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Abstract

We study the problem of robustly estimating the parameter p of an Erd6s-Rényi random graph on n
nodes, where a ~y fraction of nodes may be adversarially corrupted. After showing the deficiencies
of canonical estimators, we design a computationally-efficient spectral algorithm which estimates p

up to accuracy O(1/p(1 — p)/n+v/p(1 — p)/\/n+~/n) for v < 1/60. Furthermore, we give an

inefficient algorithm with similar accuracy for all v < 1/2, the information-theoretic limit. Finally,
we prove a nearly-matching statistical lower bound, showing that the error of our algorithms is
optimal up to logarithmic factors.

Keywords: random graphs, robust estimation, spectral algorithms

1. Introduction

Finding underlying patterns and structure in data is a central task in machine learning and statistics.
Typically, such structures are induced by modelling assumptions on the data generating procedure.
While they offer mathematical convenience, real data generally does not match with these idealized
models, for reasons ranging from model misspecification to adversarial data poisoning. Thus for
learning algorithms to be effective in the wild, we require methods that are robust to deviations from
the assumed model.

With this motivation, we initiate the study of robust estimation for random graph models.
Specifically, we will be concerned with the Erd6s-Rényi (ER) random graph model (Gilbert, 1959;
Erdés and Rényi, 1959).!

Definition 1 (Erdos-Rényi graphs) The Erdds-Rényi random graph model on n nodes with pa-
rameter p € [0, 1], denoted as G(n,p), is the distribution over graphs on n nodes where each edge
is present with probability p, independently of the other edges.

1. This model was introduced by Gilbert (1959), simultaneously with the related G(n, m) model of Erd6s and Rényi
(1959). Nevertheless, the community refers to both models Erd6s-Rényi graphs.
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We consider graphs generated according to the Erd6s-Rényi random graph model, but which
then have a constant fraction of their nodes corrupted by an adversary. When a node is corrupted,
the adversary can arbitrarily modify its neighborhood. This setting is naturally motivated by social
networks, where random graphs are a common modelling assumption (Newman et al., 2002). Even
if a fraction of individuals in the network are malicious actors, we still wish to perform inference
with respect to the regular users. Apart from adversarial settings, tools for robust analysis of graphs
may also assist in addressing deficiencies of existing models, such as in model misspecification.
For example, certain random graph models have been criticized for not capturing various statistics
of real-world networks (Newman et al., 2002), and some notion of robustness may facilitate better
modelling.

1.1. Problem Setup

Let v € [0, 1] denote the fraction of corrupted nodes, and G ~ G(n,p) be a random graph, where
p is unknown. Without loss of generality, we assume that the node set is [n] := {1,...,n}. An
adversary A is then given G, and is allowed to arbitrarily ‘rewire’ the edges adjacent to a set B C [n)]
of nodes of size at most yn, resulting in a graph A(G). In other words, the adversary can change
the status of any edge with at least one end point in B. We call B the set of corrupted nodes. We
consider two kinds of adversaries.

* y-omniscient adversary: The adversary knows the true value of the edge probability p and
observes the realization of the graph G ~ G(n, p). They then choose B and how to rewire its
edges.

* ~v-oblivious adversary: The adversary knows the true value of the edge probability p. They
must choose B and the distribution of edges from B without knowing the realization G.

Note that the oblivious adversary is weaker than the omniscient adversary. Given a corrupted graph
A(G), our goal is to output p (A(G)), an estimate of the true edge probability p.

1.2. Results

We first analyze standard estimators from the robust statistics toolkit, and show that they provide
sub-optimal rates. We then propose a computationally-efficient spectral algorithm to estimate p with
improved rates. Finally, we prove a lower bound for this problem, showing that our algorithms are
optimal up to logarithmic factors. We note that our upper bounds hold for omniscient adversaries,
whereas the lower bounds are tight even against the weaker oblivious adversary.

1.2.1. STANDARD ROBUST ESTIMATORS AND NATURAL VARIANTS

At first glance, the problem appears deceptively simple, as our goal is to estimate a single univariate
parameter p. A standard technique is the maximum likelihood estimator, which in this case is the
empirical edge density. We call the following the mean estimator

_ #of edges present in A(G)

(5)

Prmean (A(G))

ey
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In robust statistics, the median often provides better guarantees than the mean. Let deg(¢) denote
the degree of node ¢ € [n] in A(G). The median estimator is given by

Median{deg(1),...,deg(n)}
n—1 '

ﬁmed(-A(G)) = (2)
Absent corruptions (i.e., v = 0), we have A(G) = G. In this simple setting, the mean
and median are both very accurate. Specifically, it is not hard to show that |pmean(G) — p| <

0 (w/ p(1—p)/ n) and |Pmed(G) — p| < O (1/n) (Lemma 6). However, both estimators perform

much worse under even mild corruption. In Lemma 7 we describe and analyze a simple oblivious
adversary A such that both the mean and median estimator have [p(A(G)) — p| > /2. Note that
if even a single node is corrupted (i.e., ¥ = 1/n), the “price of robustness” (informally, the addi-
tional error term(s) introduced in the corrupted setting) dominates the baseline O(1/n) error in the
uncorrupted setting.

