Toda Flows, Gradient Flows, and Total Positivity
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Abstract—We outline various connections between the
Toda flows, gradient flows, and the theory of total positiv-

ity.
1. Description

We consider firstly the full symmetric Toda flow on the
space of nxn real symmetric matrices. It may viewed under
an appropriate mapping as a flow on an adjoint orbit of the
unitary group. The flow takes the Lax form

L) = [L(0), n(LD)], ey

see e.g. [5], where the flow is shown to be an integrable
Hamiltonian flow. Here the projection r is onto the skew-
symmetric part in the skew-symmetric/upper-triangular de-
composition. Of particular interest is the tridiagonal case,
which corresponds to the (finite nonperiodic) Toda lattice
[12]. In this case the system has Hamiltonian

1 n ) n—1 o
HG1y - Gus Pl Pa) = Ei_zlpi +;e% w“i(2)

and may be interpreted as a system of n points on a line of
unit mass governed by an exponential potential.

We relate the general symmetric flow to the theory of to-
tal positivity, see [4], where we showed in particular that
this flow on an adjoint orbit preserves positivity, and is a
gradient flow with the respect to the Kihler metric via ap-
plying a certain twist map. This extends earlier work of [3],
and is complementary to work of [2] on flows with respect
to the normal metric. This is related to our general work on
positivity-preserving flows in [4]. We consider several as-
pects of the geometry, including the role of various metrics
in relating the symmetric and tridiagonal flows.

2. Adjoint orbits and total positivity

We review adjoint orbits of 1, and introduce its totally
nonnegative part, following [4]. Let U, denote the group
of n X n unitary matrices, and let u, denote its Lie algebra
of all n x n skew-Hermitian matrices. An adjoint orbit of
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1, is a subset of matrices with fixed spectrum (necessarily
purely imaginary). Explicitly, let 1 = (14,...,4,) € R”?
be such that 4; > --- > 4,, and let Diag(1) denote the
diagonal matrix with diagonal entries Ai,...,4,. Then we
let

0, := {g(iDiag(1))g™' : g € U}

denote the adjoint orbit of u,, of all matrices with spectrum
id. We observe that the space of nxn real symmetric matri-
ces embeds into 1, as the space of purely imaginary skew-
Hermitian matrices, via the map

L iL. 3)

The adjoint orbit O, is isomorphic to the partial flag
variety GL,(C)/P,, where P, is the parabolic subgroup
consisting of block upper-triangular matrices with diago-
nal blocks of sizes equal to the multiplicities of 1. Lusztig
[7, 8] introduced the totally positive and totally nonnega-
tive parts of a partial flag variety, which may be explicitly
described in terms of adjoint orbits as follows. A minor of
a matrix is the determinant of a k X k submatrix for some
k > 0. A left-justified minor is a minor using the first k
columns (and an arbitrary subset of k rows). We call an ele-
ment U, fotally positive (respectively, totally nonnegative)
if all of its left-justified minors are positive (respectively,
nonnegative), and denote the set of all such elements by
U0 (respectively, UZ°). For example,

>0 _ J|cos(a)
U= {[sin(a/)

We define the rotally positive and totally nonnegative
parts of O, by

—sin(a)|
cos(a) |

a€ [O,E]}. “)

07" := {g(iDiag()g ™" : g € U;°),
07" := (g(iDiag(1))g™" : g € UZ°).

We note that O2° is the closure of O3 in the Euclidean
topology. We say that a flow on O, preserves positivity if
starting at any point in O/Zlo, the flow remains in Ofo for all
positive time.



3. The tridiagonal case

We consider the Hamiltonian (2). Following Flaschka
[6], we set

a=3e" 3 (I<isn—-1), bi=-ip(1<i<n).

Then the Hamiltonian equations become (with ag, a,, := 0)
a; = aibiy = b)), b =2(a; - ai,). )

We also let L be the tridiagonal matrix

b1 ap 0 0
ai b2 ay - 0
L:=i|0 @ by - Of 6)
o 0 0 - b,
so that
0 -a 0 - 0
ay 0 -a 0
my(—1L) = 0 a 0 0 s
0 0 o --- 0

where 7, is projection onto the skew-Hermitian part in the
skew-symmetric/upper-triangular decomposition of gl,,(C).
Then we can write the flow (5) of the Toda lattice in the
Lax form

L(1) = [L(0), mu(=iL(1)], @)

which defines a flow on the adjoint orbit O,. Note that (7)
is the flow corresponding to (1) under the embedding (3) of
the space of n X n real symmetric matrices into 1,.

Above, L is assumed to be i times a real symmetric tridi-
agonal matrix, but more generally, we can consider any
L € O,. We call the flow (7) defined on the tridiagonal part
of u, the tridiagonal symmetric Toda flow, and call the flow
defined on all of u, the full symmetric Toda flow, studied in
[5].

Let my denote projection onto the unitary part in the
unitary/upper-triangular decomposition of GL,(C) (also
known as the QR- or Iwasawa decomposition). Symes
[10, 11] found an explicit solution to (7), which can be ver-
ified directly.

