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Abstract: Fleets of networked autonomous vehicles (AVs) collect terabytes of
sensory data, which is often transmitted to central servers (the “cloud”) for train-
ing machine learning (ML) models. Ideally, these fleets should upload all their
data, especially from rare operating contexts, in order to train robust ML models.
However, this is infeasible due to prohibitive network bandwidth and data label-
ing costs. Instead, we propose a cooperative data sampling strategy where geo-
distributed AVs collaborate to collect a diverse ML training dataset in the cloud.
Since the AVs have a shared objective but minimal information about each other’s
local data distribution and perception model, we can naturally cast cooperative
data collection as an N-player mathematical game. We show that our coopera-
tive sampling strategy uses minimal information to converge to a centralized or-
acle policy with complete information about all AVs. Moreover, we theoretically
characterize the performance benefits of our game-theoretic strategy compared to
greedy sampling. Finally, we experimentally demonstrate that our method outper-
forms standard benchmarks by up to 21.9% on 4 perception datasets, including
for autonomous driving in adverse weather conditions. Crucially, our experimen-
tal results on real-world datasets closely align with our theoretical guarantees.

1 Introduction

Envision a fleet of autonomous vehicles (AVs) that observes heterogeneous street scenery, weather
conditions, and rural/urban traffic patterns. To train robust ML models for perception or trajectory

prediction, these AVs should share as much diverse fleet data as possible in the cloud, while balanc-
ing network bandwidth, data storage, and labeling costs.2 Given these constraints, we argue that AVs
must coordinate how to sample rare, out-of-distribution (OoD) data with common examples based on
their unique local data distributions. For example, if only a few AVs operate in heavy snow, they
should specialize in sending snowy images to the cloud, while others should send data from more
common scenarios like sunny weather. Since the AVs have a shared target data distribution
(objective) but limited information on each other’s local data distribution and potentially private ML
models, our key contribution is to cast data collection as a N-Player mathematical game.

In our game-theoretic formulation (Fig. 1), the AVs exchange minimal information to choose a data
sampling strategy (what limited subset of data-points to upload). Importantly, we prove that an AV
fleet will quickly converge to a Nash equilibrium (i.e., a fixed point where each robot does not
change its sampling strategy) [3, 4] with bounded communication. Morever, our practical formula-
tion accounts for perceptual uncertainty from imperfect computer vision models and heterogenous
local data distributions. As such, to the best of our knowledge, we are the first to cast data sampling
from networked robots as a mathematical game. In summary, our key contributions are:

1. We provide a novel formulation for distributed data collection as a potential game [5] since the
robots attempt to minimize a common convex objective function that incentivizes them to reach
a balanced target data distribution in the cloud. We prove that our strategy converges to a
centralized oracle policy and, under mild assumptions, converges in a single iteration.

⇤1 Department of Electrical and Computer Engineering (ECE), The University of Texas at Austin, Austin,
T X  {oguzhanakcin,pohanli}@utexas.edu, {somi.agarwal,sandeepc}@utexas.edu

2 A single AV  can measure over 20-30 Gigabytes (GB) per second of video and L iDAR data [1] while a
typical 5G wireless network only provides 10 Gbps of bandwidth for multiple users [2].
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Figure 1: Game-Theoretic Data Collection: Each step in our cooperative algorithm is numbered in blue.
First, each AV  i observes a sequence of images xt in each round r of data collection (step 1). Then, it classifies
each image xt with a local vision model with parameters q r (step 2). Then, it samples a limited set of N
images according to its action policy ar, which governs what distribution of data-points to upload. Crucially,
the action ar is chosen cooperatively with other AVs using a distributed optimization problem (step 3). Next,
each AV  transmits its local cache of data-points to the cloud (step 4). The current cloud dataset, D r , is updated
with the new uploaded data-points ar (step 5). The combined cloud dataset, D r+1 , can be used to periodically

re-train new model parameters q r+1 (step 6), which are then downloaded by the AVs (step 7). All  AVs share a
goal of minimizing the distance between the collected cloud dataset D r + 1  (green) and the target Dtarget.

