Toda Flows, Gradient Flows, and Total Positivity

Anthony M. Bloch[†] and Steven N. Karp[‡]

†Department of Mathematics, University of Michigan Ann Arbor, MI 48109 ‡Department of Mathematics, University of Notre Dame Notre Dame, IN 46556 Email: abloch@umich.edu, skarp2@nd.edu

Abstract—We outline various connections between the Toda flows, gradient flows, and the theory of total positivity.

1. Description

We consider firstly the full symmetric Toda flow on the space of $n \times n$ real symmetric matrices. It may viewed under an appropriate mapping as a flow on an adjoint orbit of the unitary group. The flow takes the Lax form

$$\dot{L}(t) = [L(t), \pi(L(t))],\tag{1}$$

see e.g. [5], where the flow is shown to be an integrable Hamiltonian flow. Here the projection π is onto the skew-symmetric part in the skew-symmetric/upper-triangular decomposition. Of particular interest is the tridiagonal case, which corresponds to the (finite nonperiodic) Toda lattice [12]. In this case the system has Hamiltonian

$$H(q_1,\ldots,q_n,p_1,\ldots,p_n) := \frac{1}{2} \sum_{i=1}^n p_i^2 + \sum_{i=1}^{n-1} e^{q_i - q_{i+1}},$$
 (2)

and may be interpreted as a system of n points on a line of unit mass governed by an exponential potential.

We relate the general symmetric flow to the theory of total positivity, see [4], where we showed in particular that this flow on an adjoint orbit preserves positivity, and is a gradient flow with the respect to the Kähler metric via applying a certain twist map. This extends earlier work of [3], and is complementary to work of [2] on flows with respect to the normal metric. This is related to our general work on positivity-preserving flows in [4]. We consider several aspects of the geometry, including the role of various metrics in relating the symmetric and tridiagonal flows.

2. Adjoint orbits and total positivity

We review adjoint orbits of \mathfrak{u}_n and introduce its totally nonnegative part, following [4]. Let U_n denote the group of $n \times n$ unitary matrices, and let \mathfrak{u}_n denote its Lie algebra of all $n \times n$ skew-Hermitian matrices. An *adjoint orbit* of

ORCID iDs First Author: 0000-0003-0235-9765, Second Author: 0000-0001-7163-667X

 u_n is a subset of matrices with fixed spectrum (necessarily purely imaginary). Explicitly, let $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ be such that $\lambda_1 \geq \dots \geq \lambda_n$, and let $\mathsf{Diag}(\lambda)$ denote the diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$. Then we let

$$O_{\lambda} := \{g(i \operatorname{Diag}(\lambda))g^{-1} : g \in U_n\}$$

denote the adjoint orbit of u_n of all matrices with spectrum $i\lambda$. We observe that the space of $n \times n$ real symmetric matrices embeds into u_n as the space of purely imaginary skew-Hermitian matrices, via the map

$$L \mapsto iL$$
. (3)

The adjoint orbit O_{λ} is isomorphic to the partial flag variety $\operatorname{GL}_n(\mathbb{C})/P_{\lambda}$, where P_{λ} is the parabolic subgroup consisting of block upper-triangular matrices with diagonal blocks of sizes equal to the multiplicities of λ . Lusztig [7, 8] introduced the totally positive and totally nonnegative parts of a partial flag variety, which may be explicitly described in terms of adjoint orbits as follows. A *minor* of a matrix is the determinant of a $k \times k$ submatrix for some $k \geq 0$. A *left-justified minor* is a minor using the first k columns (and an arbitrary subset of k rows). We call an element U_n totally positive (respectively, totally nonnegative) if all of its left-justified minors are positive (respectively, nonnegative), and denote the set of all such elements by $U_n^{>0}$ (respectively, $U_n^{\geq 0}$). For example,

$$U_2^{\geq 0} = \left\{ \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} : \alpha \in [0, \frac{\pi}{2}] \right\}. \tag{4}$$

We define the *totally positive* and *totally nonnegative* parts of O_{λ} by

$$O_{\lambda}^{>0} := \{ g(i \operatorname{Diag}(\lambda)) g^{-1} : g \in \operatorname{U}_{n}^{>0} \},$$

$$O_{\lambda}^{\geq 0} := \{ g(i \operatorname{Diag}(\lambda)) g^{-1} : g \in \operatorname{U}_{n}^{\geq 0} \}.$$

We note that $O_{\lambda}^{\geq 0}$ is the closure of $O_{\lambda}^{> 0}$ in the Euclidean topology. We say that a flow on O_{λ} preserves positivity if starting at any point in $O_{\lambda}^{\geq 0}$, the flow remains in $O_{\lambda}^{\geq 0}$ for all positive time.

