeres Castaño

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

Mechanical Engineering

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2022

Approved by:

Guillermo Araya, Ph.D. Date
President, Graduate Committee

José E. Lugo, Ph.D. Date
Member, Graduate Committee

Wilson Rivera, Ph.D. Date
Member, Graduate Committee

Iván Baiges, Ph.D. Date
Representative of the Office of Graduate Studies

Ruben Díaz, Ph.D. Date
Chairperson of the Department

Assessment of Turbulent Boundary Layer Detachment due to
Wall-Curvature-Driven Pressure Gradient

David Paeres Castaño
MASTER OF SCIENCE in Mechanical Engineering

University of Puerto Rico at Mayagüez
Dr. Guillermo Araya, Faculty Advisor, Mechanical Engineering

(ABSTRACT)

The present study provides fundamental knowledge on an issue in fluid dynamics that
is not well understood: flow separation and its association with heat and contaminant
transport. In the separated region, a swirling motion increases the fluid drag force on
the object. Very often, this is undesirable because it can seriously reduce the perfor-
mance of engineered devices such as aircraft and turbines. Furthermore, Computational
Fluid Dynamics (CFD) has gained ground due to its relatively low cost, high accuracy,
and versatility. The principal aim of this study is to numerically elucidate the details
behind momentum and passive scalar transport phenomena during turbulent boundary
layer separation resulting from a wall-curvature-driven pressure gradient. With Open-
FOAM CFD software, the numerical discretization of Reynolds-Averaged Navier-Stokes
and passive scalar transport equations will be described in two-dimensional domains via
the assessment of two popular turbulence models (i.e., the Spalart-Allmaras and the
K − ω SST model). The computational domain reproduces a wind tunnel geometry
from previously performed experiments by Baskaran et al. (JFM, vol. 182 and 232 “A
turbulent flow over a curved hill.” Part 1 and Part 2). Only the velocity and pressure dis-
tribution were measured there, which will be used for validation purposes in the present
study. A second aim in the present work is the scientific visualization of turbulent events
and coherent structures via the ParaView toolkit and Unity game engine. Thus, fully
immersive visualization approaches will be used via virtual reality (VR) and augmented
reality (AR) technologies. A Virtual Wind Tunnel (VWT), developed for the VR ap-
proach, emulates the presence in a wind tunnel laboratory and has already employed
fluid flow visualization from an existing numerical database with high temporal/spatial
resolution, i.e., Direct Numeric Simulation (DNS). In terms of AR, a FlowVisXR app for
smartphones and HoloLens has been developed for portability. It allows the user to see
virtual 3D objects (i.e., turbulent coherent structures) invoked into the physical world
using the device as the lens.

ii

Evaluación del Desprendimiento de Capa Límite Turbulenta
causado por Gradiente de Presión debido a Curvatura

Superficial

David Paeres Castaño
Maestro en Ciencias en Ingeniería Mecánica
Universidad de Puerto Rico en Mayagüez

Dr. Guillermo Araya, Profesor Consejero, Ingeniería Mecánica

(RESUMEN)

El estudio presente proporciona un conocimiento fundamental sobre un tema en la
dinámica de fluidos que no se entiende bien: separación del flujo y su asociación con
el transporte de calor y contaminantes. En la región separada, un movimiento de re-
molino aumenta la fuerza de arrastre de fluido sobre el objeto. Muy a menudo, este no es
deseado debido a que puede reducir seriamente el rendimiento de dispositivos ingenier-
iles, como aviones y turbinas. Además, la dinámica de fluido computacional (CFD, por
siglas en inglés) ha ganado terreno debido a su costo relativamente bajo, alta precisión y
versatilidad. El objetivo principal de este estudio es dilucidar numéricamente los detalles
detrás del momento y los fenómenos de transporte escalar pasivo durante la separación de
la capa límite turbulenta resultante de un gradiente de presión basado por la curvatura de
pared. Con el software de CFD OpenFOAM, la discretización numérica de las ecuaciones
Reynolds-Averaged Navier-Stokes y transporte de escalar pasivo va a ser descrita en do-
minios bidimensionales a través de la evaluación de dos modelos de turbulencia populares
(i.e., los modelos Spalart-Allmaras y K − ω SST). El dominio computacional reproduce
una geometría del túnel de viento de experimentos previamente realizados por Baskaran
et al. (JFM, vol. 182 and 232 “A turbulent flow over a curved hill.” Part 1 y Part 2).
Allí solo se midieron la velocidad y la distribución de presión, que se utilizará para fines
de validación en el presente estudio. Un segundo objetivo en el trabajo presente es la
visualización científica de los eventos turbulentos y las estructuras coherentes a través de
ParaView y Unity. Por lo tanto, los enfoques de visualización inmersiva se utilizarán a
través de tecnologías de realidad virtual (VR, por siglas en inglés) y realidad aumentada
(AR, por siglas en inglés). Un túnel de viento virtual (VWT, por siglas en inglés), desar-
rollado para el enfoque VR, emula la presencia en un laboratorio de túnel de viento y ya
ha empleado la visualización de fluidos desde una base de datos numérica con alta resolu-
ción temporal/espacial existente (i.e., DNS). En términos de AR, se ha desarrollado una
aplicación FlowVisXR para teléfonos inteligentes y HoloLens por portabilidad. Permite
al usuario ver objetos 3D virtuales (i.e., estructuras turbulentas coherentes) invocadas
en el mundo físico utilizando el dispositivo como lente.

iii

Dedication

Este arduo trabajo merece ser dedicado a varias personas:
Como reza el dicho, “detrás de cada hombre exitoso hay una mujer”, en este caso, la

primera, es mi madre, que aún con la distancia me ha apoyado en mi carrera académica
y me ha dejado saber lo orgullosa que esta de su único hijo. La segunda mujer, es mi

pareja, que aún con los eventos históricos que han ocurrido paralelamente durante este
trabajo, siempre ha estado al lado mío ofreciéndome su apoyo.

A mi consejero académico, el Dr. Guillermo Araya, que su profesionalidad, paciencia
y disposición es de persona únicas en la Academia y estoy seguro que cualquier persona

desearía estar cobijado bajo su mentoría y amabilidad.
A mi colega, maestro, modelo a seguir y hermano del alma, Christian Lagares, que por
alguna razón siempre tiene conocimientos del tópico en el que estoy comenzando a tra-

bajar y nunca me ha faltado su ayuda.
A mi familia que siempre me ha apoyado en mi travesía por la ciencias y reconocen mi

esfuerzo.
Y por último, pero no menos importantes, a mis dos educadoras de la escuela prepara-
toria que desde un principio descubrieron mi potencial y además de motivarme de una

manera u otra, me dirigieron hacia la ruta de la ingeniería. Gracias Claribel Pérez y
Suannete Otero.

-David

iv

Acknowledgments

First, I would like to express my sincere gratitude to my advisor, Dr. Guillermo Araya,
for his outstanding and constant support during my research and for really introducing
me to computational fluid dynamics while being a vital part of the past opportunity with
patience and motivation towards me. I will always be deeply grateful.
I want to thank the Department of Mechanical Engineering of the University of Puerto
Rico at Mayagüez (UPRM) for providing me with the resources to accomplish my re-
search.
Also, I want to thank Dr. José Lugo and Dr. Wilson Rivera for accepting to operate as
my M.S. advisory committee. I would like to thank all the staff and my colleagues from
the Mechanical Engineering Department for their support.
Finally, I want to acknowledge NSF-CAREER award #1847241 and AFOSR grants
#FA9550-22-1-0089 and #FA9550-17-1-0051 for financially supporting this research ef-
fort. This work was also supported in part by the Center for the Advancement of Wearable
Technologies and the National Science Foundation under grant OIA-1849243. Further-
more, major achievements during my MSc degree’s experience are summarized as follows:

• Selected as sponsored MSc student in the 2022 Computational Physics Summer
Workshop organized by the Los Alamos National Laboratory Advanced Scientific
Computing (ASC) Program during June 13 – August 19, 2022.

• One Journal paper: Energies. 2022; 15(16):6013
https://doi.org/10.3390/en15166013

• Two Conference papers: AIAA SCITECH 2022 Forum (DOI: 10.2514/6.2022-0049),
AIAA Scitech 2021 Forum (DOI: 10.2514/6.2021-1600)

• Three Video displays: 74th Annual Meeting of the APS Division of Fluid Dynamics
(DOI: 10.1103/APS.DFD.2021.GFM.V0027) and
(DOI: 10.1103/APS.DFD.2021.GFM.V0028),
73rd Annual Meeting of the APS Division of Fluid Dynamics
(DOI: 10.1103/APS.DFD.2020.GFM.V0045)

-David

v

This page has been intentionally left blank.

vi

Table of Contents

List of Figures x

List of Symbols and Abbreviations xv

Introduction 1
1.1 Historical Context . 1

1.1.1 Resistance Notion . 1
1.1.2 Beginning of Fluid Mechanics . 2

1.2 Fluid Dynamics Theory . 3
1.2.1 Navier-Stokes Equations . 3
1.2.2 Fluid Flow Types . 5
1.2.3 Boundary Layer Theory . 8
1.2.4 Boundary Layer Detachment . 11
1.2.5 Passive Scalar Transport . 12

1.3 Computational Fluid Dynamics (CFD) 13
1.3.1 Reynolds Averaged Navier-Stokes Equations (RANS) 16
1.3.2 Turbulence Modeling . 17
1.3.3 Passive Scalar Transport Modeling 21

1.4 Data Visualization in XR . 22
1.4.1 Scientific Visualization . 22
1.4.2 Virtual Reality, Augmented Reality and MR 23
1.4.3 XR Benefits and Applications . 24
1.4.4 Virtual/Augmented Reality in Flow Visualization 25

1.5 Project Description . 27
1.5.1 Expected Outcomes . 27
1.5.2 Objectives . 27
1.5.3 Intellectual Merit . 28
1.5.4 Broad Impact . 29

vii

TABLE OF CONTENTS viii

Turbulent Boundary Layers Subject to Surface Curvature 30
2.1 Assessment, Motivation and Approach 30
2.2 Laminar Flow Over a Flat Plate . 33
2.3 Turbulent Flow . 37

2.3.1 Flow Solver and Numerical Schemes 37
2.3.2 Boundary Layer Detection Based on Potential Flow 37
2.3.3 Turbulent Inflow Generation . 39

2.4 Results and Discussion for The Curved Hill 46
2.4.1 Evaluation of Several Passive Scalars 62

2.5 Conclusions of the Curved Hill’s Assessment 64

Scientific Visualization of Fluid Flows 66
3.1 CFD Data Post-processing for XR Visualization 66

3.1.1 Manual and Single File Demo . 68
3.1.2 Automated and Multiple Files Demo 72

3.2 Augmented Reality with USDZ . 81
3.2.1 Manual and Single File Demo . 81
3.2.2 Automated and Multiple Files Demo 82

3.3 Unity Game Engine for XR . 85
3.3.1 FlowVisXR for the Microsoft HoloLens 1st Gen. 85
3.3.2 Virtual Wind Tunnel for the HTC VIVE 97

3.4 Conclusions of flow visualization with XR 108

Final Remarks and Future Work 111
4.1 Future Work . 113

From Navier-Stokes Equations to RANS 114

Post-processing Tools for CFD 119
B.1 postProcessing.py . 119
B.2 plot_gridIndependence.py . 134
B.3 _tools.py . 141
B.4 _openfoam_utilities.py . 147

Grid Sensitivity Study 150

Post-processing Tools for Data Visualization 155
D.1 preScript.py . 155

TABLE OF CONTENTS ix

Unity automated scripts 160
E.1 usdzToPrefab.cs . 160
E.2 prefabMeshAnimator.cs . 164

References 167

List of Figures

Figure 1.1 Diagram of the stress tensor τij acting on an infinitesimal element
(adapted from White (2011)).. 4

Figure 1.2 Schematic of general fluid flow types.. 6
Figure 1.3 Laminar flow on the left and turbulent flow on the right.. 8
Figure 1.4 Boundary layer example. (a) The surface at zero velocity relative

to the flow (b) Boundary layer thickness (c) Freestream region (image by
MikeRun, distributed under a CC-BY-SA-4.0 license).. 10

Figure 1.5 Cartoon of 2D turbulent boundary layer separation (adapted from
Simpson (1989)).. 12

Figure 1.6 Qualitative comparison of the details for three CFD simulation meth-
ods. Top for RANS and middle for LES (images respectively by Jpolihronov
and Charlesreid1, distributed under a CC BY-SA 3.0 license). The bottom
shows DNS (image by Andreas Babucke, distributed under a CC BY 3.0 DE
license). 15

Figure 1.7 Virtuality continuum, reproduced from Flavián et al. (2019).. 23
Figure 1.8 (a) Workstation Dell Tower 5810 and (b) HTC Vive VR toolkit.. . . 26
Figure 1.9 Image of Microsoft HoloLens 1st gen. used for AR applications.. . . . 27
Figure 1.10 User visualizing a flow in the VWT.. 28
Figure 2.1 Curved hill diagram (partially reproduced from Baskaran et al. (1987)).. 31
Figure 2.2 Cells’ volume size and velocity field contour of medium mesh.. 33
Figure 2.3 Schematic of the fine mesh dimensions and resolution.. 34
Figure 2.4 First off-wall cell height in wall units.. 34
Figure 2.5 Normalized results of laminar flow over flat plate compared to the

Blasius solution: (a) Streamwise velocity profile; (b) Temperature profile.. . 35
Figure 2.6 η values at the boundary layers (99% of the freestream) over the wall:

(a) Streamwise velocity profile; (b) Temperature profile. 36
Figure 2.7 Skin friction coefficient and Stanton number results of laminar flow:

(a) Skin friction coefficient, (b) Stanton number.. 36
Figure 2.8 (a) Potential flow and RANS wall normal profiles, Us in m/s; (b)

wall-normal derivative of the streamwise velocity, ∂Us

∂n
in 1/s.. 39

x

LIST OF FIGURES xi

Figure 2.9 Schematic of the fine mesh configuration in the flat plate (turbulence
precursor): (a) Full view; (b) Near wall region close-up.. 41

Figure 2.10 Schematic of the fine mesh configuration in the curved hill: (a) Full
view; (b) Near wall region close-up at the second concave surface. 42

Figure 2.11 Example of dimensions and cell distribution for flat plate medium mesh.. 42
Figure 2.12 Example of dimensions of curved hill computational domain (not at

scale) (Baskaran et al. 1987). From Paeres et al. (2022b); reprinted by
permission of MDPI from the journal Energies. 43

Figure 2.13 Comparison of the dimensionless near-wall mesh resolution in: (a)
The flat plate domain; (b) The curved hill domain.. 43

Figure 2.14 Flat plate solutions of: (a) Boundary layer thickness; (b) Skin friction
coeff.. 44

Figure 2.15 Flat plate passive scalar solutions of: (a) temperature boundary layer
thickness, and (b) Stanton number.. 44

Figure 2.16 Quality assessment of turbulent inflow profiles of: (a) Mean stream-
wise velocity, U+; (b) Mean temperature, T +, in wall units.. 45

Figure 2.17 Contours of kinematic pressure gauge in m2/s2. The image has been
zoomed in to highlight the curved hill and immediate surroundings.. 47

Figure 2.18 Contours of horizontal velocity in m/s. The image has been zoomed
in to highlight the curved hill and immediate surroundings.. 47

Figure 2.19 Contours of the static temperature in K. The image has been zoomed
in to highlight the curved hill and immediate surroundings.. 48

Figure 2.20 Coefficients on wall compared to experimental data from Baskaran
et al. (1987): (a) Pressure coefficient; (b) Skin friction coefficient.. 49

Figure 2.21 Streamwise variation of: (a) Stanton number; (b) The St/(Cf/2) ratio.. 51
Figure 2.22 Displacement thickness and momentum thickness compared to exper-

imental data from Baskaran et al. (1987).. 52
Figure 2.23 Boundary layer thickness, shape factor, and momentum thickness

Reynolds number compared to experimental data from Baskaran et al. (1987):
(a) Spalart-Allmaras model; (b) K − ω SST model.. 53

Figure 2.24 Streamwise velocity profiles in wall units at locations of: (a) s = 596
mm; (b) s = 710 mm; (c) s = 1345 mm; (d) s = 1596 mm; (e) s = 1862
mm; (f) s = 1990 mm.. 55

Figure 2.25 Velocity profiles in the flow separation bubble at s = 2250 mm, 2350
mm, and 2500 mm.. 56

LIST OF FIGURES xii

Figure 2.26 (a) Inner-scaled Reynolds shear stresses; (b) Zoomed view of the
inner-scaled Reynolds shear stresses.. 57

Figure 2.27 (a) Inner-scaled K Production; (b) Zoomed view of the inner-scaled
K Production.. 59

Figure 2.28 Thermal profiles in the flow separation bubble at s = 2250 mm, 2350
mm, and 2500 mm.. 60

Figure 2.29 Thermal profiles in wall units at locations of: (a) s = 596 mm; (b) s
= 710 mm; (c) s = 1345 mm; (d) s = 1596 mm; (e) s = 1862 mm; (f) s =
1990 mm.. 61

Figure 2.30 Streamwise variation of (a) the passive-scalar boundary layer thick-
ness, and, (b) Stanton number.. 62

Figure 2.31 Passive-scalar profiles at several streamwise stations (attached flow
zone).. 63

Figure 2.32 Passive-scalar profiles at several streamwise stations (recirculation flow
zone).. 64

Figure 3.1 Manually importing files in ParaView 5.10.1.. 68
Figure 3.2 Manually selecting a field to visualize in ParaView 5.10.1.. 69
Figure 3.3 Manually applying Stream Tracer filter in ParaView 5.10.1.. 70
Figure 3.4 Manually configuring Stream Tracer filter in ParaView 5.10.1.. 70
Figure 3.5 Manually applying Tube filter in ParaView 5.10.1.. 71
Figure 3.6 Manually exporting scene as GLTF in ParaView 5.10.1.. 71
Figure 3.7 Activating Tracing tool in ParaView 5.10.1.. 72
Figure 3.8 Opening a group of files in ParaView 5.10.1.. 73
Figure 3.9 Applying Contour filter to Q-criterion field and coloring with temper-

ature field in ParaView 5.10.1.. 73
Figure 3.10 Exporting scene of the Contour filter for time step 0 as GLTF.. . . . 74
Figure 3.11 Exporting scene of the Contour filter for time step 1 as GLTF.. . . . 74
Figure 3.12 Saving tracing commands as a Python script.. 75
Figure 3.13 First command lines of the Python script: preScript.py.. 75
Figure 3.14 Command lines where a default Contour filter is applied in preScript.py.. 76
Figure 3.15 Setting the correct Contour ’s field and value in preScript.py.. 76
Figure 3.16 Setting the correct Contour ’s coloring field in preScript.py.. 77
Figure 3.17 Command lines exporting two scenes as GLTF in preScript.py.. . . . 77
Figure 3.18 New lines added for the input files in preScript.py.. 78
Figure 3.19 Making modular the iso-value used in preScript.py.. 79

LIST OF FIGURES xiii

Figure 3.20 Command lines with the exporting loop for every time step in pre-
Script.py.. 79

Figure 3.21 Running preScript.py in ParaView 5.10.1.. 80
Figure 3.22 Resulting list of files from VTS to GLTF.. 80
Figure 3.23 Picture of blue-to-red color gradient used for the USDZ file creation.. 81
Figure 3.24 Reality Converter software interface with one GLTF file imported.. . 82
Figure 3.25 Exporting USDZ using Reality Converter.. 82
Figure 3.26 Example of Python script used to convert GLTF files into USDZ in

an automated way.. 83
Figure 3.27 Terminal window of USDZ Tools with the recently created USDZ files.. 84
Figure 3.28 AR object visualized through an iOS device.. 84
Figure 3.29 Unity 2019.4.40f1 LTS editor installed with its modules for FlowVisXR

app.. 86
Figure 3.30 Visual Studio 2022 installation before including the Individual Com-

ponents in the selection.. 87
Figure 3.31 FlowVisXR app’s Unity project creation.. 89
Figure 3.32 MRTK’s HandTracking example scene. 90
Figure 3.33 HoloLens with MRTK build settings. 91
Figure 3.34 HoloLens with Player settings. 91
Figure 3.35 Example of re-importing USD files’ material options. 93
Figure 3.36 New Material’s properties for the HoloLens USDZ files. 93
Figure 3.37 GameObjects to delete from SceneContent in FlowVisXR. 94
Figure 3.38 FlowVisXR Unity app build. 95
Figure 3.39 Visual Studio 2022 installing FlowVisXR on the HoloLens. 96
Figure 3.40 Screen capture of HoloLens running FlowVisXR. 96
Figure 3.41 Installing SteamVR tool on the Steam platform. 97
Figure 3.42 SteamVR Plugin imported into Unity project. 98
Figure 3.43 Main Camera gameObject deleted while the Player prefab is included. . 99
Figure 3.44 OpenVR Loader provider activation in XR Plug-in Management. . . 99
Figure 3.45 SteamVR input profile generation. 100
Figure 3.46 High Definition RP package imported to the Unity project. 101
Figure 3.47 All built-in materials converted to HDRP. 101
Figure 3.48 SteamVR materials resembling as invisible due to incompatibility with

HDRP. 102
Figure 3.49 Converting the SteamVR materials to HDRP. 103

LIST OF FIGURES xiv

Figure 3.50 Player prefab added to the VWT scene. 104
Figure 3.51 Changing the Area Visible Material in the Teleport script component. .104
Figure 3.52 Hover Highlight Material setup. 105
Figure 3.53 Example of the configuration for the usdzToPrefab script. 107
Figure 3.54 Creation of the material used for the VWT flow animation. 107
Figure 3.55 Virtual Wind Tunnel running the flow animation. 108
Figure 3.56 Virtual Wind Tunnel variations: (a) Simple room design of VWT; (b)

Realistic warehouse design of VWT.. 109
Figure 3.57 Streamwise velocity fluctuations at (a) y+ = 15, (b) y+ = 1.. 110
Figure 3.58 Microsoft HoloLens MR visualization example. 110
Figure C.1 Grid resolution independence assessment of: (a) streamwise velocity, Us[m/s],

and (b) normalized temperature, T = (T −Tw)/(T∞−Tw), at the separation bubble..151
Figure C.2 Grid resolution independence assessment of: (a) streamwise velocity, Us[m/s],

and (b) normalized temperature, T = (T −Tw)/(T∞−Tw), at different streamwise
locations.. 152

List of Symbols and Abbreviations

Acronyms & Variables

2D Two Dimensional

3D Three Dimensional

3D+ Three Dimensional and Over

APG Adverse Pressure Gradient

AR Augmented Reality

AV Augmented Virtuality

CFD Computational Fluid Dynamics

Cf Skin Friction Coefficient

Cp Pressure Coefficient

cp Isobaric Specific Heat

Cs Smagorinsky Constant

D Flow Detachment

DNS Direct Numerical Simulation

Eij Rate of deformation

F Force [N]

Fb Body Forces

Fs Surface Forces

FOV Field Of View

FPG Favorable Pressure Gradient

fps Frames Per Second

g Gravitational Constant

xv

List of Symbols and Abbreviations xvi

GUI Graphical User Interface

HMD Head-Mounted Display

ID Flow Incipient Detachment

ITD Flow Intermittent Transitory Detachment

K Turbulent kinetic energy

K Kelvin Temperature Unit

k Thermal Conductivity Coefficient

L Characteristic Length

LES Large-Eddy Simulation

m Mass or Meters (we disambiguate as required throughout the text)

MR Mixed Reality

ODE Ordinary Differential Equation

P Pressure [Pa]

PMR Pure Mixed Reality

Pr Prandtl Number

Pw Static Wall pressure [Pa]

q∞ Freestream Dynamic Pressure [Pa]

RANS Reynolds-Averaged Navier-Stokes

Re Reynolds Number

Reθ Momentum Thickness Reynolds Number

S Suitable Source Term

s Seconds Time Unit

SA Spalart Allmaras turbulent model

Sc Schmidt Number

SDTBL Spatially-Developing Turbulent Boundary Layer

List of Symbols and Abbreviations xvii

SST K − ω Shear Stress Transport turbulent model

ST Suitable Source Term for Passive Thermal Scalar

St Stanton Number

T Temperature [K]

t Time [s]

TPC Two-Point Correlation

U Velocity Vector Field

U∗ = U
U∞

Dimensionless Velocity

uτ =
√

τw

ρ
Skin Friction Velocity [m/s]

u Streamwise Velocity Component

v Wall-normal Velocity Component

VR Virtual Reality

VWT Virtual Wind Tunnel

X Spatial Position Vector

x x-axis Cartesian Dimension

XR Extended Reality

y y-axis Cartesian Dimension

y+ = yτw

ν
Dimensionless Wall-normal Distance

w Spanwise Velocity Component

z z-axis Cartesian Dimension

ZPG Zero Pressure Gradient

Greek Letters

α Thermal Diffusivity Coefficient [m2/s]

αeff Effective Thermal [m2/s] Diffusivity Coefficient

List of Symbols and Abbreviations xviii

∆ Difference

δ Boundary-layer Thickness [m]

δ∗ Boundary-layer Displacement Thickness [m]

δij Kronecker Delta

ϵ Turbulent Energy Dissipation Ratio [m2/s3]

η Spatial Blasius Similarity Variable

θ Dimensionless temperature or Momentum Thickness (we disambiguate
as required throughout the text)

λ Bulk Viscosity Coefficient [Pa− s]

µ Molecular Dynamic viscosity [Pa− s]

µt Turbulent Eddy Viscosity [Pa− s]

ν Molecular Kinematic Viscosity [m2/s]

νt Turbulent Kinematic Viscosity [m2/s]

ρ Fluid Density [kg/m3]

τ Shear Stress [Pa]

τw Wall Shear [Pa]

ω Turbulent Energy Specific Dissipation Rate [1/s]

αω, β, β∗, σ, σ∗, σk, σϵ, C1ϵ, C2ϵ Turbulent Models Constant Coefficients

Subscripts, Superscripts & Operators

()x x-axis Cartesian Direction

()y y-axis Cartesian Direction

()z z-axis Cartesian Direction

()s, ()w Wall Surface

()i, ()j, ()k Arbitrary Directional Dimensions

()∗ Non-dimensionalized Value

List of Symbols and Abbreviations xix

()∞ Freestream Limiting value

(̄) Time-averaged values

()′ Fluctuation about temporal mean

()+ Inner scaled units

∇ Gradient Operator

∇2 Laplacian Operator

∇· Divergence Operator

Chapter 1
Introduction

The present introductory chapter is intentionally elaborated to immerse readers into
fundamental aspects of fluid dynamics, turbulence, and its modeling, as well as in scien-
tific visualization of big data. Considering a possible scenario, the reader is not entirely
educated with fluid mechanics or data visualization using any Extended Reality (XR) ap-
proach. This chapter will give a short history description and a comprehensive theoretical
preparation in the first four sections. The topics’ scopes are fundamental knowledge of
the flow separation phenomena, passive scalar transport (e.g., heat and pollutants), and
visualization of virtual objects through Virtual and Augmented Reality. The identified
concepts as substantial are classified into four sections and discussed up to the necessary
level: (i) Historical Context §1.1, (ii) Fluid Dynamics Theory §1.2, (iii) Computational
Fluid Dynamics (CFD) §1.3, (iv) Data Visualization in XR §1.4. After an introductory
journey for readers, the last section is devoted to the description of the project, objectives,
and discussion of the intellectual merit of the present thesis §1.5.

1.1 Historical Context
1.1.1 Resistance Notion

After thinking about the creation of arrows, boats, drainage systems, etc., it is recog-
nized that fluid mechanics application has existed since prehistory. Still, the roots of this
discipline (which by then was not named fluid mechanics) can be traced far back to the
Classical Period of Ancient Greek. Aristotle (350 B.C.) suggested: “that a body moving
through a continuum encounters a resistance” (Anderson Jr and Anderson 1998).

Although essential contributions to fluid mechanics occurred in the periods of Archimedes
in 250 B. C. (Heath et al. 2002), the Alexandria School (Wahba 2016)(Landels 1979),
Sextus Julius Frontinus of Ancient Rome (Deming 2020), Islamicate physicist and en-
gineers of Middle Ages (Hill 2019); it was not until Leonardo Da Vinci (1490), Galileo
Galilei (1600), Edme Mariotte (1673), and Isaac Newton (1687) emerged some statements
regarding the direct proportionality of flow resistance (Anderson Jr and Anderson 1998).

1

1.1. HISTORICAL CONTEXT 2

After the universal law of gravitation, it is possible that the second most crucial contri-
bution of Isaac was his three Newton’s Laws of Motion (which implicitly included also
calculus). For example, the Third Law predicts the presence of resistance in practically
any scenario. In fluid dynamics, this resistance is called drag, which is a type of friction
force. Also, the Second Law was one of the three Fundamental Physics Principles used
to formulate the Navier-Stokes equations or momentum conservation equations. These
were the formulation needed to describe a real fluid flow (Anderson Jr and Anderson
1998).

1.1.2 Beginning of Fluid Mechanics
By the end of the 19th century, Fluid Mechanics was strongly fractured into two

sciences. The mathematically more elegant science was known as Theoretical Hydrody-
namics and was built with Euler’s equations of motion. The disadvantage of this science
was its little applicability because the results seemed to contradict everyday experiences,
for example, failing to estimate pressure losses and the drag on a body moving through
a fluid. For this reason, there was also the empirical science called Hydraulics, which,
based on experimental data, disagreed with Theoretical Hydrodynamics, yet the meth-
ods were those used by engineers for applications of Fluid Mechanics (Schlichting and
Gersten 2017).

At the beginning of the 20th century, the german Ludwig Prandtl started the route in
the unification of these two sciences. In the mid of 20th century, a high correlation be-
tween theory and experimentation was achieved. By then, it was already known that the
discrepancies were explainable after ignoring the viscous effects of a flow. The advances
in Fluid Mechanics were unimaginable to what there had been in the previous century.
Prandtl using simple experiments together with theoretical considerations demonstrated
that a flow past a body could be divided into two regions: a thin layer attached to the
body of the object called the Boundary Layer, where the viscous effects could not be ne-
glected, and the other remaining region, outside the Boundary Layer, which the viscosity
effects could be neglected. The ingenious idea of Prandtl was not only a convincing phys-
ical explanation but also highly reduced the mathematical difficulty in the usefulness of
viscous flows. Since the beginning of the last century, Prandtl’s Boundary Layer Theory
has been exceptional for developing and researching Fluid Mechanics (Schlichting and
Gersten 2017).

1.2. FLUID DYNAMICS THEORY 3

1.2 Fluid Dynamics Theory
1.2.1 Navier-Stokes Equations

Newton’s Second Law states that the sum of external forces of a system is equal to
the change in time of momentum (where momentum is the product of the mass of a
particle and its velocity). Although, it is commonly traduced as net force is equal to
the mass and acceleration product because of the assumption of constant mass, shown
in Equation (1.1).

F = ma (1.1)

Suppose Equation (1.1) is rewritten to the original version but with also a constant mass.
In that case, it leads to Equation (1.2), where the sum of external forces is divided into
two portions: (i) Fs, the forces acting only at the surfaces, and (ii) Fb, the forces acting
on the entire mass of the body itself (i.e., volumetric forces). If only the gravitational
force is considered as Fb, then Equation (1.3) reads,

m
D

Dt
(U) = Fs + Fb (1.2)

Fb = mg (1.3)

Fs can be represented by the stress tensor τij, as shown in Equation (1.4). Where τij is
stress acting in the area normal to i with a force of direction of j.

τij =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (1.4)

The Figure 1.1 shows the conventional direction in which the stresses act only by looking
at the three principal faces (front faces) of an infinitesimal element. Given that stress
is force per unit area; after multiplying by the respective area, the force is obtained.
With the intention to decompose the forces into the three Cartesian dimensions, the
Equation (1.5) is obtained. Where each stress tensor component τij is multiplied by the
area normal to i resulting in forces acting in the direction of j.

dFx = τxx(dydz) + τyx(dxdz) + τzx(dxdy)
dFy = τxy(dydz) + τyy(dxdz) + τzy(dxdy)
dFz = τxz(dydz) + τyz(dxdz) + τzz(dxdy)

 (1.5)

1.2. FLUID DYNAMICS THEORY 4

Figure 1.1: Diagram of the stress tensor τij acting on an infinitesimal element (adapted
from White (2011)).

Using Taylor’s expansion up to first order, thus truncating to the first derivative, emerges
an appropriate mathematical formulation able to calculate the net forces considering the
stresses at the other three no-principal faces (back faces) (White 2011). Using as an
example the forces acting in the direction of the x-axis, the Equation (1.6) is developed.

τxx,net = τxx,front − τxx,back = ∂τxx

∂x (dx)

τyx,net = τyx,front − τyx,back = ∂τyx

∂y (dy)

τzx,net = τzx,front − τzx,back = ∂τzx

∂z (dz)


(1.6)

Substituting Equation (1.6) in the x-component of Equation (1.5) results in Equation (1.7).{
dFx = ∂τxx

∂x
(dx)(dydz) + ∂τyx

∂y
(dy)(dxdz) + ∂τzx

∂z
(dz)(dxdy)

}
(1.7)

Going back to Equation (1.2) and replacing Equations (1.3) and (1.7) of all three direc-
tions, brings Equation (1.8). Recognizing that the volume of the infinitesimal element is
the product of the three Cartesian distances dx, dy and dz, the Equation (1.8) written

1.2. FLUID DYNAMICS THEORY 5

by unit volume and in tensor notation results in Equation (1.9).

m
D

Dt
(U) = mg + dFs,net (1.8)

ρ
D

Dt
(Ui) = ρgi +∇ · τij (1.9)

Departing from Stokes’s assumptions (White 2011):

• The fluid is continuous and the Stress Tensor τij is a linear function of the Strain
Rate Tensor ϵij (following Hooke’s Law).

• The fluid is isotropic, meaning the deformation is independent of any coordinates
system axis selected.

• When the fluid is at rest, the deformation law reduces to only the hydrostatic
pressure condition τij = −Pδij. Where the δij is the Kronecker delta.

The Law of Deformation for compressible flows results in Equation (1.10), being a crucial
physical model granting the Navier-Stokes Equations, Eq. (1.11).

τij = −Pδij + µ
(

∂Ui

∂Xj

+ ∂Uj

∂Xi

)
+ δijλ∇ · Ui (1.10)

D

Dt
(ρUi) = ρgi +∇ ·

− Pδij + µ
(

∂Ui

∂Xj

+ ∂Uj

∂Xi

)
+ δijλ∇ · Ui

 (1.11)

From Equation (1.11), the coefficient of bulk viscosity (λ) for small velocity divergence
can be assumed as λ = −2µ/3, where µ is the fluid dynamic viscosity (White 2011). If
the flow is assumed incompressible, the velocity divergence (∇ ·Ui) is negligible, and the
fluid density (ρ) as constant (no buoyancy forces) can be taken out of the substantial
derivative (i.e., D

Dt
, also known as the material derivative).

1.2.2 Fluid Flow Types
To analyze a fluid flow is imperative to know its features. Identifying the charac-

teristics and denominations the fluid flows comply with, could immensely simplify the
analysis because of the selected modeling approach. However, uncountable fluid flows

1.2. FLUID DYNAMICS THEORY 6

classifications exist and can be divided into types, regimens, and much more. For exam-
ple, fluid types can be separated by their substance properties or molecular interactions:
ideal, ideal plastic, real, Newtonian/non-Newtonian, compressible/incompressible, and
much more. Meanwhile, on the side of flow types, besides uniform/non-uniform, rota-
tional/irrotational, steady/unsteady, one/two/three dimensional. Figure 1.2 shows other
flow types in a general hierarchical order.

Figure 1.2: Schematic of general fluid flow types.

Because of the flow to be analyzed in this work, the relevant classification is a steady-
Newtonian-2D-viscous-external-incompressible-turbulent flow. The following sources are
recommended for detailed descriptions of the other concepts and more: White (2011)
and Cengel and Cimbala (2014). A steady flow is a flow where all the properties and
formula’s terms are constant over time, meaning these are independent of it, and the
time derivatives are set to zero. This is the case when one is interested in the response of
the system (which is immersed into a fluid flow) at an infinite time. A Newtonian fluid is
that one that follows Newton’s observations of flow resistance made in those important
years mentioned in the sub-section §1.1.1. He stated the Newtonian sine-squared Law
for Aerodynamic force (theoretical verification that resistance is proportional to velocity
squared) and resistance varies with the cross-sectional area of a body (Anderson Jr and
Anderson 1998); translated into fluid mechanics: fluid’s viscosity is linearly correlated
to the strain rate, implicitly one of the Stokes’ assumptions for the developing of the
Navier-Stokes Equations Eq. (1.11).

1.2. FLUID DYNAMICS THEORY 7

A 2D flow means the velocity change in the third directional dimension is small enough
to neglect the error caused by ignoring that dimensional direction (dU3 ≈ 0). If this
condition is applied to Equation (1.11), this means the subscript i and j will only take
the value of 1 and 2. Furthermore, if the coordinate system used is Cartesian, then the
flow’s domain takes a planar view. Incompressible flow is where the variations of density
with pressure are negligible (Cengel and Cimbala 2014). A compressible fluid is defined
as a substance (liquid or gas) that exhibits a volume variation (compression or expansion)
due to changes in external static pressure. A compressible flow is related to the density
variations as function of pressure variations (i.e., ∂ρ/∂P ̸= 0). Since the partial derivative
∂ρ/∂P is inversely proportional to the sound speed for a perfect gas or propagation
speed of pressure perturbations, a commonly used compressibility indicator is called
Mach number: the ratio of the local flow speed to the sound speed. For Mach numbers
lower than 0.3, any flow generally can be assumed incompressible. The assumption of
incompressible flow leads to simplifying formulations in the Equation (1.11): (i) The
density variable can be pulled out from any derivative, (ii) The divergence term is zero
since ∇ · Ui = 0, and (iii) The thermal equation can be decoupled from the velocity
equation when assuming the viscosity µ constant as well. Viscosity can be assumed
constant if the density is also assumed not a function of the temperature (White 2011).
Finally, resulting in a new and simplified momentum equation Eq. (1.12).

0 = ρgi −∇P + µ∇2Ui (1.12)

An external flow is an unbounded fluid over a surface such as a plate, hill, or pipe
where a boundary layer grows indefinitely. On the contrary, an internal flow is confined
and entirely bounded by solid surfaces (Cengel and Cimbala 2014). Identifying this
characteristic is essential to calculate further a convenient and crucial parameter, the
Reynolds number (Re). Re is a dimensionless parameter that primarily controls all
viscous flows representing the ratio of inertial to viscous forces (White 2011), and its
common formulation is Equation (1.13).