2. We provide theoretical performance bounds characterizing the benefits of our game-theoretic
approach compared to greedy, individual behavior.

3. We show that our proposed strategy outperforms competing benchmarks by 21.9% on 4 datasets,
including the challenging Berkeley DeepDrive autonomous driving dataset [6].

Related Work: Data collection from networked robots is related to cloud robotics [7–15] and
active learning [16–20]. In such prior works, robots either send all their data to the cloud or select
samples individually without coordination. In contrast, we exploit the fact that networked AVs can
coordinate how to sample rare data to achieve a better outcome (i.e., balanced data distribution).

Federated learning (FL) [21–29] enables a fleet of mobile devices to train ML models on local
private data and only share anonymized gradient updates with the cloud. However, our work is
fundamentally different, and even complementary, to standard FL.  First, F L  makes the restrictive
assumption that each robot has perfectly labeled local data, which is infeasible for AVs that observe
rare, OoD images. Instead, we address a practical scenario where robots run local inference with
only an imperfect vision model that guides data collection. Moreover, F L  does not statistically
sample data but trains on all of it locally, while our approach only uploads a limited set of images to
reduce network and data labeling costs. Finally, we assume robots only receive ground-truth labels
for the uploaded data in the cloud, which is required for training on rare classes.

Our setting is a non-cooperative game since the robots do not explicitly form coalitions and act
with minimal information about each other [5, 30–34]. Specifically, our setting is a potential game
since each robot attempts to maximize a shared concave objective function (the common potential
function) that rewards progress towards a balanced target data distribution in the cloud. As detailed in
Sec. 2 and Appendix 5.1, changes in the common potential function directly translate to changes in
each robot’s policy towards a Nash Equilibrium. While concave games have been applied to
problems such as wireless network resource allocation [35], ours is the first work to contribute a
game-theoretic formulation for distributed data collection from a fleet of robots.

2 Problem Formulation

We now formulate a practical scenario, shown in Fig. 1, where distributed robots collect data to train a
robust ML model in the cloud. Our goal is to select an appropriate action for each robot, specif-ically
the data-points it should upload, so that the overall collected cloud dataset closely matches a given
target, such as an equal distribution over all classes. Fig. 2 intuitively depicts data sampling.
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Figure 2: Why Cooperate? Consider a toy example with only 2 classes
and 2 robots. The axes represent the number of data-points for each
class. Our goal is to reach the target distribution (blue cross) where each
class has 120 data-points, represented by (120, 120). The robots start at
(0, 0) with no data-points in the cloud. The possible combinations that
can be uploaded from robots 1 and 2 are shown as the shaded feasi-ble
action spaces (yellow and purple). This shaded region is determined by
the robot’s local data distribution and vision model accuracy (Def. 2).
G R E E D Y      (black) individually calculates the projection of the tar-get
distribution onto each robot’s feasible action space, but the sum of
actions may not be optimal, leading to a high error (red). However, O R -
A C L E  accounts for the two robots’ action spaces and thus minimizes the
error between the target dataset and the sum of actions (grey).

Our general formulation applies to any robot constrained by network, storage, or labeling costs,
ranging from Mars Rovers constrained by the Deep Space Network ( <  5 Mbps) [36] or AV  fleets.

Robot Perception Model:     For a simple exposition, we first consider a general computer vision
classification task with N classes. The dataset used for training the model is stored in the cloud.
Each period of data collection, such as a day, is denoted by a round r and data is uploaded to the
cloud at the end of a round r. The cumulative dataset stored in the cloud at the end of round r
is denoted by D r , whose size is given by ND r =  |Dr|. Ny     denotes the number of class j data-
points in the dataset D r . Therefore, the distribution of classes in the dataset D r  is denoted by
r D r  =  Ny0 ,Ny1 , · · · ,NyNclass     

. Each robot i has a perception model, such as a deep neural network
(DNN), where local inference is denoted by ŷ =  f (x; q ). Here, f (·; q )  is a model with parameters
q r at round r, ŷ is the predicted label for input x, and y is the corresponding ground-truth label.

