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Abstract

In the stochastic contextual bandit setting, regret-minimizing algorithms have been exten-
sively researched, but their instance-minimizing best-arm identification counterparts remain
seldom studied. In this work, we focus on the stochastic bandit problem in the (¢, §)-PAC set-
ting: given a policy class II the goal of the learner is to return a policy 7 € II whose expected
reward is within e of the optimal policy with probability greater than 1 — §. We characterize
the first instance-dependent PAC sample complexity of contextual bandits through a quantity
pr, and provide matching upper and lower bounds in terms of pr for the agnostic and linear
contextual best-arm identification settings. We show that no algorithm can be simultaneously
minimax-optimal for regret minimization and instance-dependent PAC for best-arm identifica-
tion. Our main result is a new instance-optimal and computationally efficient algorithm that
relies on a polynomial number of calls to an argmax oracle.

1 Introduction

We consider the stochastic contextual bandit problem in the PAC setting. Fix a distribution v over
a potentially countabld] set of contexts C. The action space is A, and for computational tractability,
we assume |A| is finite. We have a set of policies IT of interest where each policy = € II is a map
from contexts to an action space 7 : C — A. The reward function is 7 : C x A — R. At each time
t =1,2,... a context ¢; ~ v arrives, the learner chooses an action a; € A, and receives reward
re = (e, ar) € R with E[rg|er, ar] = r(et,ar) € R. The value of a policy V(7) is the expected
reward from playing action m(c) in context ¢: V(7)) = Ecvu[r(c, w(c))]. Given a collection of policies
I1, the objective is to identify the optimal policy 7. := argmax,ecmn V(7), with high probability.
Formally, for any € > 0 and § € (0, 1), we seek to characterize the sample complexity of identifying
a policy m € II such that V(w) > V() — €, with probability at least 1 — 6. That is, we wish to
minimize the total amount of interactions with the environment to learn an e-optimal policy.
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We study both the agnostic setting, where II is an arbitrary set of policies with no assumed
relationship with the reward function r(c, a); and the realizable setting, where the policy class and
the reward function follow a linear structure, known as the linear contextual bandit problem. In
both cases, we are interested in instance-dependent sample complexity bounds. That is, the upper
and lower bounds we seek do not simply depend on coarse quantities like |II|, |A|, and 1/€2, but
more fine-grained relationships between the context distribution v, geometry of policies II, and
the reward function r : C x A — R. Our motivation is that instance-dependent bounds describe
the difficulty of a particular problem instance, allowing optimal algorithms to adapt to the true
difficulty of the problem, whether easy or hard. We seek algorithms that take advantage of “easy”
instances instead of optimizing for the worst-case [18].

1.1 Related work

Minimax regret bounds for general policy classes The vast majority of research in contex-
tual bandits focuses on regret minimization. That is, for a time horizon T', the goal of the player

is to minimize E Z;‘ll r(ce, me(er)) — r(ct, at)} . The landmark algorithm EXP4 for non-stochastic

multi-armed bandits [4] achieves a regret bound of +/|A|T log(|II|). Unfortunately, the running
time of EXP4 is linear in |II| which is prohibitive for many problems of interest. The algorithms
proposed in [8] [3] achieve the same regret bound with a computational complexity that is only
polynomial in 7" and log(|II|). Both approaches can be used to obtain an e-optimal policy with
probability at least 1 —§ using a sample complexity no more than w. None of these works
made any assumption on the connection between the reward function r and the policy class II (i.e.

the agnostic setting).

Instance-dependent regret bounds for general policy classes The epoch-greedy algorithm
of [21] achieved the first instance-dependent bounds on regret with a coarse guarantee depending
only on the minimum policy gap Apol = V() — maxy+,, V(7). In the pursuit of more fine-
grained regret bounds achievable by computationally efficient algorithms, many authors resort to
the realizability assumption [10, 1], 29, 12]. The learner knows a hypothesis class H where each
feHisamap f:Cx A — R, and there exists an f* € H such that r(c,a) = f*(c,a) for all
(¢,a) € CxA. Under this assumption, [I2] proves lower and upper bounds on the instance-dependent
regret. Their bounds are in term of the uniform gap Auniform := min.cc minge 4 r(c, 74 (c)) — r(c, a).
In general, for any policy class, they establish matching minimax lower and upper regret bounds
of the form min{+/|A|T log(|H]|), |A‘ loa(|#]) QPOI} where Qfg_?l is the policy disagreement coefficient, a

parameter depending on the geometrugflfogf H and the context distribution v. That is, these bounds
hold with respect to a worst-case family of instances parameterized by Auniform and er? ! Using
the standard online-to-batch conversion, this translates to a sample complexity (i.e. the time
required to find an e-good policy with constant probability) of roughly M@pd We show in
Corollary 216 that this sample complexity is at least as large as our boundug orr"Further, unlike our
bounds below, this sample complexity is unbounded as € goes to 0. Recent work refines these kinds
of regret bounds further, and provides minimax regret bounds in terms of the decision-estimation

coefficient [13].

Regret bounds for linear contextual bandits A special case of the realizable case assumes a
linear structure for 7. Assume there exists a known feature map ¢ : C x A — R? and an unknown
0. € R? such that the true reward function is given as r(c,a) = (¢(c,a),6,). For this setting,



popular optimism-based algorithms like LinUCB [22] and Thompson sampling [28] [26] achieve a

regret bound of min{dv/T, %} [1]. Appealing to the online-to-batch conversion, this translates
2

to a PAC guarantee of - Aduniform. More precise instance-dependent upper bounds on regret match

instance-dependent lower bounds asymptotically as T — oo [I5, [3I]. These works are most similar
to our setting and have qualitatively similar style algorithms. However, both approaches rely on
asymptotics with large problem-dependent terms that may dominate the bounds in finite time. Our
work is focused on upper bounds that nearly match lower bounds for all finite times.

PAC sample complexity for contextual bandits As we will describe, all contextual bandits
with an arbitrary policy class can be reduced to PAC learning for linear bandits. Once we made
this reduction, our sample complexity analysis draws inspiration from the nearly instance-optimal
algorithm for linear best-arm identification [9]. PAC sample complexity of linear contextual ban-
dits was also studied in [33], who shows a minimax guarantee sample complexity that scales with
f—j log(1/4). In their approach, [3] define their action sampling distribution as a convex combina-
tion over policies. Our sampling distribution, as well as the optimal sampling distribution, cannot
be represented this way and is actually derived from the dual of the optimal experimental design
objective.

1.2 Contributions

In this work, our contributions include:

1. In the agnostic setting, we introduce a quantity pr that characterizes the instance-dependent
sample complexity of PAC learning for contextual bandits (see Equation [Il). We show that pr
appears in an information theoretic lower bound on the sample complexity of any PAC algorithm
as € — 0 in Theorem 2.2l To ground this, we describe it carefully in the setting of the trivial policy
class (Section 2:2) and linear policy classes (Section [Z3]). To do so, we reduce agnostic contextual
bandits to the realizable linear case (also establishing matching upper and lower bounds in this
setting).

2. We construct an instance on which any regret minimax-optimal algorithm necessarily has a
sample complexity that scales quadratically with the optimal sample complexity (Theorem 2:6]).
This shows that no algorithm can be both regret minimax-optimal and instance-optimal PAC.

3. Finally, we propose Algorithm @ whose sample complexity nearly matches the lower bound
based on pry. By appealing to an argmax oracle, this algorithm has a runtime polynomial in prg,
1/e, log(1/6), |Al, and log(|I1]), assuming a unit cost of invoking the oracle.

2 Problem statement and main results

More formally, define F; = o(c1,a1,71,...,Ct,at,7¢) as the natural o-algebra filtration capturing
all observed random variables up to time ¢. At each time ¢t an algorithm defines a sampling rule
Fi — A which defines a;y1, an Fi-measurable stopping time 7 € N, and a selection rule Fy — 11
that is only called once at the stopping time ¢ = 7.

Definition 2.1. Fix e > 0 and ¢ € (0,1). We say an algorithm is (e, §)-PAC for contextual bandits
with policy class II, if at the stopping time 7 € N with E[r] < oo, the algorithm outputs 7 € II
satisfying P(V(7) > maxzen V(7)) —€) > 1 — 4.



The sample complexity of an (e, §)-PAC algorithm for contextual bandits is the time at which the
algorithm stops and outputs 7. The following quantity governs the sample complexity :

o (ILv) = min max Ber [(Pc,flmc) + pc,wl*(c>) Hm.(c) # ”(C)}} W
TI,e\11, . PcE€EA A, YeeC mell\ . (ECNV[T(C, T (C)) _ T(C, W(C)) ] v 6)2 .

Here, for any countable set X we have that Ay = {p € RI*I : Yowex Pz = 1,pe > 0 Ve € X} so
that p. for every ¢ € C defines a probability distribution over actions A. In addition we use the
notation a Vb := max{a,b}. We begin with a necessary condition on the sample complexity for the
particular case of exact policy identification (e = 0).

Theorem 2.2 (Lower bound). Fiz e =0 and ¢ € (0,1). Moreover, fiz a contextual bandit instance
uw = (v,7) and a collection of policies II. Then any (0,0)-PAC algorithm for contextual bandits
satisfies E,[T] > pm,olog(1/2.49).

The proof of the lower bound follows from standard information theoretic arguments [I9]. The
lower bound implicitly applies to learners that know the distribution v precisely. In practice, such
knowledge would never be available however the learner may have a large dataset of offline data.

Assumption 1. Prior to starting the game, the learning algorithm is given a large dataset of con-
texts D = {c;}1_,, where each ¢; "y forall t e [T], and T = O(poly(1/e, |A|,log(1/0),log(|I1]))).

The above only assumes access to samples from the context distribution, not rewards or the value
function. Importantly, since C could be uncountable, we do not assume D covers the support
of v. Assumption [ is satisfied, for example, in an e-commerce setting where the context is the
demographic information about visitors to the site for which massive troves of historical data may
be available. Other works in PAC learning have made similar assumptions [16]. We would like our
algorithm to be computationally efficient in the sense that it makes a polynomial number of calls
to what we refer to as argmax oracle. Such an assumption is common in the contextual bandits
literature [3] 20} §].

Definition 2.3 (Argmax oracle (AMO)). The oracle AMO(IL, {(ct, s¢)}7—1) is an algorithm that

given contexts and cost vectors (c1,1), ", (cn,5n) € C x R returns argmax S°1 | s (7 (ct)).
mell
The constrained argmax oracle, denoted as C-AMO, given an upper bound [ on the loss, returns

argmax -, s (7 (ct)) subject to -1 | s¢ (7 (cr)) <.
well
In general we can implement AMO by calling to cost-sensitive classification [, [5] and C-AMO
through a Lagrangian relaxation and a cost-sensitive classification oracle [2, [6]. Our algorithm uses
an argmax oracle as a subroutine at most a polynomial number of times in ¢!, log(1/6),|.A| and
log(|TI]). In this sense, it is computationally efficient. The following sufficiency result holds for
general € > 0.

Theorem 2.4 (Upper bound). Fiz e > 0 and § € (0,1). Under Assumption [1, there exists a
computationally efficient (e,0)-PAC algorithm for contextual bandits that satisfies a sample com-
plexity of T < pm,elog(|l]logy(1/€)/d)1log(1/Ae), where A = max{e, mingcm\, V() — V(7)}.
IA\(log(\HI)H:g(lN)) log(1/e)

Furthermore, this sample complexity never exceeds

The second part of the theorem follows from the first, since pr, < 2|A|/€? by taking p. o = 1/]A
for all (¢,a) € C x A.



2.1 Inefficiency of low-regret algorithms

Computationally efficient algorithms are known to exist, such as ILOVETOCONBANDITS |[3],
which achieve a minimax-optimal cumulative regret of /T'|.A|log(|II|/d). Inspecting the proof
in [3], one can extract a sample complexity of e~2|.A|log(|II|/J) from such results (which is also
minimax optimal for PAC). The previous section showed that the sample complexity of our al-
gorithm, Theorem 2.4] nearly matches the instance-dependent lower bound of Theorem In
other words, our algorithm achieves a nearly optimal instance-dependent PAC sample complexity.
However, it is natural to wonder if perhaps with a tighter analysis, the minimax regret optimal
algorithm in [3] also obtains the instance-optimal PAC sample complexity. In this section, we show
that this is not the case. Indeed, we show that any algorithm that is minimax regret optimal must
have a sample complexity that is at least quadratic in the optimal PAC sample complexity of some
instance.

Definition 2.5 (Hard instance). Fix m € N, A € (0, ] and let ¢ = [m], A

i=1,...,m, let m;(j) = 1{i = j} and define r(i,5) = A1{j = m1(¢)}. Then V(_
V(m) = (1 —2/m) for all i € C\ {1}.

{0,1}. For
) = A and

Note that for the hard instance, m = |II|. If observations are corrupted by A (0,1) additive noise,
then a straightforward calculation shows that pro(II,v) = (21/% = mA~2 for the hard instance.

Theorem 2.6. Fiz § € (0,1) and A € (0,1]. We say an algorithm is an a-minimaz regret algorithm
if for some a >0 and all T € N :

maxE [ 3 (et m(e0) — re(en )] = mase S B [ o (T)](r(e. ) - r(e.)) < v/alATT

H t=1 B ocia

where the mazimum is taken over all contextual bandit instances p' = (V',r") and T, o(T) =
Ethl 1{¢; = ¢,a; = a}. For any a-minimazx regret algorithm, it is a (0,0)-PAC algorithm if at
a stopping time T it outputs the optimal policy . with probability at least 1 — §. Any a-minimaz
regret algorithm that is also (0,8)-PAC satisfies E,[r] > m>A~21og?(1/2.48)/4a for the instance
w= (v,r) defined in[22

We point out that the minimax regret optimal rate takes o = log(m) = log(|II|). Thus, taking
A =1 and § = 0.1, the minimax regret optimal algorithm has a PAC sample complexity of
m?/log(m); whereas the PAC sample complexity of our algorithm, Theorem 2.4} is just m log(m).
That is, algorithms with optimal minimax regret have a sample complexity that is at least nearly the
optimal PAC sample complexity squared. This demonstrates that no algorithm can simultaneously
be minimax regret optimal and obtain the optimal PAC sample complexity.

2.2 Trivial policy class
As a warm-up to discussing linear policy classes, let us consider the simplest policy class.

Definition 2.7 (Trivial policy class). Assume |C| < oo and let IT = {n(¢) = a : (¢,a) € C x A} so
that |TT) = |.A|I€].

The trivial policy class has the flexibility to predict any action a € A individually for each ¢ € C.
This allows us to show that pro(I,v) < max. =Y, A;i, (see Appendix [A3)). An immediate

corollary of Theorem [2Z4] is obtained by simply noting that |TI| = |.4|/!.



Corollary 2.8 (Trivial class, upper). Fiz e > 0 and § € (0,1). Let II be the trivial policy class
applied to some fized C, A spaces. Then under Assumption[d] there exists a computationally efficient
(e,6)-PAC algorithm for contextual bandits satisfying 7 < min{Ae~2 max. = 3", A2 }(|C|log(|.A])+
log(1/0))log(1/A), where A = max{e, min cm ~, V(m.) — V(7)}. Furthermore, this sample com-
AI(C] o8 AD+10801/8) 1o, /).

plexity never exceeds

Ignoring log factors, the minimax sample complexity of the trivial class is just e 2| .A|(|C| +1log(1/6)).

% — € 2| A] which

This is actually a somewhat surprising result, because it says lims_o i3 =

is independent of |C|. To see why this result is somewhat remarkable, if we played a best-arm
identification algorithm for each of the |C| contexts, then this would lead to a sample complexity of
€2|C| - | A log(1/8). Tt is somewhat of a surprise that such a natural strategy is not optimal. For
intuition for why we can avoid the multiplicative |C|, note that to identify an e-good policy among
just two policies (7, 7,) using uniform exploration requires just e~2|.A|log(1/§) samples. When we
have more than two policies, a union bound achieves the claimed result.

The minimax sample complexity of Corollary 2.8 (i.e., the second statement) is nearly tight:

Theorem 2.9 (Trivial class, lower). Fiz e > 0 and § € (0,1/6). Let II be the trivial policy class
applied to some fized C, A spaces. Moreover, fix a contextual bandit instance p = (v,r) and a
collection of policies II.  Then any (0,0)-PAC algorithm for contextual bandits satisfies E,[1] >
max, u% Yo Az 21og(1/2.48). Furthermore, sup, E,[7] > e 2| A|(C| + log(1/d)).

2.3 Linear policy class

A particularly compelling model-class of policies is the set of linear policies.

Definition 2.10 (Linear policy class). Fix a feature map ¢ : C x A — R? and assume it is known
to the learner. Let II = {n(c) = arg max,c 4(¢(c,a), 0), V0 € R},

We can consider two settings: the agnostic setting and the realizable setting. In the agnostic setting,
there is no assumed relationship between the true reward function r(c,a) and ¢ : C x A — R%. In
this case, Theorem 2.4] applies directly by taking a cover of II.