The adversary against the mean and median estimators is easy to describe: either add or remove
all edges incident to the nodes in B. This suggests the strategy of first pruning a set of cyn nodes
with the largest and smallest degrees and then applying either the mean or median estimator to the
resulting graph. These prune-then-mean/median algorithms are described in Algorithm 1. Despite
this additional step, the pruned estimators are still deficient. We design an oblivious adversary
such that the prune-then-median estimate satisfies |p(A(G)) — p| > () and the prune-then-mean
estimate satisfies [p(A(G)) — p| > Q(?) (Theorem 9). Interestingly, we show the tightness of
both these bounds, showing that prune-then-mean improves the error to O (72) (Theorem 8). These
results are summarized in the theorem below.

Theorem 2 (Informal) The price of robustness of the prune-then-mean/median estimators are © (?)
and O (), respectively.

1.2.2. A SPECTRAL ALGORITHM FOR ROBUST ESTIMATION

Given the failings of the approaches described so far, it may appear that a poly () cost for robustness
may be unavoidable. Our main result is a computationally-efficient algorithm that bypasses this
barrier.

Theorem 3 Suppose v < 1/60 and p € [0,1]. Let G ~ G(n,p) and A(G) be a rewiring of G
by a v-omniscient adversary A. There exists a polynomial-time estimator p(A(G)) such that with
probability at least 1 — 10n2,

|p<A<G>>—p|<c-<W (= p)log(1/7) ’Ylogn>,

n NLD
for some constant C'. This estimate can be computed in O(7n3 + n?) time.

The first term is the error without corruptions, while the other two terms capture the price of
robustness. Except at extreme values of p, the last term will be dominated by one of the other
two. In this case, note that the cost of robustness in the second term decreases as the number of
nodes n increases. This is in contrast to the previously described approaches, for which the price
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of robustness did not decrease with n. Observe that the non-robust error will dominate for most
regimes when v < 1/y/n.

As our lower bounds will establish, our algorithm provides a nearly-tight solution to the prob-
lem. Note that while this algorithm requires knowledge of ~, Jain, Orlitsky, and Ravindrakumar
(2022) recently proposed a simple argument which using Lepski’s method generically removes the
need to know the corruption parameter for robust estimation tasks, leading to such an algorithm
with the same rates.

Our upper bound requires v < 1/60.> On the other hand, note that if v > 0.5, an identifiability
argument implies that no estimator can achieve error better than 0.5.% This raises the question of
whether the above rates are achievable for all v < 0.5. We show that this is indeed the case,
providing a computationally inefficient algorithm with the following guarantees.

Theorem 4 Suppose y < 1/2. There exists an algorithm such that with probability at least 1 —n "2,

HAG) =5l < 73— (V“jﬁ‘p) + Vfﬁf”) ,

for some constant C.

Note that for v > 1/60, the error bound above matches that presented in Theorem 3 up to a factor
of 1/(0.5 — ), and therefore extends the error rates of Theorem 3 to the regime v € [1/60, 1/2) at
the cost of computational efficiency.

1.2.3. INFORMATION-THEORETIC LOWER BOUNDS

We provide a lower bound to establish near-optimality of our algorithms. While our upper bounds
are against an omniscient adversary, the lower bounds hold for the weaker oblivious adversary.

Theorem 5 For everyy < 1/2, p € [0,1], and n > 0 and a universal constant C', let

N (\/p(l—p)Jr%/p(ln—p) 7>'

n Vn +n

Foranyp € [p+ A,p— Al and G ~ G(n,p) and G' ~ G(n,p’), there exists an oblivious
adversary A such that no algorithm can distinguish between A(G) and A(G') with probability
more than 0.65.

1.3. Techniques

Upper bound techniques. Broadly speaking, robust estimation is only possible when samples from
the (uncorrupted) distribution enjoy some nice structure. Work in this area generally proceeds by
imposing some regularity conditions on the uncorrupted data, which hold with high probability over

2. We have not tried to optimize the value of « for computationally efficient algorithms, and could likely be made larger
than 1/60 through a more careful analysis.