Importantly, the models can be imperfect – each model has a confusion matrix, Cr 2  RNclass⇥Nclass

(Eq. 4) that captures the probability of predicting class ŷ for an image with true class y , denoted by
p(ŷ |y ). In practice, one of the N classes can represent an “unknown” category while the rest
of the N  1 classes can represent a mixture of rare and well-understood concepts. Further details
on the confusion matrix are provided in Appendix 5.2. Finally, while we use a (likely imperfect)
classification model to sample images, the uploaded data can be used to train models for diverse
tasks such as object detection, semantic segmentation etc.

Robot Fleet: We consider a fleet of N robots, where each robot i collects a data-point xt at time t
from its local environment (i.e., camera image or L iDAR scan). The distribution of true classes
observed by a robot i in round r is denoted by pr (y) 2  RNclass , which sums to one over the N
classes. From this distribution, a robot i observes a large dataset of images on round r denoted by
D r of size |Dr| =  Nr. However, to limit network bandwidth and data labeling costs, each robot i

can only upload N         � Nr images to the cloud at the end of round r, which it stores in an on-
board cache within the round. The size of N         can be flexibly set by a roboticist based on data
upload and labeling budgets. The class predictions, ŷ , are generated by running local inference of
the classification model, ŷ =  f (xt ; q r), for the collected data-points xt . Finally, pr(ŷ) denotes the
distribution of predicted classes observed by robot i.

Assumption 1. The number of data-points collected by a robot on any round r, Nr, is significantly
greater than the size of the local robot cache, Ni Ncache.

This is a valid assumption since each robot will collect much more data compared to the amount it
can economically upload. Our formulation is extremely general – each robot can have different (or
the same) model parameters qi and observe a different distribution pi (y) of the Nclass classes.

Robot Statistical Sampling Action:     At each round r, each robot i takes an action which deter-
mines how many data-points of each class to send to the cloud. We define each robot i’s action

at round r as ai =  Ny0,Ny1, · · · ,NyN , i.e. the number of data-points of each class j. Our key
technical innovation will be to illustrate how to cooperatively select an optimal action. Importantly,
since each robot i has an imperfect perception model with confusion matrix Cr , there is uncertainty
in the effect of taking any action ar. As such, our natural next step is to define the set of feasible
actions any robot can upload given its local data distribution and perceptual uncertainty.
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Definition 1 (Feasible data matrices). A feasible data matrix, Pr 2  RNclass⇥Nclass , of robot i in round
r is the probability matrix defined as:

Pr =  [pi,1, ..., pi,Nclass
],

where pi, j =  kCi, j⇤pi (y)k1 
=  p(y|ŷ j) 2  RNclass , 8 j =  1, ...,Nclass. We use ⇤ as element-wise multiplica-

tion of vectors, k·k as the L  norm, and the second subscript j to denote the j-th column of a matrix.
We assume Pr has linearly independent columns, so there exists a left inverse. In other words, we
assume the mapping from action to feasible action (Defs. 2, 4) is one-to-one. This assumption is
justified in the Appendix due to space limits.
Definition 2 (Feasible spaces of robots). A feasible space, Hr, of robot i in round r is the set of
feasible data-points the robot can send to the cloud:

Hr =  {vr =  Prar | 1> ar � Ncache,ar 2  RNclass }.

Hr is the convex hull of all columns of Pr and 0. To simplify notation, vr =  Prar represents a feasible
action vi , which is obtained by multiplying an intended action ai by the feasible data matrix Pr.