Corollary 2.11 (Agnostic, upper bound). Fiz e > 0 and 6 € (0,1). Let II be the linear policy
class in RY. Under Assumption [ there exists a computationally efficient (e,8)-PAC algorithm for
contextual bandits that satisfies a sample complexity of T < pri - (dlog(1/€) + log(1/9))log(1/A)
where Ac = max{e, mingcm,, V(7)) — V(7)}. Furthermore, this sample complexity never exceeds
\Al(dlog(l/;)ﬂog(l/t?)) log(1/e).

Comparing to the lower bound of Theorem 2.2} the instance dependent upper bound of Corol-
lary 22TT] matches up to a factor of the dimension and negligible log factors. In contrast to the
“model-free” feel of the agnostic case, we can also consider a “model-based” type setting that we
refer to as the realizable setting.

Definition 2.12 (Realizable). We say the linear policy class is realizable if there exists a 6, € R?
such that r(c,a) = (¢(c,a),0,) for all ¢ € C and a € A. Thus, for any 7 € II we have V(n) =
Ecu[r(c, m(c))] = Eenn[{P(c, w(c)), 0:)] = (@r, 04) With ¢ :=E.p[d(c, w(c))]. Finally, at the start
of the game the learner knows this model.



The setting in Definition 2:12] is commonly referred to as the linear contextual bandit problem [1J.
Clearly, we have that 7. (c) = argmax,c 4{(¢(c, a), 0.). We begin by defining a quantity fundamental
to our sample complexity results:

2
Plin,e 1= min max [¢n = ¢ HECW[ZaeA Pe,ad(c,a)P(c,a) T 7T
fime * pe€A A, VeeC neTl\m, (P, — br,0:)2 V €2 '

Theorem 2.13 (Realizable, lower bound). Fiz e = 0 and § € (0,1). Let II be the linear policy
class in R? and assume it is realizable (see Definitions 210 and [212). Any (0,8)-PAC algorithm
in this setting satisfies E[T] > piin,o - log(1/2.49).

We now state our nearly matching upper bound. However, in this case we note that the algorithm
is not computationally efficient.

Theorem 2.14 (Realizable, upper bound). Fiz ¢ > 0 and § € (0,1). Let II be the linear policy
class in R and assume it is realizable (see Definitions[Z10 and [218). Under Assumption [ there
exists an (€,0)-PAC algorithm for this setting that with probability at least 1 — § it satisfies

7 < piin,e - (min{dlog(1/e),log(|II|)} + log(1/d))log(1/A)
where A = max{e, min (pp, — @y, 04)} = max{e,

i (©) = (¢, a),0.)}. Fur-
mEI\my (c,a)ecgl_}\r;lﬂ*(c)ia<¢(0,ﬁ (C>) ¢(C a) >} ur

d(dlog(l/e)Jrlo%(l/J)) log(1/€) ]

thermore, this sample complexity never exceeds
€

Proof. To see the second part of the theorem statement, observe that

(e lér = bl 152,y peas(earote.n) T
- TrgII'Ia\);* e [é(e, m(c)) = d(c, m (C))]HJQECW[ZGM Pe.ad(ca)d(c,a) T]—1
< max Eewy [10(67(6) 001 ()R, pesbteriter )
< max4 K., {IW(C%(C))II?EM[ZW pc,m(c,aw(c,amfl}

— 2
- qlgz); 4oy ;{ qr H(b(cv W(C)) H]ECN,/[EQE_A pc’a¢(c,a)¢(c,a)7]1‘|

-1

= max 4Tr | Eeow Z qﬂqﬁ(c,w(c))qﬁ(c,w(c))—rl Ecw lz Pe,a®(c, a)g(c, a)T]
4€an mell acA

<4d

where the last line takes peo = > oy 1{7(c) = a}qx, which is at least as good as the minimizing
choice in the theorem. O

We remark that the algorithm that achieves this upper bound is very different than popular
optimism-based algorithms for linear contextual bandits e.g., UCB or Thompson sampling [I]. In-
deed, our algorithm computes an experimental design and is related to instance-dependent linear
bandit algorithms developed for best-arm identification [30, [0, [7] and regret minimization [I5] B1].



To our knowledge, Theorem 2.14] provides the first instance-dependent sample complexity for the
PAC setting of linear contextual bandits. The most relevant work to Theorem [Z.14] is the work of
[33] which demonstrated a minimax sample complexity of d?/e? log(1/4).

Remark 2.15 (Agnostic vs. Realizable). Contrasting the above results, we note that the sample
complexity of the agnostic case is always bounded by |A|d/e?. whereas it never exceeds d?/e? for
the realizable case. This matches the intuition that when the number of actions is much larger than
the dimension, assuming realizability can significantly reduce the sample complexity.

2.4 Comparison to the Disagreement Coefficient

The work of [12] provides regret bounds in terms of instance-dependent quantities inspired by the

disagreement coefficient, a notion of complexity common in the active learning literature [I4]. The

following corollary relates our sample complexity to these notions of disagreement coefficients.
Define the policy disagreement coefficient as

¢%0|(€0) — sup Ee o [1{37 € 11 : w(c) # m.(c)}]

€€ €

where Il := {m € I : P, (7(c) # m«(c)) < €} and the cost-sensitive disagreement coefficient as

€55 (e) = s;1p Ecwo[1{3r € : 7w(c) # w*(c),IEZNV[T(c, me(c)) —r(e,m(e))] < 6}]

pol
The AdaCB algorithm of [12] achieves a regret of roughly Ry = O (ming {5Aun;formT, [Allog ()& (9) })

Auniform

or Ry = O (mins {7, | A| log(|II])€5°(6)}). Observe that at time T, given the outputs my, o, - - - , mr
from AdaCB algorithm, one could return a (randomized) policy 7 which on observing a context,
samples from the empirical distribution over the outputs. By Markov’s inequality we have 7,
V(ms) — V(7) < O(e) with constant probability for e = %. Therefore, an upper bound on the

regret translates to a PAC sample complexity of |“‘L‘Al"wﬁ?{"(e/ Aniform) O M@ﬁc(e).

uniform

Finally, Corollary 2.16 shows that this sample complexity bound is at least as large as our upper
bound, see Appendix [AH] for the proof.

Corollary 2.16. Recall that Auniform = miél miﬁ r(e,me(c)) —r(c,a). For any eg > 0 we have that
ceC ac

1. P1l,eq S AQ%OI(GO/Auniform);

€0Auniform

2| A
2. prie, < 22 e (eo).

Moreover, for all g > 0 we have that pr.c, < 00 whenever NApol 1=V (7y) — MaXrrty, V(m) > 0.

3 Optimal Algorithms for Contextual Bandits

3.1 Reduction to linear realizability and a simple elimination scheme

The astute reader may have noticed that if we ignore computation, Theorem 24 is actually an
immediate corollary of Theorem 14l by taking ¢(c,a) = vec(ece,) € RICIAl where e; is a one-
hot encoded vector so that r(c,a) = (4(c,a),f.) with 6, € RICAL This observation is key to



our sample complexity results. Recall ¢, := E..,[¢(c,7(c))] from Definition 2.12] we have that
V(m) =Elr(e,m(c))] = E[{¢(c, m(c)), 0)] = (¢r,0s). We stress that C can be uncountable, and thus
we would never actually instantiate any of these vectors.

For notational convenience, define the feasible set of (context, action) probability distributions

as Q = {w € AcxA 1 Ve = D 4ea wayc}. Note that for each context, p. := {Wec,a/Ve}laca € Aa

defines a probability distribution over actions. Also define A(w) := 3", , we,a9(c, a)¢(c, a)' for any
w € Q. Under this notation, recalling the right hand side from Theorems 2.13] and 2.14] we have

H(bfr _¢7T*H,24(w)71 H(bﬂ _(bm

2
min max = min max Eerv¥aeapeadlca)dlea) 1177
weQnell\m, (Pr, — P, 04)2 V €2 pe€la,VeeC nell\r. (r, — n,0:)2 V €2

To show that the sample complexity of Theorem 2.4 is a corollary of Theorem 214 it suffices
to show that equation ([IJ) and the above display are equal. To see this, observe

|or — Or. Hi(w)fl = ||Ec~u[VeC(eceI(c)) - Vec(ece;r*(c))mi(w)*l
=2 ca w”i (H{m(c) = a} + Hmu(c) = a} — 21{7(c) = 7'(c)})

:EW[( L4 1 )l{ﬂ*(c);éﬂ(c)}.

Pe,m(c) Pe,ma(c)

Due to this equivalence, the lower bound of Theorem is also a corollary of Theorem The
lower bound of Theorem 213 follows almost immediately from the lower bound argument in [9].

The conclusion of this section is that from a sample complexity analysis alone, all that is left
is to prove Theorem 214l In the next section we propose an algorithm that achieves this sample
complexity but assumes precise knowledge of the context distribution v (this is relaxed in following
sections). While the algorithm is highly impractical for a number of reasons, its analysis provides
a great deal of intuition and motivation for our final algorithm.

3.2 A simple, impractical, elimination-style algorithm

Algorithm [I] provides an initial elimination based method for the PAC-contextual bandit problem.
The algorithm runs in stages. Before the start of each stage ¢ € N, the algorithm defines a distribu-

tion pt(f) € A 4 for each ¢ € C. At each successive time t € [ng], it plays the random action a; ~ pg)
in response to context ¢; ~ v, and receives random reward r; with E[ri|c, ai] = (d(cr, ar),0x).

Observe that
E [¢(ct,ar)re] = E [¢(ct, ar)p(cr, ar) 0] = X ccaca wl(f()l¢(cu a)p(c,a)0, = A(w®)0,

using the identity wff,l = chg()l. Thus, if we set O; = A(w®)~1¢(ct, ar)ry then E[O;] = 6.. A
straightforward calculation also shows that Cov(O;) = A(w®)~1 if r; is perturbed with additive
unit variance noise. Thus, an unbiased estimator of A(m,7.) 1= V(m) — V(1) = (pr. — én,0x)
is simply (¢r, — &n, nil >, O¢) which has variance n%”gb,,* - (bﬁHi(w(,z)),l. Intuitively, (¢r, —
s n% >, 0:) = (Or, — Ox,04) £ \/ni[||¢m — ¢7T|‘124(w</»’>)71 so we can safely conclude that a pol-
icy 7 is sub-optimal (i.e., m # m,) if there exists any policy @’ such that (¢ — ¢n, n% >, 0:) >
\/nleﬂqbﬁ/ - ¢7r|‘,24(w(z>)—1- This is the intuition behind Contextual RAGE (Algorithm [), which

inherits its name from the best-arm identification algorithm of [9] that inspired its strategy.




However, while (¢, — ¢x, ni[ >-; O¢) is unbiased and has controlled variance, it is potentially

heavy-tailed because wff,l can be arbitrarily small. Instead of trying to control wff,l and appealing

to Bernstein’s inequality, we use the robust mean estimator of Catoni [23]. We can then show:
Lemma 3.1. 7w, € II; and max e, {(¢r, — Or,0%) < dep for all € > 1 w.p. at least 1 — 9.

The lemma states that if II, is the active set of policies still under consideration, the optimal
policy 7, is never discarded from II,, and moreover, the quality of all policies remaining in II, is
getting better and better. The full proof of this lemma is in Appendix [Bl We are now ready to
state the main sample complexity result.

Theorem 3.2. Fiz any policy class Il = {n : C — A}, distribution over contexts v, § € (0,1),
€ > 0, and feature map ¢ : C x A — R? such that v(c,a) = (¢(c,a),0,) (this is without loss
generality, as one can always take ¢(c,a) = vec(ece])). With probability at least 1 — 6§, if ¢ =
Ecwu[p(c,7(c))] and m. = argmax;(dr,0) then Contextual-RAGE returns a policy T € II such
that V() > V(rm.) — € after taking at most

o lr = dn B
weN 7r€121( (<(]5ﬂ-* — gf)ﬂ-, 9*> V 6)2

log(log((A v €)™ )[II|/6) log((A V €)")

samples, where c is an absolute constant and A = min e, V(m.) — V(7).

Proof. Define Sy = {m € I1 : (¢r, —Pr,0*) < 4ep}. The above lemma implies that with probability at
least 1 — & we have (), ,{Il; C S¢}. Observe that if for any V C II we define f(V) = min,eq p(w, V)
then

14 : 2 : 2
p(w, 1) = min max |[én = b l[fuy-r < min max |lér = dullfu -1 = p(S).

For ¢ > [log,(4A™1)] we have that Sy = {n.}, thus the sample complexity to identify , is

[logs (447 1)] [logy(4A71)]
o= Y [4e?p(w! T1p)log(26*[TT|/3)]
/=1 =1

Mog, (4A71)]
< ) 4e,%p(Se)log(207|11]/5) + 1
=1
Mlog,(4A71)]

< clog(log(A™N[T|/6) > & °p(Sk)
=1

10



for some absolute constant ¢ > 0. We now note that

s = n
weQ nell (P, — Or,0%))%2 weQe<[lo
° -1
> 1 i gQ(ﬁ? ! max I6x = On 1l
= TogUA D] weh 22 728 (Gn. — 60,0
[log,(4A™1)]

. H(bfr _¢w*|‘?4(w)—1
= min max ma.
82

X
(a-117eSe ((or, — Pr,0%))?

1 o )

> - — b B

= 167log,(1A-1)] ; € " min max [ ér = ér.aguw) -
1 |’log2(4A71)'|

> — -2 _ 112 -

= 64[log,(4A1)] >« min max |ér — ¢ |-

=1
1 Mog, (4A™1)]

o —2

= GogaaT)] 2. e Ps)

=1

where we have used the fact that max, reg, ||[¢r — ¢W/|\?4(w),1 < dmaxges, ||or — Or. Hil(w)*l by
the triangle inequality. O

3.3 Towards a more efficient algorithm

One major issue with Algorithm [ is that it explicitly maintains a set of policies II, from round
to round. Since II could be exponential in |A|, this is a non-starter for any implementation. As
a motivation for our approach, we consider a non-elimination algorithm, Algorithm 2| as an inter-
mediate step. It does not maintain IIy and instead just solves the optimization problem (2 over
II. The design computed in (@) is chosen to ensure that for all 7 € I, [Ag_y (7, %) — A(mr, 7.)| <
2¢p_1 + iA(w,w*) with high probability (Lemma [B:3). Equivalently, we estimate gaps up to a
constant factor for policies with A(w, 7.) > €, while our gap estimates are bounded by ¢, for those
policies satisfying A(mw,m,.) < €,. This ensures that our choice of 7y is good enough, i.e. satisfies
V(m.) — V(@) < € with high probability. The full proof is in Appendix [Bl

Unfortunately, Algorithm [2] introduces additional problems. It is not clear whether solving
@) is computationally efficient. Also, we need to find an estimator A; that is computationally
efficient even if the policy space II is infinite. In addition, it requires precise knowledge of v to even
define the domain of distributions € optimized over, and store the solution w € C x A explicitly.
But in general, such precise knowledge will not be available and is only estimable using past data
(Assumption [IJ).

3.4 An instance-optimal and computationally efficient algorithm

In this section we provide Algorithm[@l which witnesses the guarantees of Theorem[2.4]for the general
agnostic contextual bandit problem. We now address the caveats of the previous approaches.