3. Consider an empty graph G(n, 0). An adversary can corrupt half the graph into a clique, making it look like it came
from G(n, 1). No algorithm can identify which half of the graph was the original.
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samples from the distribution. The algorithm subsequently relies solely on these regularity condi-
tions to make progress. For example, for mean estimation problems, it is common to assume that the
mean and covariance of the uncorrupted samples are close to the true mean and covariance. How-
ever, the appropriate regularity conditions in our setting are far less obvious. We employ conditions
which bound the empirical edge density and spectral norm for submatrices of the adjacency matrix,
when appropriately centered around the true parameter p (Definition 10), which can be proven using
tools from random matrix theory.

With our regularity conditions established, the algorithmic procedure proceeds in two stages: a
coarse estimator, followed by a fine estimator.

Stage 1: A coarse estimate. Our regularity conditions are suggestive of the following intuition
about how one might estimate the value of p. If one could locate a sufficiently large subgraph S’ of
the uncorrupted nodes, such that their adjacency matrix centered around p has small spectral norm,
then the empirical edge density of this subgraph would give a good estimate for the true parameter
p. More precisely, we let A be the (corrupted) adjacency matrix of A(G), let Agx g be the submatrix
of A indexed by the set S, and pg be the empirical edge density of the subgraph S. The goal is to
obtain an S where || Agxs — p|| is small,* at which point we can output pg.

There are two clear challenges with this approach. First off, we can not center the adjacency
matrix around the unknown parameter p, since estimating that parameter is our goal. However, we
demonstrate that it instead suffices to center around pg (Theorem 13). The other issue is that it is
not clear how to identify such a set S of uncorrupted nodes. One (inefficient) approach is to simply
inspect all sufficiently large subgraphs. This will be accurate (quantified in Theorem 14), but not
computationally tractable.

Instead, our main algorithmic contribution is an efficient algorithm which achieves this same
goal. We give an iterative spectral approach, which starts with S = [n]. In Lemma 16 we show
that if the spectral norm of Agxg — pg is large, then the top eigenvector assigns significant weight
to the set of corrupted nodes. Normalizing this eigenvector and sampling from the corresponding
probability distribution identifies a corrupted node with constant probability. We eliminate this node
from S and repeat the process. Finally, using this approach, we obtain a subset S* C [n] of nodes
such that pg~ is a coarse estimate of p.

Stage 2: Pruning the coarse estimate. It turns out that the above coarse estimate gives a price of
robustness which is roughly O(1/+/n), rather than the O(~/+/n) we are trying to achieve. However,
a simple pruning step allows us to complete the argument. Specifically, our coarse estimator gave
us a set S* such that the spectral norm of Ag+y g+ — pg+ is small and pg« is close to p. We employ
this to show that most nodes must have degree close to p (Lemma 33). Thus, we remove ©(vyn)
nodes whose degree (restricted to the subgraph S™) is furthest from pg«. Our final estimate is the
empirical density of the resulting pruned subgraph.

Lower bound techniques. A strategy for proving lower bounds is the following: Suppose there
exists an adversary that with yn corruptions can convert the distribution G(n,p) and G(n,p + J)
into the same distribution of random graphs, then we cannot estimate p to accuracy better than § /2.
This is akin to couplings between G'(n, p) and G(n, p+9) by corrupting only a yn nodes. Designing
these couplings over Erd6s-Rényi graphs can be tricky due to the fact that degrees of nodes are not
independent of each other.

4. For clarity: in the expression Asx s — p, p is subtracted entry-wise.
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We instead consider directed Erd6s-Rényi graphs, where an edge from a node ¢ to j is present
independently of all others. Then, the (outgoing) degrees of all the nodes are independent Binomial
distributions. Using total variation bounds between Binomial distributions we can design couplings
between directed ER graphs with different parameters, thus showing a lower bound on the error of
robustly estimating directed ER graphs. Our final argument is a reduction showing that estimating
the parameters of undirected of graphs is at least as hard as estimating the parameters of directed
ER graphs. Combining these bounds we obtain the lower bounds.

1.4. Related Work

Due to the wealth of study in robust estimation and the page limits, we mention here only a fraction
of the most relevant related work. For additional discussion, please see Section A.

Robust statistics is a classic and mature branch of statistics which focuses on precisely this type
of setting since at least the 1960s (Tukey, 1960; Huber, 1964). However, since the classic literature
typically did not take into account computational considerations, proposed estimators were gen-
erally intractable for settings of even moderate dimensionality (Bernholt, 2006). Recently, results
by Diakonikolas, Kamath, Kane, Li, Moitra, and Stewart (2016, 2019a) and Lai, Rao, and Vempala
(2016) overcame this barrier, producing the first algorithms which are both accurate and compu-
tationally efficient for robust estimation in multivariate settings. While they focused primarily on
parameter estimation of Gaussian data, a flurry of subsequent works have provided efficient and
accurate robust algorithms for a vast array of settings.