Intuitively, the feasible space (see Fig. 2) represents the expected number of datapoints uploaded per
class but not the exact number due to perceptual uncertainty. Each robot uploads N data-points
sampled from action ar, which is pooled in the cloud. We assume we only get ground-truth labels
y in the cloud, since the limited cache of images can be scalably annotated by a human. Then, we
re-train a new perception model on the new dataset D r +1 .  Each robot then downloads the new model
parameters q r+1 , along with the new confusion matrix and latest cloud dataset distribution, r  r+1 .
Our formulation is general – models and confusion matrices do not have to be updated every round r
and we can, for example, simply re-train a model after M rounds of data collection.

Collective Goal: Achieving a Target Data Distribution     Often, we want to achieve a balanced
dataset in the cloud with ample representation of rare events in order to train a robust ML model. As
such, the shared goal of all the robots is to achieve any user-specified target dataset r , which
defines the number of data-points of each class the robots want to collect in the cloud. The fleet’s
goal is to choose actions ar; 8 i =  1, . . . ,N at round r to collectively reduce a strictly convex
distance metric, denoted by L  ( r  r , r          ), penalizing the difference between the current cloud
dataset r  r and the target dataset r . Our general framework can handle any strictly convex
distance metric, such as the L  norm or the Kullback-Leibler (KL)  Divergence [37]. Since all robots
have a common goal to maximize the negative loss  L  ( r  r , r ), which is a concave potential
function, our setting is a potential game with concave rewards (see Sec. 5.1).

Centralized Oracle Action Policy:     We now provide a formal optimization problem for distributed
data collection. To provide key insight, we first describe a centralized “oracle” solution that has
perfect information about all robots i, namely their confusion matrix Cr and statistics of their data
distribution pr(y). Then, we formalize a greedy, individualized approach and our interactive game-
theoretic approach that matches the oracle policy’s performance.

An oracle action policy, denoted by O R A C L E , has access to all robots’ data distributions and con-
fusion matrices Cr . The oracle calculates each robot’s action ar by solving the convex optimization
problem in Eq. 1. The constraint (Eq. 1c) ensures that the actions ar do not exceed the cache limit N

. Eq. 1d shows the update of the cloud dataset for round r + 1 based on the actions ar taken in
the feasible space, Prai , by each robot for round r, which we now detail.
A  key subtlety is to update the cloud dataset r  r+1 by merging the current cloud dataset r D r  and each
robots’ uploaded dataset ar. However, each robot’s action is imperfect – it might think it is uploading
class j but due to perceptual uncertainty it might actually upload another class j0. Specifically, the
robot’s transmitted dataset ar is calculated from the predicted class labels ŷ and not the true class
labels y j , which are not available on-robot. However, we can use predicted class probabilities pr(ŷ j )
to estimate true class probabilities pr(y )  by: pr(y )  =  ÂNclass pr(ŷ )  · pr(y |ŷ ). Note that each
robot only receives a confusion matrix C  from the cloud which consists of conditional probabilities
pr(ŷ |y )  and not pr(y |ŷ ). Therefore, we still need to figure out a way to calculate pr(y |ŷ ). Due
to space limits, we present the Bayesian update of pi (y j|ŷ j) in the Appendix 5.3.
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r 
min     L  (rD r + 1  , rDtarget ) (1a)

robot

subject to: ai      0; 8 i =  1, . . . ,Nrobot               (1b)

1T · ar � Ncache; 8 i =  1, . . . ,Nrobot 
)

Nrobot

rD r + 1  =  r D r  + (P ai ) (1d)
i=1

min L  (rD r + 1  , rDtarget ) (2a)
i

subject to: ai      0 (2b)

1T · ar � Ncache                             (2c)
rD r + 1  =  r D r  + (Pr ai )            (2d)

Greedy Action Policy:     A  greedy action policy, referred to as G R E E DY, will not have any infor-
mation about other robots’ local data distribution, confusion matrix, or observed datasets. Thus, the
best the robot can do is to attempt to minimize the loss function L  ( r  r+1 , rDtarget ) by only optimiz-ing
its own action a individually, as shown in Eq. 2. The optimization program 2 is very similar to that
of the O R A C L E  policy (Eq. 1), with the only difference being that the decision variables are reduced
to one. Since the O R A C L E  (Eq. 1) and G R E E DY (Eq. 2) policy optimization programs have a convex
objective with linear constraints, they are guaranteed to converge to an optimal solution.