Access to Offline Data. By Assumption [l we have access to a large amount of sampled offline
contexts D, where each ¢; € D is drawn IID from v. Having access to D allows us to approximate

11



Algorithm 1 Elimination Contextual RAGE  Algorithm 2 Non-elimination Contextual RAGE

Input: I, ¢ : C x A = R% § € (0,1) Input: I, ¢ : C x A = R? § € (0,1)
1: Initialize II; = II 1: Imitialize: 7o € IT arbitrarily
2: for £=1,2,---,[log,(1/€)] do 2: for £ =1,2,--- ,[log,(1/€)] do
3: e i=27% 0, := 6/(20%10)) 3: e :=27% 8, :=8/(20211))
4: Let ny be the minimum value s.t.: 4: Let ny be the minimum value s.t.:
‘ Co2 i -
min max ¢ — Par 4 (1)—1 108(1/6¢) <e I;ﬂelg Téﬁ%‘_im*l(“ﬁ“l)
weQ m,n/ €ll, Ne
2| pn—d5 2 log(1/s
with solution w®. +\/ for e 171“:;”) st <e. (2
5:  For each ¢ € [ng], get ¢t ~ v, pull az ~ pg),
observe reward 7 with solution w®
6: Compute O = A(w(e))flqb(ct?at)rt. 5: For each t € [ng], get ¢; ~ v, pull a; ~ p£€)7
7:  For m, ' €1, observe reward ry
R 6: Compute Oy = A(w(z))flqﬁ(ct7 at)Te.
Ae(WﬂTl) = Cat({{¢r — P, Oz)}?ﬁl) 7 For each 7 € II, let
8:  Update

Ay(m,7e) = Cat({{pn — da,, O1) 1))
HéJrl =1, \ {ﬂ', c I, ‘ Iréahx : A/j(ﬂ',ﬂ'/) > 61/}
7Clle

8: Set 7y := arg minyen ﬁg(w, ) (3)
9: end for 9: end for
Output: Iy Output: 7

E..[)] with expectations over the empirical distribution E..,,[-], where vp is the uniform distri-
bution over historical data D. The number of offline contexts we need only scales logarithmically
over the size of the policy set II, more specifically, poly(|.Al, e, log(|II]),log(1/d)). We quantify
the precise number of samples needed in Appendix

Computing the design efficiently. As described, the context space C may be infinite so main-
taining a distribution w € Q C A¢x 4 is not possible. To overcome this issue, we consider the dual
problem of equation (2). We can remove the square root by noticing that 2,/ry = min,~o vz + %,
and introducing an additional minimization over the variable ., 7 € II. Then, the dual problem
becomes

o~

. . ~ 2
MaxyeAp Milyen My, >0 Y o Ar (—Alfl(w, Ti—1) + Hgbﬂ — 0z, HA(w)fl + 1055%45”) . (4)

Exchanging the order of the minimums on w and 7, somewhat surprisingly we have the close-form
expression (Lemma [D.6])

2
mingen S ren A ellér — 05 Pawy-1 = Bes [(ZGGA oo G )) ] ,

where for 7 € II, ) (7") € {0, 1} with | ((f)(w')],r = 1{r(c) = a,n'(c) # a} + 1{m(c) # a,7'(c) =
a} and [A ® 9] := A\r7yr. Interestingly, this value is achieved at a sampling distribution w, which
is a mon-linear function of A\ rather than a convex combination over policies (as in [3]). Because

12



we have an expectation over contexts, this expectation can be replaced by an empirical estimate
using historical data, thus avoiding any issues with an infinite context space. The final algorithm
utilizing these observations found is in Algorithm 4]

The main challenge is finding a solution to the design problem (7). For starters, we can reduce
it to a saddle point problem over (), ) by considering only a dyadic sequence of n € {2¥ : k € N}.
Our procedure uses an alternating ascent /descent method, with the caveat that A lives in a simplex,
and v in a box. Both of the spaces are defined over a potentially infinite set of policies TI (which
in the worst case may scale exponentially in |C]), so we need to argue that we can find a sparse yet
e-good solution to ().

To handle this, we use the Frank-Wolfe (FW) method on A. Referring to the iterates of FW as
X, FW guarantees that the size of the support of A* in each iterate grows by at most 1. Thus, if
initialized as a 1-sparse vector, we only need to maintain a sparse A* in each iteration. Each iterate
of Frank-Wolfe involves computing

arg Iiléiﬁ([vkhf()‘a SBDIES

To do so, we show that we can appeal to a constrained argmax oracle (AMO) to run the Frank-Wolfe
algorithm, a similar approach to [3]. At an iterate ¢, we use a gradient descent procedure for ~?.
We will show that in iterate ¢, the support of 4! is contained in that of A\, and we can quantify the
number of steps of gradient descent needed to find an e-good solution. Though h;(A,~,n) might
not be convex in vy, we nevertheless are able to argue that it has a unique minima and that gradient
descent converges to this minima. We introduce our subroutine in Algorithm [3] and shows that it
is computationally efficient with access to an argmax oracle (Definition 2:3) in Theorem B3]

Theorem 3.3. Let K; be the number of iterations for FW-GD in the lth round and \*,~* be
the exact solutions to the optimization problem maxyeay mingpy o hi(A\,v,n). Then, K; =
poly, (JA|, &', log(1/8)) and the outputs N HL yKiF1 satisfy hy (X, v*, n)—hy (NI AKiFL n) < ¢
with at most O(K?|D|) calls to a constrained argmaz oracle, where the size of the history D exceeding
poly, (e~ 1, 10g |TT|, Ymaxs Vit 115 | Al log(1/8)) with probability at least 1 — §, where poly;, poly,
denote some polynomial.

The full proof is in Appendix [Cl Tt is worth noting that we can bound the suboptimality error
hy(\*,y*,n) — hy( AN T 4B+l ) by the duality gap, as the primal objective is always at least as
large as the optimum. Also, the Frank-Wolfe algorithm directly tackles the duality gap, so standard
Frank-Wolfe analysis will show that the Frank-Wolfe output makes the duality gap small [27].

Regularized Estimator. While Algorithms [I] and 2 use a robust mean estimator as in equa-
tion (@), this estimator is impractical with a very large number of policies II. Instead, we use a
regularized IPS estimator that can be computed using historical data and an argmax oracle.
Algorithm [ puts it all together and Theorem [3.4] shows our main result. Note that for exposi-
tion purposes, we have omitted some additional regularization terms in the optimization problems
that have no effect on the sample complexity, but ensure finite-time convergence. Appendix
shows the full algorithm and the proof. In what follows, poly,(|.A],e~1,1og(1/d)) - log(|II]) and
polya (A, e~1,1og(1/8),log(|I1])) are polynomials in their arguments that specified in the appendix.

Theorem 3.4. Fiz any set of policies 11, context distribution v and reward function r(c,a) € [0,1].
With probability at least 1 — &, provided a history D whose size exceeds poly, (|Al,e~1,1og(1/5)) -

13



Algorithm 3 FW-GD
Input: II policy sets, number of actions |A|, m—1 € II, iy > 0, K € N, threshold €, Ymin, Ymax

el 1 5/2
1: Initialize ny =1, L = |A|2%
l min

2: forr=1,2,--- do

3:  Initialize \’ = eg € R, 7* = 1}y, - /% e RN // Never explicitly materialized
4: fort=0,1,2,--- K do
5: Compute
T = arg meaiglc [Vﬂn()ﬁxyﬂ TL7«)Lr (5)
6: Set the FW-gap
ge = (Vali(X', 7 m0),em, = A') = [Vali(N' 7' sma)] = D0 [Valu(W 9 m)]
mEsupp(A?t)

. — mi g
7 Set ﬂt_mm{LH/\LeﬂtH?l}

: Set Kt = (15;—11)2

: Set A" = (1 — )" + Brenr, // Only 1-sparse updates recorded
10: Set vt = GD()\t,nr,m) // Only differences from 7y recorded

11: end for
12 if B A5 n) < ¢ then

13: break

14: else

15: Nrt1 =2 Ny
16: end if

17: end for

Output: M5+ e A, K+ ¢ R‘f‘,nr

log(|I1]), Algorithm [ returns a policy @ satisfying V (wy) — V(7e) < € in a number of samples not
exceeding O(pr,c log(|1I|log,(1/A¢) /) loge(1/AL)) where A¢ := max{e, mingen V(m.) — V(7)}.

In addition, Algorithm [§) is computationally efficient and requires the amount of calls not ex-
ceeding polys(|Al, e~ 1, log(1/5),log(|I])) to a constrained argmaz oracle.

4 Conclusion

This work provides the first instance-dependent lower bounds for the (¢, d)-PAC contextual bandit
problem. One limitation of this work is that our analysis of Algorithm Ml does not immediately
extend to the realizable linear setting. That is, a computationally efficient algorithm that achieves
the same bound is not known to exist. In all other settings discussed in this work, we proposed
a computationally efficient algorithm. A second limitation is the assumption that we have access
to a large pool of offline data. Because it seems necessary to plan with some information about
the context distribution, it is not clear how one would completely remove such an assumption
and achieve the same sample complexity bounds. As with any recommender system, there is
the potential for unintended consequences from optimizing just a single metric. Moreover, other
potential pitfalls can arise, such as negative feedback loops, if our assumptions fail to hold in
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Algorithm 4 Contextual Oracle-efficient Dualized Algorithm (CODA)

Input: policies IT = {7 : C — A}, feature map ¢ : C x A — R% § € (0,1), historical data D = {vs}s
1: initiate T € II arbitrarily, Ao = ez, 30(71')7 0, Ymin, Ymax appropriately
2: for!=1,2,--- do
3: € = 27l, 0 = 5/([2|H|2)
4:  Define

B 7m) = S en An (A1 (r Fia) + B000) 4B [, Vo) (a,l))Q] . (6)

5. Let A',4',n;y = FW-GD(II, |A|,7—1, ¢;). These are the solutions to

ne := min{n € N: max min hi(A\,v,n) < e} (7)
AEAD e[

YminsYmax]

6: For i € [ng] get ¢; ~ v, pull a; ~ pgf) where pg?’as o< \/()\l ® fyl)Ttt(fj)(%L,l), observe rewards 7
7. For each 7w € II, define the IPS estimator

ny

A;n (71'7%171) = Z 0)

=1 Pedras + [Vilx

Ts

(H{Ti-1(es) = as} — Ym(es) = as})

8: set

7 = argmingern A (1, T1-1) 4 Eemup K bil= 4 %) {71 (c) # w(e)}| + el (g)

[il=my

¢, m(c) e, 7y _q(c)

9: end for
Output: 7

real-world environments. Such consequences can be mitigated by tracking a diverse set of metrics.
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Appendix

In the appendix we present algorithms and proofs not included in the main text. Broadly speaking,

e Section A presents proofs for lower bounds;

Section B presents proofs for the proposed computationally inefficient algorithms [Il and B}

Section C presents results to justify the computational efficiency of Algorithm [4}

Section D presents arguments for Algorithm (4] hitting the sample complexity lower bound;

Section E-F provides technical proofs to argue about convergence of our subroutines.

The table below summarises the notations we used in the proof.
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Table 1: Glossary

A Proof for Results in Section

A.1 Proof of Theorem

We quickly point out that the proof of Theorem is identical to the proof of the linear policy
class case proof of Theorem 2.13] Please see that argument below.

A.2 Proof of Theorem 2.6
Proof of Theorem . To relate the random stopping time to the regret bound, note that

S EulTea(D)(r(e, 7 (0) = rle,0) < By [ValAl7] < /ol AR, [7]

where the last inequality follows by Jensen’s inequality. Since 71 := m, for our particular instance,
if ¢ = argmin e, Eu[Te . (c)(7)] then

Y BulTea(n)](r(e,mi(e) = r(c,a) ZE NAL{a # m(c)}
> ZmaxE (1)]AL{a # m(c)}

> mmlnmaXE wlTe,a(T)]AL{a # mi(c)}
=mE, [Ta,ﬂé(a) (T]A.
Combining the two equations above, and rearranging, we observe that
1
Epu[Teme(e)(T)] < —y/ @l A[E,[7].
Define an instance p’ = (v, ') such that (¢, a) = r(c, a) for all (¢c,a) € [m] x {0,1}\ (¢, 1), and set

r'(¢,1) = 7' (¢,7z(¢)) = 2A under (mstead of 7(¢,mz(¢)) = 0 under p). Note that under p', we
now have that 7z is the unique optimal policy. If the algorithm is (0,0)-PAC then by [I9, Lemma
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1] we have that
log(1/2.4) < ZKL DIV (e,a),1)) - BT a(7)]
:KL( (0, 1IN (24, 1)) - Ep[Te,moe) (7)] = 28% - By [T o) (7))

1 7 [4aE, [T
S 2A2 . m CY|A|EM[T] = mQAHEQ] .

The result follows by rearranging. O

A.3 Trivial Class: Proof of Theorem [2.9]
Firstly note that

i Eony [(Pcnlmc) * M(c)) H{mi(c) # W(C)}}
P11,0 (H, 'U) = pceAnfltl,nvceC weHa@(r* (ECNV[T'(C, T (C)) T(C W(C)) ])2

| Seceve (2= + 5= ) U (o) # (o)}
= min max
Pe€AA, Vel rell\m. (X ece VCAC)W(C)]_{W*( c) #m(c)})?
1
, S Cesale (p L+ L)1 {m(0) £ a}
min max

pe€ha, VeeC aefo,1}C1x14N0: (Do, 4 Qe,aleA 1{7r*() 7(c)})?
Eaac,ae{o,l}

1 1
v 1
¢ (pc,a + pc,fr*(c))

m ax
Pc€EA A, VeEC c,aimy(c)F#a (VcAc,a)2

2
< max — A2,

a’

where the last equality follows from repeated application of the inequality (lil:b?j < —; V7
2

Proof of Theorem[2.9. The proof of the instance-dependent lower bound for € = 0 follows directly
from Theorem 2.21 The second minimax statement is, to our best knowledge, novel.

First, note that sup, E,[r] > ¢ ?|A|log(1/6) by a reduction to multi-armed bandits by just
setting 11 = 1 and v, = 0 for all ¢ # 1 [24, [19]. If U denotes the set of instances that achieves
this supremun, and V' is another set of instances, we note that sup, E,[7] = supp E,~pE,[1] >

3 sup,ep Eulr] 4 3 sup,,cy By [7] for some other set of instances V. Thus, it remains to show that
sup,, E,[] > 72| 4] - [C].
Consider the following construction of |TI| = |A|I°l instances. For each context ¢ € C let

ve = 1/|C|, and for each 7 € II let r:(c,a) = aecl{m(c) = a} for some a > 0 to be determined
later. Clearly, policy 7 is the unique optimal policy under the reward function r,(s,a). Assume
that observations are perturbed by Gaussian N(0,1) noise.

Fix p € (1/2,1) to be determined later. Let S := {c € C : P, (7(c) = 7(c)) > p} and suppose
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|S] < |C|/8. Then

P, (V(r) = V(%) <€) Z ael{7(c) £ m(c)} <€)

|C| ceC

=P, (Y 1{F(c) # n(e)} < [C|/)
ceC

=Pu, () 1{7(e) = m(0)} = [C|(1 ~ 1/a))
ceC

<P, (Y 1{A(e) =7(0)} > [C|(1 - 1/a—1/8))
ceC\S

ZCEC\S Py, (@(c) = m(c)) p

S O =1ja=1/8)  S1-ija—i="/®

with p = 5/8 and o = 8. This implies that for § € (0,1/8), any (¢, d)-PAC algorithm must satisfy
ming |[{c € C: Py (7(c) =7(c)) > p}| > [C|/8.

Assume the algorithm is permutation invariant (note that any reasonable algorithm satisfies
this, including UCB, Thompson Sampling, elimination, etc.). Let u() = (v,79) where r,(r)(c i) =
r,(f)(c,w(c)) = ae, and rgf)(c,j) =0 for j & {i,n(c)}. Note that P, (7(c) =7(c)) > p =5/6 and
also by the symmetric algorithm assumption that P o) (m(c) =7(c)) < 1/2 because there are two
identical best-arms. Note that > .. 4 E, [T. 7J]KL([J,7|.( ), MSZ)( ) = K, [T.:]a?€?/2 for i # w(c).
Putting these two pieces together and applying Lemma 1 of [19], we have:

i Ll 62/2_ ZEM ej [ B L (4) Srl)(]))
jeEA

2 d(Py, (w(c) =7(c), P o (m(c) =7(c)))
>d(5/6,1/2) = %log(55/36) > 1/10.

Thus, By, 32 4r, (¢) Tesi] = za~2¢7%(|A| — 1) and this must occur on at least |C|/8 contexts. Pick
one context ¢ of these arbitrarily. Then

1 B B T

sa e (A - 1) < By, | Y T =B ) e =c}] = By, [rlve = Eu, [7/IC].

iZ£ms(c) t=1
Consequently, E[r] > o 2e2(|A] — 1)|C].

O
A.4 Proofs of Linear Policy Class
We begin by defining a quantity fundamental to our sample complexity results:
||¢77_¢7T*H2 c,a)p(c,a)T]—1
Pline i= _ min max EervlacaPeadloa)dlea) 177 9)

Pe€A A, VeEC TETT\ T, (Or. — Or,04)2 V €2

We quickly point out that the proof of Theorem is identical to the proof of the linear policy
class case proof of Theorem 2131
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Proof of Theorem [2.13. For any 6§ € R? let Py(-) and Eg[-] denote the probability and ex-
pectation laws under 6 and v such that ¢; ~ v and playing action a; € A results in reward
re ~ N((p(ct,ae),0),1). If an algorithm is (0,6)-PAC then supycga Po(V(7(c)) < V(m(c))) < 6.
Now, of course, under 6 we have that
V(7(c) <V(m(c)) <= Eenu[(0,0(c, T(c)) — d(c, mi(c)))] <O
Aand <97¢? - ¢W*> <0
< e v (0, ¢(c,m(c)) — d(c, mi(c))) <O0.

