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Abstract—We outline various connections between the
Toda flows, gradient flows, and the theory of total positiv-
ity.

1. Description

We consider firstly the full symmetric Toda flow on the
space of n×n real symmetric matrices. It may viewed under
an appropriate mapping as a flow on an adjoint orbit of the
unitary group. The flow takes the Lax form

L̇(t) = [L(t), π(L(t))], (1)

see e.g. [5], where the flow is shown to be an integrable
Hamiltonian flow. Here the projection π is onto the skew-
symmetric part in the skew-symmetric/upper-triangular de-
composition. Of particular interest is the tridiagonal case,
which corresponds to the (finite nonperiodic) Toda lattice
[12]. In this case the system has Hamiltonian

H(q1, . . . , qn, p1, . . . , pn) :=
1
2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1 , (2)

and may be interpreted as a system of n points on a line of
unit mass governed by an exponential potential.

We relate the general symmetric flow to the theory of to-
tal positivity, see [4], where we showed in particular that
this flow on an adjoint orbit preserves positivity, and is a
gradient flow with the respect to the Kähler metric via ap-
plying a certain twist map. This extends earlier work of [3],
and is complementary to work of [2] on flows with respect
to the normal metric. This is related to our general work on
positivity-preserving flows in [4]. We consider several as-
pects of the geometry, including the role of various metrics
in relating the symmetric and tridiagonal flows.

2. Adjoint orbits and total positivity

We review adjoint orbits of un and introduce its totally
nonnegative part, following [4]. Let Un denote the group
of n × n unitary matrices, and let un denote its Lie algebra
of all n × n skew-Hermitian matrices. An adjoint orbit of
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un is a subset of matrices with fixed spectrum (necessarily
purely imaginary). Explicitly, let λ = (λ1, . . . , λn) ∈ Rn

be such that λ1 ≥ · · · ≥ λn, and let Diag(λ) denote the
diagonal matrix with diagonal entries λ1, . . . , λn. Then we
let

Oλ := {g(i Diag(λ) )g−1 : g ∈ Un}

denote the adjoint orbit of un of all matrices with spectrum
iλ. We observe that the space of n×n real symmetric matri-
ces embeds into un as the space of purely imaginary skew-
Hermitian matrices, via the map

L 7→ iL. (3)

The adjoint orbit Oλ is isomorphic to the partial flag
variety GLn(C)/Pλ, where Pλ is the parabolic subgroup
consisting of block upper-triangular matrices with diago-
nal blocks of sizes equal to the multiplicities of λ. Lusztig
[7, 8] introduced the totally positive and totally nonnega-
tive parts of a partial flag variety, which may be explicitly
described in terms of adjoint orbits as follows. A minor of
a matrix is the determinant of a k × k submatrix for some
k ≥ 0. A left-justified minor is a minor using the first k
columns (and an arbitrary subset of k rows). We call an ele-
ment Un totally positive (respectively, totally nonnegative)
if all of its left-justified minors are positive (respectively,
nonnegative), and denote the set of all such elements by
U>0

n (respectively, U≥0
n ). For example,

U≥0
2 =

{[
cos(α) −sin(α)
sin(α) cos(α)

]
: α ∈ [0, π2 ]

}
. (4)

We define the totally positive and totally nonnegative
parts of Oλ by

O>0
λ := {g(i Diag(λ) )g−1 : g ∈ U>0

n },

O≥0
λ := {g(i Diag(λ) )g−1 : g ∈ U≥0

n }.

We note that O≥0
λ is the closure of O>0

λ in the Euclidean
topology. We say that a flow on Oλ preserves positivity if
starting at any point in O≥0

λ , the flow remains in O≥0
λ for all

positive time.



3. The tridiagonal case

We consider the Hamiltonian (2). Following Flaschka
[6], we set

ai := 1
2 e

qi−qi+1
2 (1 ≤ i ≤ n − 1), bi := − 1

2 pi (1 ≤ i ≤ n).

Then the Hamiltonian equations become (with a0, an := 0)

ȧi = ai(bi+1 − bi), ḃi = 2(a2
i − a2

i−1). (5)

We also let L be the tridiagonal matrix

L := i



b1 a1 0 · · · 0
a1 b2 a2 · · · 0
0 a2 b3 · · · 0
...
...
...
. . .

...
0 0 0 · · · bn


, (6)

so that

πu(−iL) =



0 −a1 0 · · · 0
a1 0 −a2 · · · 0
0 a2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


,

where πu is projection onto the skew-Hermitian part in the
skew-symmetric/upper-triangular decomposition of gln(C).
Then we can write the flow (5) of the Toda lattice in the
Lax form

L̇(t) = [L(t), πu(−iL(t))], (7)

which defines a flow on the adjoint orbit Oλ. Note that (7)
is the flow corresponding to (1) under the embedding (3) of
the space of n × n real symmetric matrices into un.

Above, L is assumed to be i times a real symmetric tridi-
agonal matrix, but more generally, we can consider any
L ∈ Oλ. We call the flow (7) defined on the tridiagonal part
of un the tridiagonal symmetric Toda flow, and call the flow
defined on all of un the full symmetric Toda flow, studied in
[5].

Let πU denote projection onto the unitary part in the
unitary/upper-triangular decomposition of GLn(C) (also
known as the QR- or Iwasawa decomposition). Symes
[10, 11] found an explicit solution to (7), which can be ver-
ified directly.

Theorem 1 [10, 11] Let L(t) be a solution to the full sym-
metric Toda flow (7), with L0 ∈ un. Then

L(t) = πU(exp(−tiL0))−1L0 πU(exp(−tiL0)).