3 A  Cooperative Algorithm for Data Collection

We propose an I N T E R A C T I V E algorithm for generating actions for each robot, which only requires
interaction between the robots and no cloud coordination. Rather than the cloud calculating actions
for each robot in one-shot, as shown in the O R A C L E  optimization program (1), each robot calculates its
actions individually using shared information from other robots. Importantly, each robot only
shares its feasible action without divulging its confusion matrix or local data distribution to others.

Alg. 1 describes our I N T E R A C T I V E policy, which runs for each round r. The inputs (line 1), which are
visible to each robot, are the target dataset r D and the current cloud dataset r D r  . We initialize
each robot’s action a in lines 2 - 4 using the G R E E DY policy (Eq. 2) because the robots have not yet
communicated any information about each others’ tentative actions. In lines 5 - 10, we calculate
optimal actions for each robot using the I N T E R A C T I V E  message passing algorithm.

We start by sharing each robot’s product of feasible data matrix and initial action (line 3) with all
other robots (line 5). Then, we iterate over each robot (lines 7 - 10) and calculate its best action ar

using the optimization program Eq. 3 while considering the other robots’ actions fixed (line 8). The
optimization program in Eq. 3 is similar to that of the O R A C L E  policy (Eq. 1); the difference lies in the
calculation of the cloud dataset at round r + 1 in Eq. 3d and having one decision variable.

In line 9, each robot shares its product of the feasible data matrix and the optimal action calculated
using Eq. 3 with the others. This repeats until our system reaches a Nash equilibrium (i.e. a fixed
point, where no robot would change its action). Finally, after convergence, we upload data from
each robot sampled according to its final calculated action ar (line 13). Since the I N T E R A C T I V E
optimization program 3 is convex, it converges to an optimal solution (see Thm. 1).

1 Input: Target, Cloud Dataset rDtarget , r D r

2 for i =  1, . . . ,N do
3 Initialize ar using G R E E D Y  actions Eq. 2.
4 end
5 Share Prar with all robots.
6 while Not Converged  do
7 for i =  1, . . . ,N do
8 Get action ar using opt. program Eq. 3
9 Share actions Prar with all robots.

10               end
11 end
12 for i =  1, . . . ,N do
13 Upload caches determined by actions ar

14 end
Algorithm 1: I N T E R A C T I V E  Algorithm

P RO B L E M 3: I N T E R A C T I V E
OP T I M I Z AT I ON

min L  (rD r + 1  , rDtarget ) (3a)
i

subject to: ai      0                                               (3b)

1T · ar � Ncache                                        (3c)
Nrobot

rD r + 1  =  r D r  + (P ak ) + (P ai )
k=1;k=i

(3d)
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Theoretical Analysis:     We first show that the while loop (lines 6 - 11) in our proposed Alg. 1 will
eventually converge. Moreover, we provide easily-obtained conditions for when it converges in one
iteration, which minimizes inter-robot communication. Crucially, we also show that our interactive
policy matches the omniscient oracle policy. All proofs are in the Appendix 5.6 - 5.9.

Theorem 1 (Convergence). The while loop (lines 6 - 11) in Alg. 1 will eventually converge.

Next, we show one of the main technical contributions of this paper, which states that our proposed
I N T E R A C T I V E  algorithm will reach the same optimal solution as the O R A C L E  upon termination.
Theorem 2 ( I N T E R A C T I V E converges to O R AC L E). The while loop in Alg. 1 lines 6 - 11 is guaran-
teed to return an action (denoted by aint,i) that is equal to the O R A C L E  action denoted by ao,i.