Fix 6, € R? and recall that under 6 we have that 7.(c) = argmax,e4(¢(c, a),d). Fix any 6 € R?
and maxe o V{0, ¢(c,a) — ¢(c, m(c))) > 0. Then by |19, Lemma 1] we have that

d(Py. (V(7) = V( ), Po(V(7) = V(m.)))
<ZE9* ra (MDIELN (65, 6(¢', d)), DIN ({8, 6(c', a')), 1))

= Z EO c’ a’ ”9 - 6‘”¢> c',a’')¢ c’,u/)T/2

Eg [Tc’ a’ (T)] 2
=E —_— 9* -0 ! ’ ol 2
< ! /a’ * 2 ! ql 1 ol
- pceglj,)écecEe* [T] C,Za, Ve'Pe! ja ||9 9||¢(c ,a')o(c,a )T/2
_ 2
= cmax  Eo [0 —0lIE, 15 b otcarsiea /2

where the last inequality follows from Wald’s identity:

Z Eoq, [Tc/@/(T)] = Z Eo, Z 1H{a; = a,cp = C/}

a’€A a’'€eA t=1

T

Zl{ct =}

t=1

= Eg* [T]Vc/.

Noting that d(Py, (V(7) = V(7.)),Pe(V(T) > d(1 — §,6) > log(1/2.40) and we can minimize over
0, given the conditions, we have that

log(1/2.46 E -0
0g(1/2.49) < Pe€ ANNCEC 6:Tee (0.0(c.n) meb(ema(c))) >0 o. (116 —Olls. .. (S0 Perad(e)o(c) 71/ 2

- 2
:EG* [ ] max min <¢(Ca T (C)) ¢(Cv CL), 0*>
pPcEA A, VeEC ¢, aGCX;Ll 2||¢(C a) ¢(C, T4 (C)) |IEC~1/[EG pe.ad(c,a)p(c,a)T]=1

7 (C)#

After rearranging we conclude that

2||¢(C, a) - ¢(Cv Tx (C))H]E (3, pe.ad(c,a)d(c,a)T]—1
E e log(1/2.46).
0.[7] = ;Dcein;nVceCcz?(elC);A <¢(C, T (c)) — o(c, a),6‘*>2 0g(1/2.49)

To see that equation (@) is a lower bound, follow the exact same sequence of steps but taking any
6 € R? and max e B, [(0, ¢(c, 7(c)) — ¢(c, ma(c)))] > 0. O
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A.5 Proof for Corollary [2.16]
Proof. Observe that

o Eev, (75 + 7)) Um(o) # 7(@)}]
P = A B B [rles () — 7o T (D) V 0P

)
B [ (52 + 57— ) Hma(e) # 7(0)}]
(=

Pe,m(c)

= min max max

PcEA A, VcEC e2eg eI\, : A(m)<e €2
| B (525 + 5 ) Hme(e) # 7(0), Am) < ¢}
= min max ma.
PcEA A, VcEC €2€p TEII\Ty: A(ﬂ')<e €2
Ecw ( L+ ) 1{3Ir eI : m.(c) # w(c), A(m) < 6}]
< min max max L\Pern(e)  Perma(e)
2
PeEA A, VeEC e2eg mell\m:A(m)<e €
@) <
D ey B (AL A L3 € 1T 0) £ (0 A(r) < o)
e>eo mEll\m,:A(m)<e €
2 A~y 137 €11 m.(c) # m(c), Ar) < e}] _ 2 pesc
- IEI;E() 62 €0 C ( )

where () follows from taking p. € A 4 to be the uniform distribution over all actions for each ¢ € C.
To relate this to the policy disagreement coeflicient, note that

A(r) = Ecnafr(e, m.()) = r(e7(0))] 2 Bewy[1{m(c) # 7.(c)} (min minr(e, m.(c)) = r(c,a)]
= Pu (TF(C) # T (C))Auniform-
Therefore,

2| AIEc, [1{3Ir € I : m.(c) # 7(c), A(m) < €}]

max

€€ 62
A AE e [1{3r € 112 ma(c) # (), By ((e) # ma(0)) < moi}
< max 5
€>eo €
2| Al |
< —— ¢P° i )
> GOAuniform CH (EO/Aunlform)

B Proof for sample complexity of Algorithm [ and 2]
Proof of Lemma[31l. For any V C Il and 7 € V define the event

gfr,f(v) = {|67r*-,7r,€(v) - <¢m — Ors 9*>| < 55}

where it is implicit that Ox, z¢ = Or, x.¢(V) is the resulting estimate after round ¢ if II, had been
equal to V. Define wy(V) and 74(V) analogously. By the properties of the Catoni estimator, we
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have for any V C II with probability at least 1 — QEQLIH\ that

2log(2€2|11|/4)
(V) — log(2£2[11]/6)

07, 7e(V) = ($n, — b, 04)| < [, — (walA(w,_;(V))1\/71Z

¢7r* _¢7r ’ w -1
g\/ ” Phiwtvn oo opTis) — e

2¢, p(we(V), V) log (202|111 /6)

Consequently,

(=17mell, =1 ell,
:Z P(U{Eﬁe(V)},He—V>
¢=1VCII wey
Y YR (U {e;;,g(v») B, = V)
¢=1VCII TEY
<> > ng‘}lllp(ng =V)<4
¢=1VCII

Thus, assume (1,2, (eqr, {Ex.e(Ile)} holds. For any 7 € TI; we have
/O\W,Tr*,f = aﬂ',ﬂ*,f - <¢7r - (bﬂ'* ) 9*> + ¢7T* ) 9*>
<e+ <¢7T - ¢W*79*> <e€

which implies that m, would survive to round £+ 1. And for any 7’ € II, such that (¢, — ¢r/,0%) >
2¢p we have

max 677,71",6 Z 571'*,71",2

welly
= <¢7r’ - Qbﬂ'* ) 9*> - 671”-,71'*.,4 + <¢7r* - ¢ﬂ’a9*>
> —€p+ 2¢p = €y

which implies this 7" would be kicked out. Note that this implies that maxrcm, , (¢r. — ¢x,0%) <
26[ = 4€[+1. O

In the remaining of this section we provide a proof for the sample complexity of Algorithm 2
Theorem B.1. Under &, for all £ € N, the following holds:
1. 7weeSp:={mell:V(n.) = V(n) <e};

16m. — Bl 1 low(1/60)
eZ+A()?

2. ng < Ming e MaXer
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Without loss of generality, we assume that V¢, the reward r; € [0,1]. Note that by the result
about Catoni estimator in [23], we have for all £ € N and 7,7’ € II, that

2log(2¢2|11)/6
Cat({ (6 — bu, O} its) = {Dr — G0, 8] < 16 — Do a (o \/ e LI

Therefore, in the £th round, we have for any «, 7’ € II,

o~

Ay, ') = A(r,7')| =

({<¢7r - ¢w/7 Oz>}?£1) - <¢7r - ¢w/7 9*>|
_ \/2”@7 = 0w |2 o)1 Log(22]T1] /6)

Ny

(10)

Then, let §; = 212‘5@ we define the event

& = ﬂ ‘ﬁl(ﬂ',w/) —A(m, ') <

7, €11

\/m = w12 ey 108 (1/81)

ne

and €& = (2, &. First, by equation [0, we have that £ happens with probability at least
1 — 6. In order to show the sample complexity lower bound, we use proof by induction. Note
|6, —¢=| log(1/81)

A(w)—1

el2+A(7r)2 » 8O

we induct on this result. Assume in round I — 1, 11 € Sj—1 = {w € I : A(m,m) < -1} and
2 2 2

n < min max |‘¢ﬁl*27¢”||A(w>*1 log((I—1)7|II"/9)

-1 weR well 51271+A(7r)2

upper bound on the UCB.

that in a step of Lemma [B4l we can show that n; < min,eqo max e

. Then, the following lemma gives us an

Lemma B.2. We have for any © € 11,

¢z, — ¢7r||,4 (w®)-1 10%(1/5Z)
ny 2

5 (46z+Al 1(m, - 1))

Proof. By definition of n; and w®) and 7(*) being the saddle point, we have

1~ 2[|prcer = bz, 113 pery—1 L0g(1/61)
—ZAz—l(w(@ﬁl—l)-ﬁ-%\/ A ®)

e

L ~ \/1568”% D11 % w0y -1 108(1/01)

—InaX—ZAl 1(m,m—1) +

€].
mell

g

Solving for n; gives us

2
N 1568 [|dr — 07,y || g(uer) -1 l0g(1/61)
n; > max = :
mell (dey + Ay (m,m-1))?
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We have for any = € 11,

2m; > 3136 max 9=, - ¢i”‘2“(w(“)71 tos/on)
mell  (dey + Ay (m, 7i_q))?
67, — ¢W||?4(w<f>)—1 log(1/61)
(de; + A1 (7, 71-1))?
H¢%l,1 — Oz, Hi(wu))—l log(1/61)
(der+ Aoy (R, Fim1))?
(o7 = 0oy + 1971 = 85l o)+ ) lom(1/3)
max{(de; + Ay_1 (7, Fi—1))2, (der + Aoy (m,7i21))2)
© 156 s - 2 log(1/41) |
max{(de; + Aj_1 (71, T1—1))2, (de; + Ap—1 (7, 7-1))?}

> 1568

+ 1568

@
> 1568

where (i) holds by lower bounding the ratio with a larger denominator, and (i¢) holds by tri-
angular inequality. Therefore, using the fact that A(w,7;—1) > 0 for any = € II since ;1 =

arg maxxer Vi1 (), we have \/max{(4el + A (FLT-1))2, (deg + A1 (m, 721))2) = max{4e; +

A1 (T, Rim1), 46+ Ap_1 (1, 1-1)}, s0 we have

pz — ¢w|\i(w<m)—1 log(1/4:) < 1

- 58 (4el + max{A;_1 (7, 7-1), Ai—1 (70, m_l)}) )

O

With the above results, the following lemma controls the difference between the empirical gap
and the true gap.

Lemma B.3. With inductive hypotheses, we have for any w € 11,
~ N 1
[Aj_q (1) — A (myme) | < 221 + ZA(F,TF*).

Proof. We prove this by induction. First, in round [ = 0, this holds by choosing a sufficiently large
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ng. Then, in round [ — 1,

Ay (m, 7o) — A (m, ) |
= Ay (1, 7)) = A (A1) — A (T, ) |

2 H(bﬂ' - (bﬁl—l Hi(w(lfl))—l log(l/él—l)

< + €1-1
ni—1
(1) ~ N ~ ~ ~
< (46171 + max{A;_o(m, T—2), Aj—a(T1—1, mfz)}) +e1
(i1) 5 N 5 . ~
< de—1 +2¢-9 + ZA(W,m—z) +2€¢_0+ ZA(Wl—laT"l—2) +e1

EEACR T

5 5. .
(461_1 +4e_o + ZA(TF,?T*) + ZA(m_l,w*)) + €1

< >3 <4€z1 +4de o+ ZA(W,W*) + 2611) + €1

1
< 26l*l + ZA(W; ﬂ-*)v
where (i) follows from the preceding lemma and (i7) follows from the inductive hypothesis that

~ =N 1
|A o (m,T—2) — Am, m)| < 2619 + ZA(F, T )

We make use of these two lemmas to state a lower bound on n;.

Lemma B.4. Under £, the choice for n; in the algorithm satisfies

o ém = Gxlli - log(1/8)
n; S min max 3 3 .
we well El “+ A(Tf)

Proof. By inductive hypothesis on n;—; and under &;, we have for any = € II,
A(myme) = A(m, T—1) + A(T—1, )

(1) ~ 2 ||¢%L,1 - ¢7‘I’H124(w(2—1))71 log((1 — 1)2[II]2/9)

~

Ay (m,m—1) +

+ €11

ni—1

—~

i)

N R V2 ~ N
< Ap(mmo) + 53 (461—1 + Az—2(7T,7Tz—2)) +e1

~ . 2 5
<A (7 m—1) + 2_\/8— (4611 + ZA(W, ) + 2612) +e-1

IN

-~ =N 1
A (m, 1) + ZA(W,M) + 2¢-1.
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where (i) follows from &_; and (i7) follows from Lemma [B:2] Therefore,

2
i 13 ~ 2[|¢r — 6., HA(u;)*l log(1/41)
mip i — ;A (7 Fi-1) + 28

ny

2
1 2||or = 7,1 || 4 (-1 l08(1/01)
Sminmax_%A(mﬂ'*)—F—el—l—% H 1 1||A( )-1

we mell 2 "
2| ¢r. — b |y -1 L0g(1/8
Sminmax(—iA(w,ﬂ-*)_FQs I O |4 () -1 10g(1/01)
we mell 16 nl
2
2|6, = 671 L4y los(1/61)y 1
+ 28 ) +1q
ng 2
3 2|6 — bl ()1 log(1/8,
Sminmax __A(ﬂ',ﬂ'*)—i—28 ” ”A( )-t g( / l)
weN well 16 nl

2 . — Pr’ 2 — 10 1 5
+28\/ L 200n — dwl B/ 1

Ze,
'€51-1 n 2

which is less than ¢; whenever

2
> . H(bw* - ¢7r||A(w)71 log(l/él)
n; 2, min max 5 5 )
we mell & + A, 7.)

Then we finish our first goal. The next goal is to show that 7; € .S;.

Lemma B.5. Under &, we have A(7, m,) < €.
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Proof. On &, we have

A(T, m—1)

2 H¢7Tz ¢7Tz 1 HA(,LU(Z) 10g(1/5l>

n

< Ni(7y, 7o) (by event &)

< Ay

2
~ 2||pz, — Oz, _, log(1/4))
(s, Ti—1) H L L 1”,4@;(@) i by minimality of 7;
) y y

n

2 2
<A 7T*, 2 1 2 H¢?171 — ¢, A(w®)—1 1Og(l/él) " 2 H(bﬁz — b=, HA(,LU(Z))—I IOg(l/(Sl)
ny nl
(by event &)
< A Fior) + o= (de+ Bioa (e, Fior) + e+ A (7 7o) (by Lemma [B:2)

S A(Tr*; %lfl) +

[N [N
@O o] ®©f o

5 . O~
<4€z +2¢-1+ ZA(W*JUA) +4de + 261 + ZA(WI,W11)>
(by Lemma [B.3)

- 3
< A(ma Fi) + ;<&1+ Mmmo.
Therefore, %A(ﬁ,m) < %el and A(7, ) < €, so T € 5. O

C Proof of the FW-GD subroutine

In this section, we aim to prove Theorem 3.3l Specifically, Section quantifies the number of
oracle calls, and Section quantifies the number of offline data needed in order to approximate
the expectation over the context distribution. In particular, the size of the history follows directly
from Lemma [C.5] and We will see that 17, Ymax, Ymin 2ll scale at most polynomially on |.A| and
e~ 1. We leave the convergence analysis of the algorithm in Section [El In particular, we will see in
Theorem [EJl that K; = poly(|.A],€; "), which shows that the total number of oracle calls is at most
poly (A, e~1,log(1/68),log(|IT])). Combining all results above gives Theorem

C.1 Proof of computational efficiency

In this section, we address the technical issues on computational efficiency of our algorithm. Fix
an iteration ¢ and let K; be the number of iterations for FW-GD in the [th round.