Bloch [1] observed that for L ∈ un tridiagonal, we have

πu(−iL) = [L,−i Diag(n − 1, . . . , 1, 0)],

and proved the following:

Theorem 2 [1, 2] Set N = −i Diag(n − 1, . . . , 1, 0) ∈ un,
and let L0 ∈ un be tridiagonal. Then the tridiagonal sym-
metric Toda flow beginning at L0 can be written as

L̇(t) = [L(t), [L(t),N]].

In particular, the tridiagonal symmetric Toda flow re-
stricted to Oλ is the gradient flow with respect to N in the
normal metric.

4. The twist map

Following [4], we can explicitly describe the tridiagonal
part of O≥0

λ .

Definition 1 Define the involution ϕ : GLn(C) → GLn(C)
by

ϕ(g)i, j = (−1)i+ j(g−1)i, j for 1 ≤ i, j ≤ n.

Then ϕ preserves U≥0
n . This induces the involution

ϑλ : O≥0
λ → O≥0

λ ,

g(i Diag(λ) )g−1 7→ ϕ(g)(i Diag(λ) )ϕ(g)−1 (g ∈ U≥0
n ).

We call ϑλ the twist map. For example, we see from (4)
that when n = 2, the map ϕ (and hence ϑλ) is the identity.

Definition 2 Let λ ∈ Rn be weakly decreasing. We define
the spaces of isospectral Jacobi matrices J>0

λ (respectively,
J≥0
λ ) to be set of tridiagonal matrices L as in (6) with spec-

trum iλ and such that ai is positive (respectively, nonnega-
tive) for all 1 ≤ i ≤ n − 1.

Theorem 3 [4] The spaces of Jacobi matrices J>0
λ and

J≥0
λ are the tridiagonal parts of, respectively, O>0

λ and O≥0
λ .

Using ideas of Moser [9], we can parametrize J>0
λ using

the twist map ϑλ.

Theorem 4 [4] Let λ ∈ Rn be strictly decreasing (other-
wise, J>0

λ is empty). Let S n−1
>0 denote the subset of the

unit sphere in Rn of vectors with positive coordinates. For
x ∈ S n−1

>0 , define the rescaled Vandermonde matrix

V(λ, x) := (λ j−1
i xi)1≤i, j≤n ∈ GLn(C).

Then we have the diffeomorphism

S n−1
>0 → J>0

λ ,

x 7→ ϑλ(πU(V(λ, x))(i Diag(λ) ) πU(V(λ, x))−1).

When we restrict the domain of the twist map ϑλ from
O≥0
λ to the tridiagonal subset J≥0

λ , it specializes to a map
constructed by Bloch, Flaschka, and Ratiu [3] in general
Lie type, and denoted ι. (We emphasize that in general,
the image ϑλ(J≥0

λ ) is not contained in J≥0
λ .) The context

in which the map ι appeared in [3] is similar to the one in
the current discussion, namely, in order to realize the Toda
flow on J≥0

λ as a gradient flow compatible with the torus



action. The ultimate goal in [3] was to prove convexity of
J≥0
λ , by mapping it onto its moment polytope. It turns out

that the usual moment map (i.e. projection onto the diag-
onal) is neither injective nor surjective on J≥0

λ , but if we
first apply the map ι, we obtain a homeomorphism onto the
moment polytope which restricts to a diffeomorphism from
J>0
λ onto its interior. The perspective of positivity gives a

new and conceptually simpler way to construct the map ι.

5. The general symmetric case and Kähler flows

There are three natural Riemannian metrics on the ad-
joint orbit Oλ: the Kähler, normal, and induced metrics.
By Theorem 2, the tridiagonal Toda lattice flow is a gradi-
ent flow in the normal metric. In [4], we consider the full
symmetric Toda flow in the Kähler metric:

Theorem 5 [4] Let λ ∈ Rn be strictly decreasing, and set
N := −i Diag(λ) ∈ un.

(i) The full symmetric Toda flow on Oλ preserves posi-
tivity in both the positive and negative time directions. That
is, if L(t) evolves according to (7) beginning at L0 ∈ O≥0

λ ,
then L(t) ∈ O≥0

λ for all t ∈ R.
(ii) The full symmetric Toda flow restricted to O≥0

λ is the
twisted gradient flow with respect to N in the Kähler met-
ric. That is, if L(t) evolves according to (7) beginning at
L0 ∈ O≥0

λ , then ϑλ(L(t)) is the gradient flow with respect to
N in the Kähler metric beginning at ϑλ(L0) ∈ O≥0

λ .

We observe that because the matrix N above is diagonal,
the twisted flow ϑλ(L(t)) is contained in a torus orbit of Oλ.

We can in fact describe the flow (7) quite explicitly by
writing

−iL(t) =
(∑

k∈K

(λk − λk+1)Pk(t)
)
+ λnIn, (8)

where Pk(t) is the orthogonal projection onto the subspace
spanned by the eigenvectors of −iL(t) corresponding to the
eigenvalues λ1, . . . , λk. Explicitly, if Pk(0) is orthogonal
projection onto the subspace Vk, then Pk(t) is orthogonal
projection onto exp(tiN)Vk.

Much more can be said about the role of positivity in
Toda flows, and in gradient flows on adjoint orbits and their
corresponding partial flag varieties; see [4]. Forthcoming
work will discuss relating the tridiagonal and symmetric
Toda flows via the Plücker embedding, building on [5].
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