ReL = ρUL

µ
= UL

ν
(1.13)

Where U is the characteristic flow velocity, ρ is the fluid’s density, µ, and ν are the
fluid’s dynamic and kinematic viscosity, respectively. L is a characteristic length that
sometimes acts with convenient liberty. A flow based on the Reynolds number can be
divided into two regimes: laminar and turbulent. A laminar flow is smooth and orderly
by clearcut layers, contrary to turbulent flow where chaos reigns and the layer-over-layer

1.2. FLUID DYNAMICS THEORY 8

appearance is impossible to see (Cengel and Cimbala 2014). Although a transition regime
exists from laminar to turbulent, the Re has a critical value for each scenario where the
importance of the turbulence becomes ever greater (Schlichting and Gersten 2017). In
the transition regime, mathematical predictions of the flow are even more inaccurate.
The transition from laminar to turbulent flow was first examined by Osborne Reynolds
approximately in the year 1883 using a pipe flow (i.e., internal flow). By 1914, Ludwig
Prandtl, using a flow over a sphere (i.e., external flow), showed that the boundary layer
also can be laminar and turbulent and that this laminar-turbulent transition controls the
flow’s separation process and, thus, the drag’s problem (Schlichting and Gersten 2017).
Figure 1.3 shows on the left a crystal clear laminar flow while the turbulent flow on the
right shows the chaotic unorganized flow.

Figure 1.3: Laminar flow on the left and turbulent flow on the right.

1.2.3 Boundary Layer Theory
Essential applications of the Boundary Layer theory are calculating the friction drag

of bodies in a fluid flow. This theory is used to identify the optimum body shape to avoid
or minimize flow separation, not only in flow past over a body but also in flows through
a duct (i.e., internal flow); therefore, it is also used to describe the flow through blade
cascades in compressors, turbines, diffusers, and nozzles, or for example, calculating the

1.2. FLUID DYNAMICS THEORY 9

maximum lift to drag ratio in an airfoil. The Boundary Layer theory is also crucial for
heat transfer between a body and the fluid around it; since, as well as the boundary layer
in the velocity field, a thermal boundary layer also forms (Schlichting and Gersten 2017)
where transport phenomena of heat plays a crucial role due to the significant thermal
gradients and forced convection.

Viscous effects can be observed in free shear flows, due to the presence of velocity gra-
dients without the need for a typical surface with the no-slip condition (or a source of
vorticity). Viscosity is a transport property that measures the fluid’s ability to endure
shear strain. Dynamic viscosity (µ) is a function of the density; therefore, the units are
pressure multiplied by time (in the International System [Pa · s]). Kinematic viscosity
discards the density dependence, and the units are area over time (in the International
System [m2/s]). Viscosity is the cause of the no-slip condition since the fluid has zero rel-
ative velocity at the very immediate surface. Because of the continuum flow assumption
at very small Knudsen numbers, from the no-slip condition to the freestream condition,
there must exist a zone where the fluid develops its velocity profile. That zone is the
boundary layer (δ), and there the viscous effects are predominant. The boundary layer
contains the viscous flow regime. Outside this thin layer, the flow can be modeled as in-
viscid since all transport phenomena can be neglected (mass, momentum and energy). In
a zero pressure gradient (ZPG) flow represented by the canonical flat plate, the boundary
layer thickness is defined as that wall-normal distance where the local velocity reaches
99% of the freestream velocity (Cengel and Cimbala 2014). It is the most popular con-
vention; however, some investigators from the fluid dynamics community prefer a 95%
criterion. Figure 1.4 shows an example of a surface with zero velocity relative to the fluid
flowing on top. The flow needs a wall-normal distance for the velocity to change from
zero to the freestream value.

1.2. FLUID DYNAMICS THEORY 10

Figure 1.4: Boundary layer example. (a) The surface at zero velocity relative to the
flow (b) Boundary layer thickness (c) Freestream region (image by MikeRun, distributed
under a CC-BY-SA-4.0 license).

Generally speaking, flow parameters in the boundary layer theory are non-dimensionalized.
This approach allows a fair comparison among different Reynolds number flows. Two ma-
jor scaling functions are employed in turbulence: inner and outer scaling. In inner scaling,
the characteristic length scale is defined as ν/uτ . Here, ν is the fluid kinematic viscosity,
and uτ is the friction velocity expressed as

√
τw

ρ
, being τw the wall shear stress. Fur-

thermore, the friction velocity represents the characteristic velocity in inner units. The
friction temperature is the characteristic thermal scale in inner units, and it is defined as
θτ = qw/(ρcpuτ), where qw is the wall heat flux and cp is the isobaric fluid specific heat.
On the other hand, outer scaling considers the boundary layer thickness, δ, as the length
scale (White 2011); whereas, the freestream velocity, U∞, and freestream temperature,
T∞, are usually utilized as the characteristic velocity and thermal scale in outer scal-
ing, respectively. For example, distance, velocity, pressure, and temperature are usually
non-dimensionalized, as shown in Equations 1.14 and 1.15 for inner and outer scaling,
respectively. Where x is a spatial distance in one dimension, Ts is the temperature at
the surface, and Pref is the pressure at the reference location.

{
x+ = xuτ

ν U+ = U
uτ

T + = T
θτ

P + = P−Pref

ρu2
τ

}
(1.14)

{
x∗ = x

δ U ∗ = U
U∞

T ∗ = T−Ts

T∞−Ts
P ∗ = P−Pref

ρU2

}
(1.15)

1.2. FLUID DYNAMICS THEORY 11

1.2.4 Boundary Layer Detachment
Flow separation or flow detachment does not precisely imply that the actual fluid

ceases contact with the body where the flowing occurs (Simpson 1989). The term is used
when the flow’s boundary layer interaction with the body is modified by a reverse flow
directly at the wall (Schlichting and Gersten 2017). This event most often gives rise to
turbulent fluctuations, causing their enhancement. It is essential to highlight that flow
separation can be induced either by geometrical singularities, for example, in the presence
of sharp corners, or by smooth geometry variations, such as those occurring over a curved
wall (Mollicone et al. 2017). Depending on the magnitude, the mere presence of a very
strong adverse-pressure gradient (APG) might be sufficient to cause flow detachment
and represents by far the most undesirable situation in the momentum/scalar transport.
Flow separation is critical since the boundary layer parameters experience sudden changes
due to an abrupt thickening of the rotational flow region or backflow close to the wall
(Simpson 1989), which may cause a critical reduction in the performance of engineering
devices, e.g., pressure drag increase in airfoils or heat transfer decrease in turbine blades.

For this reason, flow separation has been the topic of several theoretical, experimental
and numerical studies in the past few decades (Simpson 1985) (Simpson et al. 1987).
Unfortunately, some gray zones or “terra incognita" still exist and need further investiga-
tion, particularly in the near-wall region where most of the experimental techniques and
turbulence models exhibit severe limitations. Flow separation at high Reynolds numbers
is one of the most challenging types of turbulent flows and remains one of the significant
unsolved fluid mechanics problems, according to Williams (1977). Simpson (1989) in his
well-known review of turbulent boundary layer separation, claimed “the effects of signif-
icant wall curvature are not well described quantitatively, although most separation cases
occur on curved wall”. According to Patrick (1987), more reliable data and large-scale
models are required to better define the turbulence structure of the backflow region in
very strong streamwise APG, which is responsible for the boundary layer detachment.
Despite the significant progress performed in the last twenty years, modeling efforts for
separated flows have been hindered due to the lack of information on the mechanisms
that control the separation of the boundary layer by large-scale structures.

Figure 1.5 shows a schematic of the 2D turbulent boundary layer separation in low-
curvature and flat surfaces according to Simpson (1989). The dashed line indicates
U = 0, and detachment (D) occurs where the time-averaged wall-shear stress is zero.
Moreover, the incipient detachment (ID) and intermittent transitory detachment (ITD)
take place at locations where instantaneous backflow occurs 1% and 20% of the time,

1.2. FLUID DYNAMICS THEORY 12

respectively. As the boundary layer encounters an APG, the near wall region flow decel-
erates until some backflow first takes place at the ID point. It is worth highlighting that
this reverse flow is attributed to the transport of outer momentum toward the wall by
the large-scale or coherent structures (Simpson 1989). The major reasons why separation
in turbulent flows is so problematic to model and measure are: (i) Large separation of
scales, (ii) Highly non-linear phenomena, (iii) Challenges to determine near wall pressure
fluctuations, and (iv) The inner and outer regions are highly communicated. Of all the
different types of flow separation that occur around streamlined bodies, certainly, the
one caused by wall curvature is the most intriguing. Curvature effects are usually an
order of magnitude greater than would be predicted by dimensional analysis (Bradshaw
1973), with a significant impact on the Reynolds stresses (Moser and Moin 1984) (Moser
and Moin 1987). One of the major goals of the present study is to shed some light on
turbulent boundary detachment caused by surface curvature.

Figure 1.5: Cartoon of 2D turbulent boundary layer separation (adapted from Simpson
(1989)).

1.2.5 Passive Scalar Transport
The turbulent transport of passive scalars is crucial in many industrial applications of

technological importance, such as in turbine-blade film cooling, heat transfer in electron-
ic/mechanical devices, chemicals dissolved in gases, and contaminant/humidity dispersed
in atmospheric flow, to name a few examples. Furthermore, a passive scalar is defined as
a diffusive contaminant that exists in such a low concentration in a flow that it does not
affect the dynamics of the fluid motion (Warhaft 2000). However, that low concentration

1.3. COMPUTATIONAL FLUID DYNAMICS (CFD) 13

of passive scalar is sufficient to cause a significant impact on energy expenditures, air pol-
lution, and the design of chemical processes. On the contrary, an active scalar directly
affects the flow’s characteristics, for example, temperature as an active scalar means the
fluid’s properties such as viscosity and density are in function of the temperature, thus,
the modeling must take into account the temperature contribution even in the momentum
equation. The transport phenomenon in real-situation flows usually occurs under com-
plicated external conditions, such as pressure gradients (favorable and adverse), complex
geometry (concave/convex surface), high Reynolds numbers, and spatially-developing
turbulent boundary layers (SDTBL). A passive scalar is mathematically modeled by its
diffusive coefficient. For example, a fluid has its own viscous diffusion rate (kinematic
viscosity ν). Suppose the diffusivity is related to a molecular or mass contaminant, the
corresponding parameter is the Schmidt number (Sc) which measures the ratio of vis-
cous diffusion over mass diffusion. For a passive temperature scalar, the parameter to
be involved is the Prandtl number (Pr = µcp

k
= ν

α
), which measures the ratio of viscous

diffusion over thermal diffusion (α) (White 2011). Furthermore, in this thesis, several
molecular Prandtl numbers are considered in order to cover nearly the entire spectrum
of passive scalars, i.e., by assuming low Pr=0.20, unitary Pr=0.71, and high Pr=2.00.

1.3 Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD) is a computer-aided numerical simulation tool

for the analysis of systems involving fluid flows, with a crucial presence nowadays (Ver-
steeg and Malalasekera 2007). This powerful engineering tool has extended the appli-
cability from the aerospace industry to automotive, biology, chemical, marine, nuclear,
and power generation industries, to name a few examples (Moukalled et al. 2016). CFD
provides an approximated solution to complex numerical problems, and the accuracy of
the solution depends on the discretization method selected, which generally transforms
differential equations into algebraic equations. Some mainstream discretization methods
are the Finite Difference, the Finite Element, and the Spectral methods. Nonetheless,
the Finite Difference method is the most attractive and easy to understand by engineers
because it is based on the physical conservation principle of relevant properties (Versteeg
and Malalasekera 2007). There is a particular type within the Finite Difference called the
Finite Volume Method, the most commonly used in CFD. This method integrates the
flow’s governing equations (by iterative algebraic approaches) over the complete compu-
tational domain discretized into finite control volumes. One big help that CFD provides
to the technology enablers is the fast and accurate solutions to the tedious Navier-Stokes
Equations, derived in the previous sub-section §1.2.1.

1.3. COMPUTATIONAL FLUID DYNAMICS (CFD) 14

Numerically solving the governing equations for turbulent flows requires computational
power, and often these resources are not readily available. Therefore, formulating models
that significantly reduce the computational power requirement and maintain high pre-
cision between results and proper solution is a simply appreciable benefit (Paeres et al.
2022b). Among the existing CFD categories, the most commonly known are RANS
(Reynolds-averaged Navier-Stokes), LES (large eddy simulation) and DNS (direct nu-
merical simulation) (Moukalled et al. 2016). As stated in the name, DNS directly solves
the governing formulation of all fluid flows, the Navier-Stokes Equations; it does not
use turbulent models and requires the most significant computational resources. The
act of directly solving DNS gives the most exact solution, where the errors are sim-
ply influenced by computational limitations like rounding and memory. However, the
computational power required for an acceptable representative time-spatial sample is
significantly elevated. To overcome this problem, some flows models approaches have
been proposed to reduce the computer resource requirements with a high impact. RANS
and LES implement these turbulent models maintaining high precision. Figure 1.6 shows
independent examples of the quality of the details obtained in each of the approaches
mentioned. Although DNS shows tremendous high-resolution results, a CFD user might
consider LES or RANS approaches with minor field quality results for the sake of reduc-
ing computational resources and process time while reaching solutions accurate enough
for applications. Furthermore, with the existence of hybrid RANS-LES methods, maybe
these are the ultimate industrial methods for fluid flow simulations in the engineering
field, according to Schlichting and Gersten (2017).

If one desires to perform DNS, it is mandatory to employ a highly scalable and effi-
cient flow solver, not to mention if the idea is to predict spatially developing turbulent
boundary layers (SDTBL) implying accurate turbulent time-dependent inflow conditions.
Therefore, DNS requires researchers’ skills, expertise, and abilities in HPC and parallel
programming not only during the running but also in the postprocessing stage (Lagares
et al. 2021). With the advent of powerful supercomputers, it has become easier to push
the boundaries of turbulent boundary layer simulations at higher Reynolds numbers via
DNS (Lagares and Araya 2021) (Schlatter, P. and Orlu, R. 2010). On the other hand,
LES models the dynamics and influence of Kolmogorov scales but is reasoned in using a
borderline as a spatial filter; large-scale motions (called large eddies) are computed di-
rectly, and only the small-scale motions (considered eddies of thermal energy dissipation)
are modeled, resulting in a significant reduction in computational resources compared to
the DNS approach. However, this effort reduction depends on the analyzed geometry:
it is well known that in wall-bounded flows even the “inertial subrange scales” located
in the near wall region could be very small. Thus, the computing and running effort
reduction by considering LES with respect to DNS could be limited to one order of

1.3. COMPUTATIONAL FLUID DYNAMICS (CFD) 15

Figure 1.6: Qualitative comparison of the details for three CFD simulation methods. Top
for RANS and middle for LES (images respectively by Jpolihronov and Charlesreid1,
distributed under a CC BY-SA 3.0 license). The bottom shows DNS (image by Andreas
Babucke, distributed under a CC BY 3.0 DE license).

magnitude, at most (Paeres, Lagares, and Araya 2022b). It is worth highlighting that
any LES approach must be performed over a three-dimensional domain and unsteady
simulations. Araya and Lagares (2022) performed Implicit LES (iLES) over supersonic
flat-plate spatially developing turbulent boundary layers at moderate Reynolds numbers.
First order statistics were somehow well captured by iLES in comparison with DNS at
similar flow conditions. However, a poor performance of iLES was detected in the near
wall region for second-order statistics since it significantly overpredicted peak values of
streamwise velocity fluctuations, and consequently, Reynolds shear stress peaks in the
buffer layer. A good agreement of the resolved Reynolds stresses by iLES with respect
to DNS predictions was observed in the outer region. More importantly, the total com-
putational resource saving by iLES was estimated to be approximately in the order of
100 in comparison with DNS results.

Among these three CFD categories, RANS is the approach where the simulation frame-
work is highly simplified since the whole power spectra of flow fluctuations are modeled.
Despite its simplicity and limitations on complex geometries, RANS may supply impor-
tant insight into the flow (Moukalled et al. 2016). Within RANS literature for turbulent
flows, there are four most popularly used turbulent models, namely: K − ϵ, standard
K − ω, K − ω shear stress transport, and Spalart–Allmaras.

1.3. COMPUTATIONAL FLUID DYNAMICS (CFD) 16

OpenFOAM® is an open-source CFD software extensively used in academia. One of the
reasons is the benefits of controlling the coded equations and enabling custom turbu-
lence models for the user. This software has implemented the just mentioned simulation
approaches’ general schemes and the most common turbulent models. Because of these
characteristics, OpenFOAM® has been selected as the CFD tool for the presented work.
The main course to be performed is a two-dimensional (2D) scenario of a curved hill with
the RANS formulation. An existent DNS database from our research group (HPCV 2018)
will be used for the RANS validation in canonical flat-plate turbulent boundary layers.
Furthermore, experimental data (such as skin friction, velocity, pressure coefficient, and
pressure distribution) from Baskaran, Smits, and Joubert (1987) over a curved hill is also
utilized as a validating tool.

1.3.1 Reynolds Averaged Navier-Stokes Equations (RANS)
RANS is based on the Reynolds decomposition, i.e., the mathematical notion that

each instant property can be written as the sum of mean and fluctuations fields; for
example, U = U + U ′, U being an instantaneous flow property, U the average of U in
time and U ′ the fluctuations of U . In RANS, the mean flow field which is time-averaged
(or ensemble-averaged in flows with time-dependent boundary conditions), is resolved
whereas the fluctuations field is modeled. The concept in RANS is to only focus on
the mean flow and the effects of turbulence on its properties since for most engineering
applications it is not necessary to resolve the turbulent fluctuations’ details (Versteeg
and Malalasekera 2007). For general compressible fluid flows, the governing equations
(expressed following Einstein notation) are:

Conservation of mass:
∂ρ

∂t
+ ∂ (ρUj)

∂xj

= 0 (1.16)

Conservation of momentum:

∂(ρUi)
∂t

+ ∂ (ρUiUj)
∂xj

= −∂P

∂xi

+ ∂

∂xj

(
µ

∂Ui

∂xj

)
+ Sm,i (1.17)

Conservation of passive scalar, being T a scalar assumed to follow a similar form of the
Navier-Stokes Equations:

∂(ρT)
∂t

+ ∂ (ρTUj)
∂xj

= ∂

∂xj

(
k

∂T

∂xj

)
+ ST (1.18)

1.3. COMPUTATIONAL FLUID DYNAMICS (CFD) 17

where S are the source terms. If the steady-state, the incompressibility assumption, and
the Reynolds decomposition are applied, the RANS models for Newtonian fluids have
the following equations:

Continuity equation:
∂U j

∂xj

= 0 (1.19)

Conservation of momentum:

ρ
∂(UiUj)

∂xj

= −∂P

∂xi

+ ∂

∂xj

(
τij − ρU ′

iU
′
j

)
+ Sm,i (1.20)

Note in Equation (1.20) contrasted with Equation (1.17) how, by definition, the deriva-
tives of mean variables with respect to time disappear but still is the emergence of a
new term for the fluctuations field variables. Additionally, the density parameter at
each partial derivative is pulled out due to the constant assumption of the incompress-
ible condition. The term containing the velocity field fluctuations (i.e., −ρU ′

iU
′
j) is di-

rectly related to the well-known Reynolds stresses, and it gets that name because it
only emerged after applying the Reynolds decomposition. In 1877, Boussinesq proposed
that Reynolds stresses might be proportional to mean rates of deformation (Versteeg and
Malalasekera 2007). In RANS, the mean parameters are computationally solved, but the
fluctuations terms remain unknown. It is precisely here where the Boussinesq hypothesis
acts, enabling the models’ proposal for estimating the unknown terms and balancing the
equations. For a detailed derivation of the RANS equations refer to Appendix A.

1.3.2 Turbulence Modeling
As said early in the current section, there are four most popular RANS models used.

To understand these models is essential to describe four important parameters briefly.
The first and principal is called turbulent kinematic viscosity, generally written as νt. Also
known as eddy viscosity per density (µt/ρ), it is responsible for identifying the correct
energy dissipation due to flow turbulence based on Boussinesq postulated (Versteeg and
Malalasekera 2007). νt is an apparent property for viscosity but accounts for the turbulent
phenomenon. The second parameter is the turbulent kinetic energy (K), which is the
kinetic energy per unit mass of turbulent fluctuations and is mathematically defined by:

K ≡ 1
2U ′

iU
′
i = 1

2(u′2 + v′2 + w′2) = 3
2U ′2 (1.21)

1.3. COMPUTATIONAL FLUID DYNAMICS (CFD) 18

The third is the turbulent dissipation ratio (ϵ), defining the ratio at which turbulent
kinetic energy is converted to internal thermal energy. The mathematical description of
ϵ is:

ϵ ≡ ν
∂U ′

i

∂Xj

∂U ′
i

∂Xj

(1.22)

The last parameter is the specific dissipation rate of turbulent energy (ω). The variable
ω is the ratio of the turbulent kinetic energy converted into internal thermal energy per
unit of time and volume. For precisely having Hertz units, it is also known as frequency
turbulence average. The relationship between ω to K and ϵ is generally written as
Equation (1.23) where β∗ is a model constant that, for example, can be around 1.0 or
even 0.09.

ω = ϵ

Kβ∗ (1.23)

The turbulent model K − ϵ initially proposed by Launder and Spalding (1983) is con-
sidered a high Reynolds number model and this indicates that its specialty is in good
results away from near-wall (Lee 2018). This model is uses the scalar conservation Equa-
tion (1.18) to estimate K and ϵ. In essence, it says that the rate of change of K (or
ϵ) plus the transport of K (or ϵ) by convection is equal to the transport of K (or ϵ)
by diffusion plus the production rate of K (or ϵ) minus the destruction ratio of K (or
ϵ). The estimations are performed following Equation (1.25) for K and for ϵ Equation
(1.26). Then, the eddy viscosity (µt) is calculated with Equation (1.24), where Eij is the
strain-rate tensor and the coefficients’ common values are contained in Table 1.1.

µt

ρ
= νt = β∗K2

ϵ
(1.24)

∂(ρK)
∂t

+ ∂(ρKUi)
∂Xi

= ∂

∂Xj

[
µt

σK

∂K

∂Xj

]
+ 2µtEijEij − ρϵ (1.25)

∂(ρϵ)
∂t

+ ∂(ρϵUi)
∂Xi

= ∂

∂Xj

[
µt

σϵ

∂ϵ

∂Xj

]
+ C1ϵ

ϵ

K
2µtEijEij − C2ϵρ

ϵ2

K
(1.26)

2EijEij = (∂Ui

∂Xj

+ ∂Uj

∂Xi

) ∂Ui

∂Xj

(1.27)

Table 1.1: Term’s representation and common coefficients values for K − ϵ model

β∗ σK σϵ C1ϵ C2ϵ

0.09 1.00 1.30 1.44 1.92

1.3. COMPUTATIONAL FLUID DYNAMICS (CFD) 19

The standard K − ω turbulence model was initially proposed by Wilcox (1988). This
model is known as a low-Reynolds model, which means being good at predicting results in
the near-wall (Lee 2018). Similar to the K−ϵ model, the standard K−ω turbulence model
uses two scalar conservation equations to predict K and ω. The turbulent kinetic energy
and specific dissipation rate are solved with Equations (1.29) and (1.30), respectively.
The model’s common coefficients values are shown in Table 1.2 while turbulent kinematic
viscosity is calculated with Equation (1.28). Considering incompressible flow:

νt = K

ω
(1.28)

∂K

∂t
+ Uj

∂K

∂Xj

= τij
∂Ui

∂Xj

− β∗Kω + ∂

∂Xj

[
(ν + σ∗νt)

∂K

∂Xj

]
(1.29)

∂ω

∂t
+ Uj

∂ω

∂Xj

= αω
ω

K
τij

∂Ui

∂Xj

− βω2 + ∂

∂Xj

[
(ν + σνt)

∂ω

∂Xj

]
(1.30)

Table 1.2: Recommended values for the coefficients in Standard K − ω model

αω β β∗ σ σ∗

5/9 3/40 0.09 0.5 0.5

Menter (1994) proposed his shear stress transport model, also known as K−ω SST, where
it unifies the advantages of the standard K−ω and K−ϵ models without inheriting their
weaknesses (Lee 2018). Proposing a hybrid model, he reuses Reynolds stress computation
and K-equation from Wilcox’s original K − ω model and transforms the ϵ-equation
into a ω-equation. A decade later, Menter, Kuntz, and Langtry (2003) published a
revised version of the turbulent model. The updated version, commonly known as SST-
2003 (Rumsey 2021), is shown in Equations (1.31), (1.32), and (1.36) and the revised
model coefficients are shown in Table 1.3. In the additional functions, Equations (1.33)–
(1.35), y is the distance to the nearest wall. The SST also uses the scalar conservation
formulation twice, for that reason, the three previous turbulent models are classified as
two-equation models.

∂(ρK)
∂t

+ ∂(ρUiK)
∂Xi

= P̃K − β∗ρKω + ∂

∂Xi

[
(µ + σKµt)

∂K

∂Xi

]
(1.31)

∂(ρω)
∂t

+∂(ρUiω)
∂Xi

= αP̃K

νt

−βρω2+ ∂

∂Xi

[
(µ+σωµt)

∂ω

∂Xi

]
+2(1−F1)ρσω2

1
ω

∂K

∂Xi

∂ω

∂Xi

(1.32)

1.3. COMPUTATIONAL FLUID DYNAMICS (CFD) 20

F1 = tanh
(min

[
max(

√
K

β∗ωy
,
500ν

y2ω
) 4ρσω2K

CDKωy2

])4
 F2 = tanh

(max(2
√

K

β∗ωy
,
500ν

y2ω
)
)2


(1.33)

CDKω = max
(

2ρσω2
∂K

ω∂Xi

∂ω

∂Xi

, 10−10
)

P̃K = min
(

µt
∂Ui

∂Xj

(∂Ui

∂Xj

+ ∂Uj

∂Xi

), 10β∗ρKω

)
(1.34)

Sij = 1
2
(∂Ui

∂Xj

+ ∂Uj

∂Xi

)
γ = γ1F1 + (1− F1)γ2 ∀ γ ≡ constant (1.35)

µt = a1ρK

max(a1ω, F2
√

2SijSij)
(1.36)

Table 1.3: Revised values for the coefficients in K − ω SST model

α1 β1 σK1 σω1 α2 β2 σK2 σω2 β∗ a1

5/9 3/40 0.85 0.5 0.44 0.083 1.0 0.856 0.09 0.31

Very different is the SA turbulent model, proposed Spalart and Allmaras (1992) and
classified as a one-equation model since it only solves for a working variable of the tur-
bulence model, ν̃. The principal parameter ν̃ is computed by the scalar conservation
Equation (1.37). The eddy viscosity µt is calculated with Equation (1.38), where fv1 is
a wall-dumping function that causes zero value at the wall and reaches unity at high
Reynolds number cases (Versteeg and Malalasekera 2007). Additionally, Ω̃ is the pro-
duction rate of ν̃ related to the local mean vorticity as shown in Equation (1.39). The
Spalart-Allmaras model has earned high popularity and is often used in the aerospace
and aerodynamics industry for its high reduction in computational effort (Milidonis et al.
2018; Zhao et al. 2022). In addition, empirical adjustments to the eddy-viscosity turbu-
lence model were performed in Spalart and Shur (1997) to account for system rotation
and streamline curvature effects based on the idea of Knight and Saffman (1978). In
Smirnov and Menter (2009), the rotation-curvature correction of Spalart and Shur (1997)
was extended to the SST model. The new proposed version (SST-CC) was successfully

1.3. COMPUTATIONAL FLUID DYNAMICS (CFD) 21

tested on both wall-bounded and free shear turbulent flows with rotation and/or sur-
face curvature. Of current interest, in a 2D channel flow with a U-turn, the SST-CC
model performed well; however, it was stated that the model still predicted a slow flow
recovery downstream of the separation bubble. The SA turbulent model’s recommended
coefficient values are in Table 1.4.

∂ν̃

∂t
+∇ · (ν̃U) = 1

σv

∇ ·
(

(ν + ν̃)∇ν̃ + Cb2(∇ν̃)2
)

+ Cb1ν̃Ω̃ + Cw1
(ν̃

κy

)2
fw (1.37)

µt = ρν̃fv1 (1.38)

Ω̃ =

√√√√1
2

(
∂Ui

∂Xj

− ∂Uj

∂Xi

)2

+ ν̃

(κy)2 fv2 fv1 = (ν̃/ν)3

(ν̃/ν)3 + C3
v1

fv2 = 1− (ν̃/ν)
1 + (ν̃/ν)fv1

(1.39)

Table 1.4: SA turbulent model coefficients recommended values

σv κ Cb1 Cb2 Cw1 Cv1

2/3 0.4187 0.1355 0.622 Cb1/κ2 + (1 + Cb2)/σv 7.1

1.3.3 Passive Scalar Transport Modeling
According to Pirozzoli et al. (2016), the transport equation for passive scalar fields

(e.g., temperature or mass concentration) with finite diffusion is given by Equation (1.40).
Note the similarity with Equation (1.18), where the two terms on the left side are the
material derivative of the transported variable (i.e., T or θ), and on the right side, ST

is a suitable source term. Equation (1.18) is expressed for a general compressible flow;
that is why ρ and k are inside the derivatives. However, because Equation (1.40) is
for incompressible flows, the first term of the right side has its parameters outside the
derivatives. Pr is either the Prandtl number or the Schmidt number; meanwhile, note
that Re contributes ν to the numerator and to the denominator a characteristic length
and the velocity field Ui. The product of Re and Pr is called the Péclet number (Pe),
regardless if Pr is the Prandtl number or Schmidt number. The Péclet number is defined
as the ratio of the advective transport rate of a physical quantity to its diffusive transport

1.4. DATA VISUALIZATION IN XR 22

rate (Moukalled et al. 2016).

∂T

∂t
+ ∂(TUi)

∂xi

= 1
RePr

∂

∂xi

(
∂T

∂xi

)
+ ST (1.40)

If the passive scalar to model is temperature, the thermal diffusivity coefficient (α) can be
obtained from the viscous diffusivity (kinematic viscosity ν) and the parameter Prandtl
number by division. By recalling α = k

ρcp
, and the emergence of the fluctuations term

after applying Reynolds averaging, the Equation (1.41) is obtained.

ρcp
∂(T̄)
∂t

+ ρcp
∂(T̄ Ūi)

∂xi

= ∂

∂xi

(
k

∂

∂xi

(T̄)− ρcpU ′
iT

′
)

+ S̄T (1.41)

In response and accounting for the effects of both molecular and turbulent transport, an
effective thermal diffusion coefficient (αeff) is introduced for simplicity. Therefore, the
temperature as a passive scalar is modeled by Equation (1.42).

∂T

∂t
+∇ ·

(
UiT

)
= αeff∇2T (1.42)

From a computational point of view, flow separation or recirculation is one of the most
challenging problems to tackle due to its high level of intermittency, huge turbulent
scale separation, evident three-dimensionality, and unsteadiness. Several LES and RANS
studies (in isolated or in combined “hybrid” form) have been carried out in the past
few decades with the purpose of shedding some light on the boundary layer detachment
problem caused by strong adverse streamline curvature-driven pressure gradient (Chaouat
2017; Radhakrishnan et al. 2006; Purohit et al. 2021; Zhang et al. 2020). Major
conclusions in previously cited works can be summarized as follows: overall, LES and
RANS approaches may predict quite well first-order statistics in turbulent boundary
layers subject to strong APG, which significantly degrades for higher-order statistics
(Paeres et al. 2022b).

1.4 Data Visualization in XR
1.4.1 Scientific Visualization

According to Friendly and Denis (2001), scientific visualization “is primarily con-
cerned with the visualization of 3D+ phenomena (architectural, meteorological, medical,

1.4. DATA VISUALIZATION IN XR 23

biological, etc.), where the emphasis is on realistic renderings of volumes, surfaces, illumi-
nation sources, and so forth, perhaps with a dynamic (time) component”. More suggested
literature includes Hansen and Johnson (2011), Nielson, Hagen, and Müller (1997) and
McCormick (1987). A half-century ago of flow visualization, the only technique available
to describe coherent structures in turbulent flows was smoke and dye injection (Brown
and Roshko 1974; Winant and Browand 1974). However, visualization techniques have
substantially evolved along with the world’s technology, spanning all disciplines (William
R. Sherman and Bushell 1997). Today visualization usually leans on computers because,
in 20 years, the computing capacity has increased over three orders of magnitude (Paeres
et al. 2021).

1.4.2 Virtual Reality, Augmented Reality and MR
To clarify the difference between Virtual Reality (VR) and Augmented Reality (AR)

is vital to start with the concept “virtuality continuum”, introduced 28 years ago by Mil-
gram and Kishino (1994). They stated the continuum with four regions and argued that
the taxonomy should be based on three sub-concepts. (i) “Extent of World Knowledge:
The amount of information bleeding from the real environment into a virtual environ-
ment”. (ii) “Reproduction Fidelity: an attempt to quantify the image quality of the
displays”. Moreover, (iii) “Extent of Presence Metaphor: a term to encapsulate the de-
gree of immersion”. Years later, Flavián et al. (2019) proposed a new taxonomy in 5
divisions, as shown in the following Figure 1.7.
∣∣∣∣∣∣∣∣
Real Environment

Complete
physical world

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Augmented Reality

Virtuality
overlaps reality

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Pure Mixed Reality

Virtuality and
reality are coalesced

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Augmented Virtuality

Reality
overlaps virtuality

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Virtual Environment

Complete
digital world

∣∣∣∣∣∣∣∣
←−−−→

Figure 1.7: Virtuality continuum, reproduced from Flavián et al. (2019).

From left to right in Figure 1.7, the Real Environment is the physical world where
technology is not needed for its existence. Second is the Augmented Reality (AR),
where virtuality overlays in reality yet does not interact with the whole physical world.
In the midway is the Pure Mixed Reality, where virtuality and reality are fused,
explained as the generation of virtual objects with the complete awareness of the real
environment. The fourth is Augmented Virtuality (AV), where reality overlaps with
virtuality, for example, a computer-generated display crowded with digital images but
controlled by physical commands. The last taxonomy is the Virtual Environment,

1.4. DATA VISUALIZATION IN XR 24

also referred to as Virtual Reality (VR), where the complete environment is virtual. Any
input from the real world has to be translated into a digital expression. The junction
from AR to AV is called Mixed Reality (MR). At the same time, Extended Reality (XR)
covers AR to VR, commonly used as an unspecified reality mix (Paeres et al. 2021).

1.4.3 XR Benefits and Applications
A high number of studies conclude that XR enhances the education process (Saidin

et al. 2015). Radianti et al. (2020) reviewed how to optimize VR applications for edu-
cational purposes, and it was concluded that students tend to retain better information
after VR exercises. The performance is improved after applying what had been learned.
Consequently, one could believe MR technology needs to be developed until reaching a
fully immersive feeling. Rosenblum (2000) outlined key areas where this technology’s
development should focus, from ultra-lightweight haptic feedback sensors to realistic in-
terfaces hard to distinguish between realities. Besides improving sensors for better virtual
environment perspectives, the hardware and software need to be fast and smooth enough
without having data memory size constraints (Albert et al. 2017; Elbamby et al. 2018).

Virtual Reality applications fully immerse the user in a 3D virtual world (Craig et al.
2009). VR and MR technologies attempt to blur the line between the physical world and
the digital environment. Furthermore, it provides options in the research environment
for difficult or costly experiments. Regarding flow visualization, such technologies are
beneficial for visual representation. It enables a researcher to perform scientific analysis
and to gain a better insight into complex flows in complicated geometries hard to perceive
with the naked eye at a fraction of the effort and cost required in a physical setup (Paeres
et al. 2021).

Game engine platforms and VR technology can perfectly merge for scientific procedures.
For example, Brookes et al. (2020) researched the development of an experimental plat-
form for behavioral scientists with VR and the game engine software Unity 3D. Brookes
et al. designed and proposed the Unity Experiment Framework (UXF) app providing the
“nuts and bolts that work behind the scenes of an experiment developed within Unity ...
that allow logical encoding of the common experimental features required by the behavioral
scientist.” (Brookes et al. 2020). UXF gave an optional graphical user interface (GUI),
allowing the experimenter to design examinations easily, define dependent and indepen-
dent variables, and edit the display interface; without requiring high-level knowledge of
coding languages. A helpful feature of UXF was also the cloud-based platform; in experi-
ments performed remotely from a laboratory, the software collected the data and stored it

1.4. DATA VISUALIZATION IN XR 25

in servers. To confirm the UXF reliability, the authors performed a study between adults
and children to examine their postural sway in response to an oscillating virtual room.
The validation experiment resulted in the children presenting less postural stability than
adults, as was expected from previous research done by others (Brookes et al. 2020); also
endorsing the integration of XR and game engines into scientific methodologies.

For starters, the term “virtual” is not new. References to this concept can be dated
back to 1991 (Byron and Levit 1991), and the idea was refined and presented again
by Bryson (1993). These early works were pioneering but held back by the limited
technology of the time. Today, Virtual Wind Tunnel (VWT) is the name of an entirely
virtual environment presented in this work and created to enhance data visualization
by immersively interacting and glancing with any virtual object, ideally CFD simulation
results (Paeres, Santiago, Lagares, Rivera, Craig, and Araya 2021). On the other side,
FlowVisXR leans more toward Augmented and Mixed Reality because it is a device
application to invoke virtual objects in the physical world and enable awareness of it
(Paeres et al. 2021). Applications of XR for the present work are: (i) The creation of a
virtual wind tunnel, (ii) The in-house app FlowVisXR, and (iii) The development of a
complete methodology for obtaining XR virtual objects from CFD results.

1.4.4 Virtual/Augmented Reality in Flow Visualization
The procedure of flow visualization with extended reality starts with the information

post-processing of CFD results (generally ASCII or binary format). The data is trans-
formed via programming (i.e., Python or MatLab scripts) or visualization toolkit (i.e.,
ParaView) into a file type of 3D virtual objects. During this data transformation, it
is expected that the data might require manipulation and filtering, such as iso-contour
for the desired parameter field. 3D virtual objects have wide options of file formats, just
to name a few: Alembic (.abc), Autodesk FBX (.fbx), GL Transmission Format (.gltf),
Wavefront OBJ (.obj), and CAD (computer-aided design) software extensions.The correct
process depends on compatibility with the software and devices used for the visualiza-
tion. Unfortunately, the options for immersive visualization like VR and AR are quite
limited. The present study uses the extension USD (Universal Scene Description). This
type of file (i.e., .usdz) has been developed by Apple and Pixar and launched in 2018.
Although USDZ files were exclusively designed for AR applications, it will be shown and
demonstrated how to employ them in VR environments, while keeping the perk of being
a binary file format, meaning a file’s storage-size reduction. The virtual environments
for the present work are going to be developed with the Unity game engine.