Lemma C.1. Equation [ can be computed with (t+T;—1)|D| call to a cost-sensitive classification
oracle.
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Proof. We consider the tth iteration of the [th round for some n,.. In this iteration, we compute

t ot S i _ ~ B log(1/6;)
[Vahi (A At n)]r = ; m (H{m(c;) = a;} — V{T_1(c;) = a;}) + Wﬁnl

(©)
Eenvsp (Z\/Atcm (C)er)) > [ (tar” +m)x

oo +m)

Define vy := Tjﬁ(;n/l ‘22 Initially, each coordinate of ~! is 7. In round t of the algorithm,

at most t coordinates of v will change, and these coordinates will be in supp(A\'). Also, for any

j & supp(\ 1), ’Yj ! = 9. Therefore, let tflc)(-,%l,l) € RN in round I,

argmax [V,\hl(/\tﬁtanr)]ﬁ
€I\ (supp(A?)Usupp(Al—1))
log(1/6
= argmax Z (é) {m(e;) =a;} + log(1/1)
mEII\ (supp(At)Usupp(A—1)) 527 Deiva; + Y0 omr

Eevp (Z \/ MO Tt (Fi1) +m)> Z Y0t (Fi-1) + M)

acA a’eAd [ (At O~ T(t, ¢ )(m 1)+ m)

argmax Z 5 ) {n(c;) = a;}

w€II\ (supp(At)Usupp(Ai—1)) i=1 Dcivas + Yo
D acA \/(/\t O T @ia) +m)

a’cA \/()\t ® Wt)T(t((f/) (Ti—1) +m)
’ﬂl-l-"D‘

= argmax Z Li(m(ci))

mEIT\(supp(A*)Usupp(A'—1)) =4

+ ECNVD 'YOt(C) (7Tl 1)

which is a cost-sensitive classification problem with cost vector

Li(a) = P 10 = i) P
S 4 10— V(U : ) Ha#m-1(c;)} fori=mn +1,--- ,n+|D|
a,c mr_1(ei)ieq

Vo) T G +m)
Sarea VIO TS Fimy)+m)
non-zero elements in step ¢. Then, let ¥ := supp(A\*) Usupp(A'~1), we have

where s, = . Note that s, is computable since Al has at most t

arg max (Vali (X7 ne)]

= argmax { argmax [V,\hl()\t,wt,nr)} , argmax [V,\hl( ,Wt,nr)h )
mell! w T\ I1#
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The first piece could be found directly since supp(\) U supp(A~1) <t +T;_;. The second piece

could be computed with (t+7;_1)|D| calls to a constrained cost-sensitive classification oracle, stated

in Lemma below. O

Lemma C.2. For any set B, C I, we can compute argmax [V xh (A, 7%, n,.)] _ using |By| - |D| calls
well\ By

to a constrained cost-sensitive classification oracle defined in Definition [2.3

K

Proof. Algorithm [B] below shows that we could compute this argmax via the C-AMO oracle. First,
by construction of the algorithm, we have that 7, & By, so w. € I\ B;. It remains to show that 7.
achieves the maximum. We prove this via contradiction. Assume that there is some other ' # 7,
that satisfies 7’ € By and Va[hi(A, 7, 1)z > Va[hi(A,7v,n)]x,. By construction of our algorithm,
we know that V[hi(\,7,n)]r, is non-increasing in k. We find the largest 0 < j < i — 1 such that

VAl %, )]s < Valhi(Ns s )] < Valhi(A, v, n)] ;-

First, since j is the largest, we have Vx[hi(X,v,n)]x, ., < Va[hi(A,7,n)]7, i.e. the first inequality
is strict. By assumption that ' ¢ B; and 7’ # 7., we have ©’ # 7, V0 < k < 4. So deg € D such
that 7'(co) # mj(co). Then we get a contradiction since in iteration j, at line 6 we should return

w,. instead of m;41. Therefore, there does not exist such 7’ and 7. achieves the maximum. O

co

Algorithm 5 Constrained cost-sensitive classification

Input: policy set II, set of policies to avoid By, objective function h;, context history D, tolerance
€
1. mo = argmax [Vahi(A,v,n)]x, ¢ =0
mell
2: while 7; € B; do
3. for ceDdo
4: compute T‘—é = argmax [vkhl()‘u/%n)]ﬂ' s.t. [v)\hl()‘v’% n)]ﬂ' < [vAhl(/\v’% n)]ﬂ'z
(S (e)
5:  end for
6: i1 = argmax [Vahi (A, y,n)]x
ceD
7 i=i+1
8: end while
9 e = T;
Output: 7.

Lemma C.3. We can compute equation (8) with K;|D| calls to a constrained argmaz oracle.

Proof. We follow the proof technique in Lemma and break the argmin into two pieces with
7 € supp(\) and 7 € II \ supp(\'). We only show how to compute the second piece as the first
T
),ai +[vx

. (UTi—1(ci) =
a;} — 1{m(¢c;) = a;}). Then, similar to proof of Lemma[C.l let ~, = o for all 7= € II \ supp(\), we

~ 1
piece could be compute directly. We know that A} (7, 1) = >ty —

7
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have

N e Dlx ) pn log(1/0
argmin &7 (n,710) + Bovv | 27 + 2 ) 105110 2 m(ey| + SELL
me€ll\supp(Al) Pe,a Sa’,c [’7 ]ﬂ—’nl
ng
s T ~
= argmin Z O (1{m-1(c;) = a;} — {7 (c;) = a;})

TFEH\Supp()\l) =1 pci,ai + [/yl]ﬂ'

! !
+Ecurp [(%}g + h(l]ﬂ> H{7m_1(c) # w(c)}]

)
pc,a’

ng

. 7"
= argmin Z —mill{ﬂ(ci) =a;}
m€M\supp(A\!) ;=1 Pesra; + 70

70 Yo ~
+Ecuvp [( 0] + 0] )1{7‘1’11(0) # 7T(C)}‘|
ng 1
T

1{r(ci) = a;}

= argmin NG
m€M\supp(A\) ;27 Pesra; + Y0

e K]% + %) 1{Fi1(c) # w(c)}]

which is a cost-sensitive classification problem with cost vector
_r 1{a=a fori=1.---

a=a or i ny

p(cei),aiJr’Yo { l} ’ ’

- +<”¢> Ha#mi(e)}  fori=mn+1,--,m+|Dl.

Peja cirRp_1(ci)

LZ(CL) =

C.2 Quantify the offline data

We first prove a general result for an empirical process bound of the difference of the expectation

and the truth in Lemma

Lemma C.4. Let m = |D| and define some set K C ymaxAn. Consider some function u: C x K —

R with ¢,k — u(c, k) and define F & {c+> u(c,k) : k € K}. If

1. w satisfies that for any ¢ € C and k € K, u(c,k) € [0,b] where b < oo is a uniform upper

bound;
2. there exists L < oo such that ||u(-, k1) — u(-, k2)|| z < L ||k1 — K2||;-

Then, with probability at least 1 — 6,

b2 2 16
ECNVD ) _Ecwu 9 S _1 = —L max 2I€1 11 k .
S0 (B e )] = Boms (e 9] < 1 =108 (3 ) S5 L/ BRG]
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Proof. By the bounded condition on u we have {E¢w,,, [u(c, k)] : £ € K} satisfies the bounded
difference property with parameter b. Then we use McDiarmid’s inequality to get with probability
at least 1 — 6,

sup [Ecuyp, [u(c; )] = Ecy [u(c, )|
KEK

< % log (%) +E [:1612 Ecmp [ulc, K)] — Eonw [ule, R)H] :

Also, note that by definition of F and classical results on entropy integral [32],

8 oo
E [21612 |Ecmvp [ulc, k)] — Eenw [u(e, K)]|:| < 7 sgp/o Vlog N(F, La(Q), €)de,

where N(F, L2(Q), €) is the covering number. By condition 2 and property of covering numbers,

sgpN(F,Lz(Q),E) SN(F Mz e) < NI -y e/ L)

Denote BY as the [; ball with dimension k. We know that for e < 1, N(B¥, ||l ,€) < (%)k Since

K C ”ymaXA%k) C *ymaXBf, and there are (2) ways to choose such a support ”ymaxB{“, by union bound

over k-dimensional subspaces we have
II k
NI Ml e/L) < ()N (maxBr Ml €/L)

1I
< () VB ¢/ )
_ (e ¥ (3L Ymax ’“< 3 Lymaxe| I\ ¥
(%) (=) < ()
sp [ RN L@ e < [l N U o/ Ly

L'Ymax 3L i H
< / \/k log (M>de
0 Ek

1
/ 3e|ll
:Lymax/ klog( d |)de
0 Ek
! 3el|TT]
< Lymax / klog ( ) de
0 Ek

< Lymax/ 2k log(3e[II| /k).

Therefore,
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Combining all results yields

16 e
E| sup [Ecuvp [ule, k)] — Ecuw [u(e, K)]]| < —= Sup/ VIog N(F, Ly(Q), €)de
PN Vvm Q Jo

1
< 2 e /2K Tog (BT,
m

Therefore, our result follows. O

Then, we take two special kind of u(c, k), and get the bounds for our estimate of the expectation
over v with the offline history D.

Lemma C.5. Let m = |D|. Then, with probability at least 1 — §, we have

ENDKZ\/AM <c>+m)>2 —ENKZ\/A@” (C)Ml)ﬂ

acA acA

sup
k
(A7) Evmax Al('l )

JA* s (1 +1m)2 2 16 2 2k (1 + m)Ymax 3e|11]
< g =mex - T2 - — max ! .
- \/ 2m o8 1 * \/m|A| " 7 Ymin 8 k

Proof. Define € K such that £y = Arvr. Then, K C ymaxAn since Y7 _cphin = 2 cp Ae¥e <

2
Ymax- Then, let u(c, x) = (EGGA T(tq © 4 m)) . We aim to use the result of Lemma[C.4to get

our bound. First, since for any x € K and any ¢ € D, u(c, k) € [|Al*Yminm, |AI*(1 + 1) Ymax), S0
condition 1 is satisfied. Also, note that u(c, ) is Lipschitz in x, i.e.

u(-, £1) — u(-, k)|l
= sup |u(c, k1) — u(c, ka)|

ceC

= sup Z \/ K t8e) ¢ ) Z \/ K t(c) +m)
c€C | \aea acA

< sup (Z \/ml ) m) +\/I€2 ) + ) ( KT () + ) — \/@(tff)jtm))’
ce acA

)Ttl(J,C)

Iil—li

ceC acA

51 — K2,

= sup <Z \/Ii?(tfzd +77l) + \/K/;r(t((f) + M )
gsup<Z\/ﬁl +m +\/,$2 (c)_i_77 )

ceC acA

( ) "l_\/KQ (t& +m)

aeA\/ +77 +\//£2 t(c)—l—m)

< |A|2 (14 1) Ymax I

K1 — IQQHl .
M Ymin
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Therefore, condition 2 is satisfied with L = |.A|? u’:ﬂ"fyw Plugging in the result in Lemma [C.4]
we get

sup |Eewwp [u(c, k)] — Eenw [u(c, 5]
PN

|~A|4’Y 1+77l) (2> 2]€(1+77l)7max (3€|H|>
max lo A max lo '
\/ & \/_| | K 1 Ymin 8 k

Lemma C.6. For any 7 € 11, with probability at least 1 — 0,

o AN TED +q
Eenvn | Y Zwen o )t

sup (vr[te”1x)
()‘)’Y)E'YmaxAH acA \/()\ @ ,y) ( (C) + ,rll)
Ywea VAN +m)
_ECNU = \/ (’771' [taC)]ﬂ')

i JaenTE +m)

|AI* (L + 1) Ymax <2> 81 A|2Ymas
< Ymax | (| o ————log | < | + —=————577V/2klog(3elll[/k) | .
! < 21 Yminm &\5 V(N Yanin )32 g(3elIl|/k)

Proof. First, note that

2area \/(/\ O +m) (e[t 9Nr) < 7om Daea \/()\ ONTED +m)
\/()\ O] V)T(ft(zc) +m) ’ - \/(/\ ® ,Y)T(tl(f) + m)

[t5-

/NT (e)
Then, we define u(c,k) =, 4 Zoles Co +m)[ (c)]

VAT (167 +m)
u(c, k) € [0, |A|27”(1:7r7\/ﬂ”“‘x] , so condition 1 in Lemma is satisfied. Also,

First, note that for any ¢ € C and x € K,

llu(e, k1) —ule, ko)l 7 = su;c) lu(e, k1) — u(e, ka)| (11)
ce
S wea \VET S +m) Swea R () +m)
:SUPZ & ) [z(z)]ﬂ' Z < @ [z(z)]ﬂ'
CClaca \/w] (ta” +m) acA  \[w3 (t5) +m)
Swea (] () +m) < V) = \Jwd () )y KT () 4 m)
= sup [t{)]
ceC acA Ii \/H;—(t((f) _|_nl)
Sarea W@(fé’ m)%n () +m) — /63 (£ 4 m)y/w] (1 +m)‘
< sup (12)
c€C gea \/Ii Kg (t((zc) +m)
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Note that by triangular inequality
’\/Fa;(tff) + m)\/mlT(tff,) +m) — \/nf(t,(f) + m)\/n;(tff,) + m)’
< [VR3 7m0 = T+ o VT 6+ )

+ \/HlT(tz(zc) +m) '\/Hf(tff) +m) - \/HzT(tff/) +m)

Also note that

S renllmily = Iral )t + )

VRTED + ) + /] (1 + )
1

W@(té@ )= AT )

< o—F——||k2 — K1y -
2y/MVmin | I

: 2_ 1 1 o . . . B
Therefzore, ([@2) is bounded by |A| T T |k2 — K1|l;, so condition 2 is satisfied with L =
W. Then, by Lemma [C4] with probability at least 1 — 6,

Twea Ao NTEY +m)
sup Ecuvp (
()‘)'Y)E'YmaxAH a \/()\ @ zy)—r(t((lc) + /r”)
(o)
5. 5 Evead/ 00 e )

T JeenTe 1w

4 2
S%ax< AR g (2) B /k))

(3 [t5])

277'Yminm \/ﬁ(nlein)S/2

D Proof of Theorem 3.4

We first write down Algorithm @] in full detail in Algorithm [6l We aim to show that Algorithm
achieves the sample complexity lower bound. The two big goals here is to show that 7, € S; for all
[, which shows that we get the optimal policy, and n; achieves the sample complexity lower bound.

Theorem D.1. With probability at least 1 — §, Algorithm [@ returns a policy T satisfying V (m.) —
V(7)) < € in a number of samples not exceeding O(ps . log(|IT]logy(1/Ac)/6)logy(1/A:) where
A, = max{e, ming e V(m,) — V(7)}.

Proof. We first define our key events. Recall

ny
~1 T

A? (ﬂ-?%lfl) = Z ﬁ

s=1 Pesas T [”Yl ™

(H{Tia(es) = as} = H{m(es) = as})
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Algorithm 6 Full CODA Algorithm

Input: policies IT = {7 : C — A}, feature map ¢ : C x A — R%, § € (0, 1), historical data D = {vs}s
1: initiate 7o € IT arbitrarily, Ao = ez, zo(w), o0 appropriately

2: forl=1, 2 - do

3: ag=2"4n = C’lsf\A\"l, §; = 6/(12|11|?), K appropriately

)7
(

40 @) = {1{n(c) = a,7'(c) # a} + 1{n(c) # a, 7' (¢) = a}}renr € RN
5: Define ymin = % V = 10%51/51)’ Ymax ‘= l\ofg\ﬁgflfil)
6: Define

=1 log(1/4,

hl()‘v Y, n) = Z Ar (_A;/fl (7T7 7Tl71) + M)
Yrn
well
2
+Ecrup [(Z Vo @ F-1) +m)> } :
a€EA

7 Let A\,~4Y ny = FW-GD(II, | A|, 71— 1, M, K1, €1, Ymin, Ymax ). These are the solutions to

ng := min{n € N: max min hi(Av,n) < e}
AEAT Y€ [Ymin, Ymax] T

8: Receive contexts c1,co,- - ,cn, ~ V.

(&)

(13)

(14)

9: For each cs, s = 1,2, ,ny, pull arms as ~ pe, where 10CS as X \/()\l o9h) (tt(f:)(/ﬁl,l) + 1), and observe

rewards 7s where ¢\ S)(m 1) € RITI
10: For each 7 € I1, define the IPS estimator

ng

A (mFi1) = ) ﬁ(l{aﬂ(cs) = as} — 1{n(cs) = as})

11: set
~ S e e _ log(1/8
i = arg min A} (7, T1—1) + Ecnwp |:( EZ)} + (Z[)FY ] ) 1{7m_1(c) # 7r(c)}:| + %
pc,‘rr(c) pc,?r\l,l(c) i
12: end for
Output: 7

(15)

and A(m, ') = V(x') — V(x). Define w(\,v) € RIAXICl with

VOONTE) G +m)
Twea VOO Fi) +m)

[w(/\77)]a,c ‘= V¢ Pc,a = Ve

Then define the events

& = {‘A7 ') — A(m, ')

7,/ €L

2
< 2[7l]7r H(bﬂ' - (ZSTF’”A(w()\l.,'yl))*l + ["Yl]rrnl

2log(1/41) }

and the good event & = (2, &. Lemma[D.3] shows that £ happens with probability at least 1 — 4,

and Lemma [D.7] shows that under this event &,

2

< [fr. — Prll'a(u)—1 log(1/d1)
n; < min max 3 5
weQ well € + A(m, )

38



Therefore, the total number of samples is no more than

log, (1/8) . — ¢7r||124(w),1 log(I2[T1|2 /6)

min max
weQ well €2+ A(m,my)?

=1

() L 2[16r. — Gy -1 log(12[TI12/5)

< E min max
~  weQmel\m. € + A(m,m,)?

(i4) log, (1/A¢) Ecw [(—p<$( : + p—(l())> 1{m.(c) #7m(c)} 10g(l2|H|2/5)
< ] T (c (e

> ; p(c)eAvaeC ﬂgﬁa\ﬁ* A(W,ﬂ'*)2 +6l2

< pr,e(ILv) log(logy (1/ A /6) logy (1/A).

where (i) follows from the fact that . gives zero for the RHS, and (i) follows from Lemma([F.dl O

In what follows, we will fill in the road map to the proof of Lemma [D.3] and First,
Lemma controls the estimation error of the gap and shows that P(€;) > 1 — d,, which leads to
the high-probability of the good event £ (Lemma [D.3]). Lemma [D.4] applies the duality machinery
in Section [E] and controls the variance term. Lemma [D.5] applies the result of Lemma [D.4] and
shows an upper bound for the difference between estimate gap and the true gap, which is a very
similar result of Lemma[B.3l Lemmal[D.flis an important lemma showing the analytical solution of
w given some A and . With all of these results above, we get Lemma [D.7] which gives the upper
bound on the sample complexity.