3. The tridiagonal case

We consider the Hamiltonian (2). Following Flaschka [6], we set

$$a_i := \frac{1}{2}e^{\frac{q_i - q_{i+1}}{2}} \ (1 \le i \le n - 1), \quad b_i := -\frac{1}{2}p_i \ (1 \le i \le n).$$

Then the Hamiltonian equations become (with $a_0, a_n := 0$)

$$\dot{a}_i = a_i(b_{i+1} - b_i), \quad \dot{b}_i = 2(a_i^2 - a_{i-1}^2).$$
 (5)

We also let L be the tridiagonal matrix

$$L := i \begin{bmatrix} b_1 & a_1 & 0 & \cdots & 0 \\ a_1 & b_2 & a_2 & \cdots & 0 \\ 0 & a_2 & b_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b_n \end{bmatrix}, \tag{6}$$

so that

$$\pi_{11}(-iL) = \begin{bmatrix} 0 & -a_1 & 0 & \cdots & 0 \\ a_1 & 0 & -a_2 & \cdots & 0 \\ 0 & a_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix},$$

where π_u is projection onto the skew-Hermitian part in the skew-symmetric/upper-triangular decomposition of $\mathfrak{gl}_n(\mathbb{C})$. Then we can write the flow (5) of the Toda lattice in the Lax form

$$\dot{L}(t) = [L(t), \pi_{u}(-iL(t))],$$
 (7)

which defines a flow on the adjoint orbit O_{λ} . Note that (7) is the flow corresponding to (1) under the embedding (3) of the space of $n \times n$ real symmetric matrices into \mathfrak{u}_n .

Above, L is assumed to be i times a real symmetric tridiagonal matrix, but more generally, we can consider any $L \in O_{\lambda}$. We call the flow (7) defined on the tridiagonal part of \mathfrak{u}_n the *tridiagonal symmetric Toda flow*, and call the flow defined on all of \mathfrak{u}_n the *full symmetric Toda flow*, studied in [5].

Let π_U denote projection onto the unitary part in the unitary/upper-triangular decomposition of $GL_n(\mathbb{C})$ (also known as the QR- or Iwasawa decomposition). Symes [10, 11] found an explicit solution to (7), which can be verified directly.

Theorem 1 [10, 11] Let L(t) be a solution to the full symmetric Toda flow (7), with $L_0 \in \mathfrak{u}_n$. Then

$$L(t) = \pi_{\rm U}(\exp(-tiL_0))^{-1}L_0 \,\pi_{\rm U}(\exp(-tiL_0)).$$

Bloch [1] observed that for $L \in \mathfrak{u}_n$ tridiagonal, we have

$$\pi_{u}(-iL) = [L, -i \operatorname{Diag}(n-1, ..., 1, 0)],$$

and proved the following:

Theorem 2 [1, 2] Set $N = -i \operatorname{Diag}(n-1, ..., 1, 0) \in \mathfrak{u}_n$, and let $L_0 \in \mathfrak{u}_n$ be tridiagonal. Then the tridiagonal symmetric Toda flow beginning at L_0 can be written as

$$\dot{L}(t) = [L(t), [L(t), N]].$$

In particular, the tridiagonal symmetric Toda flow restricted to O_{λ} is the gradient flow with respect to N in the normal metric.

4. The twist map

Following [4], we can explicitly describe the tridiagonal part of $O_{>0}^{\geq 0}$.

Definition 1 Define the involution $\phi: GL_n(\mathbb{C}) \to GL_n(\mathbb{C})$ by

$$\phi(g)_{i,j} = (-1)^{i+j} (g^{-1})_{i,j}$$
 for $1 \le i, j \le n$.