A common tool in several of these robust estimation results is to prune suspected outliers from
the dataset so that a natural estimator over the remaining points has a small error. We also use
this meta technique in this paper. We note that as in the previous works, the main challenge lies
in designing efficient schemes to detect and remove corrupted data-points for the particular task at
hand. In most prior works, the uncorrupted data-points are unaffected by corruptions. In our setting
however, the edges from the good nodes are also affected by corruptions to the corrupted nodes.
This presents a new challenge requiring new insights.

2. Notation and Preliminaries

Problem Formulation. Let G ~ G(n,p). Anadversary observes G and chooses a subset B C [n]
of nodes with |B| < yn. It can then change the status (i.e., presence or non-presence) of any edge
with at least one node in B to get a graph A(G). Let F' = [n] \ B. We call B the corrupted nodes,
and F the uncorrupted nodes. Let A and A be the n x n adjacency matrix of the original graph G
and the modified graph A(G) respectively. Then Apxp = Apyp and the remaining entries of A
can be arbitrary. Given A, the goal is to estimate p, the parameter of the underlying random graph
model. The algorithm does not know the set B, though we assume that it knows the value of ~.

Notation. The ¢, norm of a vector v = [v1,...,v,] € R™is [jv]| := /> | v2. Suppose M is

an m x n real matrix. The spectral norm of M is

| M| := max lul M. 3)
u€R™ wER™:||ul|=1,[|v]|=1
It is easy to check that || M|| = max,cgn.|y|=1/Mv]||. For a matrix M and real number a € R,

let M — a be the matrix obtained by subtracting a from each entry of M. For S C [m], S’ C [n],
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let Mgy s be the m x n matrix that agrees with M on S x S’ and is zero elsewhere. Similarly
for a vector v € R™ and S C [n], let vector vg be the vector that agrees with with v on S and has
zero entries elsewhere. Our proofs will use several standard properties of the matrix spectral norm,
which we state in Appendix B for completeness.

3. Mean- and Median-based Algorithms

To demonstrate the need for our more sophisticated algorithms in Section 4, we first analyze canon-
ical robust estimators for univariate settings — specifically, approaches based on trimming and order
statistics (i.e., the median).

Recall the mean and median estimators for p in (1) and (2). The following simple lemma
quantifies their guarantees in the setting absent corruptions.

Lemma 6 Suppose v = 0. There exists a constant C' > 0 such that with probability at least 0.99,
. NI .
[Prcan(@) = p| < C - YU and [prea(G) = p| < € 1.

The analysis of these estimators is not difficult, but we include them for completeness in Sec-
tion D.1. Analysis of the median estimator is slightly more involved due to correlations between
nodes.

While both estimators are optimal up to constant factors (for constant p) without corruptions,
their performance decays rapidly in the presence of an adversary, scaling at least linearly in the
corruption fraction ~y. In particular, consider an adversary that picks yn nodes at random and either
adds all the edges with at least one endpoint in B or removes all of them. In Section D.2 we
prove the following lower bound on the performance of the mean and median estimators for such
an adversary. Observe that if even one node is corrupted (i.e., ¥ > 1/n), the error in Lemma 7
dominates the error without corruptions in Lemma 6.

Lemma 7 There exists an adversary A such that for p € {pmean(A(G)), Pmed (A(G))} with prob-
ability at least 0.5, we have |p — p| > ~/2.

A common strategy in robust statistics is to prune or trim the most extreme outliers. Accord-
ingly, in our setting, one may prune the nodes with the most extreme degrees, described in Algo-
rithm 1. This strategy bypasses the adversary which provides the lower bound in Lemma 7.

Algorithm 1 Prune-then-mean/median algorithm

Require: A graph A(G), corruption parameter -y, a constant ¢ > 0
Remove cyn nodes with largest and smallest degrees from A(G)
Apply the mean/median estimator from (1)/(2) to the resulting graph on (1 — 2¢y) - n nodes

However, this strategy can only go so far. Roughly speaking, pruning improves the mean’s
robust accuracy from ©(v) to ©(?), while pruning does not improve the median’s robust accuracy.
The upper and lower bounds are described in Theorems 8 and 9, and proved in Sections D.3 and D 4,
respectively.