Lemma D.2. For anyl > 0, w,n’" € II, with probability at least 1 — &y,

~ 1

2log(1/6;
A) (m,7') — A(?T,ﬂ—/)‘ < 2[’Yl]7r llr — ¢7T,||124(w()\[1,yl))71 + #

['Yl]‘frnl

Proof. Define
~ r
V) (m) =Y —m———1{m(cs) = a5},
S e, + e
so that

First, note that below.

V(ﬂ') = ]ECNV [’I"(C, T‘—(C))]

1{r(c)=a 1 Zt Ts
= ]E(;NI/ [anpge) |‘7”(C7 a)% C‘|‘| =K [g WI{W(CS) = CLS} .
Pe,a s=1 Pcsias
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Therefore,

1 & 1 1 /

Pesras + [vl]ﬂ De.a.

1 V']«
n_zz © ((e)

s=1 pcs,as Pe as + h/l]ﬂ'

) (1{7(05) = as} - 1{7T/(Cs) = Gs})

E|L ”Z w (U (ea) = g, m(e) # s} + La'(¢s) # a5, m(es) = as})
[ pés)ﬂl (pés),as—i—[’yl]ﬂ)
1

= [,.E b — b2
7 P (pﬁe?z [ ]w) VZ[ b

1
Ve D ve D pl @2 (O 4 ]ﬂ) [br = bl

ceC  a€A De,aV ( Pe,a

< ['Vl]ﬂ | — ¢7T/||A(w()\l),yl))—1

where the last inequality follows since ucpg?l = [w(A\,9]a.c. Meanwhile, note that

and

Ts

m (1{7‘1’(05) = as} — 1{7-‘—’(05) = as}) < ["yl]ﬂ-

£ (% ({m(es) = as} = 1{m'(cs) = as})>

Desas T ['Vl]fr
1 2
<E|——— (1{n(cs) =as}t — 1{7' (cs) = as
RIS (1{m (cs) b=1{n"(cs) ) ]
=E ! [¢7T - ¢7Tl]i,c‘|

(Pa, + []x) 202
< H¢7r - ¢7T’|‘A(w()\lﬁl))—1

by a similar argument as before. Therefore, by Bernstein’s inequality, we have with probability at

least 1 — 4,

P Tk 5! 2log(1/8)  log(1/8
Vi =W () B [W (m) =V (W/)” = \/|¢7r = [Pt ) 08(1/9) | log1/0)

m (Y ar
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Combining this with the deviation on expectation gives us

~_ 1

A (m,7") = A(m, 7")

2 2 2log(1/6) | 2log(1/6)
< Bl g = 6o aqur - + V L T N I
2 4log(1/4)
2[’Yl]7r |pr — ¢7T’||A(w()\l7ryl))*1 W
Lemma D.3. P(£) > 1—6.
Proof. By Lemma and a union bound over all policies, we have
)
P& &, 6) > 1—l—2
Since € = N2 &
P(E%) = P((NiZ€1)) = P (UZe&) =P (U2, (&1 (Uj<i€7)))
o0 o0 . oo 5
<D P (EN (Uia)) D PE | (Nag) <Y 55 <0
1=0 1=0 1=0

Therefore, P(£) > 1 — 6.
Lemma D.4. Under £, we have for any m € 11,

log(1/6;) < 16 i/\ -1

l p—
Y ]71' Hd)ﬂ' [’Yl]frnl

R Hi(w(ﬂnl))*l
Proof. We know that the choice of n; ensures

hl()\l,’yl,m) < q.
Also, by Theorem [E.1] we have

1 N 2
36 > max (——Al L (7)) + 80« [|p= — ¢?l*1HA(w(Al,wl))*1 + o

Combining the above two displays gives us

fr||¢’m 1 ¢ﬂ||A(w(Al yiy-1 T

Therefore, for any m € II,

2 ~
,-Yl]ﬂ' H¢7T - Qbﬁfl HA(w(Azﬁl))fl W < 66 a

41

8log(1/d1)

Slolt/on) 1,

[Vl]wnl

) - hl()\l7ryl7nl)«

€
3



Lemma D.5. Under &, for alll € N, the following holds:
LAY (mA) = Amm) | < 2601 + 3A(>m ).
2.meS ={rell: A(m,m) <¢e}.

Proof. We prove this by induction. First, in round ! = 0, this holds since our rewards are bounded
by 1. Then, assume that in round [ — 1, we have ;1 € S;_1 and

_ ~ 1
A (m,Te) — A(m, ) | < 2620 + ZA(TF,T(*).

Then, on round I,

L m A — A () |

=AY, (7, Fi1) = A, Fio1) = A (Ri-1, )|
2log(1/61-1)

[y~ a1
(from event £ and inductive hypothesis)

~ 1
AL

< 2[,}}—1]71_ H¢ﬂ' - ¢?L,1 Hi(w()\zflﬁlfl))fl + + €1

< 3¢ + 6—4A7L’22 (7, T—2) + aA?fj (T1—1,T1—2) + €11 (from Lemma [D.4)
1
< gel,1 + o1 (2612 + ZA(T(, 7w ) + 2619 + ZA(%Z,l, 7r*)> (from inductive hypothesis)
1
< 26171 + o1 (2612 + ZA(W, o) + 262 + Z€z1>
1
< 2€¢_1+ ZA(TF,T(*).
Also,
~ NN 2 log(1/6;)
A(7Tl77rl—1) < A? (ﬂ-luﬂ—l—l) + [’Yl]ﬁl Hxﬁl - (bﬁl,l HA(,LU()\L(YZ))—I + W (fI‘OIIl 5)
™
A - ! o 2 10g(1/61)
< Al (7T*, 7Tl71) + [FY ]71'* (b‘rr* (bmfl ||A(w()\1),yl))—l ['Yl]ﬂ'*nl
(eqn (8), the minimum)
~ 2 21log(1/6;)
< A(ﬂ-*u 77!—1) + 2[’7l]m (bm - ¢%171 HA(w(Azﬁz))f1 W (from 5)
1 1 ~ -
<A (e, o) + 3¢ + 3—2A7111 (T, —1) (from Lemma [D.4)
1 1
< A (e, m-1) + 3¢ + 3 <2€l1 + ZA (7r*,7r*)> . (from the above)
Therefore,

ATy, m) = AT, T—1) — A (T, Ti—1)
1 1

St —2

3¢ T 16

€

<

IN
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Therefore, A(7, 7m.) < €, so m € 5.

Lemma D.6. For any A € A, v € R and 7’ € 11, we have

2
min Ae Vel — ¢7r'|‘,24(w)—1: e~y <Z /\Q’YTt ( ))

weN
mell acA

where Wq,c = ch,(l) and p(c) X /D ren A= (H{7' (¢) = a,7(c) # a} + H{n'(c) # a,7(c) = a}) and
® denotes element-wise multiplication.

Proof. For any A € Aq,

i /\7r ™ T — P’ 2 -
min > Aryelox = Sl

mell

:glelgzz Al (g Onr) " aclq (P — Gn)

7ell a,c ;¢

min ZZ ﬂ%r - ) €a, ce (¢ ¢7r)

P1,--Plc| EDA rell ac cpca
71"771'
min — e e
EPCGAAE E chca $n) " €a,clq,o(dn — G

a

-2 3 (ZA”’“ o = ) eustclbn d)”))
c Pc A c,a rell

2

=3 o [ /3 hern 6 = ) e (0~ )

c acA || mell
2
-y L (z S A 2(1{(€) = a,m(c) # a} + 1{(0) # a, () = a})
c ¢ \aeAd \| renn
-Tw (Z S A (1{(0) = a,7(c) # a} + 1{w'(¢) # a,7(c) = a})
acA | mell
—Een, (Z Wmv)%&c)(w'))
acA
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Note that the minimizer

\/Zwen )‘W’Yﬂ((bﬂ - (bw/) €a, ce (¢ (2571- )
Za/ \/Zﬂ-en )\77’777(¢7r - ¢7r’) €a’, ce ((b (bﬂ' )

Y Arv(1{r(c) = a,m(e) # a} + 1{x'(¢) # a,m(c) = a}).

mell

Pec,a =

Lemma D.7. Under &, the choice for n; in the algorithm satisfies

b = Dl %y log(1/01)

n; < min max

weQ well € 4+ A(r)?
Proof.
hi(A', 4 i)
2
~ =1 —~ I 1 6 c

=5V (—Al[l (7r,7rl,1)+%> +Ecnup <Z \/ A @A T () +m)> }

mell V=1t acA

2

< max min Ar - (—ﬁle(ﬁ,%l,l) + M) + Ecnw Z \/ AT (C) m) + lel

A€Am v o Tr acA 4

(by Theorem [E2] the saddle point argument)

< joax min ) Ar - <—3?:1(7rﬁzf1) + M) +Eenw <Z VAoy Ttm)
l’I mwell

Yan
ac€A
(by Lemma [[.3] controlling the bias)

1og<1/6z>) Ll

_el

= max min min Ar - (—3?1711(71-7%}—1) + Y || b7y — (ZSWHi(w)*l +

AEAD WER "/ERT‘ e YrTr 2
(by Lemma [D.6] the definition of w)
1~ -1 2 log(l/dl) 1
5
= nipmeymi —g A (o) 8y flon, = drlly 0 +8TE T ga

(by Lemma [E17 the strong duality)

3 2 log(l/&) 3
< wmelrs% rilgﬁcm“}n <——A(7T Te) + 87 |67, (ZSWHA(w)*l + 8777” + 1 (by Lemma [D.5])
(,b‘rr ¢7‘r log(l/dl)
< min max (——A(ﬂ' ) + 16 H ! HA(“’) ! + §61
we mell n; 4

weQ well n

2
. — Pm w)— log(1 (S
< min max (—%A(mm)+16\/|¢ Orllacw— Log(1/0)

1

2
+16\/H¢m ~ 971 a1 081/9) +2

ny
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weN well 32 n;

9=, — barlauy—1 log(1/0) | 3
16 —€l.
o e

2
e — Pn w)— log(1 (5
< min max (—iﬁ(ﬂvﬂ'*)ﬂ-m\/'d) ¢ ”A( ) 5(1/%)

n
which is less than ¢; whenever

2
> . H(bw* - (bﬂ'”A(w)*l log(l/él)
n; 2, min max 5 5 )
we well € + A(ﬂ')

(16)

E Convergence analysis of FW-GD

E.1 Statement of the convergence results

In this section, we will characterize the performance of Algorithm [6] a.k.a. Algorithm [l Our goal
is to show two results: the duality gap converges to zero, and our algorithm converges to the saddle
point. It is known that Frank-Wolfe algorithm directly deals with the duality gap [27], so we will
define our primal and dual problem in what follows. Since we are computing n; via binning, in
each inner loop n is fixed. Then, we define our dual objective the same as (I3 with the shorthand
notation h;(A,7y) := hi(\, v,n). We formulate our primal objective as

SO 2 log(1/41)
,Pl(w()‘a'y)u/Y) = I;leaﬁ( <_A71 (7T77Tl—1) + Y H¢7r - (bﬁl,l HA(w()\,'y))*l + %7” ) (]—7)

where w()\,v) € RIAXICl such that

Voo +1)
SweaJ AT 1)

Then we will show those two results. First, Theorem [E 1] bounds the duality gap of the primal
and dual objective. Second, Theorem [E.2] shows that Algorithm [E] converges to a saddle point.

[w(/\f)/)]a,c = V¢ Peya = Ve (18)

Theorem E.1. For any | € N, with the number of FW-GD iterations K; = O(L%¢;?) where

5/2
L= |A|27((1+zl/)27“;“) , we have

1 min
|Pl(w()\lvﬁyl)7ﬁyl) - hl(Alvﬁyl)‘ S €.
Moreover, K; depends at most polynomially on |Al,e; ', log(1/4;).

Proof. First, Lemma [[.2] shows that for any A, v, and n, hy(A,v,n) = (A, Vahi(A,7y,n)). Therefore,
at some iteration ¢, the Frank-Wolfe gap

gt = <v>\hl()‘t7'7t)a €r, — )‘t> = gleal?f[v)\hl(/\tv’f)]ﬂ - hl()‘tv/yt)'
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Lemma, [E.6] shows that with a small choice of the regularization parameter the primal objective is
close to the maximum component of the gradient, i.e. |P;(w(\, "), v") — maxen[Vahi(A, )] | <
&. Also, Lemma [E.5] shows that if ¢ > LQel_2 is large enough, the Frank-Wolfe gap is bounded by
€;. Combining these two lemmas, for ¢ > Lzel_Q, we have

[P (wA, Y, 1) — hi(A A
< P w(N Y, — maX[VAhl()\lﬁl)H + | (A1) = Elgﬁi[vxhz()\lﬁl)]ﬁ

< Pi(w(N,v),7) — mGaX[VAhl( Nl + g
a ., a _
Sotg-a

Finally, we conclude that K; = poly(|A|,¢; *,log(1/8;)) since Ymax = O(|A|71771_1/2), Vmin =
O(y/m), and n; = O(JA|~*€?) all depends polynomially on |A| and ¢; '. This shows Theorem
E1l O

We now have the second main result of this section.

Theorem E.2. For any |, with K; = poly(|A|,¢; *,log(1/8;)) and the size of the history D >
poly(JA[, €71, log(1/6),log(|11])), Algorithm [J) converges to a saddle point, i.e.

max min i\ ) = (AL AN ] < 6.
AEAT YE [Ymin, Ymasx] ™ l( 7) l( 7) =

Proof. Note that

Pi(w(N,7'),7)
~ -1 ,\ log(l/él) 1 2
= I;leaﬁ( |:_A71 (m, 1) + W +1'x H(bﬁl,l - ¢7THA(1U()\1171))71

At o log(1/3)
erggm;n{—ﬁh (mRia) + =~ =+ 02— Ol awir ity

> min max min
weQ well v

= max min min Z A (—ﬁ?ill(ﬂ',ﬁll) + log(1/91) + Ve |7, — (bTrHi(w)l)
I

AEAT WEN ’YE[’Ynlin7'Ymax]H 771””’
(by Lemma [EI7, strong duality)

= max  min Z)\ < (w,%ll)+M>

AEAT Y€ [Yumin, Ymax] T eas

Ecw, (Z Ve wwfﬁ) (by Lemma [D.6)

> max  min Z Ar ( LR + M)

PO N log(1/4,
N I [

AEAT YE[Yimin, Ymax] T Rkl
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2
1
+Ecr <Z \/ Aoy’ +m)> — 3¢ (by Lemma [F23))

acA

> omin SN, (A2 (e + 2L

'Ye['Ymin;'Ymax]H ’771'”

2
+ Eenw <Z \/ AXoy)T +m)> — %61

L acA

> min Z[Am-(—ﬁzi;m1>+71°g<1/5l>)

'Ye['Ymin;'Ymax]H ’771'”

CNUD <Z \/ Py © '7 t( °) + 77[)) - Zel

acA
(by Lemma [CHl controlling the history)

> Z [/\ZLr : (—37111(73%1—1) + M)

[’yl]ﬂn

Ecovp <Z\/)\l®7 +m)> —€

acA

™

(by Lemma [E7], the GD convergence)
= hl()\l,’yl) — €.

In other words,

Pr(w(X, 4,4 > i R\ ) > (LAY — 6.
1 (w( V)V)_giﬁvehﬁﬁm]n (A7) = (N, — e

On the other hand, by Theorem [E.1 we have P;(w(\, '), 4") < hy(A,4") + ;. Therefore, we have

. h)\, €|:h)\l,l_ 7h)\l7l+i|
RN sy e M) € (M) M )

and so we have our result. O

E.2 Technical proofs
E.2.1 Guarantees on v

We first provides some guarantees of «v and the convergence of the GD subroutine.

Lemma E.3. Consider a fized n. Let v* = argmin, h;(\,v,n). Then we have for all i,

[v*]; € l Mmin \/ log(1/4;) log(1/6;)
NE no onE1{n(c) 27 @)\ TAPmm (|
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Proof.

[Vyhi(A )]
— ()
~E. (Z metyum) (s Rellaletm) ) | Aclos(/2)
| \aeA a/G.A\/ )\Q,Y)T(t((lc,)_i_m) Vi
> E, (Z \/t()——|—n> A 1og 1/61)
acA
> AP + 20 Ec[1{7(c) # 7*(c)}] — %(;/51)7

where the first to second line follows from Cauchy-Schwartz - (3°, zq) >, (z_z) > (3, VYa)

We first solve %&1/51) < |APmA; and get v, > lri(‘;éfrll)_ We also solve 2= h»)yg;r(i/él) <

20\ E [1{m(c) # 7 (c)}] and get v, < \/%Ec[ll?i((lcgizr*(d}]' Therefore, the 7th component of
the gradient is always positive whenever v, > min{\/ ZnEC[::({)i((% g;)r*(c)}]7 lloi%{ﬂill) } Therefore,
the minimum v should have v, < min{\/2nlEc[1l?§r((1c§in*(c)}]v h\ji?;r/;’l‘) } On the other hand, let

s = argmin, y,. Then,

e < Ao +m) = (Ao (9 +m) v < Ao 1 +m)| Il

Then

DRVt \/A®~y & +m) < \/H)\G (9 + ) H VI oo-

acA acA

(Z \/H)\ ® (¢t +771)H1>2 = (Z VAT () +m)>2
acA a€A
< (z AT + m) A

acA
< AL +m).