1.4. DATA VISUALIZATION IN XR 26

Regarding the Virtual Wind Tunnel, a workstation (see Fig. 1.8(a)) gathers the infor-
mation of all input gadgets. Controllers, head-mounted display (HMD), and base sta-
tions sensors identify the user’s spatial movement and field of view (FOV), as seen in
Figure 1.10, and render the virtual objects that belong inside the FOV. Images in the
display have to be rendered to a speed of at least 30 frames per second (fps) to achieve
an immersive impression of the virtual environment. Once the frames are rendered, they
are sent to the HMD, which outputs a stereoscopic image providing the user with the 3D
illusion of depth. Fully immersed visualizations are performed on the HTC Vive VR kit
(see Fig. 1.8(b)).

(a) (b)

Figure 1.8: (a) Workstation Dell Tower 5810 and (b) HTC Vive VR toolkit.

On the other hand, obtaining AR flow visualization starts with the same post-processing
and data transformations as VR. However, it differentiates depending on the final goal
and interactive degree with the virtual objects. Suppose the idea is only to invoke virtual
objects in the real world via iOS devices. In that case, the USDZ file extension is the
best option because Apple devices have a built-in app capable of reading the USDZ files.
After achieving the final extension, the last step is to share the file with the devices to
use. However, if the device to use is not iOS (e.g., Android and HoloLens), a compatible
app will be needed. Here, the Unity game engine comes to the rescue. The benefits of
designing the apps with Unity are not only extending the applicability to smartphones
and XR devices but also it gives opportunities to develop more interactive manipulations,

1.5. PROJECT DESCRIPTION 27

such as image recognition and much more. Microsoft HoloLens (see Fig. 1.9) apps and
other XR app creations, will be shown and discussed in the corresponding Chapter §3.

Figure 1.9: Image of Microsoft HoloLens 1st gen. used for AR applications.

1.5 Project Description
1.5.1 Expected Outcomes

With the completion of this work, the outcomes intended to be achieved are summa-
rized below:

• Enhance acquired knowledge of turbulent momentum/passive-scalar boundary lay-
ers subject to strong wall-curvature-driven pressure gradient with eventual flow
separation.

• Evaluate turbulence model’s performance in passive scalar transport subject to
strong wall curvatures.

• Sharpen the reader’s fluid mechanics knowledge and scientific data visualization
with Extended Reality (XR).

• Develop a tool for immersive visualization of CFD data results, enabling manipu-
lation of virtual objects (i.e., 2D and 3D) for clear examination.

1.5.2 Objectives
The principal objectives of the proposed body of work are as follows:

• Perform laminar and turbulent CFD simulations over a flat plate as turbulence
precursors.

1.5. PROJECT DESCRIPTION 28

• Simulate the turbulent flow over a curved hill in a replicated scenario from the
original experiments of Baskaran, Smits, and Joubert (1987) (see Figure 2.1), con-
sidering the inclusion of a passive scalar and evaluating the effect of different Prandtl
numbers.

• Exploit OpenFOAM/C++ toolbox’s capabilities in pre-processing utilities (mesh
development) and numerical solvers for the solution of the governing equations of
viscous flow.

• Develop numerical post-processing tools in Python for boundary layer parameter
calculation.

• Define a simple, but innovative, methodology for VR and AR data visualization.

• Present the Virtual Wind Tunnel (see Figure 1.10) and FlowVisXR app as the
enhancement approaches for scientific data visualization.

Figure 1.10: User visualizing a flow in the VWT.

1.5.3 Intellectual Merit
The focus of the present body of work is on incompressible turbulent boundary layers

subject to strong surface curvature (i.e., convex and concave curvatures) prone to flow
separation. Additionally, several passive scalars are considered and scrutinized under
such external conditions in complex flow. CFD RANS modeling will shed important light

1.5. PROJECT DESCRIPTION 29

on the boundary layer detachment due to wall curvature as well as on the passive scalar
transport by paying a fraction of computational resources as compared to DNS and LES
approaches (Paeres, Lagares, and Araya 2022b), (Paeres, Lagares, and Araya 2022a).
Furthermore, this study considers state-of-the-art visualization techniques such as Vir-
tual and Augmented Reality originally applied to flow visualization (Paeres, Lagares,
Santiago, Craig, Jansen, and Araya 2020) (Paeres, Santiago, Lagares, Rivera, Craig, and
Araya 2021) (Paeres, Lagares, and Araya 2021), which can be extended to any other
discipline once developed (i.e., biology, math, architecture, etc.).

1.5.4 Broad Impact
Genuinely understanding turbulent flow separation is of great importance in naval,

aeronautical, and other engineering applications. While drag reduction and heat transfer
control are commonly in the optimization focus, it is crucial to discern a turbulent flow
from the shear or boundary layer point of view. Due to the large flow gradients present
inside boundary layers, most of the transport phenomena occur in that thin region.
Flow separation, very often, is unwanted and can seriously reduce the performance and
efficiencies of engineered devices such as aircraft and turbines. In worst-case scenarios,
may cause accidents and fatalities.

There are times when there is an urgent need to move, rotate or manipulate an object to
appreciate it visually. It is also sometimes necessary to represent these objects on differ-
ent scales, enlarged or miniaturized, to internalize concepts and phenomena accurately.
The Virtual Wind Tunnel (VWT) development can undoubtedly appease the expression
“Seeing is believing.” (Paeres et al. 2021). As the necessary equipment to create a vir-
tual environment can be challenging to obtain for certain people, an affordable option
is the development of the FlowVisXR app since it can visualize the virtual objects from
a smartphone device. The FlowVisXR app and the VWT will be excellent open-source
solutions to enrich the data visualization process truly.

At the end of this work, the reader will learn about boundary layer separation, pas-
sive scalar transport, and the basic data management procedure to perform XR data
visualization in their own methods or approaches.

Chapter 2
Turbulent Boundary Layers Subject

to Surface Curvature

This chapter presents and discusses the CFD results of a flow over a canonical flat
plate and over a complex geometry (i.e., a curved hill). For turbulent boundary layers,
closure equations are used in the RANS approach by testing two well-known turbulence
model: the Shear Stress Transport (SST) model (Menter 1994) and the Spalart-Allmaras
(SA) model (Spalart and Allmaras 1992). The purpose of running a turbulent flat plate
or precursor is to obtain more realistic and developed flow solutions at the domain inflow
of the curved hill scenario. This is aligned with one of the objectives for the present
thesis to replicate the results of Baskaran, Smits, and Joubert (1987) experiments, the
flow’s developing entry length calculations are performed to match the flow conditions
and the spatial reference points. Although the experiments by Baskaran, Smits, and
Joubert (1987) only consisted of air as the working fluid (Pr = 0.71), the present work
will extend the Prandtl number scope (i.e., Pr = 2.0 and Pr = 0.2). After scrutinizing
the flows and passive scalars’ behaviors over the curved hill, major conclusions of this
chapter based on statistical analysis can be found in §2.5. Furthermore, the scientific
visualization is performed in the next Chapter §3.

2.1 Assessment, Motivation and Approach
In the case of turbulent flow over a curved hill, separation zones will occur due to

the strong adverse-pressure gradient (APG) or flow deceleration caused by the presence
of convex wall curvature. The assessment’s inspiration is from the experimental work of
Baskaran, Smits, and Joubert (1987). In their work, a horizontal air stream at 20 m/s

passed over a simple curved convex hill of 1.284 m long with a radius of 1.08 m. The
protuberance’s entrance and exit had a concave surface of −0.40 m and −0.48 m, respec-
tively. Figure 2.1 shows an example of the geometries. In Baskaran et al. (1987), the
momentum boundary layer parameters (first and second-order statistics) were measured.

30

2.1. ASSESSMENT, MOTIVATION AND APPROACH 31

Boundary layer thickness, displacement thickness, momentum thickness, and other inte-
gral parameters calculated were used to describe the flow’s characteristics and behavior.
Other relevant information was also measured, such as the wall’s streamwise pressure and
skin friction, velocities profiles at specific streamwise locations, and Reynolds stresses.
Their main objective was “to study the response of turbulent boundary layers to sudden
changes in surface curvature and pressure gradient” (Baskaran et al. 1987). Although the
experimental data of the velocity field are used as a point of validation of our numerical
approach, it is worth highlighting that the present study also considers temperature as
a passive scalar which was not explicitly accounted for in the original experiment.

Figure 2.1: Curved hill diagram (partially reproduced from Baskaran et al. (1987)).

Two wall scenarios were considered to properly begin with the simulations and establish
the accurate reference point in the numerical approach compared to the experiments by
Baskaran et al. (1987). The first scenario was a horizontal flat plate with two flow con-
ditions: (i) Laminar flow (i.e., streamwise inlet velocity of 1 m/s) and (ii) Turbulent flow
with the same inlet velocity as in Baskaran et al. (1987). The second scenario was the
turbulent 20 m/s streamwise inlet velocity over the curved hill. The 2D numerical assess-
ment of turbulent flow was performed with scope to the flow’s separation zone velocity
and with the presence of temperature in the simulation as a passive scalar. Turbulence is
inherently a three-dimensional unsteady phenomena, particularly boundary layer detach-
ment. However, the curved hill domain is modeled as a 2D phenomenon at a “statistically
steady state" for simplification purposes, while still capturing the mean flow distortion
(and Reynolds shear stresses) in complex geometries. Future work would involve an un-
steady 3D analysis via LES and publish elsewhere. Therefore, the present scenario is
taking advantage of the flow homogeneity in the spanwise direction (z), whereas the flow
is highly anisotropic along the streamwise and wall-normal direction (in particular, the
latter one). The numerical approach used a RANS (Reynolds-averaged Navier-Stokes)

2.1. ASSESSMENT, MOTIVATION AND APPROACH 32

approach. Using open-source CFD software OpenFOAM®, the velocity field was solved
in the scenario of considering a molecular Prandtl of 0.71 and 0.90 turbulent Prandtl
number (i.e., air as the working fluid) and two turbulent models K − ω shear stress
transport (SST) (Menter 1994) and Spalart-Allmaras (SA) (Spalart and Allmaras 1992).
The inclusion of temperature is done based on the theory of passive scalar transport as
in Li et al. (2009).

Both turbulence models were not selected arbitrarily. It has been chosen the best rep-
resentatives from one and two-equation turbulence models. The Spalart-Allmaras (SA)
model (or one-equation model) has been described to be incomplete by Wilcox (2006)
since any turbulence model would require at least two scales: a velocity scale and a
length scale. However, the SA model has shown simplicity, robustness, and versatility in
attached turbulent boundary layer simulations (Spalart and Allmaras 1992; Spalart and
Rumsey 2007; Shapiro et al. 2021; Raheem et al. 2019) including high-speed turbulent
boundary layers (Paciorri et al. 1998; Lagares et al. 2021). Previously mentioned studies
have emphasized a degradation in the SA model’s accuracy for more complex geometries
with flow separation. In particular, the SA model under-predicted the size of the separa-
tion bubble. On the other hand, the hybrid SST model by Menter involves blending two
well-known two-equation turbulence models: the standard K −ω model in the near wall
region and the K − ϵ model in the outer region and freestream of the boundary layer to
overcome the strong freestream sensitivity of the K − ω turbulence model. It is worth
highlighting that the SST eddy viscosity model involves a further improvement based on
the Johnson–King model, which assumes that the transport of the main turbulent shear
stresses is critical in the simulations of strong adverse-pressure gradient (APG) flows
prone to boundary layer detachment.

In summary, and to the best of author’s knowledge, the combined effect of flow separation
by strong streamline curvature-driven pressure gradients and passive scalar transport
has not been fully addressed in the past, and knowledge on this matter is relatively
scarce. Furthermore, the performance of widely used RANS models on very strong surface
curvatures and separated flow is of great interest to the broader computational fluid
dynamics community. To this end, the Reynolds-averaged Navier-Stokes equations will
be resolved over a curved hill with experimental data points to assess the performance
of two widely used CFD models. Furthermore, it will assess where each model excels
and where they fail to capture the physics of the flow using the experimental data as
ground truth. Some of the research questions to be addressed in this work are as follows:
(i) Are the evaluated eddy viscosity models able to capture the outer peaks in Reynolds
shear stresses (i.e., <u′v′> where the angle brackets mean time-averaged) as well as the
inclination of the constant shear layer caused by strong APG?, (ii) Is the flow separation

2.2. LAMINAR FLOW OVER A FLAT PLATE 33

bubble dominated by positively correlated u′ and v′?, (iii) What is the temperature
profile trend inside the flow separation bubble?, (iv) Is the Reynolds analogy preserved
in strong streamline curvature-driven pressure gradients?, and (v) Is the flow showing
quasi-laminar features in zones where is highly decelerated?

2.2 Laminar Flow Over a Flat Plate
A simulation of laminar flow over a flat plate has been conducted to self-validate

OpenFOAM® utilization and begin the journey of CFD programming for the presented
work. A 2D domain of 3.85 m in the streamwise direction and 0.183 m in the wall-normal
direction was designed with a short entry length of no-wall presence followed by a 3.7
meters-long flat plate with the no-slip condition. Three mesh resolutions were defined
to perform a mesh dependency test. Coarse, mid and fine resolutions were respectively
(900×134), (1800×268), and (3600×536) cells count. Figure 2.2 shows the resulting
domain of medium mesh with cells’ volume size and velocity field contour. Figure 2.3
shows fine mesh cells’ distribution example. Even though it is a 2D simulation, the CFD
method used the Finite Volume Method. The inlet boundary condition for velocity is
1 m/s. At the same time, the temperature is 323.15 K, and the pressure’s boundary
condition is zero-gradient. Top, laterals, and outlet boundary conditions were set zero-
gradient for the three fields (i.e., velocity, temperature, and pressure) except for the
outlet’s pressure gauge fixed to 0 value. Iso-thermal condition with the value of 293.15
K was specified at the wall.

Figure 2.2: Cells’ volume size and velocity field contour of medium mesh.

2.2. LAMINAR FLOW OVER A FLAT PLATE 34

Figure 2.3: Schematic of the fine mesh dimensions and resolution.

Results were compared to the theoretical Blasius solution for a zero-pressure-gradient
(ZPG) flat plate. With the understanding that the velocity distribution at the very-
near-wall is similar for almost all laminar and turbulent flows, one prominent parameter
is the dimensionless wall-normal distance (y+). y+ is the y distance non-dimensionalized
in wall units by the friction velocity (uτ) and the fluid kinematic viscosity, ν. The
formulation used was y+ = yuτ /ν, where the friction velocity is defined as uτ =

√
τw/ρ

and τw is the wall shear stress. Figure 2.4 shows the first off-wall cell’s height in the
dimensionless wall-normal distances (∆y+) along the streamwise direction of the flat
plate. Even though the mesh’s initial design aimed to be ∆y+ = 0.3 (as it happens near
the outlet), it can be seen that at the inlet’s critical zone, maximum values were close
to ∆y+ = 1. Usually, in CFD simulations of wall-bounded flows, ∆y+ < 1 means the
simulation had enough near-wall quality to solve the boundary layer correctly.

Figure 2.4: First off-wall cell height in wall units.

The Blasius solution is presented by a third-order non-linear ordinary differential equation

2.2. LAMINAR FLOW OVER A FLAT PLATE 35

(ODE) using non-dimensioned similarity variables. In other words, the independent
variables (i.e., spatial coordinates x & y) can be united and reduced from 2 to 1, creating
the variable η. By definition, a streamline is a flow’s path where fluid’s properties remain
constant along the path. This dimensionless η represents each flow’s streamlines and
is calculated by the formula η = y

√
U∞/xν. Because of Blasius’s brilliance, he defined

the function f(η) to be solved so that the first derivative resulted in being f ′ = Ux/U∞.
Following his cleverness, if the ODE is expanded also a dimensionless temperature T ∗

can be obtained, defined by T ∗ = (T − Ts)/(T∞ − Ts). The η is related to streamline
length distance, U∗ and T ∗ with the velocity and temperature profiles, respectively.
The streamwise velocity profile, Ux/U∞ or f ′ = U∗ in Blasius variables, is shown in
Figure 2.5(a). An excellent agreement of the three meshes can be observed with the
quasi-analytical Blasius solutions over a laminar boundary layer. Clearly, the curves
take flat behavior at the order of η ≈ 5. Beyond that, i.e., for η > 5, the streamwise fluid
velocity equals that of the freestream, thus U∗ = 1. Figure 2.5(b) shows the dimensionless
temperature with an outstanding performance of the coarse, medium, and fine mesh as
compared to the thermal Blasius’ solution for Pr = 0.71. Here, a thermal flat curve
over η ≈ 5.5 can be seen, which is consistent with the Prandtl number lower than one,
implying a faster diffusion of the thermal field as compared to the momentum’s diffusion.

(a) (b)

Figure 2.5: Normalized results of laminar flow over flat plate compared to the Blasius
solution: (a) Streamwise velocity profile; (b) Temperature profile.

As is seen in Figure 2.6(a), the η values corresponding to the velocity boundary layer’s
streamline are constant over the plate length and approach the expected value ≈ 5.
Similarly, Figure 2.6(b) has the the η values corresponding to the temperature boundary
layer’s streamline. Although the η values are not constant for the temperature’s boundary
layer, it can be noted how finer the mesh is, the precision increments, showed by sooner

2.2. LAMINAR FLOW OVER A FLAT PLATE 36

curve attenuation. The result values get more precise and accurate for both velocity and
temperature dimensionless as the mesh’s refinement increases, without causing a relevant
effect on the real dimensional parameters.

Figure 2.7 displays the skin friction coefficient (Cf) and the Stanton number (St). Where
St is a dimensionless number representing the ratio of heat transfer by forced convection
to the heat capacity of the fluid, a suitable parameter to use in thermal simulation valida-
tion. After observing the Figures 2.4, 2.5, 2.6, and 2.7, due to the results’ consistency and
similarity to the theoretical plotted curves, this laminar CFD job has been considered
accomplished and ready to proceed in turbulent flow scenarios.

(a) (b)

Figure 2.6: η values at the boundary layers (99% of the freestream) over the wall: (a)
Streamwise velocity profile; (b) Temperature profile.

(a) (b)

Figure 2.7: Skin friction coefficient and Stanton number results of laminar flow: (a) Skin
friction coefficient, (b) Stanton number.

2.3. TURBULENT FLOW 37

2.3 Turbulent Flow
2.3.1 Flow Solver and Numerical Schemes

The strategy implemented for the turbulent simulations was to use the algorithm
called semi-implicit method for pressure-linked equations consistent (SIMPLE-C) with a
residual control value of 1 × 10−8 for all the variables or fields. For the specific-pressure
field (P), the solver selected is called the geometric agglomerated algebraic multigrid
solver along with a Gauss-Seidel smoother (GAMG), a relative tolerance of 0.1, and
a tolerance of 1 × 10−8. For the passive scalar field, it was used the preconditioned
bi-conjugate gradient (PBiCGStab) solver with a simplified diagonal-based incomplete
LU preconditioner (DILU); relative tolerance was set to 0, and the tolerance 1 × 10−9.
Lastly, for all the other variables (i.e., U , ν̃, K, ω), the solver adopted was a smooth
solver accompanied by a symmetric Gauss-Seidel smoother, and tolerances values equal
to the P field. The relaxation factor for P was 0.3 meanwhile 0.7 for U , ν̃, K, and ω.

As for the numerical schemes, the following were designated for the time, gradient, Lapla-
cian, interpolation, surface-normal gradient, and wall distance calculation, respectively:
steady state, Gauss linear, Gauss linear corrected, linear, corrected, and mesh wave
method. The divergence schemes chosen were Gauss linear for the non-linear stress and
the effective viscous stress; Gauss linear upwind for the divergence of the surface scalar
field (ϕ) with the passive scalar; bounded Gauss linear upwind for ϕ with U and with ν̃;
while for the divergence of ϕ with K and ω it was used bounded Gauss limited linear 1.

All the solvers and numerical schemes determined for the work presented were already
available in the open-source software OpenFOAM® version 7 as a standard option with-
out any modification in the algorithms or implementation. For details on the approach
of any method mentioned in this section, readers are referred to Moukalled et al. (2016)
and Versteeg and Malalasekera (2007).

2.3.2 Boundary Layer Detection Based on Potential Flow
A potential flow is characterized as an inviscid and irrotational velocity field, described

as the gradient of a scalar function. On the other hand, a boundary layer develops from
strong viscous interactions within a small region, usually caused by the presence of a
surface or vorticity source. The potential flow satisfies the Laplace equation as,

∇2Φ = 0 (2.1)

2.3. TURBULENT FLOW 38

where Φ is the scalar function, the potential velocity field is defined as Up = ∇Φ, with the
flow being irrotational, i.e., ∇ × Up = 0. However, since for any arbitrary velocity flow
field expressed using finite, floating-point arithmetic, the divergence is not strictly zero,
OpenFOAM® implements a numerical scheme following Poisson’s equation to enforce a
solenoidal field and conditions required for the irrotationality of the flow. This issue is
not exclusive to OpenFOAM® as it is an inherent limitation of finite-precision arithmetic
using floating points. The scheme can be expressed as follows, where ϕ is the face flux
of a finite volume as,

∇2Φ = ∇ · ϕ (2.2)

As done in Baskaran et al. (1987), the edge of the boundary layer is determined based
on the potential flow theory in curved geometries. It is the standard procedure used in
the fluid dynamics theory since surface curvature locally induces a streamwise pressure
gradient, making it challenging to identify the beginning of the inviscid zone above the
turbulent boundary layer. Given that viscous interactions are not present in potential
flows, the boundary layer can be described as the region where these viscous interactions
can not be neglected (a somewhat simplistic description, but it suffices for the proposed
methodology). This work hypothesizes that the edge of the boundary layer can be de-
tected by searching for the region where the potential flow and the real viscous flow cross
paths and exhibit similar behavior. According to Baskaran et al. (1987), the edge of
the boundary layer thickness, δ, is defined as “that wall distance at which the dynamic
pressure is 99% of the free-stream value”. In the present work, is applied the following
criteria for identifying the edge of the boundary layer:

U2
s,V iscous ≥ (99%)U2

s,P otential &
∣∣∣∣∣∂2Us

∂n2

∣∣∣∣∣
P otential

≥
∣∣∣∣∣∂2Us

∂n2

∣∣∣∣∣
V iscous

(2.3)

Here, Us represents the wall-parallel component of the fluid flow, and n is the wall-normal
coordinate. It is important to mention that the fulfillment of both criteria according to
Equation (2.3) ensures an acceptable identification of the viscous–inviscid interface or
boundary layer edge, particularly in the recirculation flow zone. The second derivative of
Us in the wall-normal direction describes the local curvature of the velocity profile, which
must be zero in the inviscid region. Figure 2.8 provides a pictorial representation of the
intuition behind the approach employed in the present work. Note, in Figure 2.8(a), that
the viscous RANS solution starting from the wall highly disagrees with the potential so-
lution. However, as the distance from the wall grows, viscous RANS tends asymptotically
to the potential solution until further, in the free-stream, the viscous RANS solution is
consistently very similar to the potential solution. Moreover, with the cyan color curve of

2.3. TURBULENT FLOW 39

station s = 2500 mm (at the separation bubble), note how the velocities first matched in
a wall level without actually both solutions having the asymptotical behavior, confirming
that the second criterion in Equation (2.3) is necessary. With the possibility of multiple
wall levels with the solution’s paths crossed, the issue is solved by looking at the Us

slopes. Figure 2.8(b) shows the wall-normal derivative of the streamwise velocities; note
the asymptotical and overlapping behavior of the viscous solution towards the zero value
and potential solution again. It can be intuitive that after some n distance, the absolute
value of the wall-normal second derivative of viscous solution is going to be equal to the
corresponding derivative of the potential solution; or at least, a smaller second deriva-
tive for the viscous solution compared to the potential solution due to the tendency to
zero showed in both solutions. Readers are referred to Appendix B for a demonstration
of the boundary layer thickness capturing algorithm implemented in the Python script
postProcessing.py.

(a) (b)

Figure 2.8: (a) Potential flow and RANS wall normal profiles, Us in m/s; (b) wall-normal
derivative of the streamwise velocity, ∂Us

∂n
in 1/s.

2.3.3 Turbulent Inflow Generation
Before beginning with the curved hill cases, a scenario of the turbulent flow over a

flat plate was considered using SST and SA models. For all cases presented in this work,
the classical no-slip condition was prescribed at the wall surfaces for the velocity fields;
meanwhile, an isothermal condition of 293.15 K was prescribed for the thermal field.
The top-surface boundary condition was set via a zero-gradient of all flow parameters

2.3. TURBULENT FLOW 40

(shear-less wall) and a zero-pressure gauge value at the outlet boundary. For the SA’s
conditions, ν̃ and νt were specified as zero at the walls, while ν̃ = 1.5× 10−5 m2/s

and νt = 1.1× 10−5 m2/s for both constant inlet and domain’s initial state. For the
SST’s conditions, the turbulent intensity was assumed as 1%, giving K = 0.06m2/s2 and
ω = 4000 1/s to be applied as Dirichlet conditions at the inlet plane and walls, while
νt = 1.5× 10−5 m2/s was employed to initialize numerical predictions.

In the flat plate or turbulence inflow generator scenario, the total domain’s length was
set to 3.85 m with an initial 0.15 m length as a slip-condition. Three meshes were
designed, namely coarse, medium, and fine mesh, as described in Table 2.1. Furthermore,
vertically end-to-start cell expansion ratios (γy) were 4140, 3000, and 1900, respectively.
The vertical cell expansion ratio, γy, is defined as the dimensionless relationship between
the end cell near the top surface to the start cell in the near-wall region, i.e., γ =
(∆y)end/(∆y)start. In the inlet plane, freestream conditions were set, i.e., 20 m/s for the
horizontal velocity and 323.15 K for the static temperature (passive scalar).

In the curved hill scenario, mean flow solutions from the flat plate were extracted and
injected as velocity and temperature inlet profiles to overcome the unrealistic freestream
inlet profiles and avoid a lengthy inlet developing section. In addition, this recycling
strategy allows better control of the inlet boundary layer parameters as a solid require-
ment for validating numerical predictions against wind-tunnel experiments. As shown
later in this section, these “recycled” profiles are validated. Like in the flat plate scenario,
the curved hill had three meshes: coarse, medium, and fine mesh; all three meshes with
height divided into two blocks for an efficient cell distribution control. The coarse mesh
had 200 cells in the first 25% of vertical distance with γy = 1000 and the other 75% of
height with 100 cells in uniform distribution to comply with an acceptable mesh aspect
ratio. In the medium mesh, the nearest block to the wall was only 3.5% of total height
with 200 cells and γy = 386, while the outer region was composed of 200 cells with γy =
12. Similarly, the fine mesh possessed the vertical 3.5% and 96.5% split with the same
end-to-start cell-expansion ratio as the medium mesh, but both regions were populated
with 400 cells. Horizontally, all three meshes were divided into five blocks; Table 2.2
shows the resolution and the horizontal cell distribution.

2.3. TURBULENT FLOW 41

Table 2.1: Flat Plate Meshes’ Cells Horizontal Distribution; from left to right.

(Horizontal cells count ; γx) (horizontal × vertical)
Id block 1 block 2 block 3 Total Cells
Coarse 75 ; 1 75 ; 1 525 ; 1 675 × 100
Medium 100 ; 1 100 ; 1 700 ; 1 900 × 134
Fine 150 ; 1 150 ; 1 1050 ; 1 1350 × 201

Table 2.2: Curved Hill Meshes’ Cells Horizontal Distribution; from left to right.

(Horizontal cells count ; γx) (horizontal × vertical)
Id block 1 block 2 block 3 block 4 block 5 Total Cells
Coarse 250 ; 0.1 75 ; 1 350 ; 1 75 ; 1 250 ; 10 1000 × 300
Medium 450 ; 0.25 150 ; 1 700 ; 1 150 ; 1 425 ; 4 1875 × 400
Fine 675 ; 0.25 225 ; 1 1050 ; 1 225 ; 1 638 ; 4 2813 × 600

Figures 2.9(a) and 2.10(a) display a full view of the fine meshes for the flat plate and
curved hill domains, while the corresponding figures (b) are the near wall region close-
ups, respectively. Figures 2.11 and 2.12 show schematics of the computational domains
for the flat plate as well as for the curved hill. Figure 2.13(a,b) show the ZPG regions’
near-wall resolution for the flat plate and curved hill, also respectively.

(a)

(b)

Figure 2.9: Schematic of the fine mesh configuration in the flat plate (turbulence precur-
sor): (a) Full view; (b) Near wall region close-up.

2.3. TURBULENT FLOW 42

(a)

(b)

Figure 2.10: Schematic of the fine mesh configuration in the curved hill: (a) Full view;
(b) Near wall region close-up at the second concave surface.

Figure 2.11: Example of dimensions and cell distribution for flat plate medium mesh.

2.3. TURBULENT FLOW 43

Figure 2.12: Example of dimensions of curved hill computational domain (not at scale)
(Baskaran et al. 1987). From Paeres et al. (2022b); reprinted by permission of MDPI
from the journal Energies.

(a) (b)

Figure 2.13: Comparison of the dimensionless near-wall mesh resolution in: (a) The flat
plate domain; (b) The curved hill domain.

The flat plate simulations have shown excellent agreement with empirical correlations.
The velocity and thermal profiles were used to inject a more realistic (and developed)
boundary layer flow into the curved-hill domain inlet. Because SA cases were executed
first, it was found that the results of coarse to fine mesh were sufficiently resolution
independent; therefore, SST was only performed with coarse and medium resolutions.
Figure 2.14(a) displays the boundary layer thickness and comparison with the 1/7-power

2.3. TURBULENT FLOW 44

law given in Cengel and Cimbala (2014). Figure 2.14(b) presents the skin friction coeffi-
cient and the theoretical formulation proposed by Kays and Crawford (1993).

(a) (b)

Figure 2.14: Flat plate solutions of: (a) Boundary layer thickness; (b) Skin friction coeff.

(a) (b)

Figure 2.15: Flat plate passive scalar solutions of: (a) temperature boundary layer thick-
ness, and (b) Stanton number.

Regarding the passive scalar, the temperature boundary layer thickness is shown in Fig-
ure 2.15(a); as it can be seen, the results are just differentiated by the turbulent model
used. Furthermore, to validate the temperature fields, the Stanton number was used in
Figure 2.15(b) by comparison with the theoretical formulation given in Kays and Craw-
ford (1993).

2.3. TURBULENT FLOW 45

(a) (b)
Figure 2.16: Quality assessment of turbulent inflow profiles of: (a) Mean streamwise
velocity, U+; (b) Mean temperature, T +, in wall units.

Figure 2.16 shows the extracted streamwise velocity and thermal profiles from the flat
plate simulations for the three meshes and based on the SA turbulence model at a lo-
cation (X = 2.458 m) where the local momentum-thickness Reynolds number, Reθ, is
approximately 5659.7. Furthermore, in Figure 2.16(a), the mean streamwise velocity is
depicted in wall units (i.e., U+ = Us/uτ and y+ = yuτ /ν), where a consistent trend can
be observed in all meshes. Here, uτ =

√
τw/ρ where τw is the wall shear stress and ρ is

the fluid density. It is worth highlighting that y+ and n+ will be used interchangeably
to denote wall-normal coordinates in this work. In addition, a very good agreement is
seen with DNS data from Lagares and Araya (2021), Schlatter, P. and Orlu, R. (2010) at
Reθ = 2354.7 and 4060, respectively. Some discrepancies can be detected around y+ ≈
10 and in the wake region (i.e., beyond the log region). The latter could be attributed
to some Reynolds number dependency. Figure 2.16(b) exhibits the mean temperature
profile (or passive scalar) normalized in wall units, as well. Here, T + = Θ/θτ , where
Θ = (T −Tw)/(T∞−Tw) T being the dimensional static temperature, Tw is the wall tem-
perature, and T∞ is the freestream temperature. The friction temperature is defined as
θτ = qw/(ρcpuτ), where qw is the wall heat flux and cp is the fluid specific heat. Moreover,
an excellent collapse of the RANS results via the SA turbulence model is visualized in the
linear viscous layer and buffer region (i.e., for y+ < 20) as well as with DNS data from
Lagares and Araya (2021), Li et al. (2009) at Reθ = 2354.7 and 800, respectively. In the
log and wake region, significant differences can be observed between the RANS and DNS
approaches. One can infer that the turbulent Prandtl number model employed in RANS
simulations has performed quite well in the near wall region, whereas it has been able to

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 46

reproduce moderately well the thermal field in the outer part of the turbulent boundary
layer. Despite the fact that all meshes have generated similar outcomes, the solutions of
SA medium mesh were selected for inflow in the curved hill cases (i.e., streamwise and
wall-normal components of the mean velocity and temperature). Readers are referred to
Appendix C for a comprehensive grid sensitivity study.

2.4 Results and Discussion for The Curved Hill
Turning into the curved hill scenario, let us begin by setting our bases by contrasting

our numerical predictions with experimental data from the paper “A turbulent flow over
a curved hill Part 1” (Baskaran, Smits, and Joubert 1987). Figures 2.17–2.19 show
contour results of kinematic pressure gauge (P/ρ), horizontal velocity (Ux) and static
temperature (T), respectively; via the SA turbulence model and fine mesh. Zero values of
the kinematic pressure gauge were assigned to the outflow plane (reference or atmospheric
pressure). It is very important to note that in this work the surface streamline distance (s)
was matched to the presented in Baskaran et al. (1987), also the wall-normal distance is
represented with n. In the path of the shear-layer region (i.e., turbulent boundary layer),
the following aspects can be mentioned. As the flow approaches the hill or obstacle,
the pressure increases, the flow decelerates and the pressure gradient becomes strongly
adverse. Zones with intense red color can be seen along the first concave region (987
mm < s < 1191.5 mm). The fluid velocity in the viscous and buffer layer decelerates,
inducing a decrease in the skin friction coefficient, as will be shown later. However, no
strong backflow or reverse flow is seen due to the moderate APG infringed. Whereas,
the temperature generally shows a small gradient with just a small temperature drop
in a very limited location at the peak of this pressure strong adverse gradient. In the
geometry change from concave to convex, the pressure gradient switches to favorable
(FPG), this is translated to streamwise velocity acceleration. This flow acceleration or
FPG continues until the flow reaches the hill’s top. Clearly, the flow decelerates downhill,
with a significant recovery of the pressure coefficient (as seen in Figure 2.20(a)). The
presence of this strong APG (the pressure increase equals the dynamic pressure, since
the change in CP ≈ −1) ends up in flow separation, with a posterior flow reattachment
due to the presence of zero-pressure gradient (ZPG) zone, again. Temperature shows no
change during this section with the exception of the very near wall. At the start of this
separation zone, the temperature begins to drop. At the end of the hill, the separation
“bubble” is noticeable due to the presence of a quasi-isothermal zone (in blue). The high
level of mixing inside the separation bubble balances the static temperature. This is
consistent with observations in the thermal boundary layer downstream of crossflow jet

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 47

problems via DNS (Quinones 2020).

Figure 2.17: Contours of kinematic pressure gauge in m2/s2. The image has been zoomed
in to highlight the curved hill and immediate surroundings.

Figure 2.18: Contours of horizontal velocity in m/s. The image has been zoomed in to
highlight the curved hill and immediate surroundings.

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 48

Figure 2.19: Contours of the static temperature in K. The image has been zoomed in to
highlight the curved hill and immediate surroundings.

Figure 2.20(a) depicts the pressure coefficient along the computational domain. The
pressure coefficient is defined as CP = (Pw−P∞)/q∞. Here, Pw is the wall static pressure,
P∞ is the freestream static or reference pressure, and q∞ is the freestream dynamic
pressure. In general, a good agreement is observed with experimental data by Baskaran
et al. (1987). As the flow approaches the obstacle or hill, it decelerates due to the
presence of an increasing pressure or APG. The maximum CP (≈0.375) is located at the
hill feet. Interestingly, good performance of both turbulence models in reproducing the
wall pressure coefficient was observed in the vicinity of the hilltop, where the streamwise
pressure gradient abruptly switches from FPG to APG, passing through a very short
ZPG-zone. It is expected that boundary layer flow experiences a severe distortion in
that zone with combined pressure gradients. Major discrepancies occur by the end of
the strong APG zone (second half of the hill) where back or recirculating flow can be
found. This is consistent with the deficient performance of RANS-eddy viscosity models
in capturing boundary layer detachment. While both turbulence models have predicted
constant wall static pressures in the separation bubble (ZPG zone), which is physically
sound; however, smaller pressure gauges were obtained by SA and SST, e.g., CP ≈
−0.0625 and −0.125, respectively, as compared to the measured valued of −0.25. In
Figure 2.20(b), the skin friction coefficient, Cf , is depicted. The skin friction coefficient
is defined as follows, Cf = τw/q∞, where τw is the wall shear stress. One can observe
an opposite trend of Cf as compared with the pressure coefficient CP . As the flow
decelerates due to the presence of moderate APG nearby the hill feet (concave surface),
it is seen a decreasing behavior of Cf just downstream of the ZPG region where almost
constant skin friction coefficient values are seen, as expected. However, it never reaches
negative values, indicating that the mean flow does not separate. The wall shear stress

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 49

then recovers as the flow starts to accelerate in the FPG region (convex surface). At
roughly one-quarter of the curved hill (where the surface changes geometry from concave
to convex) a meaningful increase of the wall shear stress and Cf is observed since the flow
strongly accelerates (FPG), and approximately a 100% increase can be seen with respect
to the incoming Cf under ZPG-flow conditions. Downhill, the pressure coefficient CP

recovers (presence of APG), inducing a reduction in Cf , to finally reach slightly negative
values in the separation bubble (s ≈ 2100 mm). Obviously, the boundary layer flow
should “pass-through” the laminar skin friction coefficient value before separating (i.e.,
Cf < 0). This may indicate the presence of quasi-laminarized flow within 2000 mm <
s < 2100 mm and in the near wall region (Narasimha 1983) (extension of the viscous
sub-layer). This supposition would be better addressed when discussing mean streamwise
velocity and Reynolds shear stress profiles in the next pages. In summary, the SA and
SST turbulence models have estimated similar and consistent values for Cf regarding
the experimental data from Baskaran et al. (1987), perhaps the SA model has shown
moderate supremacy, overall. The skin friction coefficient in the incoming ZPG zone is
slightly under-predicted by both turbulence models (∼15% lower than in Baskaran et al.
(1987)). As previously mentioned, the most “challenging” situation for turbulence models
has undoubtedly been the hilltop and vicinity since the flow goes through acceleration
and deceleration in a very short distance. Major differences were computed as roughly
35% in that zone. According to Baskaran et al. (1987), the location of the boundary
layer detachment point was found to be situated at s = 2095 mm by extrapolation. The
SA and SST models have predicted a separation point around s ≈ 2100 mm, in very
close agreement with experiments.