Next, we provide practical conditions for when our proposed I N T E R A C T I V E action policy will con-
verge in one iteration of message passing, which bounds inter-robot communication.
Theorem 3 (Bounded Communication). When the total number of uploaded data-points is smaller
than the difference between the size of target dataset Dtarget and the current cloud dataset Dc , namely
1>(Dtarget      D r )  >  Nrobot ⇥Ncache, the while loop in Alg. 1 lines 6 - 11 terminates in one iteration.

The condition in Thm. 3 holds for all rounds except for the last round that reaches the target distri-
bution, upon which data collection terminates. All our theory assumes that all actions ar 2  RNclass can
realize any feasible real-valued vector. However, in reality, we will only have an integer-valued action
vector since we can only upload a discrete set of images, which becomes an integer program-ming
problem. However, for real-world datasets with thousands of images, we can just round the
continuous solution to get a very close approximation to the (generally intractable) integer case.

4 Experiments and Conclusion

We now compare our Alg. 1 with benchmark methods on four diverse datasets. The first two datasets of
MNIST [38] and CIFAR-10 [39] serve as proof-of-concepts for the domains of handwritten digit and
common object classification. Then, we use the Adverse-Weather dataset [40], which contains tens
of thousands of images to train self-driving vehicles to classify rain, fog, snow, sleet, overcast, sunny,
and cloudy driving conditions. To show the generality of our theory, we then extend to the state-of-
the-art Berkeley Deep Drive (DeepDrive) dataset [6], which has 100K images of various weather
conditions and road scenarios for self-driving cars.

Comparison Metric: To compare all methods, we use the L  -norm (the optimization objective) be-
tween the target r           and the current cloud dataset r  r . For statistical confidence, all experiments
are repeated for more than 10 times with different random seeds that capture uncertainty in sampling
from the confusion matrix Cr and observing different distributions of local data per robot. Further
experiment parameters are detailed in the Appendix 5.4. We compare the following methods:

1. G R E E DY solves the optimization program in Eq. 2 individually per robot by minimizing the
L  -norm between the target and cloud distribution without information about other robots.

2. O R A C L E  solves the optimization program in Eq. 1. It perfectly knows all incoming class data
distributions pr (y) and confusion matrices Cr for all robots i and thus calculates the optimal
action for each robot in one common optimization problem (Eq. 1).

3. UNIFORM is a deterministic policy which assigns the same probabilities to all classes for each
robot, i.e. ar =  N

 1      . . . N
 1      . It represents a simple heuristic for equally sampling all classes.

4. LOW E R-BOUND (derived in Lemma 6) is the lower bound of the objective function of the OR A-
C L E  policy for a given target dataset, rDtarget , current cloud dataset, r D r  , and local data distribution
p (y). It represents how well can sample in the absence of perceptual uncertainty.

5. I N T E R A C T I V E  runs our Alg. 1. It is not an Oracle policy, as it only shares the action taken by
other robots and not the actual class data distribution, pr(y), nor the confusion matrix.

Results:     Our experimental results (Fig. 3) demonstrate that our proposed I N T E R A C T I V E  policy
performs as well as the O R A C L E  , as proved in Thm. 2. Additionally, we demonstrate that our I N -
T E R A C T I V E policy is much better than the G R E E DY and UNIFORM policies on all datasets. Finally, we
show that no action policy can perform better than the derived LOWE R-BOUND action policy.
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Figure 3: Our game-theoretic I N T E R A C T I V E  policy outperforms benchmarks and converges to the O R -
A C L E .  Each row is a different dataset. Column 1: As expected by our theory, I N T E R A C T I V E  minimizes the L  -
norm distance (optimization objective, y-axis) better than G R E E D Y  and matches the omniscient O R A C L E .
Column 2: Clearly, I N T E R A C T I V E  achieves a much more balanced distribution of classes (target distribution is
uniform) than benchmarks. Column 3: Since I N T E R A C T I V E  achieves a more balanced dataset, this experimen-
tally translates to a higher DNN accuracy (statistically significant) on a held-out test dataset.