Note that

Since for any T, z:a,evél[t((f,)]Tr <2, s0

2+ M)A Arlog(1/4)
NRE y2n

Let m = s, then by the fact that |7 </ 1\0%'4}7/7%)’ we have

log(l/él))1/4 C24m)As Addog(1/d)
|A[2min Vs vno

VOl < (JAIE+m0)

Vo h )]s < VA7) (
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1/4
We solve +/JA[(L +m) (log(l/&)) C@4n)As . Aslog(1/61) < 0. Then we get

[APZm N =5
Yo < (L) V32 2/ LB
n

Since (1 + nl)_1/3(2 + m)_2/3 > % whenever 7; < 1, the sth component of the gradient is negative

whenever v, < & 7"1%(1/6’). Therefore, ming v > % ’"1%(1/6’)_ 0

E.2.2 Convergence of Frank-Wolfe gap

Lemma [E.4] and [E.5] shows that the Frank-Wolfe gap is small. The proof technique follows from the
general Frank-Wolfe analysis.

Lemma E.4. For any § € (0,1], any t, with L = |A|2W, we have hy(AFL 4t >
hi(A',7") + Ege — 5€2L — k.
Proof. By L-Lipschitz gradient condition of —hy in A given in Lemma [E.12 we have
N e R MO <v)\hl(/\t7,yt+1)7>\t+1 _ /\t> T g H/\t-i-l _ /\tH?'
Therefore,
BN A1) > (A, 4L + <V>\hl()\t,,yt+l),)\t+l _ )\t> _ ; H)\t+1 _ )‘tHi'

Plugging in A\**! = (1 — B;)A\! + Bie,, as in line 8 of Algorithm B we have

hi((1 = Be)A" + Bren,,7')

> hy(N AT + (VA (A ), (1= BN + Brer, — A — L (14 BN = Brex, — Atuf

2
i t 41 t _t+1 )\ L_ﬁ?
—h[()\ , Y )+Bt <v>\hl()‘ Y )7e7Tt A > 9 ||e7”

-3
L 2
= (ALY + Bug — % llen, — N[5

Choose f3; := argmaxeco,1]1£9¢ — EZTL llex, — )\t||f} Plugging in this expression gives us

L} 2
MO A 2 A B (TN, e, — X = D e, - X
2L 2
= Iy (X', 4" — e, - x
(N9 max {90 = 25 [len, = N[}
2
L
2 ) 5 0 £

for any ¢ € [0, 1] since [ler, — /\t||f < 1. Also, by construction of v/*! and Lemma [E.7] we have
Ry AL, A > min Ap(NE, ) > hy(AF A1) — Ky
v

Therefore, our result follows. o
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Lemma E.5. We have for any t, with L = |A|2%, min;e(q,4) gi < \/tL-Tl

™ min

Proof. With Lemma [E4] we have
1
hl()‘t+17’7t+17n7‘) 2 hl()\tu/ytu nT) + ggt - 552-[/ — K¢.

Plugging in the choice ¢ = min{4, 1}, we have hy(A\*F!, 4" ) > hy(Af,~4f 0, )+ 4 min{ 9, 1} — k.
Summing this up from 0 to ¢ gives us

t
hl(At+177t+17nT) - h’l(AOvFYO; n?“) > ; % min %7 1} - 51

t

> (t+ 1)g; min{%,l}—z&-.

=0

min;—g....  g;. Then, as long as Zf:o d; < €, by the fact that (AL AL —
L

where gf =
hi(Xo,70) < maxyeay ming hy(A,y) — hi(Xo,v0) < oo. Therefore, we have min;e; 4 9; <

7
a-

E.2.3 Connect the Frank-Wolfe gap to the duality gap

Lemma [E.6] shows that the primal objective is approximately the maximum component of the
gradient of the dual objective, which simplifies our Frank-Wolfe gap expression.

Lemma E.6. Consider some A € AH, v € RIJF‘, and n € N. For mqy < |A|7%?, we have
[Pu(w(A,41),7") — maxren[Vahi(AL,2Y)]x] < e.

Proof. Observe that for any 7,7’ € II and any ~,

2
T H¢7r’ - ¢7"HA(w(A,-y))*1
2

=7 2 oy (W@ = am(e) # a} + 1{x'(0) # a,m(0) = a})

a,c
a,c

—%Zvcz< o (U =m0 £ 4+ 1) £ a.n(0) = a}))

©
= Ve [Z Laca \/(/\GM) ) +m)
T JaenTE 10
—F I: Za/eA Aoy)T (t( c) )
‘ \/()‘Q’Y)T(tff) +m)

(1{r'(0) = a,(c) # a} + 1{x'(¢) # a,7(¢c) = a})]

(e [t&])
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Therefore,

Pl(w(/\lv 7l)7 /VI)

e log(1/6)
= ?2%{ ALy () + 00 [lén = mslauonam - + Fim

~ it Za/eA \/()\l © ’VZ)T(th?) + 77l) l c) 1Og(1/6l)
= glealz[( _Alfl (7T) + EcNU ([’7 ]W[ta ]ﬂ—) W

a \/(/\l ® ,yl)T(t((lc) 4 77!)

Lemma guarantees that we could replace the expectation over context to history of contexts
vp without incurring much error. In particular, for a sufficiently large history D, it guarantees

Swea YN @) (S +m)
maﬁ( Ecvp
‘ T e T )
. E:ZMAJWG¢W@?+W
T N enTE? +m)

(' [t57))

(['Yl]ﬂ'[tz(zc)]w) <

On the other hand,

(¢)
max —37l11 (r)+E Z Za’eA \/(/\l © 7Z)T(ta/ +m)
mell - v

(][] | + eeld/o)
T e e o

Swea YN ONTESD 40

_ U _
= max ¢ [Vah(\'7)]x = Benw | D —— V]
T e T + )
Note that when v € [Ymin, Ymax)s
©)
Za’ A (/\ © W)T(t((ll + 771) Ymax 14 m
]ECNVD Z = \/ © Y| € 07 |~A|2 #Vmaxm .
= 0o @ v min
Therefore, for n < |A|~%Z,
E 3 Dwea \/(,\l OWT (Y +m) || < @
CcC~VD - T -~ 2 .
a \/(/\l @,yl)'l'(t((l) +77l)
Therefore, we have our results. O

E.3 Convergence of gradient descent

In this subsection we show convergence for gradient descent.

We will first state the main result of this section.
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Algorithm 7 GD
Input: M, n, x;

1: define ' = €}t 73| A| 76

2: clip A and define A = clip(\, ¢)

3: run gradient descent of on v for hl(:\, v, n) over supp(:\) and output ~*
Output: ~*

Lemma E.7. With the number of iterations T = O(%* + L) with L, = |A|2% +

Lt Rttt n,
2log(1/31) e have hi(A, 4t n) — ming by(X, v, n) < K.

"V min

min

Proof sketch. Lemma, [E.9] shows that this clipping does not affect the function value that much.
Since we do not assume our function to be convex for -y, we will show that the stationary point is
unique and the gradient is strictly positive around the stationary point. Lemma [E.14] first shows
that our function is locally strongly convex around any stationary point. In particular, if we are
at a point where the L; norm of the gradient is less than Apin, we are locally strongly convex.
Lemma, [E. T3] shows our gradient is Lipschitz with respect to the L; norm. Then, Lemma [E.§
then shows that the gradient descent algorithm converges to a stationary point. It is the classical
argument for gradient descent algorithm on non-convex objectives [I7].

3/2
Lemma E.8. For any K, with L., = | A|? ((HZZ/)J“;""‘) + 2loe(l/)
" Ymin "min

7

hl (/\7 Y0, n) - min'y hl ()‘7 v, n)
K .

. 2
min [|Vyhi (A, v, )y < 2Ly

With this lemma, we have for a sufficiently large K, the minimum gradient can be made ar-
bitrarily small. In particular, for K > L, A ! we have that the minimum gradient has L;-norm
less than Apin, and thus we are in a neighborhood of our stationary point by Lemma After
that, it takes O(ﬁmm) steps to converge to a point whose value is at most x; away from the value
of the stationary point. The results in [25] coupled with Lemma [E.14] ensure that our stationary
point is unique. Intuitively, if we have two locally strongly convex stationary points, there must
be a “hill" between them, which also corresponds to a stationary point, but we have shown that
all stationary points must be “holes" due to local strong convexity, so the stationary point has to
be unique. Thanks to the clipping, we can lower bound A, by ¢4, so the total number of steps is

L o4 _1 % + -1 which matches the result in Lemma [E.7]

Amin Kt Amin Ktlt

O

Lemma E.9. For some iteratet, let 1, = e}t 3| A| = and denote \ := clip(\, 1) where [clip(), €)] :=
Ar1{\x > €}. Then, for any v, we have

‘hz(x%n) - hl(%%ﬂ)‘ < kit

Proof. For the first term in h;, in the case where Ay > ¢4, hi(\, v, n) = hl(j\, ~v,n). When 0 < A\ < ¢4.
We see that

~ i 1 1 2t
Z )\T( (_A?ill (ﬂ—a%l—l) + logv(ﬂ%) < te <,7 ) + ) = ‘ .

Ymin “Ymin
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Then we focus on the expectation part of h;(\,v,n). Note that

\/()\Q”Y) (t) +m) = > Ae v [t8) + mi) + > Ae Y [t + 1]

T, A Lt T A <t
= \/(;\ ONTED +m)+ Y Aeyalts + il
T e <Lt

< \/ AONTE? + 1) + trYmas

< \/(5\ ® ’}/)T(tz(zc) + 771) + Vit Ymax-

Therefore,
2 2
(Z\/A@w +m)> -E <Z \/(5\®7)T(tff)+m)>
acA acA
(Z\/A@”y 9 +m) +\/ +m)>
acA
<Z \/ AT +m) - \/(5\®7) (t& +m)>
acA
S |A|\/ 'Ymax|»A| V tLt'Ymax
= |~A|27max Vi
Combining two displays above and plugging in ymin and ymax gives
< 2t t
hl()‘u/%n) - hl()‘u/%n) S ~ L't |"4| Lt
21| Ale; tLt
-2 4
VI m
Let RHS be x; and solve for ¢; we get ¢, < min{ ‘/;&'q , m'l?t} Plugging in 1, = |A| €7 gives the
result. o

Lemma E.10. Suppose ' satisfies that hl(:\,’yt,n) — min, hl(S\,”y,n) < Ky, then we also have
hi(\, 7, n) — ming hy(A, v, n) < Ky, i.e. ¥ satisfies the desired property.

Proof. Let ¥, = argmin, h[(j\, v,n) and v, = argmin, ky(X,y,n). The result follows from applying
Lemma [EX9 twice on h;(\,~%, n) and hy(A, *y*, n). In particular,

R\ At n) < hi(h At n) + ke (Lemma [EX9)
< hl()\ e, 1) + 264 (convergence of GD)
< By Yes m) + 254 (minimality of 4.)
< (A, s, n) + 3K¢ (Lemma [E.9)

= min (N, v,n) + 3k;.
y
O
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E.4 Guarantees for strong concavity and local strong convexity

The following series of lemmas show that our optimization problem is strongly concave in A and local
strongly convex around the minimum ~, as well as explicitly constructing the Lipschitz constants.
These serve as the conditions for convergence of the Frank-Wolfe and gradient descent algorithms.

Lemma E.11. hi(\,v,n) is a concave function of .

Proof. Note that

E (Z \/(AGV)T(tff)wLm)) =E

acA

Z Z \/(tfi) +)TAOyY(AG 'Y)T(tl(lc) +m)

acAa’'€A

we know that A — (t((lc/)—l-m)T(/\@”y) and A = (A07y) T (¢ +n,) are concave, the square root function
is concave and non-decreasing, and sum of concave functions is concave. Therefore, h;(\,v,n) is
concave in A by property of concave functions. O

5/2
|A|2 ((1+zz/)2'ymax)

2 )
1 min

Lemma E.12. Consider some A, v and n. For any A1, A2 € Aq, with L =

f(A%FYan) < f(Ala’Yvn) + v)\f()\la’%n)T(AQ - /\1) + L”/\2 - /\1”%5
where (X, v,n) could be either hy(\,y,n) or —hi(\,vy,n).

Proof. The proof for the negative case is exactly the same as the positive case, so we focus on
F(\ y,n) = hy(A,v,n). We take the gradient of h; with respect to A and get

SO log(1/6
Tl )], = A7 (A + 280/

Yr T

(c)
z : c j : ™ ta/ + T
+ ECNU’D < \/()\ ® ")/)T(t((z ) + nl)) 7 ( nl)
acA a'€A \/(A N +m)

By Lemma [.2] for any A € A, we have (A, Valy(\,v,n)) = hy(\,v,n). If we use the shortcut
F(A) = hy(X,y,n), we have

FO2) = F) = Vaf(A) T (A2 = M) = f(h2) = Vaf (M) T he = (VF(h2) = V(A1) " e
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Note that

(Vaf(h2) = Vaf(A1)) " As

(4@
= Z[)‘Z]WECNV’D [(Z \/()\2 @’Y)T(t((f) + 77l)> (Z \/(% (ta’ +M)n )
a’eA

el acA A2 ® ’Y)T(t((f/) +m)

(c)
B <Z Vo GV)T(tSf)er)) (Z T L ) )}
ac sea /e TS £ m)

=Ecup [ ST eyt +m)
a’eA

¥ VO oNTED + 1)y 01T +m) = /(e 0 NTED + 1)/ 09T (1 + )
acA \/()\2 ey +m)\/(A1 ©7)TES +m)

< Ecnvp [Z (A2 © ’y)T(tfﬁ) +m)
a’'€A

'\/(Al O TS +my 02 0T +m) — /e 0N T +m)y/ 01T +m)
2 © ©
i V02 0T 40/ 0T (D + )
<y Utmhme g [Z V02 0T + )y s © )T +m)
a’€A T min acA
Vou 0T 40 07 )| (19)

Note that by triangular inequality

}\/()\2 o + m)\/(Al Oy T + ) - \/(Al O + 771)\/(/\2 ONT Y +m)

< W(Az DT +m) =V O 09T +m)| 09T + )

Vo TE ) [V n 00 TED + 1) — e 09 TED + )

Also note that

V00T ) = v )T+ )
S ren(a)e ~ O + )|

Ve @) TE? +m) + /0 @) T +m)
< (L4 M) Ymax |
- 2m7min

AQ _)\1H17
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so (I3 is bounded by

1+ max 1+ max
Z Gt/ (Z 2. (Gl D A2 = Ailly V(1T +m Wmax>

aeA 7 Ymin acA 2\/_ Ymin
2 ((1 + 77l)'7max)5/2
= |"4| 3/2 o ||)\2_)\1||1
l min
O
Lemma E.13. Consider some X\ and n. For any v1,72 € On, with L, = |A|2((1t;l/)2+‘f")3/2
210g(1/6l) l min
Y

hi(A,v2,n) < (A y1,m) + Vyhi(A v, n) T (2 — 71) + Lyllvz — 73

Proof.

(c)
[V (X, 7)) [(Z Voo t<>+m)> . (Z Ar ([t = +m) )] Ar log(1/01)

acA a’€A \/()\ ® ’y)T(t((f,) +m) van

Then we have similar to the proof of Lemmal[E12] for any v we have h;(\, vy, n) =V, hi(A,v,n) Ty =
9 E A log(1/6;) .
77 Yin o

hl()\u/727 TL) - hl()\u/ylun) - vvhl()\7’717n)—r(’y2 - ’71)

Arlog(1/6 Arlog(1/6
= 22 # - 22 ﬁ"{l) + (vvhl()\a’y27n) - thl()lean))T%-

™

First, we can follow similar techniques in the proof of Lemma [E.12] to bound the second part and
get

(v hl( y V2, M )—V hl()‘7’717n))—r’y2

< Z AO2) " (' +m)
a’eA

1
Eemvp Z
{“EA [\/(A © )Tt + m)\/(A O )Tt +m)

: ‘\/(A o) + m)\/(A ©72) T (t4 +m) - \/()\ )T + nz)\/()\ Oy T +m)

1+ max C C
< 3 (L) ma -WD[ZW(WW(&)+m>¢<mm>wiﬂ+m>

aeA 71 Ymin acA

Iy

OO + /(A ©72) T +m)
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Also, note that

’\/ (A ©72) T (¢t +m) - \/()\G%)T(tz(zc) +m)
\zwenmwﬁ — ) (1)

VO o) T +m)+ /(o) TE +m)

< 52—l
> 2— N )
2 T Ymin !
Therefore, similarly we can bound
’\/ A @) Tt + m)\/(/\ o)t +m) - \/(/\ o) T + m)\/(/\ ©72) T () +m)
(1 + 7)) Ymax 2
< Yoo B/ TeR — .
NG vz = mlly

For the second term,

[1]2n

_ Zlog(l/b) 5~ Inlz — balz

2y Ax 10g(21/5z) 2% Ar log(1/61)

™

n p " mlzhel2
21og(1/4;) 5
< Tglin”% -l
Therefore, we have the result stated above. O

Lemma E.14. Consider some fixed A € A and n. Assume v, is a stationary point of hi(\, vy, n),
Amin 103(1/51)
3 n

then hy(A, v, n) is locally strongly convex at vy, i.e. for Lipess =
2
that fO’I’ all Y E BE(V*): h’l()‘af}/vn) > hl()\a’}/*vn) + thess ||FY - ’Y*H .