(a) (b)

Figure 2.20: Coefficients on wall compared to experimental data from Baskaran et al.
(1987): (a) Pressure coefficient; (b) Skin friction coefficient.

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 50

The streamwise variation of the Stanton number and the Reynolds analogy ratio (i.e.,
St/(Cf/2)) are shown in Figure 2.21. The Stanton number is defined as follows,

St = qw

ρcpU∞(T∞ − Tw) (2.4)

where qw is the wall heat flux defined as:

qw = −
(

k
∂T

∂n

)
w

(2.5)

Here, k is the fluid thermal conductivity, cp is the fluid’s specific heat at constant pressure,
and ∂T/∂n is the thermal gradient at the wall in the wall-normal direction. The Stanton
number is a dimensionless number that relates the heat interchanged between the surface
and the fluid to the thermal capacity of the fluid. From Figure 2.21(a), one can observe
nearly constant St in the incoming flow (ZPG), which is typical in canonical or flat-plate
boundary layers. A very good agreement was obtained with the empirical correlation
by Kays and Crawford (1993), who proposed a variation of St as a function of the
local momentum thickness Reynolds number, Reθ, for ZPG turbulent flows (adapted to
Pr = 0.71). The Stanton number (and heat transferred) peaks by s ≈ 1125 mm, where
(Cf)max is located, demonstrating a high similarity between maximum viscous shear force
and total heat transferred at the wall. This peak in the heat transfer (representing about
an 80% increase regarding the incoming baseline St) is situated approximately by the
end of the first concave bend. Downstream, the Stanton number decreases much faster
than Cf does, suggesting a non-similarity between these two boundary layer parameters.
The strong changes of streamwise pressure gradients in this zone, which are sources of
dissimilarity between the momentum and thermal boundary layer transport (G. Araya
and L. Castillo 2013), are the reasons for that behavior. Beyond s = 1500 mm, a
“plateau” is observed in St values, and an abrupt reduction of the heat transfer is achieved
by s ≈ 2100 mm, caused by the presence of the flow recirculation zone. This separation
bubble is characterized by a quasi-adiabatic process, since no heat transfer occurs between
the surface and the fluid (St ≈ 0). Furthermore, the Stanton number can also be related
to the skin friction coefficient via the Reynolds analogy (similarity between the viscous
drag to the heat interchanged). The St/(Cf/2) ratio is introduced in Figure 2.21(b). An
excellent agreement with the Pr−2/5 empirical correlation by Kays and Crawford (1993)
is seen in the ZPG zone. This ratio significantly departs from the unitary value by the
hill feet (beginning of the concave bend, s ≈ 987 mm). It is worth highlighting that
St/(Cf/2) remains very close to one in most of the curved hill for s > 1100 mm, getting
large negative values in the vicinity of the separation bubble due to the very small (and

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 51

negative) values of Cf . In essence, both turbulence models have generated very similar
Stanton numbers.

(a) (b)

Figure 2.21: Streamwise variation of: (a) Stanton number; (b) The St/(Cf/2) ratio.

To the best of our knowledge, the implemented approach, based on a potential flow-based
scheme, has shown robustness and accuracy in the detection of boundary layer edge pa-
rameters as well as its integral values in comparison to the classical 99%U∞ criterion.
This made the overall calculation of the parameters shown in Figures 2.23 and 2.22 con-
sistent in the presence of strong pressure gradients, and subsequently, severe boundary
layer distortion. The boundary layer thickness is slightly underestimated, although it
follows the experimental results’ behavior. Baskaran et al. (1987) have limited data
in the separation bubble, thus, let us focus on the sections highlighted by them. The
overestimated shape factor is likely due to an overestimation in the boundary layer’s
edge velocity incurred when comparing the potential and RANS flow fields. Nonetheless,
the comparisons along the hill are extremely favorable to our approach compared to the
experimental baseline. Overall, the SA model has superior performance when compared
to the K − ω SST (Menter 1994). This is particularly noticeable within the portion
800 mm < s < 1200 mm seen in the integral parameters prediction. Both turbulence
models significantly over-predict the maximum shape factor, H, located at s ≈ 1000. At
this point, the meaningful thickening of the turbulent boundary layer is consistent with
the presence of strong APG and flow deceleration (note the CP peak in Figure 2.20(a)).
Consequently, the shape factor increases (up to ∼15% increases with respect to the
incoming flow), and discrepancies in numerical results are within 25% regarding exper-
imental values. Since the shape factor, H, is the ratio of the displacement thickness to

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 52

the momentum thickness, the previously mentioned discrepancies on Hmax are caused
by over-predictions on the displacement thickness, δ∗, as confirmed from Figure 2.22. In
addition, the momentum thickness, θ, has been almost faithfully replicated by RANS as
compared to experiments. This is consistent with the good agreement on the Cf variation
(see Figure 2.20(b)) since the momentum thickness is proportional to the drag force over
the surface. To understand the physical significance of δ∗ and θ, those integral boundary
layer parameters are proportional to the deficit of mass flow and momentum inside the
boundary layer due to the viscous effect and no slip wall condition, but how it would be
if the flow were inviscid. δ∗ represents how much the boundary layer should be displaced
outward to compensate for the mas flow reduction due to the presence of a solid wall,
while θ is representative of the momentum loss; thus, proportional to the drag. For the
creation of Figures 2.22 and 2.23, the potential flow-based scheme used Equations (2.6)
and (2.7) to calculate displacement and momentum thickness parameters. Meanwhile,
the parameter Reθ used a reference velocity, Uref , where after following the results of
Baskaran et al. (1987), it was found to be s = 596 mm, i.e., the reference station.

∫ δ

0

(
1− Us

UP otential

)
dn (2.6)

∫ δ

0

Us

UP otential

(
1− Us

UP otential

)
dn (2.7)

Figure 2.22: Displacement thickness and momentum thickness compared to experimental
data from Baskaran et al. (1987).

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 53

(a)

(b)

Figure 2.23: Boundary layer thickness, shape factor, and momentum thickness Reynolds
number compared to experimental data from Baskaran et al. (1987): (a) Spalart-
Allmaras model; (b) K − ω SST model.

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 54

To assess the distortion of the momentum boundary layer due to the hill, some wall-
normal inner-scaled profiles are presented at several streamwise stations in Figures 2.24
and 2.25. Comparison is performed with experiments by Baskaran et al. (1987) as
well as against two DNS baselines by Schlatter, P. and Orlu, R. (2010) (Reθ = 4060)
and Lagares and Araya (2021) (Reθ = 2305). For the ZPG zone in Figure 2.24(a),
the inner scaled velocity profiles of both closure models collapse near perfectly with a
very slight variation observed in the wake region where the K − ω SST variant predicts
a slightly higher streamwise velocity, Us. Both DNS databases exhibit a high level of
consistency (almost overlap), and a long log region can be seen due to the high Reynolds
numbers considered. The flow starts to decelerate by the first concave bend beginning
(s ≈ 710 mm), which causes a decrease in the skin friction coefficient and in the friction
velocity as well. This is the reason for the slight upward movement of the wake in
Figure 2.24(b), which is over-predicted by the turbulence models. The effects of flow
acceleration and FPG can be observed in Figures 2.24(c) and 2.24(d), inducing a “hump”
in velocity profiles over the log region, also reported by Araya, Castillo, and Hussain
(2015) in sink flows. The boundary layer suffers a significant distortion around the
hilltop where a “plateau” in Us can be observed between n+ = 300 and 1000 from
experimental data. In this FPG zone, the SA model predictions are in better agreement
with experiments by Baskaran, Smits, and Joubert (1987). As discussed in Figure 2.20(a),
the pressure coefficient recovers from s ≈ 1700 mm and the streamwise pressure gradient
becomes more adverse. Therefore, one can describe the APG influence as steeper slopes
of the velocity profiles within the log-wake region. Finally, the sudden deceleration
(strong APG) of the boundary layer produces a recirculation bubble above the wall, i.e.,
between 2 to 1000 wall units, as can be seen in Figure 2.25, where streamwise velocity
profiles can be seen at three different stations. While the SA model predicts a slightly
stronger reversal flow, the SST model predicts a larger (in terms of wall-normal distance)
bubble. This recirculation zone is characterized by a low level of velocity fluctuations
(this will be confirmed later in the Reynolds shear stress profiles) and back (negative)
flow, where almost constant values of Us can be observed (within 5 to 10 in wall units,
according to the streamwise station). Beyond the separation zone in the wall-normal
direction, the streamwise velocity exhibits very sharp increases towards the boundary
layer edge, resembling Blasius velocity profiles. The substantial discrepancies observed
in both turbulence models confirm the previous statement regarding the limitations of
eddy viscosity models to accurately predict boundary layer detachment.

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 55

(a) (b)

(c) (d)

(e) (f)

Figure 2.24: Streamwise velocity profiles in wall units at locations of: (a) s = 596 mm;
(b) s = 710 mm; (c) s = 1345 mm; (d) s = 1596 mm; (e) s = 1862 mm; (f) s = 1990
mm.

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 56

Figure 2.25: Velocity profiles in the flow separation bubble at s = 2250 mm, 2350 mm,
and 2500 mm.

The Boussinesq hypothesis was applied to estimate Reynolds shear stresses from the
RANS output as per the equation:

< u′v′ >≈ −νT

(
∂Us

∂n
+ ∂Un

∂s

)
(2.8)

In Figure 2.26, profiles of Reynolds shear stresses are plotted in inner units and several
streamwise stations by considering the friction velocity at the reference station (s = 596
mm or ZPG zone). This choice is based on the isolated assessment of the baseline (in-
coming) Reynolds shear stresses under combined streamwise pressure gradients caused
by the curved hill. Moreover, we remove any scaling effect according to the local values
of the friction velocity. At the ZPG station (s = 596 mm), it can be seen that both
turbulence models tend to capture the inner portion of the boundary layer with very
good agreement with DNS from Lagares and Araya (2021) and Schlatter, P. and Orlu,
R. (2010). The comparison breaks down in the outer region where both models predict
larger values, perhaps, caused by the higher Reynolds numbers considered in RANS pre-
dictions. The APG effect at s = 1139 mm is manifested as a clear secondary peak on
< u′v′ > around n+ ≈ 800. It can be infer that the flow is subject to a very strong decel-
eration or APG since the outer peak is larger (almost twice as large) than the inner peak,
around n+ ≈ 15. The SST model predicts a more intense outer peak, addressing one of
the original research questions of this study. These outer secondary peaks of < u′v′ >

have also been reported by G. Araya and L. Castillo (2013) in DNS of turbulent spatially

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 57

developing boundary layers subject to strong streamwise APG. Moreover, outer streaks
are enhanced by APG, which in turn cause local increases of streamwise velocity fluctu-
ations and Reynolds shear stresses, according to DNS studies by Skote, Henningson, and
Henkes (1998). Interestingly, a much stronger APG effect can be seen at s = 1990 mm,
just upstream of the separation bubble, given by the inclined shear layer or “plateau”
in the zone 10 < n+ < 200. The larger the APG, the more inclined the shear layer (G.
Araya and L. Castillo 2013). At the flow recirculation zone, i.e., at s = 2500 mm, there
is an appreciable attenuation of the Reynolds shear stresses in the near wall and buffer
region (n+ < 100).

(a) (b)

Figure 2.26: (a) Inner-scaled Reynolds shear stresses; (b) Zoomed view of the inner-
scaled Reynolds shear stresses.

Furthermore, the SST model predicts large positive values of the cross-correlation <

u′v′ > inside the bubble (not seen in the SA model), which is consistent with previ-
ous DNS studies in flow separation (Skote, Henningson, and Henkes 1998; Quinones
2020). Clearly, the very low values of the Reynolds shear stresses suggest that the flow is
quasi-laminarized or on the verge of relaminarization (Narasimha 1979) (viscous sublayer
extended). On the other hand, the very large values of < u′v′ > in the outer region (1000
< n+ < 3000) plus the non-negligible wall-normal gradients of the streamwise velocity
indicate the presence of significant turbulence production (i.e., < u′v′ > ∂Us/∂n) well
above the separation bubble, and thus, the flow is highly turbulent in that zone, as will
be shown in the next figure. The published data by Baskaran et al. (1987) do not contain

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 58

much information beyond the early portions of the separation bubble.

P ≡ −u′
iu

′
j

∂Ui

∂xj

≈ − < u′v′ >

(
∂Us

∂n
+ ∂Un

∂s

)
(2.9)

The turbulent kinetic energy (K) production, P , inside the boundary layer can be eval-
uated by computing the term with the highest contribution to K and mean-flow kinetic
energy equations. The time-averaged velocity gradients act against the Reynolds stresses,
removing kinetic energy from the mean flow and transferring it to the fluctuating velocity
field (Pope 2000). The turbulent kinetic energy is defined as in Equation (1.21); whereas
the Boussinesq hypothesis leads to the following definition of P in Equation (2.9), where
the Reynolds shear stress definition in Equation (2.8) is employed. Figure 2.27 shows
the principal term of K production in wall units at different streamwise stations, as done
with the RANS-modeled Reynolds shear stresses. It was observed that the term ∂Un/∂s

in the mean flow gradient was negligible, even in zones with large wall curvatures. For
the incoming flow (ZPG zone) at s = 596 mm, the SA turbulence model reproduces prop-
erly the turbulence production in the turbulent boundary layer, as contrasted to DNS
from Lagares and Araya (2021) and Schlatter, P. and Orlu, R. (2010) at lower Reynolds
numbers. Peak values are approximately 0.25 to 0.29 in the buffer layer at n+ ≈ 10.
While an increase in the term P+ would suggest a mean flow deceleration; whereas,
an enhancement of the fluctuating component of the velocity field and Reynolds shear
stresses. Previous flow physics descriptions can be clearly seen at stations s = 1469 mm

and 1665 mm. Down the hilltop, turbulence production begins to recover the inflow
features (attenuation process) as the Reynolds shear stresses decrease in the viscous sub-
layer and buffer region. In addition, flow deceleration by APG tends to destabilize the
boundary layer, inducing turbulence intensification in the outer portion. Based on DNS
studies by Skote et al. (1998), the outer streaks are intensified by strong APG and can
be related to local increases in turbulence production and <u′v′> (outer peaks). As seen
in Figure 2.27, SA and SST models predict outer peaks of turbulence production around
n+ ≈ 1500–2500 at s = 2500 mm, where the separation bubble is thicker. Furthermore,
the production of K inside the bubble is almost negligible, suggesting that the flow is
locally quasi-laminar.

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 59

(a) (b)

Figure 2.27: (a) Inner-scaled K Production; (b) Zoomed view of the inner-scaled K

Production.

Observing the temperature as a passive scalar, from Figure 2.28, the separation bubble
seems to elongate the thermal “plateau”, although the distortion effects are less “violent"
than those seen in the momentum boundary layer. As expected, the predictions at the
separation bubble seem to disagree more than on any other station between turbulence
models. Interestingly, we can now visualize two distinctive logarithmic regions of the
thermal profile: one log slope inside the bubble and the other (steeper) outside the
separation zone up to the thermal boundary layer edge. This log behavior may open up
the opportunity for future better turbulence modeling of passive scalar transport in flow
separation. Furthermore, a deeper analysis must be performed in this sense. In general,
the thermal boundary layer profiles presented in Figure 2.29 follow similar tendencies
(i.e., Reynolds analogy) to those presented for the momentum boundary layer. This is
expected since the temperature is modeled as a passive scalar. Particularly, a high level
of similarity has been observed in ZPG zones since streamwise pressure gradient is a
source of dissimilarity between momentum and thermal fields. For instance, nearby the
hilltop, strong FPG effects were described by the presence of “humps” in velocity profiles
over the log region. However, thermal profiles look very different at s = 1345 mm and
1596 mm, indicating Reynolds analogy breakdown. Actually, a significant portion of
the thermal boundary could be represented by a logarithmic curve fitting, given by the
observed “linear” behavior when plotted on a semi-log scale.

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 60

It is worth highlighting that the 2D results presented in this work assume spanwise
homogeneity. The main expected deviations when considering a full 3D domain and
unsteady simulations can be summarized as follows: (i) The appearance of Görtler-
like vortices due to the strong concave curvatures (δ/R ≈ −0.13 to −0.15, where δ

is the local boundary layer thickness and R is the local radius of curvature) present
in the complex geometry and (ii) Flow separation bubble. Our previous experience on
supersonic turbulent boundary layers subject to strong concave surfaces via DNS (Lagares
et al. 2019) dictated the existence of Görtler-like vortices caused by centrifugal forces,
which in turn, enhanced spanwise flow fluctuations. However, no spanwise inhomogeneity
has been observed in time-averaged flow statistics of turbulent flows. On the other hand,
flow separation at the second concave surface should be ruled by unsteadiness and three-
dimensionality effects. Even when the assumption of spanwise homogeneity may not be
perfect, the results have shown reasonable agreement with wind-tunnel experiments.

Figure 2.28: Thermal profiles in the flow separation bubble at s = 2250 mm, 2350 mm,
and 2500 mm.

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 61

(a) (b)

(c) (d)

(e) (f)

Figure 2.29: Thermal profiles in wall units at locations of: (a) s = 596 mm; (b) s = 710
mm; (c) s = 1345 mm; (d) s = 1596 mm; (e) s = 1862 mm; (f) s = 1990 mm.

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 62

2.4.1 Evaluation of Several Passive Scalars
In this section, the assessment of various molecular Prandtl numbers (e.g., Pr = 0.2,

0.71, and 2.00) is carried out in the transport phenomena of passive scalars. Accordingly,
three turbulent Prandtl numbers, Prt, are prescribed based on empirical correlation
proposed by (Li, Schlatter, Brandt, and Henningson 2009) as follows: Prt = Pr0.4,
which results in Prt = 0.525, 0.872, 1.319 for Pr = 0.20, 0.71, 2.00, respectively. The
purpose of defining turbulent Prandtl numbers is to model the turbulent passive-scalar
diffusivity and the turbulent passive-scalar flux in the transport equation. Figure 2.30(a)
depicts the streamwise variation of the passive-scalar boundary layer thickness. Clearly,
as the molecular Pr increases, the thermal boundary layer slightly shrinks. Similarly,
the Stanton number (proportional to the wall heat flux and inversely proportional to
Pr) is the smallest at the maximum Pr of 2, as seen in Fig. 2.30(b). As expected,
the influence of the molecular Pr on the thermal boundary layer height in turbulent
flow is not as critical as in laminar boundary layers, since wall-normal turbulent mixing
plays a key role as compared to molecular diffusion. On the contrary, the effect of
the Pr on the St is evident due to the implicit presence of the temperature gradient.
Figure 2.31 shows profiles of the passive-scalar or temperature at six streamwise stations
in the complex domain. In general, very similar results are obtained via the SA and
SST turbulence model. Furthermore, profiles at the largest Prandtl number exhibit
steeper slopes, whereas, profiles at Pr = 0.2 depict a gradual variation in the wall-
normal direction. Moreover, in Figure 2.32, profiles of passive scalars are shown at three
different sections of the separation bubble: start, middle, and end. Practically, all profiles
collapse inside the bubble (up to n+ ≈ 100) no matter what the molecular Pr is. Outside
the bubble, there is a tendency for profiles to be steeper as the Pr number increases.

(a) (b)
Figure 2.30: Streamwise variation of (a) the passive-scalar boundary layer thickness,
and, (b) Stanton number.

2.4. RESULTS AND DISCUSSION FOR THE CURVED HILL 63

(a) (b)

(c) (d)

(e) (f)

Figure 2.31: Passive-scalar profiles at several streamwise stations (attached flow zone).

2.5. CONCLUSIONS OF THE CURVED HILL’S ASSESSMENT 64

(a) (b)

(c)

Figure 2.32: Passive-scalar profiles at several streamwise stations (recirculation flow
zone).

2.5 Conclusions of the Curved Hill’s Assessment
This chapter presented a numerical study of a turbulent boundary layer subject to a

curved hill. The study was limited to a RANS simulation plus two eddy-viscosity turbu-
lence models (i.e., SST and SA). The domain geometry was reproduced following work
by Baskaran, Smits, and Joubert (1987). The inlet velocity components and temperature
were recycled and injected from a precursor ZPG simulation to avoid a longer developing
section and better control (and match with experiments) the incoming reference bound-
ary layer parameters. By leveraging a boundary layer identification scheme based on a
potential flow field, it was shown to be in very good agreement with the experimental
data by Baskaran et al. (1987). This approach led to better identification of the turbu-
lent boundary edge to compute the integral parameters and boundary layer thickness.

2.5. CONCLUSIONS OF THE CURVED HILL’S ASSESSMENT 65

Furthermore, the proposed methodology has been resilient and robust in the presence of
strong pressure gradients and significant boundary layer distortion.

Overall, the significant conclusions can be summarized as follows:

• The SA model had a better agreement with the experimental data in those zones
where the turbulent boundary layer remained attached.

• The SST model, on the contrary, has depicted slightly superior agreement with
experiments in the separation bubble (in terms of CP and Cf) as well as in Us pro-
files just upstream of the bubble, capturing more evidently the positively correlated
characteristics of u′ and v′ or positive < u′v′ >.

• Both models have detected outer peaks of < u′v′ >, turbulence production, and
the inclined shear layer caused by strong APG.

• The effect of the detachment is more notable on the velocity profile than on the
thermal profile (with significant differences between turbulent model predictions).

• Strong streamline curvature-driven pressure gradients cause a noticeable Reynolds
analogy breakdown.

• Prandtl number clearly affects more the temperature gradient implicit in the Stan-
ton number than the height of the thermal boundary layer.

• However, more data are needed to objectively judge their overall accuracy in the
separation bubble.

Chapter 3
Scientific Visualization of Fluid

Flows

This chapter aims to provide fundamental knowledge on the visualization of fluid
flows by using ParaView and more recent cutting-edge technologies, such as virtual and
augmented reality (VR/AR). At the same time, it has been developed to serve as a guide
for prospective users. In the previous Chapter 2, the viscous flows and passive scalars’
behaviors over the curved hill were scrutinized in a CFD approach (Paeres, Lagares, and
Araya 2022a) (Paeres, Lagares, and Araya 2022b). In this chapter, scientific visualization
is performed for those cases and additional numerical data with high spatial and temporal
resolution. Results will take advantage of both Virtual Wind Tunnel (Paeres, Santiago,
Lagares, Rivera, Craig, and Araya 2021) and FlowVisXR app (Paeres, Lagares, Santiago,
Craig, Jansen, and Araya 2020) (Paeres, Lagares, and Araya 2021), tools developed for
this research. At the end of this chapter, readers are expected to understand extended
reality (XR) visualization at the fundamental level, enough to explore the broad options
and workarounds currently possible for vast applications and those soon to be discovered
with the continuing XR technology rise.

3.1 CFD Data Post-processing for XR Visualization
In CFD, post-processing is a set of custom steps for a specific investigation performed

after the simulations are completed. Generally, the results of CFD simulation contain ba-
sic fields like velocity, pressure, and temperature in their solutions. To properly execute
an assessment, the data needs to be post-processed. Mentioning all the possible steps for
flow visualization post-processing would be absurd; it is more convenient to show exam-
ples directly involved with the assessment of the presented work and add other simple
examples using Big Data files. The most straightforward visualization is presenting the
whole simulation’s domain with one primary field, for example, the temperature, the ve-
locity’s magnitude, or only one of its components. A slightly more advanced step would
be to extract an iso-surface or the entire colored domain using a custom colormap or
contour to the range of values of the displayed field. An iso-surface is a set of surfaces
with a constant value that has been specified. At the same time, an iso-contour would be

66

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 67

a set of iso-surfaces with several ranges of values. These ranges can be differentiated by
applying different colors to each iso-surface. From the author’s experience, an efficient
approach for extracting an iso-surface from 3D volumetric data is the Marching Cubes
Algorithm. This algorithm can be applied on scripting platforms that read and manip-
ulate the data of the files that contain the CFD solutions (e.g., MatLab and Python).
3D volumetric data refers to a three-dimensional array structured in the form (x,y,z),
where each element in this array contains the value of the field of interest. The element’s
indices are related to its spatial position in the domain of the CFD case.

In this chapter, the intention is to present step by step one technique to visualize fluid
flows conveniently for the user, especially if he or she is unfamiliar with scientific visualiza-
tion. It is worth mentioning that before developing the following methodology, an attempt
to export iso-surfaces in Wavefront OBJ (.obj) format with the Marching Cubes Lewiner
version (Lewiner, Lopes, Vieira, and Tavares 2003) was made in Python. The choice to
explicitly implement the Marching Cubes Lewiner algorithm was discarded because the
most straightforward implementation was to extract iso-surface to only rectangular 3D
volumes. For non-rectangular domains, more calibration and complex techniques were
required for the extraction of iso-surface for each specific CFD case. Because the goal is
scientific visualization, the virtual objects must have true shapes & constructions, and
not fictional designs. Thus, the real appearance’s validation occurs in the CFD simula-
tions process, where the results are from real equations and models.

In the search for ways to visualize CFD results without many complications and for the
methodology to be capable of being automated, the option of the ParaView visualization
toolkit arose. ParaView is a free and open-source multiple-platform software for scientific
visualization developed by Kitware Inc., Sandia and Los Alamos National Labs. Another
open-source tool highly used for 3D computational graphics (i.e., 3D-printed models, an-
imated films, visual effects, motion graphics, interactive 3D applications, virtual reality,
and more.) is called Blender. However, Blender moves away from scientific visualiza-
tion and leans more towards object design, modeling, color rendering, and animation,
a profession apart from a CFD analyst. It is more convenient to use ParaView since
it has been gaining ground in academia over the years. The tools focus on scientific
visualization instead of just 3D animation. Here, an essential ParaView tool will be used
to automate the methodology facilitating the scripting in Python. From ParaView 4.2
version and on, there is a function called Trace, which records every modification made in
the ParaView user interface (UI) and generates a Python script containing all the actions
in chronological order.

Regarding flow animation and the term FPS (frames per second), there are active FPS

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 68

and natural or genuine FPS. The active FPS is used in the visualization process (i.e.,
prescribed in Unity for display rate). Meanwhile, the natural FPS is based on the simu-
lation’s true time steps and sampling. Using the genuine FPS as the active FPS causes
the animation to present the flow’s real velocity; this natural FPS should be the max
limit for the active FPS. Prescribing lower FPS values results in slow motions, which
usually helps to observe turbulent structures. It is important to acknowledge other FPS
limitations, like the device’s display max FPS and the eye’s max frame rate perception.

3.1.1 Manual and Single File Demo
ParaView has a wide variety of file formats it can read. On every version update,

they tend to include more compatible formats. The guide presented here is based on
ParaView 5.10.1. In the CFD science field, simulation results can usually be saved in
.vts, .vtk, or other extensions of the Visualization Toolkit data type family. Figure 3.1
shows as an example the "Open" button pressed (which is also in the "File" tab). The
.vtk file to be opened is specified after searching for it in its directory. Suppose the file
is not shown as available in the list; probably, in that case, it is necessary to specify the
data type extension of the working file.

Figure 3.1: Manually importing files in ParaView 5.10.1.

In figure 3.2 are shown the three drop lists needed to visualize the solutions. At the
top left, the field or parameter to be displayed is specified. ParaView can interpolate
values between cells, so it might seem that there are repeated fields but what happens

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 69

is that for the same parameter, it can have Cell Data values which are the raw values of
the cells’ center and can also have Point Data values which are the interpolated values
at the points that create the cells (Cell points). The second drop list is to specify the
component or the magnitude chosen from the vector field. The third drop list is to
specify the rendering mode. However, the presented examples will always use Surface.
It is essential to mention that sometimes the changes are not automatically applied. For
that, the Apply button will update the changes made in the visualization.

Figure 3.2: Manually selecting a field to visualize in ParaView 5.10.1.

Data manipulations and post-processing calculations have probably been carried out
before opening the data in ParaView. If that is not the case, here will be shown to
calculate streamlines from the velocity vector and apply a contour to it from the x

component of the velocity. After selecting the file in the Pipeline browser, with the field
and component of interest, press the Stream Tracer button (which can also be found
in the Filters/Alphabetical tab). After that is done, Figure 3.3 shows the new Pipeline
Browser ’s component called StreamTracer1. Note that below it is specified to which
vector the streamlines are calculated. Further down is the type of seed, which in this
case was changed to Point Cloud. After scrolling down in the Properties window, Figure
3.4 shows how the location of the seed is changed to the coordinate (x=0.8, y=0.075,
z=0.025) and radius = 0.5 to focus on the flow’s separation zone. ParaView has no
concept of units. See how the Number of Points is increased to 1000 to have more
streamlines included. Also, the visualization is coloring the surface with a contour of the
x component of the velocity U .

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 70

Figure 3.3: Manually applying Stream Tracer filter in ParaView 5.10.1.

Figure 3.4: Manually configuring Stream Tracer filter in ParaView 5.10.1.

Although everything seems neat, adding volume to each streamline is better for achieving
virtual objects that look genuinely 3D. This can be done with a filter called Tube. Note
it this must be applied to the data set StreamTracer1 of the Pipeline Browser. Figure 3.5
shows the application of the Tube filter with a radius of 0.05 and how the recirculating
flow streamlines are visible right in the flow separation zone.

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 71

Figure 3.5: Manually applying Tube filter in ParaView 5.10.1.

After developing the 3D visualization approach in ParaView, the next step consists of
exporting it. Since the ParaView 5.7 version, there is an option to export files in GLTF
format, which will be used as an intermediate format to convert it to USDZ further.
One should select Export Scene located in the File tab and specify the file type *.GLTF
Files (*.gltf) include a new file name. As shown in Figure 3.6, check all boxes in Export
Options and Save it; this will export the whole scenario that is displayed and rendered
in ParaView as GLTF format.

Figure 3.6: Manually exporting scene as GLTF in ParaView 5.10.1.

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 72

3.1.2 Automated and Multiple Files Demo
So far, it has been instructed on how to read a single file, apply a filter, and export

it in GLTF format. It is possible and highly convenient to perform the same procedure
automatically for multiple files employing the Trace tool. The intention is to obtain a
Python script containing all the actions’ commands to automate the process, including
reading multiple files. This example uses eleven files, each representing a different time-
step; these files correspond to the work of Lagares, Paeres, and Araya (2021), where
are high-fidelity numerical results of supersonic spatially-developing turbulent boundary
layers (SDTBL) subject to strong concave and concave curvatures and Mach = 2.86.
There, a DNS simulation used a time-step of 1E − 4 seconds, resulting in a 10,000 Hz or
FPS. However, because the sampling was every ten frames, the natural FPS is 1,000Hz. It
is only needed to export two files from the whole file group in the Trace process and then
edit the Python script for looping the export command for all the desired files. Figure
3.7 shows the first step, which is to turn on the tracing tool in the Tools/Start Trace
tab. Also, the configuration includes tracing all properties, Supplemental Proxies, and
Show Incremental. The Skip Rendering option must not be activated for accurate scene
creation. After pressing the Ok button, as soon as ParaView recognizes the first action,
a new window will appear with the Python script in progress. Several VTS files will
be read in ParaView for this new example simultaneously. A very convenient ParaView
feature is the ability to recognize file groups having the same characters at the beginning
of their names while reading them. Figure 3.8 serves as an example; note how ParaView
recognizes the selected file as a group.

Figure 3.7: Activating Tracing tool in ParaView 5.10.1.

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 73

Figure 3.8: Opening a group of files in ParaView 5.10.1.

After opening files with the tracing tool on, the window of the Python script should be
visible. The example here is to extract an iso-surface from the Q-Criterion parameter
(Hunt et al. 1988) and color it with the temperature field. Figure 3.9 shows how a
single iso-surface was extracted with the value of Q-Criterion = 2500 and colored by the
temperature field by applying the filter Contour.

Figure 3.9: Applying Contour filter to Q-criterion field and coloring with temperature
field in ParaView 5.10.1.

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 74

With the scene ready, it will now be exported as GLTF format following the same steps
shown for Figure 3.6. Figure 3.10 shows the scene corresponding to time-step 0 being
exported with the name Qcriterion2500_colorTemp0.gltf. Figure 3.11 shows the button
for the next time-step (in this case is 1) and also how this new scene is exported with
the corresponding name Qcriterion2500_colorTemp1.gltf.

Figure 3.10: Exporting scene of the Contour filter for time step 0 as GLTF.

Figure 3.11: Exporting scene of the Contour filter for time step 1 as GLTF.

As two time-step scenes have already been exported, the Python script has essentially

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 75

the commands wanted. The tracing is stopped, which is achieved with the Stop Trace
button located in the Tools tab. Figure 3.12 shows how the Python script is saved from
its corresponding window after the tracing is stopped.

Figure 3.12: Saving tracing commands as a Python script.

By opening the Python script preScript.py, there are several essential code lines to iden-
tify. Figure 3.13 shows lines 12 and 13 as marked, where line 12 indicates which files
are to be opened in ParaView, specified as an array of strings called FileName. Line 13
specifies the fields to be read from the VTS files. Line 12 can be edited to avoid manually
typing a long list of names, while line 13 does not require any change.

Figure 3.13: First command lines of the Python script: preScript.py.

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 76

Figure 3.14 shows lines 33 through 45, where the Contour filter starts to be applied.
Note that the "Input" in line 34 is the variable pUVWT_1565326 previously defined in
line 12. Figure 3.15 presents lines 87 and 99, which specify that the iso-surface should
be from the Q-Criterion field and for a value of 2500, respectively.

Figure 3.14: Command lines where a default Contour filter is applied in preScript.py.

Figure 3.15: Setting the correct Contour ’s field and value in preScript.py.

Figure 3.16 shows lines 111, 123, and 128, specifying that the extracted iso-surface should
be colored using the temperature field. Although lines 87, 99, 111, 123, and 128 have
been marked as important, it is recommended not to edit them since other supplementary
lines accompany them. If other commands are desired to be added, it would be more
appropriate to repeat the Trace process in ParaView, but with the new steps to be
implemented. This advice is recommended until the user acquires extensive knowledge
of ParaView’s Python scripting and understands each command line well.

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 77

Figure 3.16: Setting the correct Contour ’s coloring field in preScript.py.

After completion of preScript.py, Figure 3.17 shows how in line 133, the scene is exported
for time-step 0 with its custom name. It also shows how in line 137, it is passed to the
next time-step (i.e., time step 1) and that in line 140, the new scene is also exported
with another custom name. Lines 133 to 143 can be edited to run in a loop generating
all the wanted GLTF files. From line 144 onwards, the lines can be deleted since they
are irrelevant to the presented methodology.

Figure 3.17: Command lines exporting two scenes as GLTF in preScript.py.

As mentioned for Figure 3.13, creating input variables to edit the preScript.py can control
which files are processed and exported as GLTF in order. Figure 3.18 shows the inclusion
of 7 code lines (plus two empty) at the beginning of the script. Line 1 is to import the

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 78

glob library that helps to read the list of files in an alphabetically organized way. Line 2
is for writing the working directory path and is used to build the absolute paths of each
input and output file. Line 3 identifies the VTS files’ directory relative to the working
directory path. Line 4 is the name’s form of the input files, the wildcard character (*)
is used to include all the files with names containing the same characters before the
wildcard character. Line 5 defines the value of the iso-surface that will be extracted from
the Q-criterion field. Line 6 is the analog of line 3 but for the GLTF files’ directory,
with the path relative to the working directory given in line 2. The GLTF files’ directory
must already be created before running the Python script. Lastly, line 7 is where an
array of strings is built containing all the names of the VTS files in alphabetical order
to be further processed one by one. Notice how in the new line 21, to registrationName
argument is given the vts_groupName variable. Also, to FileName argument is given
the vts_FileNames variable, avoiding the need to explicitly write all the names with the
absolute path of each VTS file.

Figure 3.18: New lines added for the input files in preScript.py.

Figure 3.19 shows the new line 108, where previously the value 2500 was explicitly held,
but now it is changed with the variable isoValue, prescribed in line 5 of Figure 3.18;
allowing the reuse of the same Python script for iso-surface extracting with other iso-
values.

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 79

Figure 3.19: Making modular the iso-value used in preScript.py.

To conclude the Python script edition, see Figure 3.20. Notice how on line 145, a for
loop is created to export each file in the vts_FileNames array. In line 146, a new variable
called gltf_fileName is created for each file at a time, where the GLTF files’ directory
replaces the string’s part corresponding to the VTS files’ directory. In line 147, the
variable gltf_fileName has the .vts extension replaced with .gltf. Having set the name
and full path of the current GLTF files pending to be exported, line 150 does the export.
Then, line 152 commands ParaView to move to the next timestep in the scene, and from
there, the loop starts again in line 145 until all VTS files contained in the vts_FileNames
array are processed.

Figure 3.20: Command lines with the exporting loop for every time step in preScript.py.

After upgrading the preScript.py, it should be run from ParaView’s Python shell, which
includes its required libraries. Figure 3.21 shows where the Python Shell window can be
activated and the Run Script button used to execute the script. Also, the screenshot
was captured after all time steps were exported; the maximum time step is ten since the

3.1. CFD DATA POST-PROCESSING FOR XR VISUALIZATION 80

count starts from zero. Figure 3.22 shows the result after extracting all the iso-surfaces.
Note that the VTS files contained several parameter fields with the entire CFD domain.
In contrast, each GLTF file is only an iso-surface of approximately 22 MB in memory
storage size. For the final version of preScript.py, the reader is referred to Appendix B.

Figure 3.21: Running preScript.py in ParaView 5.10.1.

Figure 3.22: Resulting list of files from VTS to GLTF.

3.2. AUGMENTED REALITY WITH USDZ 81

3.2 Augmented Reality with USDZ
The steps for AR flow visualization depend on the final goal and the interactive degree

of virtual objects in the real world. Suppose the idea is only to invoke virtual objects
in the real world via iOS devices; in that case, the USDZ file format is optimal because
Apple devices have built-in apps capable of reading the USDZ files. On the other hand,
if the device to use is not iOS (e.g., Android and HoloLens), a compatible app will be
needed to import the USDZ files. Therefore, a new application was created for this work
using the Unity game engine platform. The benefits of designing the apps with Unity
3D are extending the AR applicability to Android and HoloLens devices and increasing
opportunities to develop interactive manipulations, such as image recognition, which will
be shown and discussed in Section 3.4. Regardless of the final goal with AR, in this
methodology, it is necessary to transform the GLTF files to USDZ format. It will be
presented how to do it from a macOS.

3.2.1 Manual and Single File Demo
Apple has several tools available to convert files from GLTS to USDZ on their page:

https://developer.apple.com/augmented-reality/tools/. This site mentions
four software as downloading options. However, for simplicity, this guide will be only
interested in Reality Converter and USDZ Tools. Reality Converter is the most intuitive
option to convert, edit and view customized USDZ. This software allows file importing in
OBJ, GLTF, and FBX formats by just dragging and dropping to convert them to USDZ.
Figure 3.24 shows the Reality Converter interface. Notice how, after importing one GLTF
file from the example of the previous section, it is colored yellow. The yellow coloring
happens because ParaView cannot export GLTF files preserving the colors used in the
visualization. However, these files conserve the gradient or distribution of the coloring
applied. ParaView, by default, applied whatever Base color is specified. Since the
intention is that the contour represents the temperature field, by applying the following
Figure 3.23, the color map of the USDZ is now a gradient between blue and red. Figure
3.25 shows how to export the USDZ files with a simple drag and drop of images to add
the desired color map.