Does cooperation minimize distance to the target data distribution?

Our optimization objective is to minimize the L  -norm distance between the cloud dataset and tar-get
data distribution, which we plot in the first column. Clearly, our I N T E R A C T I V E  policy sig-
nificantly outperforms the G R E E DY and UNIFORM policies on all datasets. Specifically, we beat the
G R E E DY policy by 23.6%,44.8%,40.3%,38.7% in L  -norm distance on the MNIST, CIFAR-10,
Adverse-Weather, and DeepDrive datasets respectively. These benefits arise because the I N T E R -
A C T I V E  policy allows robots to coordinate the rare classes they upload, but the G R E E DY policy
might lead to uncoordinated uploading of redundant data. Moreover, our I N T E R A C T I V E policy
performs nearly identically as the O R A C L E  method, with small deviations due to imperfect vision
models and randomness in local data distributions between trials. This is natural since we proved
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that the I N T E R A C T I V E action policy reaches the same optimal value in expectation as the O R A C L E
policy in Thm. 2. Finally, we observe that no action policy outperforms our LOWE R-BOUND policy
derived in Lemma 6.

Does cooperation achieve more balanced datasets?

In column two, we see that the initial data distribution among robots (gray) is highly imbalanced
since they operate in diverse contexts. However, we see that our I N T E R A C T I V E  policy (green)
achieves a much more balanced dataset distribution compared to G R E E DY (orange), which is natural
since the convex objective minimizes the distance to a uniform distribution.

What is the final accuracy of trained models?

In column 3, we show the final accuracy of re-training DNN classification models on the datasets
accrued by each method in the cloud. Importantly, our proposed I N T E R A C T I V E  action policy leads to
better accuracy gains than the G R E E DY and UNIFORM action policies. We beat the G R E E DY policy
by 1.4%,1.7%,21.9%,12.4% in accuracy on the MNIST, CIFAR-10, Adverse-Weather, and
DeepDrive datasets respectively. This is because the I N T E R A C T I V E action policy makes sure we
collect classes lacking in the current cloud dataset, thus preventing class-imbalance issues in model
training. While our theory only addresses convex distances between dataset distributions (column 1
and 2), we show strong experimental results for re-training non-convex DNN classifiers. The
I N T E R A C T I V E  and O R A C L E  algorithms lead to slightly different final accuracies since they can
potentially upload a different set of images and there is not a closed form relationship between the
number of images and accuracy of a non-convex DNN. As detailed in the Appendix, I N T E R A C T I V E
achieves very close to state-of-the-art accuracy for each dataset with only a limited set of uploaded
datapoints. DNN architectures are also detailed in the Appendix. Collectively, these results closely
align with our theory and show strong experimental benefits on real-world data.

Limitations: Our work assumes each robot can interact, which does not scale for extremely large
fleets. Moreover, we assume that we sample images according to a classification model, even though
we can train models for other tasks on the uploaded images. In future work, we aim to extend our
theoretical guarantees for sub-clusters of communicating robots and cluster a continuous data
distribution based on similar embeddings that serve as virtual “classes”. Such an ability to generalize
beyond discrete classes may enable our algorithm to scale to learning data-driven control policies.

Conclusion:     This paper presents a theoretically-grounded, cooperative data sampling policy for
networked robotic fleets, which converges to an oracle policy upon termination. Additionally, it
converges in a single iteration under a mild practical assumption, which allows communication
efficiency on real-world AV  datasets. Our approach is a first step towards an increasingly timely
problem as today’s AV  fleets measure terabytes of heterogenous data in diverse operating contexts
[1]. In future work, we plan to develop policies that approximate the oracle solution when only a
subset of robots can form coalitions and certify their resilience to adversarial node failures.
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