, there exists € > 0 such

Ymax

Proof. Since A and n are fixed, we use the shortcut g(v) := h;(A,v,n) in the proof. Denote the
Hessian of g as M. We aim to show that the Hessian M > Lyessl at 7y.. First, since v, is a
stationary point, V,g(v«) = 0, and so for any i,

(RO o

ceD a€A a’€A \/(/\ ® W)T(tgf) +m) nin

57



Also, we have for i # j,

o2 A 859+, Aj [tff)+mL
S I 02

@ \daal oo @ +m)) \eea JoaonTE +m)

Y (tf) Eﬁ)
+<Z\/(/\®’Y)T(t¢(zc)+m)>~ Z_E,MJ [ta +mHt +771L)

2 c 3/2
ach wea (honTes +m)

And

2

(e)
O%g(y) 2\ log(1/8) 1 X [t“ J””L
o2 5, T > Ve g > © 4

i Vi ceD aed\/ AoV (s +m

__<Z\//\®7 <C>+m)>.(z ﬁbgaw]j )

i 3/2
ey aeA (()\@'y)-r(t((l) +m))

Then, for any vector u € R with ||u|| = 1, we have

pMp= Z ZﬂiﬂjMzg = Zuz M+ pipt; My

i#£]
_ Z 2M (21)

vin

[ W]
+ZUCZZMHU%( . [t +m} )( J{t +771L )
c i aeA\/ acA )

(
/\1/\7 tuﬁ) +m )
+ pig <Z \/()‘QV)T(LL((IC)'*‘U!)) : (Z _%' [ }

acA

In what follows, we will first show that

Z 2/\10g 1/61 Z%ZZM (Z\/AQW (t +m)>

acA

()
(Z i) [ +77} [ ’+?le;) > 0. (23)
a’€A

(T +m))
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By equation 20, the LHS of ([22) simplifies to

G|

ZUCZMZ (Z\//\QW )+m)> 3

acA a’eA ’y a’ + 77!)

acA

Ai
Joo
D+ 771}
—ZVCZZMZMJ <Z\/x\®7 +m>
a’€A
Therefore, it is sufficient to show that

1 A [”+m] +m] [“+m]
25| 2 2,

= - 3/2
SeaJoenTE +m) (AoNTED +m)

Consider some a’ € A. The LHS of the above simplifies to

5 [19 4 m] M [t ] [+ m).
Zﬂl 4(©) _ZZM J () 3/2
Tl een e+ TT (el +m)
1

- (()\QW)T(tt(l(’:)+nz))3/2 Z“z)\ [ c)+m} Z)\ﬂ][ +m}

_ZZMZMJ/\/\ [a/ +77l} [ff)-i-mL

1 c
i (()\ oNTE + m))m Z Z % ( [ ta + ”l} A {tfﬂ) + mL_
— i i NV { ) +77l} { e )_i_m} >) '

Each summand is

Vi ( Ai [a/ +m} A [tfﬁ) +m} = Haftj AN Vi [ ty +m} [()+mL)
=77 i [ £ +n} [ o )+m} (kivi = 1i7i)
=7, 1y A [tfl/) + m} [ £ + m} (ivg) (v — gvi) -

Exchanging subscripts of 7 and j, we have

STRERD VDY [a/ +m} [()er} (i) (i — 1i5) -
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The sum of these two terms is
SR Y [ £ + n] [ £ )+m} (1iv; — mji)° > 0.
Therefore, we proved equation (23)). We will show next that

N [<C’+m}

2)\10 1/61)
S 1L/ zuczzu% )3

aea\/(A@y) T +m)
Aj [ ( )+m}

> > 0. (24)

aeA \/ (A O )T +m)

By similar calculation, we can obtain that the above simplifies to

+©)
ZwZMN{l Z )\{ +77l}

a’€A \/()\ ©v)" (t((l,) + )

> X [EE -+ il PRV [t + ml;
> 1Y
acA /(A @) T +m) aeA\/AGV T +m)

i

We can show that the sum of the above is positive by similar techniques for showing (23]). Plugging
equation 23] and [24] in equation 22, we have that

TM/L > Z 2)‘ IOg(l/él) > Amin log(1/6;)

N T Y
so the Hessian is positive-definite. O

Note that the minimum eigenvalue of the Hessian at the stationary point is w > 0,

max

we can extend the result in Lemma [E.14] to a-stationary points, where a < %g(fl/m, and still

maintain local strong convexity.

Lemma E.15. Consider some fixred A\ € A and n. Assume 7o is an «a-stationary point of
hi(A,7y,n), where a = Amin log(1/61)

2V fhaxn
= wg(ln/m there exists € > 0 such that for all v € Be(va), hi(A,v,n) > hi(A va,n) +

, then hi(\,v,n) is locally strongly convexr at vy, i.e. for
Lhcss ’YI)]HX

Luess ||y — y,[|°.

Proof. The proof follows almost identically from that of Lemma [E.14l Note that the a-stationary
point ensures that ||V, A (), 7)[|; < a, so equation 20l is rewritten as

SIS v <Z \/(Am)T(tSf’er))- 5 N ) ) Alos(1/a)| _,

i |c€D acA €A/ (AO7) ((c)—l—m) i
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Therefore, for any 1 we can still use the same trick and get

)

3 -

Ailog(1/8;) Amin log(1/0;)
T 2

Mp > 2280 s Zin 9800
oo = , i v “ 2% axt

3

so our result follows. O

E.5 Proof of strong duality

In this section, we would like to show that strong duality holds. We first show that the primal
problem is convex for w.

Lemma E.16. The primal problem ([I3) is convex for w.

Proof. Note that the primal problem could be written as

Or = 0
min ¢ s.t. Vm e II, = A(w) + \/” HA( = <c.
weN n

(i’w—tbm 2 —
Therefore, we consider the function f(w) := —A(w) + 4/ % for some m € II. Note
l6n—ma By 1 L
that to show that f(w) = —A(rm) + \/ ————""2— is convex for w, it is equivalent to show that

g(w) == \/Ior — 6.

124(711)*1 is convex for w. Note that

g(w) \/Z v2wae(1{n(c) = a,m.(c) # a} + Yn(c) # a,m.(c) = a})

1
E V2wa.c.

a.,c.,tff)zl

So restricting to a, ¢ such that e —q

dg(w) 1 2 -2

= (=viw; ?)
w > -1 cWa,c)
a,c 2 Za,c,tff)zl I/c’wmc
and
9?g(w) 1 1
_ 2, —2 2, =2 2, .—3
w2 - . 3/2 : (_Vcwa,c VW, c) + > = VW e
@ 4 (Za,c,tgc):]. ng(hc) \/Za,c,tff):l Vcwa-,c
9?g(w) 1
_ 2, =2 2 =2
= - : (_Vclwa1,¢21 ’ _Vc2wa27C2)

OWay,c; OWay,cs

2
2,1 3/
ff):l ViWa,c

(2,0
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Denote the Hessian as M. Then, for any vector u € R4l with lpll, = 1, we have

—3/2
TM o 1 2 —1 2.2 -2 =2
K = 4 Ha,cHa,c’ VeWq e VelVerWq cWer,
a,etl)=1ar e/t =1 a,e,ti=1
~1/2
2 2,.,—3 2,.,—1
+ § Ha,cVeWa,c E VeWq,c
c,t((f)zl a,c,t((f)zl

To show that this is nonnegative, it is equivalent to show that

1 2. 2 2 =1
_Z Ha,cta’ e’ Ve V’wacw ’c’+ ﬂac cWa,c VerWyr o
acta)*l a’,c’, t(c)*l act(c)* a’,c’,tflc,l):l

which is equivalent to show that
Z Z 2.2, -2 -2 2 .2 -3 2 1
—Ha,cta’ 'V, Vc’wa,cwa’,c’ + Ma,cycwa,cyc’wa’,c’ 2 0.
aye,ti=1ae 1 =1
a

Note that

2.2 -2 2 2 -3 2 -1
= Ha,clal, Ve VoW w /"’Hachw VoW,

= /Laﬁw;iw 2 /V2V /(,Ua Wal ! — fla’ ' Wa,c)
= wgiwa 3 /1/21/ (Ha,cWa’ ' ) (Ha,cWa .o — Ha’ o' Wa,c)-
Then, exchanging the label of a and o', we also get a term like
Wey 3c’wa iyf,y (Har,cWa,c) (Har e Wa,e = Ha,cWar,er)-
The sum of these two terms is
w;/?c'w;iyg' Vg (Mar o Wa,c) (Par o' Wa,e = Ha,cWa )
+ w;iw;?cl Vg VQ/ (,UJa cWq/ c/)(,ua,cwa’,c/ - ,Ua’,c/wa,c)
= w;’,gc'w;i E’V (,ua’ c'Wa,c /La,cwa’,c/)(ﬂa/,c’wa,c - ,Ua,cwa/,c')
= Wy Sc’wa:z E’V (,ua c/Wa,c /La,cwa’,c’)2 > 0.
Therefore, equation 28] becomes

Z Z (w /3 /wa ?;VS/V (Ma ¢/ Wq c)(Ma/,c’wa,c - Na,cwa/,c’)

act(c) 1 /
45 ):1

(a’ ,Z')> (a,c)

+ w;iw 3 /V v /(,UJa cWaq! c/)(,ua,cwa’,c/ - ,Ua’,c/wa,c))

— E E -3 -3,2.2 2
- wa/,c’wa,cyc’ Ve (/La/qclwaﬁ - /La,cwa/,c’) = 0.
a,c, t(c)— a:,c’
150 =1

(a’,c")>(a,c)
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Since the above holds for any vector u, the Hessian is positive-semidefinite, and so the function
g(w) is convex for w. O

Lemma E.17. In the optimization problem[I3, the strong duality holds, i.e.

s _¢7‘r* 2 w)— T T T % 2 w)—
I (_A(m\/w Bt ) _ i i 5= [ =y 1/ 18— @l )
weN well n AEATT weQTr n

eIl

Proof. By LemmalE.16] the primal problem is convex for w, so it is left to check the KKT conditions.
Note that the lagrangian is

_ 2
Lwne) =t YA —A<w>+\/'¢” rllaws

well
lfr = Il ()1 . . . . .
Let hy(w) = —A(7) + /| ————"— — c¢. At an optimal solution w* and \*, we would like to
show that

> Arha(w*) =0.

mell

We prove this by contradiction. If there is some 7 such that A; > 0 and h,(w*) < 0. Then we
could find another N € A that places zero mass on this 7 and thus get a larger objective, so we
get a contradiction. The other conditions follow from the optimality of w* and A\*. O

F Useful lemmas

In this section, we state several algebraic facts of our function, which serves as the key to derive
convergence as well as complexity.

Lemma F.1. For anyl,
2
H(b?l—l - d)ﬂ'HA(w)*l

min max = min max
weQ well A(m)? pe€AA,VeeC Tell A(m)?

Eeww (5o * ) HA-1(0) £ 7(e))

Pe,7p_q(c) Pe,m(c)

Proof. Let wq,c = Vcpe,q for some p. € A 4. Then, for any 7 € II,
1 2
A 61 = Ol gy

— o S (r-1(0) = () # ) + 1Fa(e) # a,7(0) = )

- ﬁﬂ? Z e (1{m_1(c) = a,7(c) # a} + 1{m_1(c) # a,7(c) = a})

~ Pea

Pezi—1(c) Pe,r(c)

:ﬁz( b L)1) £ 7(0)

— et | (s + ) UFae) £ 700

pc.ﬁl,l(c) pc.jr(c)
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Therefore,

2 1 1 ~
_— 167, = 0r s o Eemw [(pcﬁlfl(c) + pcm)) {7 -1(c) # 7(c)}
weQ well A(m)? pe€AA,VeeC well A(m)? '
O
Lemma F.2. For anyl, any A € A, v > 0, and any n, we have hy(\,vy,n) = (A, Vahi(A, v,n)).
Proof. We first compute
~ -1 Y log(1/6
(Vatuh ], = =87 7o) + 0
(c)
fs ta/ + T
Eyo, (Z\//\@W +m)> - ( m) '
sk wea /(A eNTEE +m)
Then, by the fact that
(c)
c T ta/ + T
S Ar - Eeonn <Z Voo +m)> 3 el t )
mell acA a’'eA \/()\ © ’Y)T(t((lc/) + 77l)
[ . AT +
=Eeurp <Z \/(/\Q’Y)T(tfz) "‘771)) Z ( 7) ( m)
a€A a'eA \/(/\ ©) 'y)T(tl(ﬁ) +m)
2
:]ECNV'D <Z\//\®7 +77l)> ’
| \a€A
we have
</\,V)\hl(/\,’7,n)>
= > A [Valu(h )l
mell
o log(1/6
— Z Ay - (_A71 (. 71-1) + M)
il
mell
(c)
wl(t, +
+ 3 AcEenns <Z \/ Aoy’ +m)> > - Gy + 1)
mell ac€A a’€A \/(/\ ©7) (tfl/) +m)
2
7 Al log(1/4;) (C)
= Z Ar - <—A1_1 (m,m—1) + 7 + Eonrp Z \/()‘ ©7)"( +m)
mell a€A
- hl(/\a’%n)'
O
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I
Lemma F.3. For any A\ € A and v € [O,min{\/QWEC[11"{\‘?;"7((16/)5;277*(C)}]7 ll(f\(;?{ziiz) H , with n =

|A|~€?, we have

2 2
Ecvw (Z \/ o' +77l)> —Eenw (Z Y (/\Q'Y)T th>>

acA

Proof. The first inequality is clear since 7, > 0 and A;,vy; > 0 for all = € II, so we focus on the
upper bound. Note that

Ecn (Z\/MM +m)> ~E. (ZW)

acA

=Eenr [Z(A@v) )+ > > va )+ ) + )T o)

acA a1€AazeA

~Ees [Z@m I+ Ve i (o) (27)
ac A a1€AaseA
Note that
Eenn lz 3 \/A®~y A + )t +m)T (@)
a1€AazeA
=Eeww | D Y \/A®7 TEOENTA @) +mATy (A@y)T(tf{?+tf{;))+nl2(/\T~y)2]
a1€EAazeA
SBemw | D D VOonTEw) T (o)
a1€EAazeA
A | S VAT o) T | 4 AP,
ac A
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Then (27) is upper bounded by

> omATy

acA

= ATy + APy + 2l ANV AT VB |37 Aeyalti)a
acA |\ mell
= [AlmA Ty + [APmA Ty + 21 AP/ A TAE Z /Z ArYaltS) ]
aeA mell

= [Alm ATy + JAPDA Ty + 2l APV IAT A Eens [Bam | D Aral t(c)
well

+ AP ATy

ECNU

+ 2| AlEcny [Z \/m)\T'y(/\ ©) Tt
acA

1 or |
< AT + JAPmATy + 2142 d Ty | S /\,T%WECN,, lz[tg Na

mell acA J

1
= [AmATy + APy + 2l APV Ty Y Aeyn 2 Eew [1{(0)

mell

# 7 (0)}]- (28)

Since v, < \/in]E log(1/41) ]a%rEcwy[l{Tf(C) £ (c)}] < \/IE [1{77(0)7571'*(0)} log(1/6;) < \/log(l/él)_

[H{m(c)#m*(c)}
We know from the lower bound argument that

[ 6x — or. ||

> A(w)~?
n; 2 min max 53
weQ el  A(m)? + ¢

log(1/6;) > 6;1 log(1/6;),

SO 4/ W < Ve . Therefore, ([28) is upper bounded by

(IA] + [AP) ATy + 2| AP 2 e AT .

Since MATY < MYmax = 4/ Loostt/o) \10Ag|21n/161) < \/—‘ . Plugging this as well as n; < |.A|~*

gives that the bias is upper bounded by ¢;.
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(29)
€7 in equation 29
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