Theorem 8 Forc > 1and (0 < ~ - c < 0.25, the prune-then-mean and prune-then-median estima-

tors described in Algorithm 1 prune 2cyn nodes in total and with probability 1 — n=2 estimates p

logn
n

to an accuracy 0(072 + 10%) and (’)(ny + ) respectively.
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Theorem 9 Letp = 0.5, v > 100 - \/logn/n, and ¢ > 0 be such that ¢y < 0.25. There exists an
adversary such that with probability at least 0.99, the prune-then-median estimate that deletes cyn

satisfies |p(A(G)) — p| > C'v, and the prune-then-mean estimate satisfies |p(A(G)) — p| > C'~>

To summarize: none of the standard univariate robust estimators we have explored are able to
achieve error better than €2(+2). To bypass this barrier, we turn to more intricate techniques in
designing our main estimator in Section 4.

4. An Algorithm for Robust Estimation

Non-trivial robust estimation in Erd6s-Rényi graphs is possible because even if the set of edges
connected to a small set of nodes is changed arbitrarily, the subgraph between the remaining nodes
retains a certain structure. In Section 4.1, we formalize this structure as deterministic regularity con-
ditions and show that the subgraph corresponding to the set of uncorrupted nodes satisfy them with
high probability. In the following subsections, we use only the fact that the subgraph of uncorrupted
nodes satisfy these regularity conditions to derive our robust algorithms for estimating p.

In Section 4.2, we first derive a simple but novel inefficient spectral algorithm for coarse estima-
tion of p. Our efficient algorithm consists of two parts: an efficient version of the spectral algorithm
in Section 4.2 that, as its inefficient counterpart, provides a coarse estimate of p, followed by a trim-
ming algorithm which achieves near-optimal error rates for estimating p. We describe and analyze
the spectral and trimming components of the algorithm in Sections 4.3 and 4.4, respectively. Finally,
in Appendix E.8, we put the pieces together to show that guarantees for these algorithms imply our
upper bound in Theorem 3.

4.1. Regularity Conditions

In this section we state a set of three deterministic regularity conditions. We will then show that
the set of uncorrupted nodes of a random Erdés-Rényi graph satisfy these regularity conditions with
high probability. First, we define the following quantities x and 7, which we use in stating the reg-
ularity conditions and in the bounds of several lemmas and theorems. For p € [0, 1] and n > 0, let

p(l—p)7\/m).

n(p,n) :zc-max( 4
n n
For o € (0,1], p € [0,1] and n > 0, let
\/pl
k(a,p,m) := ¢1 - max (a glni, glnE, P nn)' 5)
n an o n

In the above definitions ¢ and ¢; are some constants that we determine in Theorem 12.
We employ the following regularity conditions.
Definition 10 Given oy € [0,1/2), as € [0,1/2), and an [n] x [n] adjacency matrix A, a set of
nodes F' C [n] of the graph corresponding to A satisfy (o1, g, p)-regularity if
1. |F¢ < ain.

2. Forall F' C F,
[(A=p)pxr || <n-n(p,n).
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3. Forall F', F" C F such that |F'|,|F"| € [0, agn] U [n — agn, n|, then

‘Z Z (Aij —P)‘ < n*- k(az,p,n).

i€F! jEF"

Item 2 implies that upon subtracting p from each entry of the adjacency matrix A, the spectral
norm of the matrix corresponding to all subgraphs of the subgraph F' x F'is bounded. Item 3 implies
that upon subtracting p from each entry of the adjacency matrix A, the sum of the entries over any
of its submatrices F’ x F” C F x F has a small absolute value, as long as each of F’ and F" either
leave out or include at most asn nodes. We will informally refer to nodes in the set ' C [n] that
satisfy (o, ag, p)-regularity as good nodes.

For a subset S C [n] and adjacency matrix A, we will use pg := % to denote (approx-
imately) the empirical fraction of edges present in the subgraph induced by a set S. Note that this
differs slightly from expression one might anticipate, ('5)) - (Zl <jiijes Ai,j>. For convenience,
our sum double-counts each edge and also includes the A; ; terms (which are always 0 due to the
lack of self-loops). The double counting is accounted for since the denominator is scaled by a factor
of 2. The inclusion of the diagonal 0’s is not accounted for, thus leading to pg being a slight under-
estimate of the empirical edge parameter for this subgraph, but not big enough to make a significant
difference.

The following lemma lists some simple but useful consequences of the regularity conditions that
we use in later proofs. We prove it in Appendix E.1.