Then ϕ preserves $U_n^{\geq 0}$. This induces the involution

$$\begin{split} \vartheta_{\lambda}: O_{\lambda}^{\geq 0} &\to O_{\lambda}^{\geq 0}, \\ g(\mathrm{i}\,\mathsf{Diag}(\lambda))g^{-1} &\mapsto \phi(g)(\mathrm{i}\,\mathsf{Diag}(\lambda))\phi(g)^{-1} \quad (g\in \mathrm{U}_n^{\geq 0}). \end{split}$$

We call ϑ_{λ} the *twist map*. For example, we see from (4) that when n = 2, the map ϕ (and hence ϑ_{λ}) is the identity.

Definition 2 Let $\lambda \in \mathbb{R}^n$ be weakly decreasing. We define the spaces of isospectral Jacobi matrices $\mathcal{J}_{\lambda}^{>0}$ (respectively, $\mathcal{J}_{\lambda}^{\geq 0}$) to be set of tridiagonal matrices L as in (6) with spectrum $i\lambda$ and such that a_i is positive (respectively, nonnegative) for all $1 \leq i \leq n-1$.

Theorem 3 [4] The spaces of Jacobi matrices $\mathcal{J}_{\lambda}^{>0}$ and $\mathcal{J}_{\lambda}^{\geq 0}$ are the tridiagonal parts of, respectively, $O_{\lambda}^{>0}$ and $O_{\lambda}^{\geq 0}$.

Using ideas of Moser [9], we can parametrize $\mathcal{J}_{\lambda}^{>0}$ using the twist map ϑ_{λ} .

Theorem 4 [4] Let $\lambda \in \mathbb{R}^n$ be strictly decreasing (otherwise, $\mathcal{J}_{\lambda}^{>0}$ is empty). Let $S_{>0}^{n-1}$ denote the subset of the unit sphere in \mathbb{R}^n of vectors with positive coordinates. For $x \in S_{>0}^{n-1}$, define the rescaled Vandermonde matrix

$$V(\lambda,x):=(\lambda_i^{j-1}x_i)_{1\leq i,j\leq n}\in \mathrm{GL}_n(\mathbb{C}).$$

Then we have the diffeomorphism

$$\begin{split} S^{n-1}_{>0} &\to \mathcal{J}_{\lambda}^{>0}, \\ x &\mapsto \vartheta_{\lambda}(\pi_{\mathrm{U}}(V(\lambda,x)) (\mathrm{i}\, \mathsf{Diag}(\lambda))\, \pi_{\mathrm{U}}(V(\lambda,x))^{-1}). \end{split}$$

When we restrict the domain of the twist map ϑ_{λ} from $\mathcal{O}_{\lambda}^{\geq 0}$ to the tridiagonal subset $\mathcal{J}_{\lambda}^{\geq 0}$, it specializes to a map constructed by Bloch, Flaschka, and Ratiu [3] in general Lie type, and denoted ι . (We emphasize that in general, the image $\vartheta_{\lambda}(\mathcal{J}_{\lambda}^{\geq 0})$ is not contained in $\mathcal{J}_{\lambda}^{\geq 0}$.) The context in which the map ι appeared in [3] is similar to the one in the current discussion, namely, in order to realize the Toda flow on $\mathcal{J}_{\lambda}^{\geq 0}$ as a gradient flow compatible with the torus

action. The ultimate goal in [3] was to prove convexity of $\mathcal{J}_{\lambda}^{\geq 0}$, by mapping it onto its moment polytope. It turns out that the usual moment map (i.e. projection onto the diagonal) is neither injective nor surjective on $\mathcal{J}_{\lambda}^{\geq 0}$, but if we first apply the map ι , we obtain a homeomorphism onto the moment polytope which restricts to a diffeomorphism from $\mathcal{J}_{\lambda}^{>0}$ onto its interior. The perspective of positivity gives a new and conceptually simpler way to construct the map ι .