Figure 3.23: Picture of blue-to-red color gradient used for the USDZ file creation.

https://developer.apple.com/augmented-reality/tools/

3.2. AUGMENTED REALITY WITH USDZ 82

Figure 3.24: Reality Converter software interface with one GLTF file imported.

Figure 3.25: Exporting USDZ using Reality Converter.

3.2.2 Automated and Multiple Files Demo
Reality Converter is very intuitive due to its GUI (Graphical User Interface), but

converting many files to USDZ, is not the most viable option. For multiple files, it
is better to use USDZ Tools (also available on Apple’s website: https://develope
r.apple.com/augmented-reality/tools/). USDZ Tools or USD Python Tools is

https://developer.apple.com/augmented-reality/tools/
https://developer.apple.com/augmented-reality/tools/

3.2. AUGMENTED REALITY WITH USDZ 83

a Python-based pre-compilation with more tools than Reality Converter for modifying
USDZ files. This means converting multiple GLTF files to USDZ can be automated with
a single Python script. The software installation is simple but has a minor issue since
the pre-compilation was done with Python 3.7.9, requiring this specific version of Python
to be installed for compatibility in the libraries. To launch the tool, go to the installed
directory called usdpython and double-click the file called USD.command. It opens a new
terminal window for command lines with the proper environment. It is recommended to
check if the USDZ Tools’ terminal window is running with Python 3.7.9 version; there
are usually bash or zsh profiles that automatically load other versions of Python, and it
may be necessary to temporarily remove these commands from the profiles while using
USDZ Tools.

Figure 3.26 presents the Python script export_usdz.py, which converts all the GLTF
files created in the previous subsection to USDZ. In line 2, the OS library is imported
to execute commands in the terminal from within the Python script. This short script
has the same structure as preScript.py with the automated for loops; the newness of
export_usdz.py are lines 8 and 18. Line 8 is for declaring the name of the picture that
will be applied as coloration; in this example, this is the same one that was dragged and
dropped in Figure 3.25. Moreover, line 18 corresponds to the command line going to
be executed in the terminal window USD.command, which converts the GLTF files to
USDZ using a specific picture file for colorization. The command in line 18 follows the
structure of: usdzconvert <inputFile.gltf> -diffuseColor <colorMapPicture.png> <out-
putFile.usdz>, where the name of the input files contain their absolute path, and the
output file’s extension can be any of the USD family (e.i., .usd , .usda , .usdz).

Figure 3.26: Example of Python script used to convert GLTF files into USDZ in an
automated way.

Figure 3.27 shows two windows; on the left is the terminal created by "USD.command,"

3.2. AUGMENTED REALITY WITH USDZ 84

and on the right are all the files used in the GLTF to USDZ conversion. It is important to
note that the version of Python loaded in the terminal window is verified. The terminal’s
working directory is changed to the address where "export_usdz.py" is. Finally, the
Python script is executed from a command line. Also, it is worth noting the storage-size
reduction by approximately 50%; this is because the USDZ files are binary data files.

Figure 3.27: Terminal window of USDZ Tools with the recently created USDZ files.

Figure 3.28 shows as an example the final result of an AR object invoked and placed over
a table; this visualization was done through iOS devices. The AR object was created
following the methodology explained in this work.

Figure 3.28: AR object visualized through an iOS device.

3.3. UNITY GAME ENGINE FOR XR 85

3.3 Unity Game Engine for XR
As said before, if the plan is to perform XR visualization with Android smartphones

or XR Headsets (e.g., Microsoft HoloLens and HTC VIVE), we need to use platforms like
Unity. In essence, the method is to create an application for the specific device, including
the virtual objects desired to be visualized in the app. Unity is a game engine, which
means it is for creating video games and can currently be installed on macOS, Windows
OS, and Linux. The detail is that the game engine is generally more compatible and
convenient to use on a computer with an operative system (OS) related to the target
device. For example, for Android smartphones and Microsoft HoloLens is better to use
a Windows computer. Unity from a macOS system can build Android apps. However,
to build iOS apps, it is required to use Unity on a macOS system since it needs Apple’s
software Xcode.

The author recommends using an Apple computer with good storage, memory, and graph-
ical specifications. With the help of Apple Boot Camp, it is straightforward to create a
Windows partition, having both macOS and Windows OS available on the same com-
puter. If the computer is limited in storage, the Unity projects can be saved on an
external hard drive. This enables the projects’ portability to other computers with the
same Unity version installed. One advantage of using the platform Unity is the free li-
censes for personal use, meaning the methodology presented here is still free, presuming
the hardware devices have already been bought. Also, designing the apps with Unity
extends the applicability to other smartphones and XR devices. It enables opportunities
to develop more interactive manipulations, such as image recognition.

The Unity installation begins from the official web page: http://unity.com/develo
per-tools with the option Get started to create a Unity account and obtain a free
Personal License. The next step is downloading Unity Hub from the web page: http:
//unity.com/download. After the simple installation of Unity Hub, the next step is
to sign in using the Unity account previously created and activate the license on Unity
Hub. The final step is downloading a Unity editor from Unity Hub with the version and
modules needed for the specific project.

3.3.1 FlowVisXR for the Microsoft HoloLens 1st Gen.
FlowVisXR is an application created for AR visualization as part of the presented

work. This app has already been used in iOS devices and Microsoft HoloLens 1st gen-
eration (henceforth HoloLens1), as can be seen in Paeres et al. (2020) and Paeres
et al. (2021). This sub-section will show how to replicate the FlowVisXR app with

http://unity.com/developer-tools
http://unity.com/developer-tools
http://unity.com/download
http://unity.com/download

3.3. UNITY GAME ENGINE FOR XR 86

the HoloLens1 as the target device.

Starting from Unity Hub without any Unity editor installed, the first step is to install
Unity 2019.4.40f1 LTS with the modules: (i) Android Build Support, (ii) iOS Build Sup-
port, (iii) Universal Windows Platform Build Support, and (iv) Windows Build Support
(IL2CPP). The last two modules mentioned (iii and iv) are required to build HoloLens1
apps. The module of Visual Studio 19 is not necessary since we are going to use Visual
Studio 22. Figure 3.29 displays the Unity editor installed with its modules for FlowVisXR
app creation.

Figure 3.29: Unity 2019.4.40f1 LTS editor installed with its modules for FlowVisXR app.

FlowVisXR on Windows OS needs five extra tools and adjustments before starting the
Unity project. These are: (i) Visual Studio, (ii) Git, (iii) Windows 10 SDK, (iv) Microsoft
Reality ToolKit (MRTK), and (v) Developer mode activation in both computer system
and target device.

3.3. UNITY GAME ENGINE FOR XR 87

Visual Studio 2022

Visual Studio 2022 can be obtained from their official web page: http://visualstud
io.microsoft.com/downloads/, where there is a free license called Comunity. After the
download, it is just to run VisualStudioSetup.exe, which offers to install a specific Visual
Studio version with extra workloads and components. The workloads to include are: (i)
Python development, (ii) .NET Multi-platform App UI development, (iii) .NET desktop
development, (iv) Desktop development with C++, (v) Universal Windows Platform
development, (vi) Mobile development with C++, (vii) Game development with Unity,
and (viii) Game development with C++. Also, from the Individual Components tab, you
will have to scroll down to find SDKs, libraries, and frameworks category and include
USB Device Connectivity and Windows 10 SDK 10.0.20348.0 (the most updated version)
to press Install finally. Figure 3.30 displays an example of Visual Studio 2022 installation
before including the Individual Components in the selection.

Figure 3.30: Visual Studio 2022 installation before including the Individual Components
in the selection.

http://visualstudio.microsoft.com/downloads/
http://visualstudio.microsoft.com/downloads/

3.3. UNITY GAME ENGINE FOR XR 88

Git

One can obtain Git from their official web page: http://git-scm.com/downloads.
At the moment of this research, the most updated version is 2.73.3, which has been
installed using all default settings except for the default editor by Git, where Nano was
selected. After Git is installed, it is required to confirm that it has been added to the
system’s Environment Variables. To do this, open System’s Settings (right-click on the
Windows Start icon) and the Environment Variables window. Confirm there is a variable
named Git, and the value directs to the executable file located in Git’s installation folder.
Usually, the installation address is in C:\Program Files\Git\cmd\. If the Git variable is
not there, create a new one.

Windows 10 SDK

Windows 10 SDK can be obtained from the web page: http://developer.mi
crosoft.com/en-US/windows/downloads/windows-sdk. The installation is very
straightforward and does not require further details.

Microsoft Reality ToolKit

Microsoft Reality ToolKit (MRTK) can be obtained from their official GitHub web
page: http://github.com/Microsoft/MixedRealityToolKit-Unity/releases.
Because we will be using HoloLens1, the specific version we need is v2.4.0 which can
be found by scrolling down through the releases list. After finding the correct release
version, open the drop-list named Assets and download the following Unity packages:
(i) Microsoft.MixedReality.Toolkit.Unity.Foundation.2.4.0.unitypackage,
(ii) Microsoft.MixedReality.Toolkit.Unity.Extensions.2.4.0.unitypackage,
(iii) Microsoft.MixedReality.Toolkit.Unity.Examples.2.4.0.unitypackage, and
(iv) Microsoft.MixedReality.Toolkit.Unity.Tools.2.4.0.unitypackage.

Developer Mode Activation

To activate Developer Mode in Windows OS, go to Settings/Update & Security. In
the category called For developers, activate the button ON. It has below a text saying
Install apps from any source, including loose files. The steps to activate the Developer
Mode in HoloLens1 are practically the same since it uses Windows Holographic OS.

For Android devices, the steps to activate Developer Mode are different for each smart-
phone. Nevertheless, generally is in the device’s settings and About this phone. There,

http://git-scm.com/downloads
http://developer.microsoft.com/en-US/windows/downloads/windows-sdk
http://developer.microsoft.com/en-US/windows/downloads/windows-sdk
http://github.com/Microsoft/MixedRealityToolKit-Unity/releases

3.3. UNITY GAME ENGINE FOR XR 89

tap multiple times on the text that either says Built Number or System Version until a
You are a developer pops out. Then, a new tab should be available in settings called
Developer Options. Enter there and activate USB debugging and Install via USB.

To build iOS apps, Unity has to be running on macOS since the app built uses Apple’s
Xcode. The steps to activate Developer Mode on iOS devices varies between versions.
For example, for the latest iOS 16, go to Settings, select Privacy & Security, scroll down
to Developer Mode, and activate it. Similarly, Apple has a developer account option
where you can obtain a free personal license to install apps on your iOS devices.

FlowVisXR’s Unity Project

Begin by creating a Unity project from Unity Hub using editor version 2019.4.40f1
and the 3D Core template, as shown in Figure 3.31. The project’s name is FlowVisXR
and is saved in an external hard drive with Unity Projects as the location’s folder.

Figure 3.31: FlowVisXR app’s Unity project creation.

After having the new project opened, import the MRTK Unity packages. Select Import
Package > Custom Package from the Assets tab and begin importing the four packages

3.3. UNITY GAME ENGINE FOR XR 90

with the Foundation package, followed by the Extensions package. After importing all
four into the Unity project, it should open a new window of the MRTK Project Config-
urator. Accept and apply all the suggested default settings. Next, from Assets panel,
look up for MRTK > Examples > Demos > HandTracking > Scenes and double-click to
HandInteractionExamples.unity. Accept the suggestions for importing TMP Essentials,
which will open a new scene on Unity, similar to what is shown in Figure 3.32.

Figure 3.32: MRTK’s HandTracking example scene.

Next, go to the File tab and open the Build Settings window. Because this guide is
specifically for HoloLens1, the set-up to apply is: Target Device = HoloLens, Architecture
= x86, Visual Studio Version = Visual Studio 2022, Build and Run = USB Device,
and Build Configuration = Release. Finally, select Universal Windows Platform in the
platform category and click on Switch Platform. Figure 3.33 shows these settings applied,
and other suggestions from MRTK Project Configurator are also accepted. Now, open
Project Settings windows from the Player Settings button or Edit tab. In the Player
Settings category, fill the Company Name, Product Name, and Version. Select Universal
Windows Platform and open the drop-down list of XR Settings. Change Depth Format
to 16-bit depth and make sure Virtual Reality Supported is checked as shown in 3.34.

3.3. UNITY GAME ENGINE FOR XR 91

Figure 3.33: HoloLens with MRTK build settings.

Figure 3.34: HoloLens with Player settings.

At this point, the Unity project is compatible with the HoloLens 1, and it is in a scene
full of gameObjects in the Hierarchy panel, which are examples for getting to know what

3.3. UNITY GAME ENGINE FOR XR 92

components and scripts are needed in fundamental interactions of MRTK.

The methodology continues from the USDZ AR files to import them as virtual objects into
the Unity project. To do this, we need to include an experimental package called USD. In
Unity 2019.4*, the USD package is imported from the Package Manager located in the
Windows tab. By clicking the plus (+) symbol in the Package Manager window, there is
an option to Add from git URL, write the following com.unity.formats.usd@3.0.0-exp.2
and import the package. There should be a new tab for USD; click on the option Import
as prefab. The USD file to import is one of those USDZ files created as examples in the
previous sections. Therefore, we edited the search to All files (*.*) and located the file
named PUVWT_1_565_326000.usdz. After importing the USDZ file, it is automatically
converted into a Unity prefab. Generally, the prefab is saved in the Assets directory; the
minor issue is that the USDZ’s color and texture are not correctly imported in the
importing process. We need to re-import the USDZ files with unique options to fix
this. Double-click the prefab in the Assets panel, which will cause edit mode on the
prefab. In the Inspector panel with the prefab’s properties, change the Materials option
to Import Preview Surface, then click on Refresh values from USD. Figure 3.35 displays
an example of re-importing USD files’ material options. Now, it is time to create a Unity
material. Right-click inside the Assets panel and choose Create > Material. Figure
3.36 shows the new material’s settings. Leaving the name as New Material, change the
Shader to USD/StandardVertexColor. The pending step is to drag and drop the photo
as texture into the Albedo (RGB) box. Here, the image used is the same as on previous
occasions, Figure 3.23. Adding the ColdHot.png file into Unity can be done by dragging
and dropping it into the Assets panel. Having the New Material ready, drop it over the
flow’s mesh in the scene or over the mesh1 gameObject in the Hierarchy panel. Finish
the prefab edition by clicking on the back arrow of the Hierarchy panel.

3.3. UNITY GAME ENGINE FOR XR 93

Figure 3.35: Example of re-importing USD files’ material options.

Figure 3.36: New Material’s properties for the HoloLens USDZ files.

Now is the time to clean the Unity scene from all the gameObjects examples brought by
MRTK and add our custom prefab with the AR manipulation ability. From the Hierarchy

3.3. UNITY GAME ENGINE FOR XR 94

panel, open the drop-list of SceneContent. Figure 3.37 shows all the SceneContent’s
gameObjects children whom we will delete. After deleting them, add the USDZ prefab
by dragging and dropping it over SceneContent to include it in the scene as a gameObject
child. After the prefab is added to the scene, click on it to add a few components with the
Inspector properties. The first component to add is BoundingBox. Drag and drop the
custom prefab into Target Object because it is the gameObject to which we want to add
the AR manipulation ability. Then, for the same component: (i) change the Behaviour
Activation to Activate by pointer, (ii) Deactivate Show Wireframe, and (iii) Activate
Proximity Effect Activate. The final three components to add are Object Manipulator,
NearIntectionGrabbable, CursorContextObjectManipulator.

Figure 3.37: GameObjects to delete from SceneContent in FlowVisXR.

The FlowVisXR Unity project is completed, now is the time to build the app. Go to File
> Build Settings and press the Build button, assuming that we have already set up the
properties. Unity will ask for a directory address to save a few folders and a file with the
extension of *.sln. The *.sln file is the instructions (or solution) to build the app written
as a C++ Project. Figure 3.38 shows the Build Settings used for the HoloLens1 and the
solution file.

Lastly, the *.sln file should be open with Visual Studio 2022. It will understand that
the*.sln file is a Unity solution. It might suggest installing any missing tools to build
the app properly. If that is the case, accept the suggestions, save and restart Unity, and

3.3. UNITY GAME ENGINE FOR XR 95

build the app’s solution again in a clean directory. After the *.sln file opened in Visual
Studio, install the app by connecting the HoloLens1 via USB to the computer and press
the start button with the settings of Debug, x86, and Device. Supposing it is the first time
connecting the HoloLens to the computer, Visual Studio will ask to pair the device using a
PIN. To get this code, in the HoloLens, go to Settings/Update & Security/ For developers.
There is an option for pairing; if pressed, it will generate the PIN needed. Figure 3.39
shows Visual Studio asking for the pairing PIN and the correct settings before pressing
play. Figure 3.40 presents a HoloLens1 screen capture while running the FlowVisXR app
in front of the computer used to build the app. For more details with MRTK access:
https://youtube.com/playlist?list=PLQMQNmwN3FvzWQ1Hyb4XRnVncvCmcU8YY.

Figure 3.38: FlowVisXR Unity app build.

https://youtube.com/playlist?list=PLQMQNmwN3FvzWQ1Hyb4XRnVncvCmcU8YY

3.3. UNITY GAME ENGINE FOR XR 96

Figure 3.39: Visual Studio 2022 installing FlowVisXR on the HoloLens.

Figure 3.40: Screen capture of HoloLens running FlowVisXR.

3.3. UNITY GAME ENGINE FOR XR 97

3.3.2 Virtual Wind Tunnel for the HTC VIVE
Virtual Wind Tunnel (VWT) is an application created for VR visualization as part

of the presented work. This app has been used with the HTC VIVE, as seen in Paeres
et al. (2020) and Paeres et al. (2021).

VWT’s Unity Project

Starting from Unity Hub, the first step is installing Unity 2021.3.11f1 without needing
additional modules (assuming you already have Visual Studio) and creating a Unity
project with a 3D (core) template. Given that the present methodology will cause a high
computational load with the files transfers and render as part of the virtual environment,
the Unity project is recommended to be saved locally on the computer for optimal hard
drive and graphic board performance.

For connectivity between VR devices (e.g., HTC VIVE) and Unity, a potent tool is the
SteamVR from the Steam platform. Steam software can be downloaded from the official
web page: http://store.steampowered.com/about/. After having the Steam platform
installed and opened, lookup for the SteamVR tool and install it, as is shown in 3.41.

Figure 3.41: Installing SteamVR tool on the Steam platform.

SteamVR has a plugin registered as a commercial asset in Unity. Sign in with the Unity

http://store.steampowered.com/about/

3.3. UNITY GAME ENGINE FOR XR 98

account on the following web page: http://assetstore.unity.com, and purchase
the SteamVR Plugin asset, which is free. Connect the HTC VIVE hardware to the
computer, leave the SteamVR tool running and then go back to the Unity project. From
the Window tab, open the Package Manager. In the Package Manager window, edit
the packages list filter to My Assets and import everything from the SteamVR Plugin.
Figure 3.42 shows the SteamVR package being imported and the SteamVR running on
Steam. After importing all and because the HTC VIVE is connected and recognized
by SteamVR, Unity will pop up a new window with the title Valve...Settings Window,
suggesting some changes which, after accepting them, restart the Unity editor.

Figure 3.42: SteamVR Plugin imported into Unity project.

From the Hierarchy panel, delete the Main Camera gameObject. Then in the Project
panel, look up the Player prefab and add it to the scene by using drag and drop over the
Hierarchy panel. Figure 3.43 shows the Player prefab added in the scene. Then from the
Edit tab, open Project Settings, and in the XR Plug-in Management category, activate
OpenVR Loader as the provider, following the example of Figure 3.44.

http://assetstore.unity.com

3.3. UNITY GAME ENGINE FOR XR 99

Figure 3.43: Main Camera gameObject deleted while the Player prefab is included.

Figure 3.44: OpenVR Loader provider activation in XR Plug-in Management.

After pressing play on Unity, it will recognize the HTC VIVE device, but it will say
that have missed an input profile. Accept and generate a new profile from the default
example files that Unity will offer in the SteamVR Input window. After generating the

3.3. UNITY GAME ENGINE FOR XR 100

input profile and saving the scene, Unity will look similar to Figure 3.45. There is no
need to edit any binding.

Figure 3.45: SteamVR input profile generation.

The Unity project is already fully set up for VR experiences with the HTC VIVE. How-
ever, the present guide uses the Virtual Wind Tunnel as a dynamic flow visualization
with VR. Thus, as part of VR technology, we must build a virtual environment where
the user will immerse himself. The virtual environment could be a simple building with
walls and a floor; on the world wide web, there are many tutorials on creating rooms,
facilities, etc. However, in this methodology, we are going to import a virtual warehouse
that has been previously created in Unity. It will not be shown how the author built
the virtual warehouse since it is out of the work’s scope and is irrelevant to flow visual-
ization. The virtual warehouse is imported as a custom Unity package with the name
of VWT_warehouse.unitypackage. This package was created using a specific rendering
package for a realistic appearance. Therefore, from the Package Manager window, change
the list’s filter to Unity Registry and import the package named High Definition RP (ver-
sion 12.1.7). After installing a new Render Pipeline (RP), generally, there are a lot of
materials and properties adjustments to make. Luckily, HDRP Wizard can apply most
of all adjustments by simply pressing Fix All, as shown in Figure 3.46. After applying all
the suggested fixes, there are a few more to do manually. First, go to Edit > Rendering
> Materials and select CConvert All Built-in Materials to HDRP. Figure 3.47 display
the VTW with all built-in materials converted to HDRP and from where you can do it.

3.3. UNITY GAME ENGINE FOR XR 101

Figure 3.46: High Definition RP package imported to the Unity project.

Figure 3.47: All built-in materials converted to HDRP.

The SteamVR Plugin package has materials incompatible with HDRP. You can identify
the damaged materials with a hot pink color or showing completely invisible. Figure
3.48 shows a collection of materials that appears invisible and are located in Assets

3.3. UNITY GAME ENGINE FOR XR 102

> SteamVR > InteractionSystem > Teleport > Materials. These are being fixed by
first changing the materials’ Shader to Standard. Like in the previous image, select the
materials one by one while holding the Cntrl key down, then, in the Inspector panel,
change the materials’ Shader to Standard. Figure 3.49 shows the materials with a hot
pink color. Without deselecting the materials, go to Edit > Rendering > Materials and
select Convert Selected Built-in Materials to HDRP. Apply the same fixing process to
the materials that have the invisible resemblance or hot pink color located in Assets >
SteamVR > InteractionSystem > Core > Materials. Ignore those materials with URP
(Ultra Render Pipeline) in their name since these are for a different Render Pipeline and
are not used in this project.

Figure 3.48: SteamVR materials resembling as invisible due to incompatibility with
HDRP.

3.3. UNITY GAME ENGINE FOR XR 103

Figure 3.49: Converting the SteamVR materials to HDRP.

Because the warehouse’s scene is different from the one used in the begging, again, lookup
for the Player prefab in the Project panel. Drag and drop it in the Hierarchy panel.
Figure 3.50 displays the VWT with the Player gameObject in the scene and also shows
the values applied in the Transform component of the Inspector panel. The next step is
to create the ability to teleport for the VR user and the floor where the command can be
used. From the Project panel, lookup for Teleporting prefab and add it to the Hierarchy
panel. After selecting the Teleporting gameObject from the Hierarchy panel, identify the
line of Area Visible Material in the Teleport (script) component. To this line, change the
material to HoverHighlight, located in Assets > SteamVR > InteractionSystem > Core
> Materials from the Assets panel. Figure 3.51 shows the HoverHighlight material used
for the Area Visible Material. Note material appears to be invisible, but in a few steps
is going to be fixed.

3.3. UNITY GAME ENGINE FOR XR 104

Figure 3.50: Player prefab added to the VWT scene.

Figure 3.51: Changing the Area Visible Material in the Teleport script component.

To create the floor where the teleport will be used, right-click on the Hierarchy panel and
select 3D object > Plane. Rename it to Teleporting Area, and in his Transform values
set for the position: x=0, y=0, z=0, and scale: x=100, y=1, z=100, making the floor

3.3. UNITY GAME ENGINE FOR XR 105

the same shape and location as the warehouse’s floor. To the Teleporting Area gameOb-
ject, add a new component called Teleporting Area, which is a script. Continuing in the
Inspector panel, identify the component called Hover Highlight (Material), and in the
category of Surface Options, set the following settings: (i) Surface Type = Transpar-
ent, (ii) Double-Sided GI = Off, (iii) Material Type= Translucent, and (iv) all boxed
unchecked. Also, for the Surface Inputs category, set the Base Maps color to R=255,
G=255, B=255, and A=0. Figure 3.52 can be used as an example of the Hover Highlight
(Material).

Figure 3.52: Hover Highlight Material setup.

The virtual environment has been completed to this point, including the teleport ability
within the virtual warehouse. Nevertheless, the goal here is to transform the virtual ware-
house into a virtual wind tunnel. We need to find a way to automate the import process
(for the high number of USDZ per time-frames) and the flow animation using the stop-
motion technique. To use USDZ files in this Unity project, we will have to use the same
Unity packages used for the FlowVisXR app, called USD. Open the Project Manager win-
dow, click on the plus (+) symbol, and import the asset by name: com.unity.formats.usd.
After importing the USD package, right-click on the Assets panel to create a folder with
the name Resources. Within the Resources folder, create two new folders with names:
(i) ToImport and (ii) Prefabs. In the ToImport folder, drag and drop all the USDZ files
you want to import into the Unity project. The Prefabs folder is where all the USDZ
files converted into prefabs will be stored. You might think that the USDZ files’ import

3.3. UNITY GAME ENGINE FOR XR 106

requires many manual steps. Well, for the VWT, two scripts were made to automate the
process and make it more convenient, which can easily be re-used or adapted for other
Unity Projects. The scripts are named usdzToPrefab.cs and prefabMeshAnimator.cs and
can be found in Appendix E.

Drag and drop the files into the Unity project to add the automation scripts. However,
to use these in Unity, the fundamental instructions are: (i) In the Hierarchy panel, create
an Empty gameObject and name it Importer. To Importer, add the script usdzToPrefab
as a component. If the Importer gameObject is activated with the correct settings,
the automated importing of the USDZ files will start after pressing play in Unity. (ii)
Similarly, in the Hierarchy panel, create an Empty gameObject with the name Flow1. To
Flow1, add the script prefabMeshAnimator as a component. If the Flow1 gameObject is
activated with the correct setting, the animation will start after pressing play in Unity.
Never run Unity with both scripts on the Importer and Flow1 gameObjects activated
simultaneously. The names of the gameObjects are not required to be precisely the
ones used in this guide. For the usdzToPrefab script, the addresses are relative to the
Assets directory; meanwhile, for the prefabMeshAnimator, the addresses are relative to
the Resources directory.

In the example of this guide, the first time-frame file is named PUVWT_1-565.266000.usdz,
and the last one is PUVWT_1-565.267820.usdz. Given that we have every ten time-
frames, the total number of files is 183. Note that the first 14 characters in their name
never change; this combination is called the General File Name and is used in both au-
tomation scripts. In this example, the counter goes from 600 to 782, meaning the Initial
Frame is actually 600. Moreover, because we know both addresses of the ToImport and
Prefabs folders, we can now fulfill the configuration for both scripts. Figure 3.53 shows
the configuration of the usdzToPrefab script as an example. The last thing to create is
the material used for the prefabMeshAnimator script. As it was done for the FlowVisXR
project, right-click on the Assets panel and select Create > Material. To this new mate-
rial, apply the Shader named HDRP > 3DSMaxPhysicalMaterial since we are now using
HDRP. Import to Unity the same ColdHot.png (see Fig. 3.23) into the Assets panel. Add
the image file into the BaseColorMap box, as shown in Figure 3.54. Figure 3.55 presents
the settings used for the prefabMeshAnimator script and is a screenshot of the Virtual
Wind Tunnel running perfectly with its flow animation. For more details with SteamVR
access: https://youtu.be/5C6zr4Q5AlA.

https://youtu.be/5C6zr4Q5AlA

3.3. UNITY GAME ENGINE FOR XR 107

Figure 3.53: Example of the configuration for the usdzToPrefab script.

Figure 3.54: Creation of the material used for the VWT flow animation.

3.4. CONCLUSIONS OF FLOW VISUALIZATION WITH XR 108

Figure 3.55: Virtual Wind Tunnel running the flow animation.

3.4 Conclusions of flow visualization with XR
It is concluded that the presented visualization methods have achieved the objectives

and goals set for the current thesis. Figure 3.56 shows two versions of the Virtual Wind
Tunnel; the variations are in the building designs or decorations applied, in other words,
aesthetic differences. Figure 3.56(a) also shows the VWT performing visualization of the
iso-surface of instantaneous streamwise velocity extracted from our lab’s DNS database
(HPCV 2018). The algorithms developed in this research have been used for other works,
meaning the Broad Impact expected from the present work has been accomplished. XR
technology is amazingly growing in applications and methods, which is hard to track. For
example, it was not shown as part of the guide, but the FlowVisXR app can recognize
images designated as triggers for the emergence of virtual objects from a database into the
device’s eyesight using additional libraries. This technologies’ evolution is so accelerated
that a weakness has been identified. The constant tools’ creations and updates are now
frequently causing compatibility issues, leading to the withdrawal of the development
and support of potentially powerful tools.

3.4. CONCLUSIONS OF FLOW VISUALIZATION WITH XR 109

(a)

(b)

Figure 3.56: Virtual Wind Tunnel variations: (a) Simple room design of VWT; (b)
Realistic warehouse design of VWT.

Figure 3.57 show examples of Two-Point Correlation (TPC) coherent structures for an
incompressible flow at relatively low Reynolds numbers. These iso-surfaces of TPCs
were previously obtained via spatial correlations of streamwise velocity fluctuations, u′,
at y+ = 15 (buffer layer) and y+ = 1 (linear viscous layer), respectively; all the databases
from Paeres et al. (2020). The display is performed over a different “virtual” room inside
the “Virtual Wind Tunnel facility” called the Gallery of Coherent Structures.

Figure 3.58 displays a supersonic flow with adiabatic wall condition corresponding to the
work of Paeres et al. (2021). The figure shows a Microsoft HoloLens and FlowVisXR user
rotating the temperature fluctuations field target ±0.4T∞ . FlowVisXR app is currently
supported for iOS devices and Microsoft HoloLens. Android devices have not been tested

3.4. CONCLUSIONS OF FLOW VISUALIZATION WITH XR 110

yet, but to the author’s knowledge, building the app for Android is straightforward.
Demonstrations can be watched at the official APS Gallery of Fluid Motion site. Videos
DOIs (Digital Object Identifier) are: (i) https://doi.org/10.1103/APS.DFD.2020.G
FM.V0045 and (ii) https://doi.org/10.1103/APS.DFD.2021.GFM.V0028.

(a) (b)

Figure 3.57: Streamwise velocity fluctuations at (a) y+ = 15, (b) y+ = 1.

Figure 3.58: Microsoft HoloLens MR visualization example.

https://doi.org/10.1103/APS.DFD.2020.GFM.V0045
https://doi.org/10.1103/APS.DFD.2020.GFM.V0045
https://doi.org/10.1103/APS.DFD.2021.GFM.V0028

Chapter 4
Final Remarks and Future Work

The present thesis was based upon CFD simulations utilizing the RANS approach
with OpenFOAM software, numerical results post-processing via scripting and scientific
visualization toolkit (i.e., Python and ParaView), to finally elucidate through the analysis
and XR, the details behind momentum and passive scalar transport phenomena during
turbulent boundary layer separation. An extensive DNS database from our team was
used as validation data for the CFD cases’ initialization. In the post-processing phase,
a new scheme to calculate boundary layer parameters was proposed as a hypothesis.
Furthermore, experimental data from Baskaran, Smits, and Joubert (1987) was used as
corroboration evidence for the hypothesis.

Chapter §1 gave a broad theoretical preparation for the reader. The chapter commu-
nicated fundamental background regarding (i) fluid dynamics, (ii) computational fluid
simulations, (iii) flow separation phenomena, (iv) passive scalar transport (e.g., heat
and pollutants), and (v) visualization of objects through XR (i.e., Virtual, Mixed and
Augmented Reality). From the resistance’s notion in history to the Reynolds-Averaged
Navier-Stokes (RANS) equations’ derivation was covered, including the boundary layer
detachment phenomenon. After explaining DNS, LES, and RANS methods, the most
common turbulent models were explained. The reader acquired nomenclature prepara-
tion and enough parameters definitions needed to understand the flow’s analysis per-
formed. Finally, Chapter §1 provided a sufficient background of scientific visualization
with Extended Reality (XR) to educate the reader in identifying each regime of the Real-
ity Continuum since XR is expected to take over the daily basis related to any technology.

Chapter §2 discussed CFD post-processing via RANS and analyzed several aspects of
the selected scenario: an incompressible turbulent flow over a curved hill. A laminar
flow over a flat plate was initially tested and validated, which complied with the classical
Blasius solution. Plotted results of (i) dimensionalized & non-dimensionalized velocity
and temperatures fields, (ii) Skin friction coefficient, and (iii) Stanton number over the
plate were shown to prove the theoretical and numerical solutions agreement. Also,
turbulent flow over a flat plate was presented. The turbulent flat plate (precursor)
solutions were examined until the best match was injected as an inflow profile for the

111

3.4. CONCLUSIONS OF FLOW VISUALIZATION WITH XR 112

turbulent flow over the curved hill. In terms of the curved hill scenario, two eddy-
viscosity turbulence models (i.e., SST and SA) were used in this thesis. The pressure
gauge, velocity, and temperature field contours were visible, as the pressure and skin
friction coefficients agreed well with the experimental data.

Overall, the SA model had a better agreement with the experimental data in those
zones where the turbulent boundary layer remained attached, for instance, in Cp, Cf ,
and Us predictions. On the contrary, the SST model has depicted slightly superior
agreement with experiments in the separation bubble (in terms of Cp and Cf) as well
as in Us profiles just upstream of the bubble, capturing more evidently the positively
correlated characteristics of u′ and v′ or positive < u′v >. Both models have detected
outer peaks of < u′v >, turbulence production, and the inclined shear layer caused by
strong APG. We also highlighted the more notable effect of the detachment on the velocity
profile (with significant differences between turbulent model predictions) than on the
thermal profile. Strong streamline curvature-driven pressure gradients cause a noticeable
Reynolds analogy breakdown. However, more data are needed to objectively judge their
overall accuracy in the separation bubble. Additionally, there is a more dominant effect
of the molecular Prandtl number (Pr) in the near wall region of turbulent boundary layer
flows than in the outer region, where turbulent mixing prevails over molecular diffusion.
As expected, the local Stanton number increases as Pr decreases.

Finally, Chapter §3 showed the flow visualization automated algorithm and the two
XR visualization tools conceived for the presented thesis. The algorithm utilizes the
capacities of the ParaView visualization toolkit and the USDZ data type to generate
virtual objects. It has already been used for other works, meaning the Broad Impact
expected has been accomplished. The Virtual Wind Tunnel (used for Virtual Reality)
and FlowVisXR app (used for Augmented Reality) achieved the objectives and goals set
for the current thesis. Five research items related to this work have been published, one
is a journal paper, and three others were directly based on the XR methods presented
in this job. XR technology is amazingly growing in applications and methods, which
is hard to track. The evolution is so accelerated that a weakness has been identified.
The constant tools creations and updates are now causing compatibility issues between
the tools and libraries, leading to the withdrawal of the development and support of
potentially powerful tools.

4.1. FUTURE WORK 113

4.1 Future Work
Recalling, the main goals of this work are: (i) Improve the boundary layer’s behavior

knowledge in the separation zones related to pressure gradients, (ii) Discern the pas-
sive scalar transport in the separation zones, (iii) Sharpen the reader’s fluid mechanics
knowledge and scientific data visualization with XR, and (iv) Develop a tool for immer-
sive visualization of CFD data results, enabling manipulation of virtual objects for clear
examination.

To reach the desired outcomes, the following objectives were chosen:
• Perform laminar and turbulent simulations over a flat plate.
• Simulate the turbulent flow over the curved hill.
• Compute statistics of the velocity and passive scalar transport field considering the
effect of different Prandtl numbers.
• Present a scheme to calculate boundary layer parameters to assure the CFD results.
• Define a simple methodology for VR and AR data visualization.
• Present the Virtual Wind Tunnel and FlowVisXR app as the enhancement approaches
for scientific data visualization.

It can be said that all the objectives for this research still have been fully met. Given
the results and conclusions, additional validation sources will be included for future steps
to better characterize the considered model’s performance in strong pressure gradients.
Further, we will extend this study to a 3D geometry and conduct a large eddy simulation
(LES) analysis to better capture the unsteadiness of the detached boundary layer and
the laminarescent state we have hypothesized inside the separation bubble. Additionally,
we will further investigate the proposed approach for boundary layer detection and its
resiliency in more complex geometries and stronger pressure gradients and extend the
study to other turbulence closure models.

Appendix A
From Navier-Stokes Equations to

RANS

For an incompressible fluid, the continuity and Navier-Stokes equations in Carte-
sian coordinates are, respectively:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (A.1)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂P

∂x
+ µ

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
+ Fx

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂P

∂y
+ µ

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
+ Fy

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂P

∂z
+ µ

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
+ Fz (A.2)

where u, v, w are the velocity components, P is the pressure, µ is the molecular kinematic
viscosity, and x, y, z are the spatial unit vectors; in its tensor forms would it be:

∂ui

∂xi

= 0 (A.3)

ρ
Dui

Dt
= −∂P

∂xi

+ µ∆ui + Fi (A.4)

Because we might want to adapt these equations considering extra volume forces, we add
the term of Fi.