Lemma 11 Suppose 0 < a3, a2 < 1/2 and adjacency matrix A has a node subset F' C [n] that
satisfies (a1, ag, p)-regularity, then

1. Forall F' C F,
(A= pr)Fxp | < 2n-n(p,n). (6)
2. Forall F' C F of size > (1 — ag)n,
lpr — p| < 4k(az,p,n). (M

Equation (6) implies that if the adjacency matrix of any subset of good nodes is centered around
its empirical fraction of the edges, then its spectral norm is bounded. Equation (7) implies that for
any subset of good nodes that excludes at most con nodes, the empirical fraction of edges in the
subgraph induced by it estimates p accurately.

The next theorem shows that the set of uncorrupted nodes of a random Erdds-Rényi graph satisfy
these regularity conditions with high probability. The proof of the Theorem is in Appendix E.2.

Theorem 12 Forany~ € [0,1/2), n > 0 and p > 0, let A be a y-corrupted adjacency matrix of a
sample from G(n, p). There exist universal constants c and ¢y in Equations (4) and (5), respectively,
such that with probability at least 1 — 4n~2 the set of uncorrupted nodes F satisfy (a1, oz, p)-
regularity for all oy € [7y,1/2] and cg € [0,1/2).
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4.2. An Inefficient Coarse Estimator

In this section we propose a simple inefficient algorithm to recover a coarse estimate of p, which
has an optimal dependence on all parameters other than «;.

The following theorem serves as the foundation of our coarse estimator. It shows that if, for any
subset S C [n] of size > n/2 nodes, the spectral norm of its submatrix centered with respect to pg
is small, then pg is a reasonable estimate of p.

Theorem 13 Suppose 0 < oy, e < 1/2, and let A be an adjacency matrix containing a (a1, ag, p)-
regular subgraph. Then for all S C [n] such that |S| > n/2, we have

(A —ps)sxsll +n-n(p,n)
(1/2—aq)n ’

Ips —p| <
Proof Let F be the (1, ag, p)-regular subgraph of A. From the triangle inequality,

(A = ps)(snryxsnp)ll = Ip —psl - SN F| = [[(A = p)(snr)x(snr)ll-

Then by Lemma 23,

[p=ps|-[SNF| < [[(A=ps) snr)x (snm) I +(A=p) (snr)x(snm) | < [(A=ps)sxsll+[(A=p)px |-

Finally, noting that |S N F'| > |S| — |F¢| > |S| — aun > n/2 — an proves the theorem. [

With this in hand, it suffices to locate a subset of nodes S such that ||(A — ps)sxs]|| is small.
We provide the accuracy guarantee of our inefficient algorithm in the following theorem.

Theorem 14 Suppose 0 < oy, e < 1/2, and let A be an adjacency matrix containing a (a1, ag, p)-
regular subgraph. Let

S = argminsg[n]:|5|2n/2 H(A _pS)SXSH‘

Then [[(A ~ pg)s,sll < 2n-n(p.n) and |pg —p| < ey - n(p.n).

Proof Let F be the (v, aa, p)-regular subgraph of A. From the definition of S,

1A =Ps)gusll < (A =pr)rxrl < 2n-n(p,n),

where the last inequality uses Equation (6). The proof follows from Theorem 13. |

Theorem 14 implies the following simple algorithm to estimate p: compute S by iterating over
all subsets of [n], and then output ps. Combining with Theorem 12, this proves Theorem 4. The
clear downside of this approach is that it is not computationally efficient, with a running time that
depends exponentially on n. Also, as we will later establish, while this algorithm gives near-optimal
rates for all constant vy bounded away from 1/2 by a constant, it may be sub-optimal for smaller ~.
In the following sections, we address both of these issues: we provide a computationally efficient
algorithm which provides near-optimal rates for v < 1/60.

10
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4.3. An Efficient Coarse Spectral Algorithm

In this section, we propose an efficient spectral method (Algorithm 2) which finds a subset S* C [n]
such that both the set (5*)¢ and the spectral norm || (A — pg=+) s+ x s+ || are small. Note that the latter
guarantee is comparable to the inefficient algorithm from Section 4.2. Then Theorem 13 implies
that pg~ is an accurate estimate of p. We note that this is still a coarse estimate of p, which has a
sub-optimal dependence on a1.° In the following section, we will post-process the set S* returned
by Algorithm 2 to provide our near-optimal bounds.

Theorem 15 Suppose oy € [%, %], ag € [0,1/2] and let A be an adjacency matrix containing an

(a1, ag, p)-regular subgraph. With probability at least 1 — 1/n2,° Algorithm 2 returns a subset S*
with |S*| > (1—9a)n such that || (A—ps=)s+xs+|| < 20n-n(p,n). Furthermore, these conditions
on S* imply |ps+ — p| <45 -n(p,n).