Theorem 1 [10, 11] Let L(t) be a solution to the full sym-
metric Toda flow (7), with Ly € u,. Then

L(1) = my(exp(—tiLo))~' Lo mu(exp(—tiLo)).
Bloch [1] observed that for L € u, tridiagonal, we have
my(—iL) = [L,-iDiag(n - 1,...,1,0)],

and proved the following:

Theorem 2 [1, 2] Ser N = —iDiag(n — 1,...,1,0) € u,,
and let Ly € u, be tridiagonal. Then the tridiagonal sym-
metric Toda flow beginning at Ly can be written as

L(t) = [L(1), [L(1), N1].

In particular, the tridiagonal symmetric Toda flow re-
stricted to O, is the gradient flow with respect to N in the
normal metric.

4. The twist map

Following [4], we can explicitly describe the tridiagonal
part of O=°.

Definition 1 Define the involution ¢ : GL,(C) — GL,(C)
by
$(@)ij = (=1)* (g™ forl<ij<n.

Then ¢ preserves Uio. This induces the involution
. 20 >0
19'/1 . O/l - O/l s

g(iDiag(2))g™" + ¢(g)(iDiag()p(g)™" (g € UZ).

We call 9, the twist map. For example, we see from (4)
that when n = 2, the map ¢ (and hence ,) is the identity.

Definition 2 Let 2 € R" be weakly decreasing. We define
the spaces of isospectral Jacobi matrices J ;0 (respectively,
g }zo ) to be set of tridiagonal matrices L as in (6) with spec-
trum iA and such that a; is positive (respectively, nonnega-
tive) forall 1 <i<n-1.

Theorem 3 [4] The spaces of Jacobi matrices jjo and
g }ZO are the tridiagonal parts of, respectively, OZO and Oio.

Using ideas of Moser [9], we can parametrize jo using
the twist map ;.

Theorem 4 [4] Let A € R" be strictly decreasing (other-
wise, jo is empty). Let S 261 denote the subset of the
unit sphere in R" of vectors with positive coordinates. For
xes ZB', define the rescaled Vandermonde matrix
V(%) = (A xidi<ijen € GLA(O),

Then we have the diffeomorphism

n—1 >0
S>O —Jdi>

x > Sy (V(4, x))(i Diag(D)) 7u(V(A, x)) ™).

When we restrict the domain of the twist map 9, from
03’ to the tridiagonal subset 73, it specializes to a map
constructed by Bloch, Flaschka, and Ratiu [3] in general
Lie type, and denoted :. (We emphasize that in general,
the image ¥,(J fo) is not contained in j}o.) The context
in which the map ¢ appeared in [3] is similar to the one in
the current discussion, namely, in order to realize the Toda
flow on J /120 as a gradient flow compatible with the torus



action. The ultimate goal in [3] was to prove convexity of
g /120, by mapping it onto its moment polytope. It turns out
that the usual moment map (i.e. projection onto the diag-
onal) is neither injective nor surjective on jjo, but if we
first apply the map ¢, we obtain a homeomorphism onto the
moment polytope which restricts to a diffeomorphism from
gJ ;0 onto its interior. The perspective of positivity gives a
new and conceptually simpler way to construct the map ¢.

5. The general symmetric case and Kihler flows

There are three natural Riemannian metrics on the ad-
joint orbit O,: the Kéhler, normal, and induced metrics.
By Theorem 2, the tridiagonal Toda lattice flow is a gradi-
ent flow in the normal metric. In [4], we consider the full
symmetric Toda flow in the Kdhler metric:

Theorem 5 [4] Let A € R”" be strictly decreasing, and set
N := —iDiag(1) € u,.

(i) The full symmetric Toda flow on O, preserves posi-
tivity in both the positive and negative time directions. That
is, if L(t) evolves according to (7) beginning at Ly € Oio,
then L(t) € O3° for all t € R.

(ii) The full symmetric Toda flow restricted to Oio is the
twisted gradient flow with respect to N in the Kdhler met-
ric. That is, if L(t) evolves according to (7) beginning at
Ly € O/Zlo, then ¥,(L(¢)) is the gradient flow with respect to
N in the Kdhler metric beginning at 9,(Ly) € Ofo.

We observe that because the matrix N above is diagonal,
the twisted flow ¢,(L(?)) is contained in a torus orbit of O,.

We can in fact describe the flow (7) quite explicitly by
writing

L) = ( D (A = A Pe(D)) + Al ®)

keK

where P(t) is the orthogonal projection onto the subspace
spanned by the eigenvectors of —iL(#) corresponding to the
eigenvalues A,..., 4. Explicitly, if P;(0) is orthogonal
projection onto the subspace Vi, then Py (¢) is orthogonal
projection onto exp(tiN) V.

Much more can be said about the role of positivity in
Toda flows, and in gradient flows on adjoint orbits and their
corresponding partial flag varieties; see [4]. Forthcoming
work will discuss relating the tridiagonal and symmetric
Toda flows via the Pliicker embedding, building on [5].
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