For the Reynolds Averaged Navier-Stokes (RANS) approach, the goal is to only solve

114

APPENDIX A. 115

the mean fields numerically, in other words, transform the Navier-Stokes equations to
only have averaged terms but maintain the same form as the original equations. To
achieve this we apply the following mathematically decomposition (known as Reynolds
decomposition):

u = ū + u′ , v = v̄ + v′ , w = w̄ + w′ (A.5)

where momentary (or instantaneous) values, u, are decomposed into the sum of mean
values, ū, and fluctuations values, u′, using here the velocity component u as an example,
but analogously would be the same formulation for others parameters like pressure (P),
density (ρ) or temperature (t). This averaging method causes the mean values to be
independent of time, while its values are fixed in space. In the case of fluctuating values,
the time-averaged of these is zero, by definition of:

u′ = 0 , v′ = 0 , w′ = 0 , P ′ = 0 (A.6)

Applying equation A.5 into continuity equation A.1 and time-averaging we get:

∂ū

∂x
+ ∂u′

∂x
+ ∂v̄

∂y
+ ∂v′

∂y
+ ∂w̄

∂z
+ ∂w′

∂z
= 0 (A.7)

and with the rules of time averaging:

¯̄f = f̄ , f + g = f̄ + ḡ , f̄ · g = f̄ · ḡ ,
∫

fds =
∫

f̄ds , f · g ̸= f̄ · ḡ
(A.8)

∂ū

∂x
= 1

∆t

∫ t0+t1

t0

∂ū

∂x
dt = ∂

∂x

1
∆t

∫ t0+t1

t0
ūdt = ∂ ¯̄u

∂x
= ∂ū

∂x

∂u′

∂x
= 1

∆t

∫ t0+t1

t0

∂u′

∂x
dt = ∂

∂x

1
∆t

∫ t0+t1

t0
u′dt = 0 (A.9)

the continuity equation of RANS (A.7) is reduced to:

APPENDIX A. 116

∂ū

∂x
+ ∂v̄

∂y
+ ∂w̄

∂z
= 0 (A.10)

Now, for the Navier-Stokes equations, first let’s transform the advection term from
equation A.2, and with help of the continuity equation A.10 we have:

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ∂u2

∂x
+ ∂uv

∂y
+ ∂uw

∂z
− u

����������
(

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
(A.11)

replacing eq. A.11 into eq. A.2, adding eq.A.5 and the time averaging we would see:

ρ

(
∂(ū + u′)

∂t
+ ∂(ū + u′)2

∂x
+ ∂(ū + u′)(v̄ + v′)

∂y
+ ∂(ū + u′)(w̄ + w′)

∂z

)
= −∂(P̄ + P ′)

∂x
+

µ

(
∂2(ū + u′)

∂x2 + ∂2(ū + u′)
∂y2 + ∂2(ū + u′)

∂z2

)
+ Fx ,

ρ

(
∂(v̄ + v′)

∂t
+ ∂(v̄ + v′)(ū + u′)

∂x
+ ∂(v̄ + v′)2

∂y
+ ∂(v̄ + v′)(w̄ + w′)

∂z

)
= −∂(P̄ + P ′)

∂y
+

µ

(
∂2(v̄ + v′)

∂x2 + ∂2(v̄ + v′)
∂y2 + ∂2(v̄ + v′)

∂z2

)
+ Fy ,

ρ

(
∂(w̄ + w′)

∂t
+ ∂(w̄ + w′)(ū + u′)

∂x
+ ∂(w̄ + w′)(v̄ + v′)

∂y
+ ∂(w̄ + w′)2

∂z

)
= −∂(P̄ + P ′)

∂z
+

µ

(
∂2(w̄ + w′)

∂x2 + ∂2(w̄ + w′)
∂y2 + ∂2(w̄ + w′)

∂z2

)
+ Fz

(A.12)

and with the same rules of equations A.8 & A.9, the Navier-Stokes equations for RANS
are reduced to:

APPENDIX A. 117

ρ

(
∂ū

∂t
+ ∂uu

∂x
+ ∂u′u′

∂x
+ ∂uv

∂y
+ ∂u′v′

∂y
+ ∂uw

∂z
+ ∂u′w′

∂z

)
= −∂P̄

∂x
+ µ

(
∂2ū

∂x2 + ∂2ū

∂y2 + ∂2ū

∂z2

)
+ Fx ,

ρ

(
∂v̄

∂t
+ ∂vu

∂x
+ ∂v′u′

∂x
+ ∂vv

∂y
+ ∂v′v′

∂y
+ ∂vw

∂z
+ ∂v′w′

∂z

)
= −∂P̄

∂y
+ µ

(
∂2v̄

∂x2 + ∂2v̄

∂y2 + ∂2v̄

∂z2

)
+ Fy ,

ρ

(
∂w̄

∂t
+ ∂wu

∂x
+ ∂w′u′

∂x
+ ∂wv

∂y
+ ∂w′v′

∂y
+ ∂ww

∂z
+ ∂w′w′

∂z

)
= −∂P̄

∂z
+ µ

(
∂2w̄

∂x2 + ∂2w̄

∂y2 + ∂2w̄

∂z2

)
+ Fz

(A.13)

moving fluctuations terms to the RHS and using the Laplacian symbol (∆ = ∂2

∂x2
i
) for

shorthand in the diffusion terms we get:

ρ

(
∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+ w̄

∂ū

∂z

)
= −∂P̄

∂x
+ µ∆ū− ρ

(
∂u′u′

∂x
+ ∂u′v′

∂y
+ ∂u′w′

∂z

)
+ Fx ,

ρ

(
∂v̄

∂t
+ ū

∂v̄

∂x
+ v̄

∂v̄

∂y
+ w̄

∂v̄

∂z

)
= −∂P̄

∂y
+ µ∆v̄ − ρ

(
∂v′u′

∂x
+ ∂v′v′

∂y
+ ∂v′w′

∂z

)
+ Fy ,

ρ

(
∂w̄

∂t
+ ū

∂w̄

∂x
+ v̄

∂w̄

∂y
+ w̄

∂w̄

∂z

)
= −∂P̄

∂z
+ µ∆w̄ − ρ

(
∂w′u′

∂x
+ ∂w′v′

∂y
+ ∂w′w′

∂z

)
+ Fz

(A.14)

or in its tensor form:

ρ
Dūi

Dt
= −∂P̄

∂xi

+ µ∆ūi − ρ

(
∂u′

iu
′
j

∂xj

)
+ Fi (A.15)

Paying attention to the following two terms of the RHS of eq. A.15, notice how we
can group them as:

µ∆ūi − ρ

(
∂u′

iu
′
j

∂xj

)
−→ µ

∂

∂xj

(
∂ūi

∂xj

)
− ρ

∂

∂xj

(
u′

iu
′
j

)
−→ ∂

∂xj

(
µ

∂ūi

∂xj

− ρu′
iu

′
j

)
(A.16)

APPENDIX A. 118

where if we define τ̂ij as the total shear stress tensor:

τ̂ij = µ
∂ūi

∂xj

− ρu′
iu

′
j (A.17)

our final equation for momentum conservation uses the eddy viscosity principle of Boussi-
nesq Hypothesis (Moukalled et al. 2016) where the contribution of the fluctuations terms
can be estimated from a parameter called turbulent kinetic energy. This momentum con-
servation equation for RANS is given as:

ρ
Dūi

Dt
= −∂P̄

∂xi

+ ∂

∂xi

τ̂ij + Fi (A.18)

with
τ̂ij = µ

∂ūi

∂xj

+ ρ

(
νt(

∂ūi

∂xj

+ ∂ūj

∂xi

)− 2
3kδij

)

Appendix B
Post-processing Tools for CFD

B.1 postProcessing.py

import numpy as np
import matplotlib . pyplot as plt
np. seterr (divide ='ignore ', invalid ='ignore ')

meshQuality = 'fine ' #"mid" # 'fine '
set=0 ### CP=0, CF ,St=1, INT=2
workingPATH = './ '

Preparing the path for the three turbulent cases
SSTpath = f"{ workingPATH }../ VTKs/ SST_nCells2708000_100000_100x50000 .txt"
SApath = f"{ workingPATH }../ VTKs/ SA_nCells2708000_100000_100x50000 .txt"
POTENTIALpath = f"{ workingPATH }../ VTKs/

potential_nCells2708000_0_100x50000
.txt"

Nx=100
Ny=50000

def nan_helper (y):
""" Helper to handle indices and logical indices of NaNs.

Input:
- y, 1d numpy array with possible NaNs

Output :
- nans , logical indices of NaNs
- index , a function , with signature indices = index(

logical_indices),
to convert logical indices of NaNs to 'equivalent ' indices

Example :
>>> # linear interpolation of NaNs
>>> nans , x= nan_helper (y)

119

APPENDIX B. 120

>>> y[nans]= np. interp (x(nans), x(~ nans), y[~ nans])
"""

return np.isnan(y), lambda z: z. nonzero ()[0]
def solve_nan (y):

nans , x= nan_helper (y)
y[nans]= np. interp (x(nans), x(~ nans), y[~nans])
return y

def transform (x, y):
Nx , Ny = x.shape
s = np. zeros_like (x)
n = np. zeros_like (y)

s[0, :] = x[0, :]

for ii in range(1,Nx):
for jj in range(Ny):

s[ii ,jj] = s[ii-1, jj] + np.sqrt ((x[ii ,jj] - x[ii-1,jj]) ** 2
+ (y[ii ,jj] - y[ii-1,

jj]) ** 2)
n[ii ,jj] = np.sqrt ((x[ii ,jj] - x[ii ,0]) ** 2 + (y[ii ,jj] - y[

ii ,0]) ** 2)
return s, n

def rotateVelocity_in2D (U: np.ndarray , V: np.ndarray , theta: np. ndarray
):

cosTheta = np.cos(theta). reshape ((-1,1))
sinTheta = np.sin(theta). reshape ((-1,1))
Us = cosTheta * U - sinTheta * V
Vn = sinTheta * U + cosTheta * V
return Us , Vn

def postProcessing_on_wall2D (Cx ,n,Ux , Ux_potential ,nu ,Temp ,Pr):

pOut= 10 # [y_blt u_tau SkinFCoef dispThick momentumT shapeFactor
Re_theta y_tempBLT dTheta /dy
Stanton]

(Nx , Ny) = Cx.shape
Output = np.zeros ((Nx ,pOut))

New Parameters with shape (Nx ,Ny)
Temp_inf = np.mean(Temp[:,9*Ny // 10:Ny])

np.mean(Temp [:,-1])
Temp_0 = np.mean(Temp[:,0])

APPENDIX B. 121

temp_normalized = (Temp- Temp_0)/(Temp_inf - Temp_0)

Preparing arrays
yindex_blt , u_edge , y_blt = np.zeros(Nx ,dtype=int), np.zeros(Nx),

np.zeros(Nx)
u_tau , SkinFCoef = np.zeros(Nx), np.zeros(Nx)
dispThick , momentumT = np.zeros(Nx), np.zeros(Nx)
yindex_tempBLT , y_tempBLT , Stanton = np.zeros(Nx ,dtype=int), np.

zeros(Nx), np.zeros(Nx)
temp_normalized , dThetady0 = np.zeros ((Nx ,Ny)), np.zeros(Nx)

First derivative with 5- points Stencil
dudn=np. zeros_like (Ux)
dudn[:,2:Ny-2] = (-Ux[:,4:] +8*Ux[:,3:-1] -8*Ux[:,1:-3] +Ux[:,:-4])

/(12*(n[:,4:]-n[:,:-4]))
dudn_potential =np. zeros_like (Ux_potential)
dudn_potential [:,2:Ny-2] = (- Ux_potential [:,4:] +8* Ux_potential [:,3

:-1] -8* Ux_potential [:,1:-3] +
Ux_potential [:,:-4])/(12*(n[:,4
:]-n[:,:-4]))

Second derivative with 5- points Stencil
dudn2=np. zeros_like (dudn)
dudn2[:,2:Ny-2] = (-dudn[:,4:] +8*dudn[:,3:-1] -8*dudn[:,1:-3] +

dudn[:,:-4])/(12*(n[:,4:]-n[:,:
-4]))

dudn_potential2 =np. zeros_like (dudn_potential)
dudn_potential2 [:,2:Ny-2] = (- dudn_potential [:,4:] +8*

dudn_potential [:,3:-1] -8*
dudn_potential [:,1:-3] +
dudn_potential [:,:-4])/(12*(n[:
,4:]-n[:,:-4]))

For each X- stations :
for x in range(Nx):

Ux[x,:]= solve_nan (Ux[x,:]) #np. argwhere (np.isnan(x))

Finding yindex_blt , u_edge , y_blt
for y in range(5,Ny-5):

if abs(dudn2[x,y]) <= abs(dudn_potential2 [x,y]) and (Ux[x,
y] ** 2 >= 0.99*
Ux_potential [x,y] ** 2) :

yindex_blt [x] = int(y)
u_edge [x] = Ux_potential [x,y]

APPENDIX B. 122

y_blt[x] = n[x,y] #+ abs(
Ux_potential [x,y]-
Ux[x,y])*(n[x,y+1]-
n[x,y])/(Ux[x,y+1]-
Ux[x,y])

break

Skin Friction Velocity
dudy0 = 0.5*((-Ux[x,4] +8*Ux[x,3] -8*Ux[x,1] +Ux[x,0])/(12*(n[x

,1]-n[x,0]))) + 0.5*((-Ux[x
,5] +8*Ux[x,4] -8*Ux[x,2] +
Ux[x,1])/(12*(n[x,1]-n[x,0]
)))

if dudy0 > 0 :
u_tau[x] = np.sqrt(nu*dudy0) # sqrt(

nu*(du/dy)) @y=0
elif dudy0 < 0 :

u_tau[x] = -1*np.sqrt(nu*(abs(dudy0))) # -sqrt
(nu*(du/dy)) @y=0

Skin Friction Coefficient
if u_tau[x] > 0 :

SkinFCoef [x]= 2*(u_tau[x]/ u_edge [x]) ** 2 # 2*(
u_tau/u_inf)^2

elif u_tau[x] < 0 :
SkinFCoef [x]= -2*(u_tau[x]/ u_edge [x]) ** 2 # -2*(

u_tau/u_inf)^2

Integral parameters
if (yindex_blt [x] % 2) == 0: # A number is even if division by

2 gives a remainder of 0.
pass

else:
yindex_blt [x]+=1

ratio0 =Ux[x,0]/ u_edge [x]
ratioF =Ux[x, yindex_blt [x]]/ u_edge [x]
dispThick [x] = (1- ratio0) + (1- ratioF)
momentumT [x] = (ratio0)*(1- ratio0) + (ratioF)*(1- ratioF)

for y in range(1, yindex_blt [x]):
ratio=Ux[x,y]/ u_edge [x]
if (y % 2) == 0:

dispThick [x] = dispThick [x] + 2*(1-ratio)
momentumT [x] = momentumT [x] + 2*(ratio)*(1-ratio)

else :

APPENDIX B. 123

dispThick [x] = dispThick [x] + 4*(1-ratio)
momentumT [x] = momentumT [x] + 4*(ratio)*(1-ratio)

dispThick [x] = dispThick [x]*(n[x,1]-n[x,0])/3
momentumT [x] = momentumT [x]*(n[x,1]-n[x,0])/3

Thermal calculations
Temp_inf = np.mean(Temp[x,9*Ny // 10:Ny])

np.mean(Temp [:,-1])
Temp_0 = np.mean(Temp[x,0])
temp_normalized [x,:] = (Temp[x,:]- Temp_0)/(Temp_inf - Temp_0)
for y in range(Ny-1):

if temp_normalized [x,y+1] >= 0.99:
y_tempBLT [x]= n[x,y] + (0.99- temp_normalized [x,y])*(n[x

,y+1]-n[x,y])/(
temp_normalized [x,y
+1]- temp_normalized
[x,y])

yindex_tempBLT [x] = int(y)
break

Stanton = h/(rho*Uinf*Cp) = Nusselt /(Re_x * Pr)
h*(Tinf -Tw) = Q_w = -k*(dT/dy)_wall h = -k*(dT/

dy)_wall /(Tinf -Tw)
(nu/Pr) = alpha = k/(rho*Cp)
-k*(dT/dy)_wall /((Tinf -Tw)*(rho*Uinf*Cp)) -alpha * (dT

/dy)_wall /((Tinf -Tw)*Uinf)
dTdy0 = 0.5*((-Temp[x,4] +8*Temp[x,3] -8*Temp[x,1] +Temp[x,0])/

(12*(n[x,1]-n[x,0]))) + 0.5
*((-Temp[x,5] +8*Temp[x,4]
-8*Temp[x,2] +Temp[x,1])/(
12*(n[x,1]-n[x,0])))

Stanton number (here goes a -1*),
Stanton [x]= (nu/Pr)*dTdy0/(u_edge [x]*(Temp_inf - Temp_0)) # -

alpha* dTdy_wall /(u_inf *(
t_inf -T[0]) (nu/Pr) =
alpha= k/(rho*Cp)

APPENDIX B. 124

dThetady0 [x] = 0.5*((- temp_normalized [x,4] +8* temp_normalized [x
,3] -8* temp_normalized [x,1]

+ temp_normalized [x,0])/(12
(n[x,1]-n[x,0]))) + 0.5((
- temp_normalized [x,5] +8*
temp_normalized [x,4] -8*
temp_normalized [x,2] +
temp_normalized [x,1])/(12*(
n[x,1]-n[x,0])))

Output [:,0]= y_blt
Output [:,1]= u_tau
Output [:,2]= SkinFCoef
Output [:,3]= dispThick
Output [:,4]= momentumT
Output [:,5]= dispThick / momentumT #Shape Factor
Output [:,6]= np.mean(Ux_p[:2,1])* momentumT /nu # Reynolds_theta
Output [:,7]= y_tempBLT
Output [:,8]= dThetady0
Output [:,9]= Stanton

return Output

Reading CurveScan data files from Baskaran et al.'s figures
dataCP = np. loadtxt (f'{ workingPATH }../ DigitizedPlots /Cp.txt ')

#
Distances are in [mm]

dataCF = np. loadtxt (f'{ workingPATH }../ DigitizedPlots /Cf.txt ', usecols =(
0,1)) # Distances are

in [mm]
dataINT = np. loadtxt (f'{ workingPATH }../ DigitizedPlots /

CurvedHill_IntegralParameters .txt ')
Distances are in [m]

Reading all the csv files
SSTdata = np. loadtxt (SSTpath). reshape (Nx ,Ny ,7)
SAdata = np. loadtxt (SApath). reshape (Nx ,Ny ,7)
POTENTIALdata = np. loadtxt (POTENTIALpath). reshape (Nx ,Ny ,7)

SST Columns Names= "T","Ux","Uy"," arc_length ","p","Cx","Cy"
T_SST = SSTdata [:,:,0]
Ux_SST , Uy_SST = SSTdata [:,:,1],SSTdata [:,:,2]
n_SST = SSTdata [:,:,3]
p_SST = SSTdata [:,:,4]
Cx_SST , Cy_SST = SSTdata [:,:,5],SSTdata [:,:,6]

APPENDIX B. 125

SA Columns Names= "T","Ux","Uy"," arc_length ","p","Cx","Cy"
T_SA = SAdata [:,:,0]
Ux_SA ,Uy_SA= SAdata [:,:,1],SAdata [:,:,2]
n_SA = SAdata [:,:,3]
p_SA = SAdata [:,:,4]
Cx_SA ,Cy_SA= SAdata [:,:,5],SAdata [:,:,6]

Reading the angle of surface direction to rotate the velocities
angleTheta = POTENTIALdata [:,0,0]

Potential Columns Names= " Normal_x ","Ux","Uy"," arc_length ","p","Cx
","Cy"

Ux_p ,Uy_p = POTENTIALdata [:,:,1],POTENTIALdata [:,:,2]
n_p = POTENTIALdata [:,:,3]
p_p = POTENTIALdata [:,:,4]
Cx_p ,Cy_p = POTENTIALdata [:,:,5],POTENTIALdata [:,:,6]

offset =1.65
Cx_SST , Cy_SST = transform (Cx_SST , Cy_SST)
Cx_SST = (Cx_SST + offset)*1000
Cx_SA ,Cy_SA = transform (Cx_SA ,Cy_SA)
Cx_SA = (Cx_SA+ offset)*1000
Cx_p ,Cy_p = transform (Cx_p ,Cy_p)
Cx_p = (Cx_p+ offset)*1000

if set == 0:
indexRef = 23*Nx // 100

Ux_p ,Uy_p= rotateVelocity_in2D (Ux_p ,Uy_p , angleTheta)
freeVel = np.mean(Ux_p[:indexRef ,1])

#Only taking ZPG stations
print (np.mean(Ux_p[:indexRef ,1]))

plt.title('Wall -Static - Pressure Coeff. distribution ')
plt.plot(dataCP [:,0], dataCP [:,1] ,'o',color="black",alpha=.5,

label= 'Baskaran et al.
Experimental ')

plt.plot(Cx_SA[:,0], (p_SA[:,0]-p_SA[13*Nx // 100 ,0])/(0.5* freeVel **
2) ,'x', color="g" , label= f'{
meshQuality } Mesh SA ',alpha =.75
)

APPENDIX B. 126

plt.plot(Cx_SST [:,0], (p_SST[:,0]-p_SST[13*Nx // 100 ,0])/(0.5*
freeVel ** 2) ,'x', color="r" ,
label= f'{ meshQuality } Mesh SST
',alpha=.75)

plt. legend (loc='best ')
plt. subplots_adjust (bottom =0.18)
plt.xlim ((0,3000))
plt. ylabel ('C_p ')
plt. xlabel ('S [mm]')
plt. xticks (rotation =45)
plt.grid(True , which='both ')
#plt.show ()
plt. savefig (f'{ workingPATH }CP_{ meshQuality }.png ', bbox_inches ="

tight", dpi=300)
plt.cla ()
plt.clf ()
plt.close ()

if set == 1:
Ux_SST , Uy_SST = rotateVelocity_in2D (Ux_SST ,Uy_SST , angleTheta)
Ux_SA ,Uy_SA= rotateVelocity_in2D (Ux_SA ,Uy_SA , angleTheta)
Ux_p ,Uy_p= rotateVelocity_in2D (Ux_p ,Uy_p , angleTheta)

postData_SST = postProcessing_on_wall2D (Cx_SST ,n_SST ,Ux_SST ,Ux_p ,1.
5e-5,T_SST ,0.71)

postData_SA = postProcessing_on_wall2D (Cx_SA ,n_SA ,Ux_SA ,Ux_p ,1.5e-5
,T_SA ,0.71)

plt.title('Skin - friction Coeff. distribution ')
plt.plot(dataCF [:,0], dataCF [:,1] ,'o',color="black",alpha=.5,

label= 'Baskaran et al.
Experimental ')

plt.plot(Cx_SA[:,0], postData_SA [:,2] ,'x', color="g" , label= f'{
meshQuality } Mesh SA ',alpha =.75
)

plt.plot(Cx_SST [:,0], postData_SST [:,2] ,'x', color="r" , label= f
'{ meshQuality } Mesh SST ',alpha=
.75)

plt. legend (loc='best ')
plt. subplots_adjust (bottom =0.18)
plt.xlim ((0,3000))
plt.ylim ((-0.002 ,0.01))
plt. ylabel ('C_f ')
plt. xlabel ('S [mm]')
plt. xticks (rotation =45)
plt.grid(True , which='both ')

APPENDIX B. 127

plt. savefig (f'{ workingPATH }CF_{ meshQuality }.png ', bbox_inches ="
tight", dpi=300)

plt.cla ()
plt.clf ()
plt.close ()

plt.title('Stanton number (St)')
plt.plot(Cx_SA[:,0], postData_SA [:,9] ,'x', color="g" , label= f'{

meshQuality } Mesh SA ',alpha =.75
)

plt.plot(Cx_SST [:,0], postData_SST [:,9] ,'x', color="r" , label= f
'{ meshQuality } Mesh SST ',alpha=
.75)

[y_blt u_tau SkinFCoef dispThick momentumT shapeFactor Re_theta
y_tempBLT dTheta /dy Stanton]

from scipy. optimize import curve_fit #Use non - linear least squares
to fit a function , f, to data.

def func(x, a, b):
return a*np.exp(b*x)

#popt , pcov = curve_fit (func , dataCF [:11 ,0]/1000 , postData_SA [:11 ,6])
popt , pcov = curve_fit (func ,Cx_SA[:22*Nx // 100 ,0]/1000 , postData_SA [:

22*Nx // 100 ,6])
empirical_x = np. linspace (150 ,1000 ,500)/1000
empirical_Re_th = func(empirical_x , *popt)
St_kays = 0.01372* empirical_Re_th ** (-0.25)
St_kays = 0.0287*0.71**(-0.4)*(empirical_x)**(-0.2)

#eq. 13 -18 Kays & Crawford (
1993)

plt.plot(empirical_x *1000 ,St_kays ,'-',label= 'Kays & Crawford (1993
); S_t=$0.01372 Re^{-1/4} _ $
')

plt. legend (loc='best ')
plt. subplots_adjust (bottom =0.18)
plt.xlim ((0,3000))
plt.ylim(0,0.004)
plt. ylabel ('[-]')
plt. xlabel ('S [mm]')
plt. xticks (rotation =45)
plt.grid(True , which='both ')
plt. savefig (f'{ workingPATH }St_{ meshQuality }.png ', bbox_inches ="

tight", dpi=300)
plt.cla ()
plt.clf ()
plt.close ()

APPENDIX B. 128

plt.title('Ratio $S_t /(C_f/2)$')
plt.plot(Cx_SA[:,0], abs(postData_SA [:,9]*2/ postData_SA [:,2]) ,'x'

, color ="g" , label= f'{
meshQuality } Mesh SA ',alpha =.75
)

plt.plot(Cx_SST [:,0], abs(postData_SST [:,9]*2/ postData_SST [:,2]) ,
'x', color="r" , label= f'{
meshQuality } Mesh SST ',alpha=.
75)

empirical_x = np. linspace (150 ,1000 ,500)
empirical_ratio = 0.71 ** (-0.4)*np. ones_like (empirical_x)

Kays & Crawford (1993)
plt.plot(empirical_x , empirical_ratio ,'-',label = 'Kays & Crawford (

1993); $S_t /(C_f/2)$=$Pr^{-2/5}
$')

plt. legend (loc='best ')
plt. subplots_adjust (bottom =0.18)
plt.xlim ((0,3000))
plt.ylim(0,8)
plt. ylabel ('[-]')
plt. xlabel ('S [mm]')
plt. xticks (rotation =45)
plt.grid(True , which='both ')
plt. savefig (f'{ workingPATH } ratioStCf_ { meshQuality }.png ',

bbox_inches ="tight", dpi=300)
plt.cla ()
plt.clf ()
plt.close ()

if set == 2:
dataStats = [596 ,710 ,867 ,1015 ,1139 ,1183 ,1345 ,1469 ,1596 ,1665 ,1730 ,

1862 ,1990] # Integral
parameters ' Stations in [mm]

Ux_SST , Uy_SST = rotateVelocity_in2D (Ux_SST ,Uy_SST , angleTheta)
Ux_SA ,Uy_SA= rotateVelocity_in2D (Ux_SA ,Uy_SA , angleTheta)
Ux_p ,Uy_p= rotateVelocity_in2D (Ux_p ,Uy_p , angleTheta)

postData_SST = postProcessing_on_wall2D (Cx_SST ,n_SST ,Ux_SST ,Ux_p ,1.
5e-5,T_SST ,0.71)

postData_SA = postProcessing_on_wall2D (Cx_SA ,n_SA ,Ux_SA ,Ux_p ,1.5e-5
,T_SA ,0.71)

More versatile wrapper to Create figure and subplot manually

APPENDIX B. 129

https :// stackoverflow .com/ questions / 9103166 /multiple -axis -in -
matplotlib -with -different -
scales

Plot of Integral parameters for SST: (S vs y_blt ShapeFactor
Reynolds_th)

fig , host = plt. subplots (figsize =(8,5)) # (width , height) in inches

par1 = host.twinx ()
par2 = host.twinx ()

host. set_xlabel (" s [mm]")
host. set_ylabel (" Boundary Layer Thickness [mm]") # ($ $)
par1. set_ylabel (" R e y n o l d s $ _ $ [$10x^3$]") # ()

Momentum Thickness [mm]
par2. set_ylabel (" Shape factor ") # ($ ^*$

) Displacement Thickness [mm]

host. set_ylim (-60 , 80)
host. set_yticks (np. arange (20 , 80 , step=10))
par1. set_ylim (-4, 18)
par1. set_yticks (np. arange (2, 14 , step=2))
par2. set_ylim (1,3.5)
par2. set_yticks (np. arange (1.1, 2.1, step=.2))

[y_blt u_tau SkinFCoef dispThick momentumT shapeFactor Re_theta
y_tempBLT Stanton]

p0 , = host.plot(Cx_SST [Nx // 10:8*Nx // 10 ,0], postData_SST [Nx // 10:8*Nx
// 10 ,0]*1000 ,'s', color='b',
alpha=.75)

p1 , = par1.plot(Cx_SST [Nx // 10:8*Nx // 10 ,0], postData_SST [Nx // 10:8*Nx
// 10 ,6]/1000 ,'o', color='c',
alpha=.85)

p2 , = par2.plot(Cx_SST [Nx // 10:8*Nx // 10 ,0], postData_SST [Nx // 10:8*Nx
// 10 ,5],'^', color='m',alpha=.
65)

par3 = host.twiny ()
par4 = par1.twiny ()
par5 = par2.twiny ()

p3 , = par3.plot(dataStats , dataINT [:,1],':s', color="black",alpha=.
5)

p4 , = par4.plot(dataStats , dataINT [:,9]/1000 ,':o', color="black",
alpha=.5)

APPENDIX B. 130

p5 , = par5.plot(dataStats , dataINT [:,7],':^ ', color="black",alpha=.
5)

p6 , = host.plot([],[],':',color="k",alpha=.5,label='Baskaran et al.
Experimental ')

lns = [p6]
host. legend (handles =lns , loc='lower right ',bbox_to_anchor =(1, -0.15

))

Moving the y-axis
host.yaxis. set_label_coords (-0.005 , .68)
host. tick_params (axis='y',direction ='in ',pad=-20 , colors =p0.

get_color ())
par1.yaxis. set_label_coords (1.01 ,.5)
par1. tick_params (axis='y',direction ='in ',pad=-20 , colors =p1.

get_color ())
par2. spines ['left ']. set_position (('outward ', 0))
par2.yaxis. set_label_coords (-0.025 ,.16)
par2.yaxis. set_ticks_position ('left ')
par2. tick_params (axis='y',direction ='in ',pad=-25 , colors =p2.

get_color ())

Turning off redundant axis
par3.axis('off ')
par4.axis('off ')
par5.axis('off ')

host. set_xlim (0, 3000)
par3. set_xlim (0, 3000)
par4. set_xlim (0, 3000)
par5. set_xlim (0, 3000)

host.yaxis.label. set_color (p0. get_color ())
par1.yaxis.label. set_color (p1. get_color ())
par2.yaxis.label. set_color (p2. get_color ())
plt.title(f" Integral parameters of SST { meshQuality } mesh")
plt. savefig (f'{ workingPATH } integralParameters_SST { meshQuality }.png '

, bbox_inches ="tight", dpi=300)
plt.cla ()
plt.clf ()
plt.close ()

Plot of Integral parameters for SA: (S vs y_blt ShapeFactor
Reynolds_th)

fig , host = plt. subplots (figsize =(8,5)) # (width , height) in inches
par1 = host.twinx ()

APPENDIX B. 131

par2 = host.twinx ()
host. set_xlabel (" s [mm]")

host. set_ylim (-60 , 80)
host. set_yticks (np. arange (20 , 80 , step=10))
host. set_ylabel (" Boundary Layer Thickness [mm]") # ($ $)
par1. set_ylim (-4, 18)
par1. set_yticks (np. arange (2, 14 , step=2))
par1. set_ylabel (" R e y n o l d s $ _ $ [$10x^3$]") # ()

Momentum Thickness [mm]
par2. set_ylim (1,3.5)
par2. set_yticks (np. arange (1.1, 2.1, step=.2))
par2. set_ylabel (" Shape factor ") # ($ ^*$

) Displacement Thickness [mm]

[y_blt u_tau SkinFCoef dispThick momentumT shapeFactor Re_theta
y_tempBLT Stanton]

p0 , = host.plot(Cx_SA[Nx // 10:8*Nx // 10 ,0], postData_SA [Nx // 10:8*Nx //
10 ,0]*1000 ,'s', color='b',alpha
=.75)

p1 , = par1.plot(Cx_SA[Nx // 10:8*Nx // 10 ,0], postData_SA [Nx // 10:8*Nx //
10 ,6]/1000 ,'o', color='c',alpha
=.85)

p2 , = par2.plot(Cx_SA[Nx // 10:8*Nx // 10 ,0], postData_SA [Nx // 10:8*Nx //
10 ,5],'^', color='m',alpha=.65)

par3 = host.twiny ()
par4 = par1.twiny ()
par5 = par2.twiny ()
p3 , = par3.plot(dataStats , dataINT [:,1],':s', color="black",alpha=.

5)
p4 , = par4.plot(dataStats , dataINT [:,9]/1000 ,':o', color="black",

alpha=.5)
p5 , = par5.plot(dataStats , dataINT [:,7],':^ ', color="black",alpha=.

5)
p6 , = host.plot([],[],':',color="k",alpha=.5,label='Baskaran et al.

Experimental ')
lns = [p6]
host. legend (handles =lns , loc='lower right ',bbox_to_anchor =(1, -0.15

))

Moving and setting the y-axis
host.yaxis. set_label_coords (-0.005 , .68)
host. tick_params (axis='y',direction ='in ',pad=-20 , colors =p0.

get_color ())
host.yaxis.label. set_color (p0. get_color ())

APPENDIX B. 132

par1.yaxis. set_label_coords (1.01 ,.5)
par1. tick_params (axis='y',direction ='in ',pad=-20 , colors =p1.

get_color ())
par1.yaxis.label. set_color (p1. get_color ())
par2. spines ['left ']. set_position (('outward ', 0))
par2.yaxis. set_label_coords (-0.025 ,.16)
par2.yaxis. set_ticks_position ('left ')
par2. tick_params (axis='y',direction ='in ',pad=-25 , colors =p2.

get_color ())
par2.yaxis.label. set_color (p2. get_color ())

Turning off redundant axis and limiting horizontals
par3.axis('off ')
par4.axis('off ')
par5.axis('off ')
host. set_xlim (0, 3000)
par3. set_xlim (0, 3000)
par4. set_xlim (0, 3000)
par5. set_xlim (0, 3000)

plt.title(f" Integral parameters of SA { meshQuality } mesh")
plt. savefig (f'{ workingPATH } integralParameters_SA { meshQuality }.png ',

bbox_inches ="tight", dpi=300)
plt.cla ()
plt.clf ()
plt.close ()

Plot of Integral parameters for SA ans SST: (S vs
Displacement_Thickness
Momentum_Thickness)

fig , host = plt. subplots (figsize =(8,5)) # (width , height) in inches
host. set_xlabel (" s [mm]")
par1 = host.twinx ()

host. set_ylim (-4, 17)
host. set_yticks (np. arange (0, 17 , step=2))
host. set_ylabel (" Displacement Thickness [mm] ")
par1. set_ylim (-1, 20)
par1. set_yticks (np. arange (0, 9, step=2))
par1. set_ylabel (" Momentum Thickness [mm] ")

[y_blt u_tau SkinFCoef dispThick momentumT shapeFactor Re_theta
y_tempBLT Stanton]

p0 , = host.plot(Cx_SST [Nx // 10:8*Nx // 10 ,0], postData_SST [Nx // 10:8*Nx
// 10 ,3]*1000 ,'d', color='r',
alpha=.75)

APPENDIX B. 133

p1 , = host.plot(Cx_SA[Nx // 10:8*Nx // 10 ,0], postData_SA [Nx // 10:8*Nx //
10 ,3]*1000 ,'d', color='g',alpha
=.75)

p2 , = host.plot(dataStats , dataINT [:,3],':d', color="k",alpha=.5)

p3 , = par1.plot(Cx_SST [Nx // 10:8*Nx // 10 ,0], postData_SST [Nx // 10:8*Nx
// 10 ,4]*1000 ,'p', color="r",
alpha=.75)

p4 , = par1.plot(Cx_SA[Nx // 10:8*Nx // 10 ,0], postData_SA [Nx // 10:8*Nx //
10 ,4]*1000 ,'p', color="g",alpha
=.75)

p5 , = par1.plot(dataStats , dataINT [:,5],':p', color="k",alpha=.5)
p6 , = host.plot([],[],'d',color="g",alpha=.75 ,label='

Turbulent model SA ')
p7 , = host.plot([],[],'d',color="r",alpha=.75 ,label='

Turbulent model SST ')
p8 , = host.plot([],[],':d',color="k",alpha=.5,label='- - Baskaran

et al. Experimental ')
lns = [p6 ,p7 ,p8]
host. legend (handles =lns , loc='best ',labelcolor ='linecolor ')#,

bbox_to_anchor =(1, -0.15))

Moving and setting the y-axis
host.yaxis. set_label_coords (-0.005 , .55)
host. tick_params (axis='y',direction ='in ',pad=-20 , colors ='k')
host.yaxis.label. set_color ('k')
par1.yaxis. set_label_coords (1.01 ,.3)
par1. tick_params (axis='y',direction ='in ',pad=-20 , colors ='k')
par1.yaxis.label. set_color ('k')

Turning off redundant axis and limiting horizontals
host. set_xlim (0, 3000)

plt.title(f" Integral parameters of SA and SST { meshQuality } mesh")
plt. savefig (f'{ workingPATH } integralParameters_SAandSST { meshQuality }

.png ', bbox_inches ="tight", dpi
=300)

plt.cla ()
plt.clf ()
plt.close ()

print ("DONE: postProcessing ")

APPENDIX B. 134

B.2 plot_gridIndependence.py

import matplotlib . pyplot as plt
from pyOF_case import label ,nu ,Cx ,Cy ,onWall ,Ux ,T,Nx ,Ny ,Tplus
from pyOF_case2 import label2 ,Cx2 ,Cy2 ,onWall2 ,Ux2 ,T2 ,Nx2 ,Ny2 , Tplus2
from pyOF_case3 import label3 ,Cx3 ,Cy3 ,onWall3 ,Ux3 ,T3 ,Nx3 ,Ny3 , Tplus3
from pyOF_case4 import label4 ,Cx4 ,Cy4 ,onWall4 ,Ux4 ,T4 ,Nx4 ,Ny4 , Tplus4
from pyOF_case5 import label5 ,Cx5 ,Cy5 ,onWall5 ,Ux5 ,T5 ,Nx5 ,Ny5 , Tplus5
from pyOF_case6 import label6 ,Cx6 ,Cy6 ,onWall6 ,Ux6 ,T6 ,Nx6 ,Ny6 , Tplus6
import scipy. signal as scp
import numpy as np
import _tools as tls

workingPATH = './ '

h_fine = np.sqrt(np.mean(Cx[1:,:,0] - Cx[:-1,:,0]) * np.mean(Cy[:,1:,
0] - Cy[:,:-1,0]))

h_mid= np.sqrt(np.mean(Cx3[1:,:,0] - Cx3[:-1,:,0]) * np.mean(Cy3[:,1:
,0] - Cy3[:,:-1,0]))

h_coarse = np.sqrt(np.mean(Cx5[1:,:,0] - Cx5[:-1,:,0])* np.mean(Cy5[:,1:
,0] - Cy5[:,:-1,0]))

r_midFine = h_mid/ h_fine #r21
r_coarseMid = h_coarse /h_mid #r32

offset =1.65
y=Cy*1000
Cx , Cy = tls. transform (Cx ,Cy)
Cx = (Cx+ offset)*1000
Cx2 , Cy2 = tls. transform (Cx2 ,Cy2)
Cx2 = (Cx2+ offset)*1000
Cx3 , Cy3 = tls. transform (Cx3 ,Cy3)
Cx3 = (Cx3+ offset)*1000
Cx4 , Cy4 = tls. transform (Cx4 ,Cy4)
Cx4 = (Cx4+ offset)*1000
Cx5 , Cy5 = tls. transform (Cx5 ,Cy5)
Cx5 = (Cx5+ offset)*1000
Cx6 , Cy6 = tls. transform (Cx6 ,Cy6)
Cx6 = (Cx6+ offset)*1000

print (np. argwhere (np.isnan(Ux)))
print (np. argwhere (np.isnan(Ux2)))
print (np. argwhere (np.isnan(Ux3)))
print (np. argwhere (np.isnan(Ux4)))
print (np. argwhere (np.isnan(Ux5)))