Algorithm 2 Spectral algorithm for estimating p

Require: number of nodes n, parameter «; € [1/n,1/60], adjacency matrix A
S < [n], Candidates < {}
Candidates <+ Candidates U {S'}
for t = 1to 9ayn do
Compute a top normalized eigenvector v of the matrix (A — ps)sxs
Draw i; from the distribution where ¢ € S is selected with probability v?

S« S\ {it}

Candidates < Candidates U {S'}
end for
S* < arg mingecandidates || (A — Ps)sx sl
return S*

In the remainder of this section we will prove that Algorithm 2 indeed outputs a subset S* with
the guarantee in Theorem 15. Let F' (unknown) be the («, ag, p)-regular subgraph of A. The
key technical argument is that if the spectral norm of (A — pg)sxs is large, the normalized top
eigenvector v of (A — ps)sxs places constant weight on the subset S N F¢. Thus, if at a given
iteration Algorithm 2 possesses an unsatisfactory set S, it will remove a node from S N F' with a
constant probability. We formalize this argument in the following key Lemma 16. The proof of the
lemma appears in Appendix E.3.

Lemma 16 Suppose oy € [X, &, o € [0,1/2] and let A be an adjacency matrix containing an

(o1, v, p)-regular subgraph F. Let S C [n] be of size |S| > (1 — 9a)n, and v be the normalized
top eigenvector of (A — ps)sxs. If ||[(A — ps)sxs|| > 20n - n(p, n) then |[vsnpe||* > 0.15.

We conclude this section with the proof of Theorem 15.
Proof [Proof of Theorem 15] It suffices to show that at least one of the sets .S encountered by
Algorithm 2 satisfies the condition ||(A — pg)sxs|| < 20n - n(p,n). From Lemma 16 it follows

5. The guarantees are comparable to Theorem 14, up to constant factors.

6. The probability of success of Algorithm 2 is Pr[Bin(|9ain],0.15) > |aan]] > 1 — exp(—Q(a1n)). Note that for
all values of a1 the success probability is > 1/2. When axn = Q(logn) then it gives the probability of success
at least 1 — 1/n?. When axn = O(logn), to get the probability of success > 1 — 1/n? one can run Algorithm 2
O(log n) times and choose an S™* for which ||(A — ps+) s x s || is the minimum among all runs.
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that until the algorithm finds such a subset S, in each deletion step the probability of deleting a node
from [ is at least 0.15. Since there are 9a1n steps, a standard Chernoff-style argument implies
that either a subset S (including nodes from both F'¢ and F') satisfying the conditions of the theorem
will be created, or with probability at least Pr[Bin(|9ain],0.15) > |aqn]] > 1 —exp(—Q(aqn)),
all nodes from F° will be deleted and thus S C F'. In the latter case we apply Equation (6), which
implies that ||(A — ps)sxs|| < 20n - n(p,n) and the theorem. [ |

Remark 17 Algorithm 2 runs for 9aqn rounds, and in each round the algorithm finds the top
eigenvector of an n X n matrix. This may be expensive to compute when the spectral gap is small.
However, Lemma 31 shows it suffices to find any unit vector v € R™ such that |vT(A — pg)sxsv| >
0.99||(A — ps)sxs]||- Note that such a unit vector can be found in O(n?) time (Musco and Musco,
2015). Therefore, one can implement Algorithm 2 to run in O(aln?’) time.

4.4. A Fine Trimming Algorithm

In this section, we provide a trimming method (Algorithm 3), which refines the output of Algo-
rithm 2, improving its guarantee (quantified in Theorem 15) by up to a factor of a;.

The algorithm (Algorithm 3) is easy to describe. For a subset S* C [n] and a node ¢ € S¥,
we define pgz = % to be the normalized degree of node ¢ in the subgraph induced by
S*. We remove the 31 nodes for which this normalized degree deviate furthest from the average

parameter pg~+. Its guarantees are quantified in Theorem 18, whose proof appears in Appendix E.7.

Theorem 18 Let oy € [, &

subgraph. Suppose we have some S* such that |S*| > (1 — 9aq)n and ||[(A — ps+)s+x s
20m - n(p, n), Algorithm 3 outputs pgs such that for some universal constants ca, c3 > 0,

|, and A be an adjacency matrix containing an (o, 13y, p)-regular
<

’pSf - p| < cpa1n(p,n) + czr(13a1,p,n).