5. The general symmetric case and Kähler flows

There are three natural Riemannian metrics on the adjoint orbit O_{λ} : the Kähler, normal, and induced metrics. By Theorem 2, the tridiagonal Toda lattice flow is a gradient flow in the normal metric. In [4], we consider the full symmetric Toda flow in the Kähler metric:

Theorem 5 [4] Let $\lambda \in \mathbb{R}^n$ be strictly decreasing, and set $N := -i \operatorname{Diag}(\lambda) \in \mathfrak{u}_n$.

- (i) The full symmetric Toda flow on O_{λ} preserves positivity in both the positive and negative time directions. That is, if L(t) evolves according to (7) beginning at $L_0 \in O_{\lambda}^{\geq 0}$, then $L(t) \in O_{\lambda}^{\geq 0}$ for all $t \in \mathbb{R}$.
- (ii) The full symmetric Toda flow restricted to $O_{\lambda}^{\geq 0}$ is the twisted gradient flow with respect to N in the Kähler metric. That is, if L(t) evolves according to (7) beginning at $L_0 \in O_{\lambda}^{\geq 0}$, then $\vartheta_{\lambda}(L(t))$ is the gradient flow with respect to N in the Kähler metric beginning at $\vartheta_{\lambda}(L_0) \in O_{\lambda}^{\geq 0}$.

We observe that because the matrix N above is diagonal, the twisted flow $\vartheta_{\lambda}(L(t))$ is contained in a torus orbit of O_{λ} .

We can in fact describe the flow (7) quite explicitly by writing

$$-iL(t) = \left(\sum_{k \in K} (\lambda_k - \lambda_{k+1}) P_k(t)\right) + \lambda_n I_n, \tag{8}$$

where $P_k(t)$ is the orthogonal projection onto the subspace spanned by the eigenvectors of -iL(t) corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_k$. Explicitly, if $P_k(0)$ is orthogonal projection onto the subspace V_k , then $P_k(t)$ is orthogonal projection onto $\exp(tiN)V_k$.

Much more can be said about the role of positivity in Toda flows, and in gradient flows on adjoint orbits and their corresponding partial flag varieties; see [4]. Forthcoming work will discuss relating the tridiagonal and symmetric Toda flows via the Plücker embedding, building on [5].

Acknowledgments

Funding from NSF, AFOSR, and NSERC is gratefully acknowledged.

References

[1] A. M. Bloch, "Steepest descent, linear programming, and Hamiltonian flows," *Contemp. Math.*, vol. 114, 77–88, 1990.

- [2] A. M. Bloch, R. W. Brockett, and T. S. Ratiu, "Completely integrable gradient flows," *Comm. Math. Phys.*, vol. 147(1), 57–74, 1992.
- [3] A. M. Bloch, H. Flaschka, and T. S. Ratiu, "A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra," *Duke Math. J.*, vol. 61(1), 41–65, 1990.
- [4] A. M. Bloch and S. N. Karp, "Gradient flows, adjoint orbits, and the topology of totally nonnegative flag varieties," arXiv:2109.04558, 2021.
- [5] P. Deift, L. C. Li, T. Nanda, and C. Tomei, "The Toda flow on a generic orbit is integrable," *Comm. Pure Appl. Math.*, vol. 39(2), 183–232, 1986.
- [6] H. Flaschka, "The Toda lattice. II. Existence of integrals," *Phys. Rev. B*, vol. 9(4), 1924–1925, 1974.
- [7] G. Lusztig, "Total positivity in reductive groups," in *Lie theory and geometry, Progr. Math.*, vol. 123, 531–568, 1994.
- [8] G. Lusztig, "Total positivity in partial flag manifolds," *Represent. Theory*, vol. 2, 70–78, 1998.
- [9] J. Moser, "Finitely many mass points on the line under the influence of an exponential potential—an integrable system," in *Dynamical systems, theory and applications, Lecture Notes in Phys.*, vol. 38, 467–497, 1975.
- [10] W. W. Symes, "Hamiltonian group actions and integrable systems," *Phys. D*, vol. 1(4), 339–374, 1980.
- [11] W. W. Symes, "The *QR* algorithm and scattering for the finite nonperiodic Toda lattice," *Phys. D*, vol. 4(2), 275–280, 1982.
- [12] M. Toda, "Wave propagation in anharmonic lattices," *J. Phys. Soc. Japan*, vol. 23(3), 501–506, 1967.