APPENDIX B. 135

print (np. argwhere (np.isnan(Ux6)))

####
Plotting
####

plt. figure (figsize =(9,7))
plt.title('First off -wall $ _ y ^+$')
plt.plot(Cx[::10 ,0,0], abs(scp. medfilt ((Cy[::10 ,1,0]-Cy[::10 ,0,0]) *

onWall [::10 ,0]/nu)),'-', color="r"
, label= f'{ label }', alpha=1)

plt.plot(Cx2[::10 ,0,0], abs(scp. medfilt ((Cy2[::10 ,1,0]-Cy2[::10 ,0,0])*
onWall2 [::10 ,0]/nu)),'-', color="g"

, label= f'{ label2 }',alpha=1)
plt.plot(Cx3[::5,0,0], abs(scp. medfilt ((Cy3[::5,1,0]-Cy3[::5,0,0]) *

onWall3 [::5,0]/nu)),'--', color="r
", label= f'{ label3 }',alpha=.85)

plt.plot(Cx4[::5,0,0], abs(scp. medfilt ((Cy4[::5,1,0]-Cy4[::5,0,0]) *
onWall4 [::5,0]/nu)),'--', color="g
", label= f'{ label4 }',alpha=.85)

plt.plot(Cx5[::5,0,0], abs(scp. medfilt ((Cy5[::5,1,0]-Cy5[::5,0,0]) *
onWall5 [::5,0]/nu)),' -.', color="r
", label= f'{ label5 }',alpha=.75)

plt.plot(Cx6[::5,0,0], abs(scp. medfilt ((Cy6[::5,1,0]-Cy6[::5,0,0]) *
onWall6 [::5,0]/nu)),' -.', color="g
", label= f'{ label6 }',alpha=.75)

plt. legend (loc='best ')
plt. subplots_adjust (bottom =0.18)
plt.ylim(-0.5,2.5)
plt. ylabel ('[$-$]')
plt. xlabel ('x [m]')
plt. xticks (rotation =45)
plt.grid(True , which='both ')
plt. savefig (f'{ workingPATH } turbulent_Delta1OffWall .png ', bbox_inches ="

tight", dpi=300)
plt.cla ()
plt.clf ()
plt.close ()

VALIDATION
for stat in [596 ,2505]:

Velocity Ux GCI
if stat==596:

height = np.array(range (5,40 ,2))/1000

APPENDIX B. 136

elif stat==2505:
height = np.array(range (14 ,144 ,10))/1000

errorArray = np.zeros ((len(height),3)) #indexx ,indexy ,error %
errorArray2 = np. zeros_like (errorArray)
errorArray3 = np. zeros_like (errorArray)
errorArray4 = np. zeros_like (errorArray)
errorArray5 = np. zeros_like (errorArray)
errorArray6 = np. zeros_like (errorArray)
for i in range(len(height)):

indexX_fine , indexY_fine =tls. get_indexes (stat , height [i],Cx ,Cy)
indexX_mid , indexY_mid =tls. get_indexes (stat , height [i],Cx3 ,Cy3)
indexX_coarse , indexY_coarse =tls. get_indexes (stat , height [i],Cx5

,Cy5)

SST
phi_fineSST =Ux[indexX_fine , indexY_fine ,0]
phi_midSST =Ux3[indexX_mid ,indexY_mid ,0]
phi_coarseSST =Ux5[indexX_coarse , indexY_coarse ,0]
(gci_midFineSST , gci_coarseMidSST) =tls. Get_DiscretizationError (

r_midFine , r_coarseMid ,
phi_fineSST ,phi_midSST ,
phi_coarseSST)

errorArray3 [i,:] =[Cy3[indexX_mid ,indexY_mid ,0],phi_midSST ,
phi_midSST * gci_midFineSST]

errorArray5 [i,:] =[Cy5[indexX_coarse , indexY_coarse ,0],
phi_coarseSST ,
phi_coarseSST *
gci_coarseMidSST]

SA
phi_fineSA =Ux2[indexX_fine , indexY_fine ,0]
phi_midSA =Ux4[indexX_mid ,indexY_mid ,0]
phi_coarseSA =Ux6[indexX_coarse , indexY_coarse ,0]
(gci_midFineSA , gci_coarseMidSA) =tls. Get_DiscretizationError (

r_midFine , r_coarseMid ,
phi_fineSA ,phi_midSA ,
phi_coarseSA)

errorArray4 [i,:] =[Cy4[indexX_mid ,indexY_mid ,0],phi_midSA ,
phi_midSA * gci_midFineSA]

errorArray6 [i,:] =[Cy6[indexX_coarse , indexY_coarse ,0],
phi_coarseSA , phi_coarseSA *
gci_coarseMidSA]

plt. figure (figsize =(9,7))
plt.title('U_x vs y ')

APPENDIX B. 137

plt.plot(Cy[indexX_fine ,:,0], Ux[indexX_fine ,:,0],'--', color="
deeppink ", label= f'{label } at
s={str(round(Cx[indexX_fine ,0,0
],3))} mm ',alpha=.75)

plt.plot(Cy2[indexX_fine ,:,0], Ux2[indexX_fine ,:,0],'--', color="
seagreen ", label= f'{ label2 } at

s={str(round(Cx2[indexX_fine ,0
,0],3))} mm ',alpha=.75)

plt.plot(Cy3[indexX_mid ,:,0], Ux3[indexX_mid ,:,0],':', color="
maroon ", label= f'{ label3 } at s
={str(round(Cx3[indexX_mid ,0,0
],3))} mm ',alpha=.75)

plt.plot(Cy4[indexX_mid ,:,0], Ux4[indexX_mid ,:,0],':', color="g",
label= f'{ label4 } at s={str(
round(Cx4[indexX_mid ,0,0],3))}
mm ',alpha=.75)

eb3= plt. errorbar (errorArray3 [:,0],errorArray3 [:,1],yerr=
errorArray3 [:,2],fmt=' ',ecolor
='maroon ',capsize =3, capthick =3,
elinewidth =1)

eb3[-1][0]. set_linestyle (':')
eb4= plt. errorbar (errorArray4 [:,0],errorArray4 [:,1],yerr=

errorArray4 [:,2],fmt=' ',ecolor
='g',capsize =3, capthick =3,
elinewidth =1)

eb4[-1][0]. set_linestyle (':')

plt.plot(Cy5[indexX_coarse ,:,0], Ux5[indexX_coarse ,:,0],'-.', color
="r", label= f'{ label5 } at s={
str(round(Cx5[indexX_coarse ,0,0
],3))} mm ',alpha=1)

plt.plot(Cy6[indexX_coarse ,:,0], Ux6[indexX_coarse ,:,0],'-.', color
="lime", label= f'{ label6 } at s
={str(round(Cx6[indexX_coarse ,0
,0],3))} mm ',alpha=1)

eb5= plt. errorbar (errorArray5 [:,0],errorArray5 [:,1],yerr=
errorArray5 [:,2],fmt=' ',ecolor
='r',capsize =3, capthick =3,
elinewidth =1)

eb5[-1][0]. set_linestyle ('-.')
eb6= plt. errorbar (errorArray6 [:,0],errorArray6 [:,1],yerr=

errorArray6 [:,2],fmt=' ',ecolor
='lime ',capsize =3, capthick =3,
elinewidth =1)

eb6[-1][0]. set_linestyle ('-.')

APPENDIX B. 138

plt. legend (loc='best ')
plt. subplots_adjust (bottom =0.18)
plt. ylabel ('$[m/s]$')
if stat==596:

plt.xlim(0,0.04)
elif stat==2505:

plt.xlim(0,0.14)
plt. xlabel ('$[m]$')
plt. xticks (rotation =45)
plt.grid(True , which='both ')
plt. savefig (f'{ workingPATH }Us - validation {stat}.png ', bbox_inches ="

tight", dpi=300)
plt.cla ()
plt.clf ()
plt.close ()

Temperature T GCI
if stat==596:

height = np.array(range (5,40 ,2))/1000
elif stat==2505:

height = np.array(range (11 ,141 ,10))/1000
errorArray = np.zeros ((len(height),3)) #indexx ,indexy ,error %
errorArray2 = np. zeros_like (errorArray)
errorArray3 = np. zeros_like (errorArray)
errorArray4 = np. zeros_like (errorArray)
errorArray5 = np. zeros_like (errorArray)
errorArray6 = np. zeros_like (errorArray)
for i in range(len(height)):

indexX_fine , indexY_fine =tls. get_indexes (stat , height [i],Cx ,Cy)
indexX_mid , indexY_mid =tls. get_indexes (stat , height [i],Cx3 ,Cy3)
indexX_coarse , indexY_coarse =tls. get_indexes (stat , height [i],Cx5

,Cy5)

SST
phi_fineSST = Tplus[indexX_fine , indexY_fine ,0]* onWall [

indexX_fine ,1]
phi_midSST = Tplus3 [indexX_mid ,indexY_mid ,0]* onWall3 [

indexX_mid ,1]
phi_coarseSST = Tplus5 [indexX_coarse , indexY_coarse ,0]* onWall5 [

indexX_coarse ,1]
(gci_midFineSST , gci_coarseMidSST) =tls. Get_DiscretizationError (

r_midFine , r_coarseMid ,
phi_fineSST ,phi_midSST ,
phi_coarseSST)

APPENDIX B. 139

errorArray3 [i,:] =[Cy3[indexX_mid ,indexY_mid ,0],phi_midSST ,
phi_midSST * gci_midFineSST]

errorArray5 [i,:] =[Cy5[indexX_coarse , indexY_coarse ,0],
phi_coarseSST ,
phi_coarseSST *
gci_coarseMidSST]

SA
phi_fineSA = Tplus2 [indexX_fine , indexY_fine ,0]* onWall2 [

indexX_fine ,1]
phi_midSA = Tplus4 [indexX_mid ,indexY_mid ,0]* onWall4 [

indexX_mid ,1]
phi_coarseSA = Tplus6 [indexX_coarse , indexY_coarse ,0]* onWall6 [

indexX_coarse ,1]
(gci_midFineSA , gci_coarseMidSA) =tls. Get_DiscretizationError (

r_midFine , r_coarseMid ,
phi_fineSA ,phi_midSA ,
phi_coarseSA)

errorArray4 [i,:] =[Cy4[indexX_mid ,indexY_mid ,0],phi_midSA ,
phi_midSA * gci_midFineSA]

errorArray6 [i,:] =[Cy6[indexX_coarse , indexY_coarse ,0],
phi_coarseSA , phi_coarseSA *
gci_coarseMidSA]

plt. figure (figsize =(9,7))
plt.title(' $ $ vs y ')
plt.plot(Cy[indexX_fine ,:,0], abs(Tplus[indexX_fine ,:,0]* onWall [

indexX_fine ,1]),'--', color="
deeppink ", label= f'{label } at
s={str(round(Cx[indexX_fine ,0,0
],3))} mm ',alpha=.75)

plt.plot(Cy2[indexX_fine ,:,0], abs(Tplus2 [indexX_fine ,:,0]* onWall2 [
indexX_fine ,1]),'--', color="
seagreen ", label= f'{ label2 } at

s={str(round(Cx2[indexX_fine ,0
,0],3))} mm ',alpha=.75)

plt.plot(Cy3[indexX_mid ,:,0], abs(Tplus3 [indexX_mid ,:,0]* onWall3 [
indexX_mid ,1]),':', color="
maroon ", label= f'{ label3 } at s
={str(round(Cx3[indexX_mid ,0,0
],3))} mm ',alpha=.75)

APPENDIX B. 140

plt.plot(Cy4[indexX_mid ,:,0], abs(Tplus4 [indexX_mid ,:,0]* onWall4 [
indexX_mid ,1]),':', color="g",
label= f'{ label4 } at s={str(
round(Cx4[indexX_mid ,0,0],3))}
mm ',alpha=.75)

eb3= plt. errorbar (errorArray3 [:,0],errorArray3 [:,1],yerr=
errorArray3 [:,2],fmt=' ',ecolor
='maroon ',capsize =3, capthick =3,
elinewidth =1)

eb3[-1][0]. set_linestyle (':')
eb4= plt. errorbar (errorArray4 [:,0],errorArray4 [:,1],yerr=

errorArray4 [:,2],fmt=' ',ecolor
='g',capsize =3, capthick =3,
elinewidth =1)

eb4[-1][0]. set_linestyle (':')

plt.plot(Cy5[indexX_coarse ,:,0], abs(Tplus5 [indexX_coarse ,:,0]*
onWall5 [indexX_coarse ,1]),'-.',

color="r", label= f'{ label5 }
at s={str(round(Cx5[
indexX_coarse ,0,0],3))} mm ',
alpha=1)

plt.plot(Cy6[indexX_coarse ,:,0], abs(Tplus6 [indexX_coarse ,:,0]*
onWall5 [indexX_coarse ,1]),'-.',

color="lime", label= f'{ label6
} at s={str(round(Cx6[
indexX_coarse ,0,0],3))} mm ',
alpha=1)

eb5= plt. errorbar (errorArray5 [:,0],errorArray5 [:,1],yerr=
errorArray5 [:,2],fmt=' ',ecolor
='r',capsize =3, capthick =3,
elinewidth =1)

eb5[-1][0]. set_linestyle ('-.')
eb6= plt. errorbar (errorArray6 [:,0],errorArray6 [:,1],yerr=

errorArray6 [:,2],fmt=' ',ecolor
='lime ',capsize =3, capthick =3,
elinewidth =1)

eb6[-1][0]. set_linestyle ('-.')

plt. legend (loc='best ')
plt. subplots_adjust (bottom =0.18)
plt. ylabel ('$(T-T_w)/(T _ -T_w)$')
if stat==596:

plt.xlim(0,0.04)
elif stat==2505:

plt.xlim(0,0.14)

APPENDIX B. 141

plt. xlabel ('$[m]$')
plt. xticks (rotation =45)
plt.grid(True , which='both ')
plt. savefig (f'{ workingPATH }Theta - validation {stat}.png ', bbox_inches

="tight", dpi=300)
plt.cla ()
plt.clf ()
plt.close ()

print ("DONE: plot_gridIndependence ")

B.3 _tools.py

import numpy as np
import matplotlib . pyplot as plt
from math import sqrt
np. seterr (divide ='ignore ', invalid ='ignore ')

def transform (x, y):
Nx , Ny , Nz = x.shape
s = np. zeros_like (x)
n = np. zeros_like (y)

s[0, :, :] = x[0, :, :]

for ii in range(1,Nx):
for jj in range(Ny):

for kk in range(Nz):
s[ii ,jj ,kk] = s[ii-1, jj , kk] + sqrt ((x[ii ,jj ,kk] - x[

ii-1,jj ,kk]) ** 2 + (
y[ii ,jj ,kk] - y[ii-
1,jj ,kk]) ** 2)

n[ii ,jj ,kk] = sqrt ((x[ii ,jj ,kk] - x[ii ,0,kk]) ** 2 + (y[
ii ,jj ,kk] - y[ii ,0,
kk]) ** 2)

return s, n

def calculate_3D_gradient (x=None , y=None , z=None , f=None):
(nx , ny , nz) = x.shape

J = np.zeros ((nx , ny , nz , 3), dtype=f.dtype)

APPENDIX B. 142

First order boundary approximations O(h)
Left , Lower , Front Boundary
J[0, :, :, 0] = (f[1, :, :] - f[0, :, :]) / (x[1, :, :] - x[0, :, :

])
J[1, :, :, 0] = (f[2, :, :] - f[0, :, :]) / (x[2, :, :] - x[0, :, :

])
J[:, 0, :, 1] = (f[:, 1, :] - f[:, 0, :]) / (y[:, 1, :] - y[:, 0, :

])
J[:, :, 0, 2] = (f[:, :, 1] - f[:, :, 0]) / (z[:, :, 1] - z[:, :, 0

])
J[:, :, 1, 2] = (f[:, :, 2] - f[:, :, 0]) / (z[:, :, 2] - z[:, :, 0

])
First order boundary approximations O(h)
Right , Upper , Back Boundary
J[nx-1, :, :, 0] = (f[nx-1, :, :] - f[nx-2, :, :]) / (x[nx-1, :, :]

- x[nx-2, :, :])
J[nx-2, :, :, 0] = (f[nx-1, :, :] - f[nx-3, :, :]) / (x[nx-1, :, :]

- x[nx-3, :, :])
J[:, ny-1, :, 1] = (f[:, ny-1, :] - f[:, ny-2, :]) / (y[:, ny-1, :]

- y[:, ny-2, :])
J[:, :, nz-1, 2] = (f[:, :, nz-1] - f[:, :, nz-2]) / (z[:, :, nz-1]

- z[:, :, nz-2])
J[:, :, nz-2, 2] = (f[:, :, nz-1] - f[:, :, nz-3]) / (z[:, :, nz-1]

- z[:, :, nz-3])

Second order boundary approximations
Exactly Second order for uniform spacing O(h_{i} h_{i-1})
fx2p = f[4:nx , :, :]
fxp = f[3:nx-1, :, :]
fcx = f[2:nx-2, :, :]
fxm = f[1:nx-3, :, :]
fx2m = f[0:nx-4, :, :]
dx = ((x[4:nx , :, :] - x[3:nx-1, :, :]) + \

(x[3:nx-1, :, :] - x[2:nx-2, :, :]) +\
(x[2:nx-2, :, :] - x[1:nx-3, :, :]) +\
(x[1:nx-3, :, :] - x[0:nx-4, :, :])) / 4

J[2:nx-2, :, :, 0] = (-fx2p + 8*fxp - 8*fxm + fx2m)/(12*dx)

fyp = f[:, 2:ny , :]
fcy = f[:, 1:ny-1, :]
fym = f[:, 0:ny-2, :]
hy = (y[:, 2:ny , :] - y[:, 1:ny-1, :])
ay = hy / (y[:, 1:ny-1, :] - y[:, 0:ny-2, :])
dy = hy * (1 + ay)
J[:, 1:ny-1, :, 1] = (fyp - ay*ay*fym - (1 - ay*ay)*fcy)/dy

APPENDIX B. 143

fz2p = f[:, :, 4:nz]
fzp = f[:, :, 3:nz-1]
fcz = f[:, :, 2:nz-2]
fzm = f[:, :, 1:nz-3]
fz2m = f[:, :, 0:nz-4]
dz = ((z[:, :, 4:nz] - z[:, :, 3:nz-1]) + \

(z[:, :, 3:nz-1] - z[:, :, 2:nz-2]) +\
(z[:, :, 2:nz-2] - z[:, :, 1:nz-3]) +\
(z[:, :, 1:nz-3] - z[:, :, 0:nz-4])) / 4

J[:, :, 2:nz-2, 2] = (-fz2p + 8*fzp - 8*fzm + fz2m)/(12*dz)
return J

def calculate_2D_gradient (x=None , y=None , f=None):
(nx , ny , nz) = x.shape

J = np.zeros ((nx , ny , 1, 2), dtype=f.dtype)
First order boundary approximations O(h)
Left , Lower , Front Boundary
J[0, :, :, 0] = (f[1, :, :] - f[0, :, :]) / (x[1, :, :] - x[0, :, :

])
J[1, :, :, 0] = (f[2, :, :] - f[0, :, :]) / (x[2, :, :] - x[0, :, :

])
J[:, 0, :, 1] = (f[:, 1, :] - f[:, 0, :]) / (y[:, 1, :] - y[:, 0, :

])
First order boundary approximations O(h)
Right , Upper , Back Boundary
J[nx-1, :, :, 0] = (f[nx-1, :, :] - f[nx-2, :, :]) / (x[nx-1, :, :]

- x[nx-2, :, :])
J[nx-2, :, :, 0] = (f[nx-1, :, :] - f[nx-3, :, :]) / (x[nx-1, :, :]

- x[nx-3, :, :])
J[:, ny-1, :, 1] = (f[:, ny-1, :] - f[:, ny-2, :]) / (y[:, ny-1, :]

- y[:, ny-2, :])

Fourth order streamwise approximations , O(h^4)
fx2p = f[4:nx , :, :]
fxp = f[3:nx-1, :, :]
fcx = f[2:nx-2, :, :]
fxm = f[1:nx-3, :, :]
fx2m = f[0:nx-4, :, :]
dx = ((x[4:nx , :, :] - x[3:nx-1, :, :]) + \

(x[3:nx-1, :, :] - x[2:nx-2, :, :]) +\
(x[2:nx-2, :, :] - x[1:nx-3, :, :]) +\
(x[1:nx-3, :, :] - x[0:nx-4, :, :])) / 4

J[2:nx-2, :, :, 0] = (-fx2p + 8*fxp - 8*fxm + fx2m)/(12*dx)
Second order boundary approximations
Exactly Second order for uniform spacing O(h_{i} h_{i-1})

APPENDIX B. 144

fyp = f[:, 2:ny , :]
fcy = f[:, 1:ny-1, :]
fym = f[:, 0:ny-2, :]
hy = (y[:, 2:ny , :] - y[:, 1:ny-1, :])
ay = hy / (y[:, 1:ny-1, :] - y[:, 0:ny-2, :])
dy = hy * (1 + ay)
J[:, 1:ny-1, :, 1] = (fyp - ay*ay*fym - (1 - ay*ay)*fcy)/dy
return J

def gradient_of (Cx: np.ndarray , Cy: np.ndarray , Cz: np.ndarray , f: np.
ndarray):

"""
gradient_of (Cx ,Cy ,Cz , parameter) return : parameter gradient with

shape ((nx , ny , nz , 3))
"""
(nx ,ny ,nz) = f.shape
if nz == 2:

gradiente = calculate_2D_gradient (Cx[:,:,:1],Cy[:,:,:1],f[:,:,:
1])

gradiente = np. append (gradiente , np. zeros_like (gradiente [:,:,:,
:1]),axis=3) # dummy values

for dZ
gradiente = np. append (gradiente , gradiente ,axis=2)

elif nz > 2:
gradiente = calculate_3D_gradient (Cx ,Cy ,Cz ,f)

return gradiente

def fistOffWall_DeltaPlus (Cx ,Cy ,Cz ,Ux ,nu ,Temp ,Pr=0.71):
Cx ,Cy ,Cz=Cells spatial coordinates , Ux= streamwise velocity , nu=

kinematic viscosity
pOut= 2 # [u_tau dThetady0]
(Nx , Ny , Nz) = Cx.shape
Output = np.zeros ((Nx ,pOut))
z=0

Preparing arrays
u_tau , temp_normalized , dThetady0 = np.zeros(Nx), np.zeros ((Nx ,Ny ,

Nz)), np.zeros(Nx)
dUx_d = gradient_of (Cx ,Cy ,Cz ,Ux)

For each X's stations vertex :
for x in range(Nx):

Skin Friction Velocity
dudy0 = np.mean(dUx_d[x,0:4,z,1])

APPENDIX B. 145

if dudy0 > 0 :
u_tau[x] = np.sqrt(nu*dudy0) # sqrt(

nu*(du/dy)) @y=0
elif dudy0 < 0 :

u_tau[x] = -1*np.sqrt(nu*(abs(dudy0))) # -sqrt
(nu*(du/dy)) @y=0

Thermal calculations
Temp_inf = np.mean(Temp[x,Ny-2:Ny ,:])
Temp_0 = np.mean(Temp[x,0,:])
temp_normalized [x,:,:] = (Temp[x,:,:]- Temp_0)/(Temp_inf - Temp_0)

dThetady = gradient_of (Cx ,Cy ,Cz , temp_normalized)

For each X's stations vertex :
for x in range(Nx):

dThetady0 = np.mean(dThetady [x,0:4,z,1])

Output [:,0]= u_tau
Output [:,1]= (nu/Pr)* dThetady0 /u_tau

return Output

Procedure for Estimation of Discretization Error
def get_indexes (toFindx ,toFindy ,Cx: np.ndarray ,Cy: np. ndarray):

'''
get_indexes : Find the indexes in Cx & Cy for ONE Point
* toFindx : aimed distance in [mm] to find at the wall locations

, following Baskaran
Experiment stations
reference .

* toFindy : aimed height in [m] to find in the wall - normal
direction .

* Cx: 3D Array to search the locations . In [mm]
* Cy: 3D Array to search the wall - normal heights . In [m]
* loc: Index in Cx that matches the stations desired .
* height : Index in Cy that matches the height desired .

'''
(nx ,ny ,_) = Cx.shape
for x in range(nx): # Iterating through all

possible stations
if abs(Cx[x,0,0] - toFindx) <= 1e-9: # If the current x-

station is equals to the
desired station ...

loc = x # Take that index
break

APPENDIX B. 146

elif Cx[x,0,0] > toFindx : # If the current x-
station is higher than the
desired station ... Take the

nearest index
if abs(toFindx -Cx[x-1,0,0]) < abs(Cx[x,0,0] - toFindx):

loc = x-1
elif abs(toFindx -Cx[x-1,0,0]) > abs(Cx[x,0,0] - toFindx):

loc = x
break

for y in range(ny):
if abs(Cy[loc ,y,0] - toFindy) <= 1e-9: # If the current

height is equals to the
desired height ...

height = y # Take that index
break

elif Cy[loc ,y,0] > toFindy : # If the current
height is higher than the
desired height ... Take the
nearest index

if abs(toFindy -Cy[loc ,y-1,0]) < abs(Cy[loc ,y,0] - toFindy):
height = y-1

elif abs(toFindy -Cy[loc ,y-1,0]) > abs(Cy[loc ,y,0] - toFindy)
:

height = y
break

return loc , height

def Get_DiscretizationError (r21 , r32 , phi1 , phi2 , phi3):
eps21= phi2 - phi1
eps32= phi3 - phi2
p= abs(np.log(abs(eps32/eps21)))/np.log(r21)
s= 1*np.sign(eps32/eps21)

for i in range(5) :
q= np.log ((r21 ** p - s)/(r32 ** p - s))
p= abs(np.log(abs(eps32/eps21))+q)/np.log(r21)

phiExt21 = (r21 ** p*phi1 - phi2)/(r21 ** p-1) # Extrapolated
values

phiExt32 = (r32 ** p*phi2 - phi3)/(r32 ** p-1)
ea21=abs ((phi1-phi2)/phi1) # Approximate

relative error
ea32=abs ((phi2-phi3)/phi2)
eExt21 = abs ((phiExt21 -phi1)/ phiExt21) # Extrapolated

relative error

APPENDIX B. 147

eExt32 = abs ((phiExt32 -phi2)/ phiExt32)
gci21= (1.25*ea21)/(r21 ** p-1) # Fine -grid

convergence index
gci32= (1.25*ea32)/(r32 ** p-1)

return gci21 , gci32

B.4 _openfoam_utilities.py

import numpy as np
import vtk
from pyevtk .hl import pointsToVTK
from vtk.util import numpy_support as VN
from vtk.util. numpy_support import vtk_to_numpy

import matplotlib . pyplot as plt

def permute_along_y_axis (f, p):
for ii , pvec in enumerate (p):

f[ii , :, :] = f[ii , pvec , :]

def read_pvtu (src):
reader = vtk. vtkXMLPUnstructuredGridReader ()
reader . SetFileName (src)
reader . Update ()

vtkdata = reader . GetOutput ()
celldata = vtkdata . GetCellData ()
pointdata = vtkdata . GetPointData ()
points = vtkdata . GetPoints ()
cell_connectivity = vtkdata . GetCells ()

coordinates = vtk_to_numpy (points . GetData ())

x = coordinates [:, 0]
y = coordinates [:, 1]
z = coordinates [:, 2]
ind = np. lexsort ((z, y, x))
x = x[ind]
y = y[ind]
z = z[ind]

APPENDIX B. 148

arrays = {}

for ii in range(pointdata . GetNumberOfArrays ()):
name = pointdata . GetArray (ii). GetName ()
data = vtk_to_numpy (pointdata . GetArray (ii))
components = pointdata . GetArray (ii). GetNumberOfComponents ()
if components > 1:

Dx = data[:, 0][ind]
Dy = data[:, 1][ind]
Dz = data[:, 2][ind]

arrays [f"{name}_x"] = Dx
arrays [f"{name}_y"] = Dy
arrays [f"{name}_z"] = Dz

else:
arrays [name] = data[ind]

return x, y, z, arrays

def read_vtk (src , Nx , Ny , Nz):
reader = vtk. vtkUnstructuredGridReader ()
reader . SetFileName (src)
reader . ReadAllFieldsOn ()
reader . ReadAllVectorsOn ()
reader . ReadAllScalarsOn ()
reader . Update ()

vtkdata = reader . GetOutput ()
celldata = vtkdata . GetCellData ()
pointdata = vtkdata . GetPointData ()
points = vtkdata . GetPoints ()
cell_connectivity = vtkdata . GetCells ()

coordinates = vtk_to_numpy (points . GetData ())

x = coordinates [:, 0]
y = coordinates [:, 1]
z = coordinates [:, 2]
ind = np. lexsort ((z, y, x))
x = x[ind]. reshape ((Nx , Ny , Nz))
y = y[ind]. reshape ((Nx , Ny , Nz))
z = z[ind]. reshape ((Nx , Ny , Nz))

permutation_vectors = [[yid for yid in range(Ny)] for _ in range(Nx
)]

APPENDIX B. 149

for xid in range(Nx):
permutation_vectors [xid] = np. argsort (y[xid , :, 0])

permute_along_y_axis (x, permutation_vectors)
permute_along_y_axis (y, permutation_vectors)
permute_along_y_axis (z, permutation_vectors)
arrays = {}

for ii in range(pointdata . GetNumberOfArrays ()):
name = pointdata . GetArray (ii). GetName ()
data = vtk_to_numpy (pointdata . GetArray (ii))
components = pointdata . GetArray (ii). GetNumberOfComponents ()
if components > 1:

Dx = data[:, 0][ind]. reshape ((Nx , Ny , Nz))
Dy = data[:, 1][ind]. reshape ((Nx , Ny , Nz))
Dz = data[:, 2][ind]. reshape ((Nx , Ny , Nz))
permute_along_y_axis (Dx , permutation_vectors)
permute_along_y_axis (Dy , permutation_vectors)
permute_along_y_axis (Dz , permutation_vectors)
arrays [f"{name}_x"] = Dx
arrays [f"{name}_y"] = Dy
arrays [f"{name}_z"] = Dz

else:
tmp = data[ind]. reshape ((Nx , Ny , Nz))
permute_along_y_axis (tmp , permutation_vectors)
arrays [name] = tmp

return x, y, z, arrays

def translate_vtk_to_hdf5 (src , dst):
raise NotImplementedError

if __name__ == " __main__ ":
path = "/Users/ davidpaeres /My Documents /ARAYA/OF/ VTK_SA /

flatPlateSA_100000 .vtk"
target = "/Users/ davidpaeres / Desktop / flatPlateSA "

Appendix C
Grid Sensitivity Study

Figure C.1 depicts the results of the grid independence test performed over the curved
hill domain. Some clarifications: (i) we have picked up a highly distorted flow, namely,
the flow separation zone, (ii) additionally, we have explored the performance of grid
point distribution in zones where the boundary layer is attached. Turning to fig. C.1
(a) of the Us profiles, it can be seen a clear convergence of the three types of meshes
(coarse, medium and fine) in the SA and SST models; in particular, there is a high
level of similarity between the medium and fine mesh. This confirms that the refinement
strategy has been adequate. By contrasting both models, the SST model predicts a
much thicker separation bubble and significant discrepancies are visualized inside the
momentum boundary layer. It is important to mention that the SST model by Menter
(Menter 1994) considers a further improvement to the eddy viscosity model and is based
on the idea of the Johnson–King model. It determines that the transport of the main
turbulent shear stresses is critical in the simulations of strong APG flows. Specifically, the
Menter SST turbulence model has been developed to outperform in turbulent boundary
layer flows subject to APG, with eventual separation. Unfortunately, in (Baskaran,
Smits, and Joubert 1987), the streamwise velocity profiles were not measured at the
separation bubble in order to validate our RANS results, and thus, further studies should
be performed in the future to assess the SST model under flow detachment. The thermal
distribution inside the temperature boundary layer is displayed in fig. C.1 (b). Similarly,
the SST model underpredicts temperature (passive scalar) with respect to the SA model.
Significant differences are observed in thermal results at each refinement level. However,
the number of vertical points was increased from the coarse to the fine mesh by an x2.66
factor, and additionally, special care was taken in the near wall region of the fine mesh
(∆y+ ≈ 0.15 in the separation bubble, or lower). At this point, we can only ensure
that numerical predictions are error-free of grid resolution. Therefore, the numerical
predictions’ accuracy of the thermal field is warranted and the fine mesh is deemed
appropriate for the goals of this study. The errors presented in figures C.1 and C.2 are
regarding to fine-grid convergence index (GCI), where the latter figure is for an additional
station s ≈ 596mm corresponding to the ZPG region before the curved hill. The errors
shown are much lower in the ZPG station compared to the complicated station at the

150

APPENDIX C. 151

separation zone of fig. C.1, supporting our conclusion on the mesh convergence. The
estimation of discretization errors follows the procedure as described by Celik et al.
(Celik, Ghia, Roache, and Freitas 2008), which is obtained from coarse mesh quality
relative to medium mesh quality and medium mesh relative to fine mesh, respectively.

(a)

(b)

Figure C.1: Grid resolution independence assessment of: (a) streamwise velocity, Us[m/s], and
(b) normalized temperature, T = (T − Tw)/(T∞ − Tw), at the separation bubble.

APPENDIX C. 152

(a)

(b)

Figure C.2: Grid resolution independence assessment of: (a) streamwise velocity, Us[m/s], and
(b) normalized temperature, T = (T − Tw)/(T∞ − Tw), at different streamwise locations.

Tables C.1 and C.2 unveil the momentum and displacement thickness results and relative
errors between meshes’ qualities at several streamwise stations. In general, integral values
of the turbulent boundary layers, i.e. δ∗ and θ, exhibit a tendency to converge as the mesh
is refined. Looking at Table C.1, both SST and SA models had the highest discrepancy

APPENDIX C. 153

among grids at s ≈ 1139mm, with −6.82% and 8.15%, respectively. Table C.2 shows how
outstanding and low the relative errors for the momentum thickness are, where the most
elevated error for the SST cases is −4.31% in the FPG region (s ≈ 1596mm). Meanwhile,
for the SA cases is 4.34% at s ≈ 1139mm. SA cases had more consistency and lower
errors, even some reaching zero differences. Altogether, the relative errors are more than
suitable for the presented assessment, favoring the momentum thickness compared to
displacement thickness and SA slightly over SST for consistency. It is also observed that
maximum discrepancies are concentrated at s ≈ 1139mm in both models and are within
30%. This zone, located around the first concave-convex surface intersection, seems to
be one of the “hardest" to be simulated (aside from the flow separation bubble) since
peaks on the Cf were found there. Table C.3 supplies a summary of the relative errors
between different types of meshes at all streamwise stations. The low obtained values on
the average relative errors (∼ 2%) confirm the numerical convergence in the refinement
process.

Table C.1: Relative error of the displacement thickness.

Stations [mm] 596 710 867 1015 1139 1183 1345 1469 1596 1665 1730 1862 1990
Experimental δ∗ [mm] 5.3108 6.2568 9.3987 11.5946 4.6352 3.7230 2.2703 2.0000 1.9325 2.4730 2.3716 3.4189 7.0338
SST fine mesh δ∗ [mm] 6.4351 7.6986 12.1624 15.2198 6.5256 4.7115 2.3776 2.0155 2.0727 2.2290 2.4768 3.4724 5.9165
SST medium mesh δ∗ [mm] 6.3852 7.6428 12.1447 15.1597 6.0952 4.6767 2.3269 1.9677 2.0225 2.1779 2.4090 3.3711 5.8081
SST coarse mesh δ∗ [mm] 6.3403 7.5589 12.0473 15.2093 6.5252 4.6499 2.2817 1.9098 1.9505 2.1029 2.3374 3.2521 5.5843

Rel. Error (fine to exp.) 19.14% 20.66% 25.64% 27.04% 33.88% 23.44% 4.62% 0.77% 7.01% -10.38% 4.34% 1.55% -17.26%
Rel. Error (medium to fine) -0.78% -0.73% -0.15% -0.40% -6.82% -0.74% -2.16% -2.40% -2.45% -2.32% -2.78% -2.96% -1.85%
Rel. Error (coarse to medium) -0.71% -1.10% -0.80% 0.33% 6.81% -0.57% -1.96% -2.99% -3.63% -3.50% -3.02% -3.59% -3.93%

Experimental δ∗ [mm] 5.3108 6.2568 9.3987 11.5946 4.6352 3.7230 2.2703 2.0000 1.9325 2.4730 2.3716 3.4189 7.0338
SA fine mesh δ∗ [mm] 6.1274 7.2940 11.3322 14.4704 6.3664 4.6301 2.3285 1.9750 2.0251 2.1694 2.3982 3.2684 5.3129
SA medium mesh δ∗ [mm] 6.1019 7.2670 11.3463 14.3841 5.9822 4.6167 2.3026 1.9526 2.0026 2.1372 2.3769 3.2297 5.3106
SA coarse mesh δ∗ [mm] 6.1584 7.3110 11.4325 14.6143 6.4907 4.6748 2.3088 1.9493 2.0002 2.1509 2.3815 3.2517 5.3431

Rel. Error (fine to exp.) 14.28% 15.31% 18.65% 22.07% 31.47% 21.72% 2.53% -1.26% 4.68% -13.08% 1.11% -4.50% -27.88%
Rel. Error (medium to fine) -0.42% -0.37% 0.12% -0.60% -6.22% -0.29% -1.12% -1.14% -1.12% -1.49% -0.89% -1.19% -0.04%
Rel. Error (coarse to medium) 0.92% 0.60% 0.76% 1.59% 8.15% 1.25% 0.27% -0.17% -0.12% 0.64% 0.19% 0.68% 0.61%

APPENDIX C. 154

Table C.2: Relative error of the momentum thickness.

Stations [mm] 596 710 867 1015 1139 1183 1345 1469 1596 1665 1730 1862 1990
SST fine mesh θ [mm] 4.3102 5.0204 6.9113 8.0405 4.5770 3.6047 1.9612 1.6479 1.6661 1.7738 1.9503 2.6493 4.1432
SST medium mesh θ [mm] 4.2982 5.0054 6.9092 8.0269 4.4109 3.5962 1.9384 1.6272 1.6437 1.7511 1.9145 2.5915 4.0891
SST coarse mesh θ [mm] 4.2629 4.9495 6.8559 8.0036 4.5478 3.5571 1.8894 1.5681 1.5744 1.6807 1.8486 2.4937 3.9427

Rel. Error (fine to exp.) 6.45% 6.47% 4.46% 0.79% 15.57% 10.55% -0.06% -8.22% -12.27% -12.73% -3.12% 1.51% -0.87%
Rel. Error (medium to fine) -0.28% -0.30% -0.03% -0.17% -3.69% -0.23% -1.17% -1.27% -1.36% -1.29% -1.86% -2.20% -1.31%
Rel. Error (coarse to medium) -0.82% -1.12% -0.77% -0.29% 3.06% -1.09% -2.56% -3.70% -4.31% -4.10% -3.50% -3.85% -3.64%

Experimental θ [mm] 4.0407 4.7058 6.6096 7.9771 3.9158 3.2434 1.9625 1.7892 1.8840 2.0151 2.0122 2.6097 4.1793
SA fine mesh θ [mm] 4.2706 4.9702 6.8606 8.1599 4.5825 3.6021 1.9310 1.6236 1.6401 1.7414 1.9069 2.5261 3.8347
SA medium mesh θ [mm] 4.2728 4.9717 6.8777 8.1362 4.4378 3.6099 1.9285 1.6236 1.6401 1.7335 1.9083 2.5151 3.8494
SA coarse mesh θ [mm] 4.2944 4.9844 6.9055 8.1997 4.6345 3.6316 1.9211 1.6079 1.6246 1.7312 1.8979 2.5165 3.8549

Rel. Error (fine to exp.) 5.53% 5.46% 3.73% 2.27% 15.69% 10.48% -1.62% -9.71% -13.84% -14.57% -5.37% -3.26% -8.60%
Rel. Error (medium to fine) 0.05% 0.03% 0.25% -0.29% -3.21% 0.22% -0.13% 0.00% 0.00% -0.45% 0.07% -0.44% 0.38%
Rel. Error (coarse to medium) 0.50% 0.26% 0.40% 0.78% 4.34% 0.60% -0.39% -0.97% -0.95% -0.14% -0.54% 0.06% 0.14%

Table C.3: Summary of Relative Errors for the displacement/momentum thickness.

δ∗ Average error [%] Maximum error [%]
SST 2.29 6.82
SA 1.19 8.15
θ Average error [%] Maximum error [%]
SST 1.84 3.69
SA 0.56 4.34

Appendix D
Post-processing Tools for Data

Visualization

D.1 preScript.py

import glob
workingPath = '/Users/ davidpaeres / Downloads /'
vts_directory = 'COLD/'
vts_groupName = 'PUVWT_1 -565.326*'
isoValue = 2500.0
gltf_directory = 'Qcriterion2500_colorTemp /'
vts_FileNames = sorted (glob.glob(f'{ workingPath }{ vts_directory }{

vts_groupName }'))

trace generated using paraview version 5.10.1
import paraview
paraview . compatibility .major = 5
paraview . compatibility .minor = 10

import the simple module from the paraview
from paraview . simple import *
disable automatic camera reset on 'Show '
paraview . simple . _DisableFirstRenderCameraReset ()

create a new 'XML Structured Grid Reader '
pUVWT_1565326 = XMLStructuredGridReader (registrationName = vts_groupName

, FileName = vts_FileNames)
pUVWT_1565326 . PointArrayStatus = ['Q Criterion ', 'Normalized Q

Criterion ', 'p', 'u', 'v', 'w', 'T'
, "p'", "u'", "v'", "w'", "T'", 'Q1
', 'Q2 ', 'Q3 ', 'Q4 ', 'omega_x ', '
omega_y ', 'omega_z ', " omega_x '", "
omega_y '", " omega_z '"]

155

APPENDIX D. 156

Properties modified on pUVWT_1565326
pUVWT_1565326 . TimeArray = 'None '

get active view
renderView1 = GetActiveViewOrCreate ('RenderView ')

get the material library
materialLibrary1 = GetMaterialLibrary ()

get display properties
pUVWT_1565326Display = GetDisplayProperties (pUVWT_1565326 , view=

renderView1)

get animation scene
animationScene1 = GetAnimationScene ()

update animation scene based on data timesteps
animationScene1 . UpdateAnimationUsingDataTimeSteps ()

create a new 'Contour '
contour1 = Contour (registrationName ='Contour1 ', Input= pUVWT_1565326)
contour1 . ContourBy = ['POINTS ', 'Normalized Q Criterion ']
contour1 . Isosurfaces = [-0. 4689942755095545]
contour1 . PointMergeMethod = 'Uniform Binning '

show data in view
contour1Display = Show(contour1 , renderView1 , 'GeometryRepresentation ')

get color transfer function /color map for 'NormalizedQCriterion '
normalizedQCriterionLUT = GetColorTransferFunction ('

NormalizedQCriterion ')
normalizedQCriterionLUT . RGBPoints = [-0. 46899428963661194 , 0.231373 , 0.

298039 , 0.752941 , -0.
46896377205848694 , 0.865003 , 0.
865003 , 0.865003 , -0.
46893325448036194 , 0.705882 , 0.
0156863 , 0.14902]

normalizedQCriterionLUT . ScalarRangeInitialized = 1.0

trace defaults for the display properties .
contour1Display . Representation = 'Surface '
contour1Display . ColorArrayName = ['POINTS ', 'Normalized Q Criterion ']
contour1Display . LookupTable = normalizedQCriterionLUT
contour1Display . SelectTCoordArray = 'None '
contour1Display . SelectNormalArray = 'Normals '

APPENDIX D. 157

contour1Display . SelectTangentArray = 'None '
contour1Display . OSPRayScaleArray = 'Normalized Q Criterion '
contour1Display . OSPRayScaleFunction = 'PiecewiseFunction '
contour1Display . SelectOrientationVectors = 'None '
contour1Display . ScaleFactor = 0. 03456759452819824
contour1Display . SelectScaleArray = 'Normalized Q Criterion '
contour1Display . GlyphType = 'Arrow '
contour1Display . GlyphTableIndexArray = 'Normalized Q Criterion '
contour1Display . GaussianRadius = 0. 0017283797264099122
contour1Display . SetScaleArray = ['POINTS ', 'Normalized Q Criterion ']
contour1Display . ScaleTransferFunction = 'PiecewiseFunction '
contour1Display . OpacityArray = ['POINTS ', 'Normalized Q Criterion ']
contour1Display . OpacityTransferFunction = 'PiecewiseFunction '
contour1Display . DataAxesGrid = 'GridAxesRepresentation '
contour1Display . PolarAxes = 'PolarAxesRepresentation '

init the 'PiecewiseFunction ' selected for 'ScaleTransferFunction '
contour1Display . ScaleTransferFunction . Points = [-0. 46899428963661194 , 0

.0, 0.5, 0.0, -0. 46893325448036194 ,
1.0, 0.5, 0.0]

init the 'PiecewiseFunction ' selected for 'OpacityTransferFunction '
contour1Display . OpacityTransferFunction . Points = [-0. 46899428963661194 ,

0.0, 0.5, 0.0, -0.
46893325448036194 , 1.0, 0.5, 0.0]

show color bar/color legend
contour1Display . SetScalarBarVisibility (renderView1 , True)

update the view to ensure updated data information
renderView1 . Update ()

get opacity transfer function / opacity map for 'NormalizedQCriterion '
normalizedQCriterionPWF = GetOpacityTransferFunction ('

NormalizedQCriterion ')
normalizedQCriterionPWF . Points = [-0. 46899428963661194 , 0.0, 0.5, 0.0,

-0. 46893325448036194 , 1.0, 0.5, 0.0
]

normalizedQCriterionPWF . ScalarRangeInitialized = 1

Properties modified on contour1
contour1 . ContourBy = ['POINTS ', 'Q Criterion ']

update the view to ensure updated data information
renderView1 . Update ()

APPENDIX D. 158

Rescale transfer function
normalizedQCriterionLUT . RescaleTransferFunction (-0. 46899428963661194 , -

8. 949182285011883e -08)

Rescale transfer function
normalizedQCriterionPWF . RescaleTransferFunction (-0. 46899428963661194 , -

8. 949182285011883e -08)

Properties modified on contour1
contour1 . Isosurfaces = [isoValue]

update the view to ensure updated data information
renderView1 . Update ()

Rescale transfer function
normalizedQCriterionLUT . RescaleTransferFunction (-0. 46899428963661194 , 0

. 0004771007224917412)

Rescale transfer function
normalizedQCriterionPWF . RescaleTransferFunction (-0. 46899428963661194 , 0

. 0004771007224917412)

set scalar coloring
ColorBy (contour1Display , ('POINTS ', 'T'))

Hide the scalar bar for this color map if no visible data is colored
by it.

HideScalarBarIfNotNeeded (normalizedQCriterionLUT , renderView1)

rescale color and/or opacity maps used to include current data range
contour1Display . RescaleTransferFunctionToDataRange (True , False)

show color bar/color legend
contour1Display . SetScalarBarVisibility (renderView1 , True)

get color transfer function /color map for 'T'
tLUT = GetColorTransferFunction ('T')
tLUT. RGBPoints = [1. 0065757036209106 , 0.231373 , 0.298039 , 0.752941 , 1.

4728603959083557 , 0.865003 , 0.
865003 , 0.865003 , 1.
9391450881958008 , 0.705882 , 0.
0156863 , 0.14902]

tLUT. ScalarRangeInitialized = 1.0

get opacity transfer function / opacity map for 'T'
tPWF = GetOpacityTransferFunction ('T')

APPENDIX D. 159

tPWF. Points = [1. 0065757036209106 , 0.0, 0.5, 0.0, 1. 9391450881958008 , 1
.0, 0.5, 0.0]

tPWF. ScalarRangeInitialized = 1

###############################
Loop for Exporting GLTFs
###############################
for fileName in vts_FileNames :

gltf_fileName = fileName . replace (f'{ vts_directory }', f'{
gltf_directory }')

gltf_fileName = gltf_fileName . replace ('.vts ', '.gltf ')

export view
ExportView (f'{ gltf_fileName }', view= renderView1 , InlineData =1,

SaveNormal =1, SaveBatchId =1)

animationScene1 . GoToNext ()

Appendix E
Unity automated scripts

E.1 usdzToPrefab.cs

using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.IO;
using UnityEditor;
using USD.NET;

namespace Unity.Formats.USD.Examples {
//[ExecuteInEditMode]
public class usdzToPrefab : MonoBehaviour {

public bool Activated = false;
public int InitialFrame = 600;
public string ImportFolderName = "Assets/Resources/ToImport/";
public string ExportFolderName = "Assets/Resources/Prefab/";
public string GeneralFileName = "PUVWT_1-565.26";
public int NumberOfFrames = 100;

/// Import Options setting
public BasisTransformation m_changeHandedness =

BasisTransformation.SlowAndSafe;↪→

public PayloadPolicy LoadAllPayload = PayloadPolicy.LoadAll;
public bool ImportCameras = false;
public bool ImportMeshes = true;

160

APPENDIX E. 161

public bool ForceRebuild = false;
public bool ImportSkinWeight = true;
public bool UseDisplayColorAsFallbackMaterial = false;
[Tooltip("Enable GPU instancing on materials for USD point or

scene instances.")]↪→

public bool m_enableGpuInstancing = false;

/// Private variables
private string FileName; // Short name of specific USD

iterating file without extension↪→

private string iteration; // Frame iteration variable
private string usdFilePath; // Complete name of specific USD

iterating file↪→

private string prefabPath; // Complete name of specific
iterating prefab↪→

private Scene m_scene;
private PrimMap m_primMap; /// Keep track of all objects

loaded.↪→

private GameObject USDmesh;
private MaterialImportMode materialImportMode =

MaterialImportMode.ImportPreviewSurface; //This option enables
correct material application

↪→

↪→

void Start() {
InitUsd.Initialize();

if (Activated)
{ USDZconverter(); }

}

public void USDZconverter()
{

/// When converting right handed (USD) to left handed
(Unity), there are two options:↪→

/// Convert all transforms and points to left-handed (deep
change of basis).↪→

/// is more computationally expensive, but results in fewer
down stream surprises.↪→

APPENDIX E. 162

var importOptions = new SceneImportOptions();
importOptions.changeHandedness = m_changeHandedness;
importOptions.payloadPolicy = LoadAllPayload;
importOptions.importCameras = ImportCameras;
importOptions.importMeshes = ImportMeshes;
importOptions.forceRebuild = ForceRebuild;
importOptions.importSkinWeights = ImportSkinWeight;
importOptions.materialImportMode = materialImportMode;
importOptions.useDisplayColorAsFallbackMaterial =

UseDisplayColorAsFallbackMaterial;↪→

importOptions.enableGpuInstancing = m_enableGpuInstancing;

for (int i = 0; i < NumberOfFrames; i++)
{

/// Formulating files' paths and names
iteration = (InitialFrame + i).ToString("000");

// Three digits number format↪→

FileName = string.Concat(GeneralFileName, iteration,
"0"); //↪→

usdFilePath = string.Concat(ImportFolderName,FileName,
".usdz");↪→

Debug.Log(usdFilePath);

/// Building a new gameObject with MeshFilter and
MeshRenderer components↪→

var newPrefab = new GameObject("Unity Prefab");
newPrefab.transform.SetParent(this.transform,

worldPositionStays: false);↪→

newPrefab.AddComponent<MeshFilter>();
newPrefab.AddComponent<MeshRenderer>();

/// Formulating new path and filename to store the
gameobject as prefab↪→

prefabPath = string.Concat(ExportFolderName, FileName,
".prefab");↪→

APPENDIX E. 163

/// Store gameObject "Unity Prefab" as prefab asset and
track it as a different gameObject↪→

GameObject rootPrefab =
PrefabUtility.SaveAsPrefabAsset(newPrefab, prefabPath);↪→

/// Loading USD as scene
m_scene = null;
m_scene = Scene.Open(usdFilePath);

/// Building an empty gameObject to further add the USD
scene transformed into a Unity scene↪→

var rootXf = new GameObject("USD Scene");
rootXf.transform.SetParent(this.transform,

worldPositionStays: false);↪→

/// Transforming USD scene into a Unity scene
m_primMap = SceneImporter.BuildScene(m_scene,
rootXf,
importOptions,
new PrimMap(),
composingSubtree: false);

/// Finding gameObject child named "mesh1" (default
gameObject where the USD mesh is stored)↪→

USDmesh = GameObject.Find("mesh1");

/// Finding the "MeshFilter" component where the mesh's
data is contained↪→

MeshFilter ModelFilterComponent =
USDmesh.GetComponent("MeshFilter") as MeshFilter;↪→

// Adding Mesh to asset
AssetDatabase.AddObjectToAsset(ModelFilterComponent.mesh,

rootPrefab);↪→

AssetDatabase.SaveAssets();

/// Add destroying methods
m_primMap.DestroyAll();

APPENDIX E. 164

m_scene.Close();
Destroy(rootXf);
Destroy(newPrefab);

}

}
}

}

E.2 prefabMeshAnimator.cs

using System;
using System.Collections;
using UnityEngine;
using UnityEditor;

public class prefabMeshAnimator : MonoBehaviour {

public bool Animated = false;
public int InitialFrame = 0;
public string PrefabFolderName = "Prefab/QCriterionTprime/ADIAB/";
public string GeneralFileName = "PUVWT_1-565.26";
public int NumberOfFrames = 10;
[Range(0.03f, 1.5f)]
public float FPS = 0.5f;
public Material FlowMaterial;

/// Private variables
private string FileName; // Short name of specific USD
iterating file without extension↪→

private string iteration; // Frame iteration variable
private string prefabPath; // Complete name of specific
iterating prefab↪→

APPENDIX E. 165

private string prefabPathExtension; // Complete name of specific
USD iterating file↪→

void Start() {
if (Animated)
{ StartCoroutine(PrefabAnimator()); }

}

public IEnumerator PrefabAnimator()
{

for (int i = 0; i < NumberOfFrames; i++)
{

/// Formulating prefab' paths and names relative from
"Assets/Resources"↪→

iteration = (InitialFrame + i).ToString("000");
// three digits number format↪→

FileName = string.Concat(GeneralFileName, iteration, "0");
prefabPath = string.Concat(PrefabFolderName,FileName);
Debug.Log(prefabPath);

/// Formulating prefab' absolute paths and names with
extension to further get the mesh database↪→

prefabPathExtension =
string.Concat("Assets/Resources/",prefabPath,".prefab");↪→

Debug.Log(prefabPathExtension);

/// Instantiate a gameObject by loading a prefab located
relative from "Assets/Resources"↪→

GameObject instance = Instantiate(Resources.Load(prefabPath,
typeof(GameObject))) as GameObject;↪→

Mesh newMesh =
(Mesh)AssetDatabase.LoadAssetAtPath(prefabPathExtension,
typeof(Mesh));

↪→

↪→

instance.GetComponent<MeshFilter>().mesh = newMesh;
instance.GetComponent<MeshRenderer>().material =

FlowMaterial;↪→

instance.transform.rotation = transform.rotation;

APPENDIX E. 166

instance.transform.position = transform.position;
instance.transform.localScale = transform.localScale;

yield return new WaitForSeconds(FPS);

/// Destroying gameObject
Destroy(instance);

if (i == NumberOfFrames-1)
{ i = -1; }

}

}
}

Bibliography

Albert, R., A. Patney, D. Luebke, and J. Kim (2017). Latency requirements for foveated
rendering in virtual reality. ACM Transactions on Applied Perception (TAP) 14 (4),
1–13. [Cited on page(s): 24]

Anderson Jr, J. D. and J. D. Anderson (1998). A history of aerodynamics: and its
impact on flying machines. Cambridge university press. [Cited on page(s): 1, 2, 6]

Araya, G., C. Castillo, and F. Hussain (2015). The log behaviour of the Reynolds shear
stress in accelerating turbulent boundary layers. Journal of Fluid Mechanics 775,
189–200. [Cited on page(s): 54]

Araya, G. and C. Lagares (2022). Implicit subgrid-scale modeling of a mach-2.5
spatially-developing turbulent boundary layer. Entropy 24 (4), 555. DOI:https:
//doi.org/10.3390/e24040555. [Cited on page(s): 15]

Baskaran, V., A. Smits, and P. Joubert (1987). A turbulent flow over a curved hill part
1. growth of an internal boundary layer. Journal of Fluid Mechanics 182, 47–83.
[Cited on page(s): x, xi, 16, 28, 30, 31, 38, 43, 46, 48, 49, 51, 52, 53, 54, 57, 64,
111, 150]

Bradshaw, P. (1973). Effects of streamline curvature on turbulent flow. AGARDo-
graph 169. [Cited on page(s): 12]

Brookes, J., M. Warburton, M. Alghadier, M. Mon-Williams, and F. Mushtaq (2020).
Studying human behavior with virtual reality: The unity experiment framework.
Behavior research methods 52 (2), 455–463. [Cited on page(s): 24, 25]

Brown, G. L. and A. Roshko (1974). On density effects and large structure in turbulent
mixing layers. Journal of Fluid Mechanics 64 (4), 775–816. [Cited on page(s): 23]

Bryson, S. (1993). The virtual windtunnel: visualizing modern cfd datasets with a vir-
tual environment. In NASA. Johnson Space Center, Proceedings of the 1993 Confer-
ence on Intelligent Computer-Aided Training and Virtual Environment Technology.
[Cited on page(s): 25]

Byron, S. and C. Levit (1991). The virtual windtunnel: An environment for the ex-
ploration of three-dimensional unsteady flows. In Proceedings of Visualization, Vol-
ume 91, pp. 17–24. [Cited on page(s): 25]

167

https://doi.org/10.3390/e24040555
https://doi.org/10.3390/e24040555

APPENDIX E. 168

Celik, I. B., U. Ghia, P. J. Roache, and C. J. Freitas (2008). Procedure for estimation
and reporting of uncertainty due to discretization in cfd applications. Journal of
fluids Engineering-Transactions of the ASME 130 (7). [Cited on page(s): 151]

Cengel, Y. A. and J. M. Cimbala (2014). Fluid Mechanics: Fundamentals and Appli-
cations. McGraw-Hill Education. [Cited on page(s): 6, 7, 8, 9, 44]

Chaouat, B. (2017). The state of the art of hybrid rans/les modeling for the simulation
of turbulent flows. Flow Turbulence Combust 99, 279–327. [Cited on page(s): 22]

Craig, A. B., W. R. Sherman, and J. D. Will (2009). Developing virtual reality ap-
plications: Foundations of effective design. Morgan Kaufmann. [Cited on page(s):
24]

Deming, D. (2020). The aqueducts and water supply of ancient rome. Ground wa-
ter 58 (1), 152. [Cited on page(s): 1]

Elbamby, M. S., C. Perfecto, M. Bennis, and K. Doppler (2018). Toward low-latency
and ultra-reliable virtual reality. IEEE Network 32 (2), 78–84. [Cited on page(s):
24]

Flavián, C., S. Ibáñez-Sánchez, and C. Orús (2019). The impact of virtual, augmented
and mixed reality technologies on the customer experience. Journal of business
research 100, 547–560. [Cited on page(s): x, 23]

Friendly, M. and D. J. Denis (2001). Milestones in the history of thematic cartogra-
phy, statistical graphics, and data visualization. URL http://www. datavis. ca/mile-
stones 32, 13. [Cited on page(s): 22]

G. Araya and L. Castillo (2013). DNS of turbulent thermal boundary layers subjected
to adverse pressure gradients. Physics of Fluids, 095107. [Cited on page(s): 50, 56,
57]

Hansen, C. D. and C. R. Johnson (2011). Visualization handbook. Elsevier. [Cited on
page(s): 23]

Heath, T. L. et al. (2002). The works of Archimedes. Courier Corporation. [Cited on
page(s): 1]

Hill, H. D. R. (2019). Islamic science and engineering. Edinburgh University Press.
[Cited on page(s): 1]

HPCV (2018). HPCVLab. https://www.uprm.edu/hpcvl/. [Cited on page(s): 16,
108]

Hunt, J. C., A. A. Wray, and P. Moin (1988). Eddies, streams, and convergence zones
in turbulent flows. Studying turbulence using numerical simulation databases, 2.
Proceedings of the 1988 summer program. [Cited on page(s): 73]

https://www.uprm.edu/hpcvl/

APPENDIX E. 169

Kays, W. M. and M. E. Crawford (1993). Convective Heat and Mass Transfer, Volume
3rd ed. McGraw-Hill, New York. [Cited on page(s): 44, 50]

Knight, D. and P. Saffman (1978). Turbulence model predictions for flows with signif-
icant mean streamline curvature. AIAA 78-258 . [Cited on page(s): 20]

Lagares, C., J. Santiago, and G. Araya (2021). Turbulence modeling in hypersonic
turbulent boundary layers subject to convex wall curvature. AIAA Journal 59 (12),
1–20. [Cited on page(s): 32]

Lagares, C. J. and G. Araya (2021). Compressibility Effects on High-Reynolds Coherent
Structures via Two-Point Correlations. [Cited on page(s): 14, 45, 54, 56, 58]

Lagares, C. J., K. E. Jansen, J. Patterson, and G. Araya (2019). The effect of concave
surface curvature on supersonic turbulent boundary layers. Presented at the 72nd

Annual Meeting of the American Physical Society’s Division of Fluid Dynamics.
[Cited on page(s): 60]

Lagares, C. J., D. Paeres, and G. Araya (2021). Wall temperature effect on thermal
coherent structures over supersonic turbulent boundary layers subject to surface
curvature. 74th Annual Meeting of the APS Division of Fluid Dynamics. DOI:ht
tps://doi.org/10.1103/APS.DFD.2021.GFM.V0027. [Cited on page(s): 72]

Lagares, C. J., W. Rivera, and G. Araya (2021, 1). Aquila: A distributed and
portable post-processing library for large-scale computational fluid dynamics.
AIAA SciTech. [Cited on page(s): 14]

Landels, J. G. (1979). Water-clocks and time measurement in classical antiquity. En-
deavour 3 (1), 32–37. [Cited on page(s): 1]

Launder, B. E. and D. B. Spalding (1983). The numerical computation of turbulent
flows. In Numerical prediction of flow, heat transfer, turbulence and combustion,
pp. 96–116. Elsevier. [Cited on page(s): 18]

Lee, C.-H. (2018). Rough boundary treatment method for the shear-stress transport k-
ω model. Engineering Applications of Computational Fluid Mechanics 12 (1), 261–
269. [Cited on page(s): 18, 19]

Lewiner, T., H. Lopes, A. W. Vieira, and G. Tavares (2003). Efficient implementation
of marching cubes’ cases with topological guarantees. Journal of graphics tools 8 (2),
1–15. [Cited on page(s): 67]

Li, Q., P. Schlatter, L. Brandt, and D. S. Henningson (2009). Dns of a spatially devel-
oping turbulent boundary layer with passive scalar transport. International Journal
of Heat and Fluid Flow 30 (5), 916–929. [Cited on page(s): 32, 45, 62]

https://doi.org/10.1103/APS.DFD.2021.GFM.V0027
https://doi.org/10.1103/APS.DFD.2021.GFM.V0027

APPENDIX E. 170

McCormick, B. H. (1987). Visualization in scientific computing. Computer graph-
ics 21 (6). [Cited on page(s): 23]

Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering
applications. AIAA Journal 32 (8), 1598–1605. [Cited on page(s): 19, 30, 32, 51,
150]

Menter, F. R., M. Kuntz, and R. Langtry (2003). Ten years of industrial experience
with the sst turbulence model. Turbulence, heat and mass transfer 4 (1), 625–632.
[Cited on page(s): 19]

Milgram, P. and F. Kishino (1994). A taxonomy of mixed reality visual displays. IE-
ICE TRANSACTIONS on Information and Systems 77 (12), 1321–1329. [Cited on
page(s): 23]

Milidonis, K., B. Semlitsch, and T. Hynes (2018). Effect of clocking on compressor
noise generation. AIAA Journal 56 (11), 4225–4231. [Cited on page(s): 20]

Mollicone, J.-P., F. Battista, P. Gualtieri, and C. M. Casciola (2017). Effect of geometry
and reynolds number on the turbulent separated flow behind a bulge in a channel.
Journal of Fluid Mechanics 823, 100–133. [Cited on page(s): 11]

Moser, R. and P. Moin (1984). Direct numerical simulation of curved turbulent channel
flow. NASA-TM-85974 . [Cited on page(s): 12]

Moser, R. and P. Moin (1987). The effects of curvature in wall-bounded turbulent
flows. Journal of Fluid Mechanics 175, 479–510. [Cited on page(s): 12]

Moukalled, F., L. Mangani, M. Darwish, et al. (2016). The finite volume method in
computational fluid dynamics, Volume 113. Springer. [Cited on page(s): 13, 14, 15,
22, 37, 118]

Narasimha, R. & Sreenivasan, K. (1979). Relaminarization of fluid flows. Advances in
Applied Mechanics 19, 221–309. [Cited on page(s): 57]

Narasimha, R. (1983). Relaminarization-magnetohydrodynamic and otherwise. AIAA
Progress in Astronautics and Aeronautics 84, 30–53. [Cited on page(s): 49]

Nielson, G., H. Hagen, and H. Müller (1997). Scientific visualization. Institute of Elec-
trical & Electronics Engineers. [Cited on page(s): 23]

Paciorri, R., W. Dieudonné, G. Degrez, J.-M. Charbonnier, and H. Deconinck (1998).
Exploring the validity of the spalart-allmaras turbulence model for hypersonic flows.
Journal of Spacecraft and Rockets 35 (2). [Cited on page(s): 32]

Paeres, D., C. Lagares, and G. Araya (2022a). Assessment of incompressible turbulent
flow over a curved hill with passive scalar transport. AIAA SciTech, AIAA 2022-
0049 . [Cited on page(s): 29, 66]

APPENDIX E. 171

Paeres, D., C. Lagares, and G. Araya (2022b). Assessment of turbulence models over a
curved hill flow with passive scalar transport. Energies 15 (16), 6013. DOI:https:
//doi.org/10.3390/en15166013. [Cited on page(s): xi, 14, 15, 22, 29, 43, 66]

Paeres, D., C. J. Lagares, and G. Araya (2021). The use of Augmented Reality (AR)
in flow visualization. 74th Annual Meeting of the APS Division of Fluid Dynamics.
DOI:https://doi.org/10.1103/APS.DFD.2021.GFM.V0028. [Cited on page(s):
29, 66, 85, 109]

Paeres, D., C. J. Lagares, J. Santiago, A. B. Craig, K. Jansen, and G. Araya (2020).
Turbulent Coherent Structures via VR/AR. 73th Annual Meeting of the APS Di-
vision of Fluid Dynamics. DOI:https://doi.org/10.1103/APS.DFD.2020.GFM.V
0045. [Cited on page(s): 29, 66, 85, 97, 109]

Paeres, D., J. Santiago, C. J. Lagares, W. Rivera, A. B. Craig, and G. Araya (2021).
Design of a Virtual Wind Tunnel for CFD Visualization. In AIAA Scitech 2021
Forum, pp. 1600. [Cited on page(s): 23, 24, 25, 29, 66, 97]

Patrick, W. P. (1987). Flowfield measurements in a separated and reattached flat plate
turbulent boundary layer. NASA CR4052. [Cited on page(s): 11]

Pirozzoli, S., M. Bernardini, and P. Orlandi (2016). Passive scalars in turbulent channel
flow at high reynolds number. Journal of Fluid Mechanics 788, 614–639. [Cited on
page(s): 21]

Pope, S. B. (2000). Turbulent Flows. Cambridge University Press. [Cited on page(s):
58]

Purohit, S., I. F. S. A. Kabir, and E. Y. K. Ng (2021). On the accuracy of urans and
les-based cfd modeling approaches for rotor and wake aerodynamics of the (new)
mexico wind turbine rotor phase-iii. Energies 14 (16). [Cited on page(s): 22]

Quinones, C. (2020). Transport phenomena in crossflow jets subject to very strong fa-
vorable pressure gradient. MSc thesis, University of Puerto Rico-Mayaguez . [Cited
on page(s): 47, 57]

Radhakrishnan, S., U. Piomelli, A. Keating, and A. S. Lopes (2006). Reynolds-averaged
and large-eddy simulations of turbulent non-equilibrium flows. Journal of Turbu-
lence 7, N63. [Cited on page(s): 22]

Radianti, J., T. A. Majchrzak, J. Fromm, and I. Wohlgenannt (2020). A systematic
review of immersive virtual reality applications for higher education: Design ele-
ments, lessons learned, and research agenda. Computers & Education 147, 103778.
[Cited on page(s): 24]

https://doi.org/10.3390/en15166013
https://doi.org/10.3390/en15166013
https://doi.org/10.1103/APS.DFD.2021.GFM.V0028
https://doi.org/10.1103/APS.DFD.2020.GFM.V0045
https://doi.org/10.1103/APS.DFD.2020.GFM.V0045

APPENDIX E. 172

Raheem, M. A., P. Edi, A. A. Pasha, M. M. Rahman, and K. A. Juhany (2019). Numer-
ical study of variable camber continuous trailing edge flap at off-design conditions.
Energies 12 (16). [Cited on page(s): 32]

Rosenblum, L. (2000). Virtual and augmented reality 2020. IEEE Computer Graphics
and Applications 20 (1), 38–39. [Cited on page(s): 24]

Rumsey, C. (November 2021). The menter shear stress transport turbulence model.
Turbulence Modeling Resource , Langley Research Center / National Aeronautics
and Space Administration. [Cited on page(s): 19]

Saidin, N. F., N. Halim, and N. Yahaya (2015). A review of research on augmented
reality in education: Advantages and applications. International education stud-
ies 8 (13), 1–8. [Cited on page(s): 24]

Schlatter, P. and Orlu, R. (2010). Assessment of direct numerical simulation data of
turbulent boundary layers. Journal of Fluid Mechanics 659, 116–126. [Cited on
page(s): 14, 45, 54, 56, 58]

Schlichting, H. and K. Gersten (2017). Boundary-Layer Theory (9th ed.). Springer.
[Cited on page(s): 2, 8, 9, 11, 14]

Shapiro, A., G. Grossman, and D. Greenblatt (2021). Simplified transition and turbu-
lence modeling for oscillatory pipe flows. Energies 14 (5). [Cited on page(s): 32]

Simpson, R. (1985). Two-dimensional turbulent separated flow. AGARDograph 287,
Vol I. [Cited on page(s): 11]

Simpson, R. (1989). Turbulent boundary layer separation. Ann. Rev. Fluid Mechan-
ics 21, 205–234. [Cited on page(s): x, 11, 12]

Simpson, R. L., M. Ghodbane, and B. E. McGrath (1987). Surface pressure fluctuations
in a separating turbulent boundary layer. Journal of Fluid Mechanics 177, 167–186.
[Cited on page(s): 11]

Skote, M., D. Henningson, and R. Henkes (1998). Direct numerical simulation of self-
similar turbulent boundary layers in adverse pressure gradients. Flow, Turbul. Com-
bust. 60, 47–85. [Cited on page(s): 57, 58]

Smirnov, P. E. and F. R. Menter (2009, 07). Sensitization of the SST Turbulence
Model to Rotation and Curvature by Applying the Spalart–Shur Correction Term.
Journal of Turbomachinery 131 (4). [Cited on page(s): 20]

Spalart, P. and S. Allmaras (1992). A one-equation turbulence model for aerodynamic
flows. 30th Aerospace Science Meeting and Exhibit, Reno, NV, USA AIAA Paper
92-0439. [Cited on page(s): 20, 30, 32]

APPENDIX E. 173

Spalart, P. and M. Shur (1997). On the sensitization of turbulence models to rotation
and curvature. Aerospace Science and Technology 1 (5), 297–302. [Cited on page(s):
20]

Spalart, P. R. and C. L. Rumsey (2007). Effective inflow conditions for turbulence
models in aerodynamic calculations. AIAA Journal 45 (10), 2544–2553. [Cited on
page(s): 32]

Versteeg, H. K. and W. Malalasekera (2007). An introduction to computational fluid
dynamics: the finite volume method. Pearson education. [Cited on page(s): 13, 16,
17, 20, 37]

Wahba, E. (2016). The contribution of alexandria to mathematics and engineering.
DOI: 10.13140/RG.2.2.27208.11528. [Cited on page(s): 1]

Warhaft, Z. (2000). Passive scalars in turbulent flows. Ann. Rev. Fluid Mechanics 32,
203–240. [Cited on page(s): 12]

White, F. (2011). Viscous Fluid Flow 3e. McGraw-Hill Education (India) Pvt Limited.
[Cited on page(s): x, 4, 5, 6, 7, 10, 13]

Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced
turbulence models. AIAA journal 26 (11), 1299–1310. [Cited on page(s): 19]

Wilcox, D. C. (2006). Turbulence Modeling for CFD. Third Edition, La Cañada, CA:
DCW Industries. [Cited on page(s): 32]

William R. Sherman, Alan B. Craig, M. P. B. and C. Bushell (1997). Scientific vi-
sualization. Allen B. Jr. Tucker (Ed.), Chapter 35 of The Computer Science and
Engineering Handbook. CRC Press, Boca Raton, FL.. [Cited on page(s): 23]

Williams, J. (1977). Incompressible boundary layer separation. Ann. Rev. Fluid Me-
chanics 9, 113–144. [Cited on page(s): 11]

Winant, C. D. and F. K. Browand (1974). Vortex pairing: the mechanism of turbu-
lent mixing-layer growth at moderate reynolds number. Journal of Fluid Mechan-
ics 63 (2), 237–255. [Cited on page(s): 23]

Zhang, J., Z. Wang, M. Sun, H. Wang, C. Liu, and J. Yu (2020). Effect of the backward
facing step on a transverse jet in supersonic crossflow. Energies 13 (16). [Cited on
page(s): 22]

Zhao, J., Q. Lu, and D. Yang (2022). Experimental and numerical analysis of rotor-
rotor interaction characteristics inside a multistage transonic axial compressor. En-
ergies 15 (7). [Cited on page(s): 20]

10.13140/RG.2.2.27208.11528

	List of Figures
	List of Symbols and Abbreviations
	 Introduction
	Historical Context
	Resistance Notion
	Beginning of Fluid Mechanics

	Fluid Dynamics Theory
	Navier-Stokes Equations
	Fluid Flow Types
	Boundary Layer Theory
	Boundary Layer Detachment
	Passive Scalar Transport

	Computational Fluid Dynamics (CFD)
	Reynolds Averaged Navier-Stokes Equations (RANS)
	Turbulence Modeling
	Passive Scalar Transport Modeling

	Data Visualization in XR
	Scientific Visualization
	Virtual Reality, Augmented Reality and MR
	XR Benefits and Applications
	Virtual/Augmented Reality in Flow Visualization

	Project Description
	Expected Outcomes
	Objectives
	Intellectual Merit
	Broad Impact

	 Turbulent Boundary Layers Subject to Surface Curvature
	Assessment, Motivation and Approach
	Laminar Flow Over a Flat Plate
	Turbulent Flow
	Flow Solver and Numerical Schemes
	Boundary Layer Detection Based on Potential Flow
	Turbulent Inflow Generation

	Results and Discussion for The Curved Hill
	Evaluation of Several Passive Scalars

	Conclusions of the Curved Hill's Assessment

	 Scientific Visualization of Fluid Flows
	CFD Data Post-processing for XR Visualization
	Manual and Single File Demo
	Automated and Multiple Files Demo

	Augmented Reality with USDZ
	Manual and Single File Demo
	Automated and Multiple Files Demo

	Unity Game Engine for XR
	FlowVisXR for the Microsoft HoloLens 1st Gen.
	Virtual Wind Tunnel for the HTC VIVE

	Conclusions of flow visualization with XR

	 Final Remarks and Future Work
	Future Work

	 From Navier-Stokes Equations to RANS
	 Post-processing Tools for CFD
	postProcessing.py
	plot_gridIndependence.py
	_tools.py
	_openfoam_utilities.py

	 Grid Sensitivity Study
	 Post-processing Tools for Data Visualization
	preScript.py

	 Unity automated scripts
	usdzToPrefab.cs
	prefabMeshAnimator.cs

	References