Algorithm 3 Trimming Algorithm

Require: number of nodes n, parameter «; € [1/n,1/60], adjacency matrix A, subset S* C [n]
Define the score for each node i € S* to be |pg+ — pgzl

Remove the 3a;n nodes in S* with the highest scores to obtain S¥

return pgs

At this point, we have all the pieces to prove our main upper bound (Theorem 3). The argument
first reasons that a random graph will satisfy certain regularity conditions with high probability.
With these guarantees, we feed it into our coarse spectral algorithm (Algorithm 2), followed by
our fine trimming algorithm (Algorithm 3). Some (mundane) case analysis is required to achieve
the optimal bounds in certain parameter regimes; the full argument is rigorously described in Ap-
pendix E.8.

5. Lower Bounds

In this section, we prove our main lower bound for robust parameter estimation in Erd&s-Rényi
random graphs establishing that our algorithms are tight up to logarithmic factors.

12
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First we consider the problem of parameter estimation for directed version of Erdés-Rényi ran-
dom graphs. Such graphs have independent (outgoing) degrees across the nodes. We then show a
reduction showing that the directed version of the problem is at least as hard as the standard version.
We start by describing the directed Erd6s-Rényi graphs.

Definition 19 (Directed Erdds-Rényi graphs) The directed Erdds-Rényi random graph model on
n nodes with parameter p, denoted as DG (n, p), is the distribution over directed graphs on n nodes
where each edge is present with probability p, independently of the other edges.

We show the following reduction from the directed problem to standard. We provide the proof in
Appendix G.

Lemma 20 [f there exists an algorithm that estimates p in G(n, p) to within +=A with probability
at most 1 — & under ~y-corruptions, then there exists an algorithm for estimating p in DG (n,p) to
within + /A with probability at most 1 — § under ~-corruptions.

Then to prove the lower bound in Theorem 5, we prove its analogue for directed Erd6s-Rényi
graphs.

Theorem 21 Let p < 0.5. Then there exists a y-oblivious adversary such that no algorithm can

distinguish between DG (n,p) and DG (n,p + 0.1 max (fy\/p/n, v/n, \/f)/n» with probability
at least 0.65.

By symmetry, a similar statement holds for p > 0.5, with p replaced by 1 — p. Combining these
two statements and Lemma 20 gives the lower bound in Theorem 5.

We prove Theorem 21 formally in Appendix G, and conclude the section with a proof sketch.
We consider a weaker ~y-oblivious adversary for DG (n, p) that does the following: (a) randomly
choose a subset B of yn nodes, (b) for each node ¢ € B, remove all the outgoing edges from ¢, and
draw a number d; independently from a different distribution over {0,1,...,n}, and (c) select d;
nodes from [n] \ {i} at random and add an edge from 7 to them. Note that both for the uncorrupted
nodes and for nodes corrupted by such an adversary the out-degrees of nodes completely determine
its distribution and is therefore a sufficient statistic. For a random directed graph DG ~ DG(n, p),
the out-degree of a node is distributed Bin(n — 1, p). We can think of observed degrees of n nodes
of an uncorrupted directed ErdGs-Rényi random graph DG ~ DG(n,p) as independent samples

from binomial distribution Bin(n — 1,p). Let A, = 0.1 max (’y\/p/n,y/n). We show that

for p < 0.5, the TV distance between Bin(n — 1,p) and Bin(n — 1,p + A) is less than 0.15+.
Then we show that an adversary that chooses a random set of size Bin(n,0.15), can choose the
distribution of their out-degree in a way that the overall distribution of out-degrees is same for the
both graphs DG ~ DG(n,p) and DG ~ DG(n,p + A,) after corruption. Finally, we show that
even without corruption (when 4 = 0), no algorithm can reliably distinguish between DG(n, p)
and DG(n,p +0.1,/p/n).
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Appendix A. Additional Related Work

Beyond the aforementioned results on efficient robust estimation (Diakonikolas et al., 2016; Lai
et al., 2016), several works have focused on similar estimation tasks in a variety of related settings,
including under weaker moment assumptions (Diakonikolas et al., 2017), with a larger fraction of
corrupted data (Charikar et al., 2017), under sparsity constraints (Balakrishnan et al., 2017; Liu
et al., 2020), for regression or other supervised learning tasks (Klivans et al., 2018; Diakoniko-
las et al., 2019b; Prasad et al., 2020b; Pensia et al., 2021), under more general robustness con-
ditions (Steinhardt et al., 2018), with alternate perturbation models (Zhu et al., 2019), for mix-
ture models (Hopkins and Li, 2018; Kothari et al., 2018; Diakonikolas et al., 2018b), approaching
information-theoretic barriers to accuracy (Diakonikolas et al., 2018a), fast algorithms for robust
estimation (Cheng et al., 2019a,b; Dong et al., 2019), and with gradient descent algorithms (Cheng
et al., 2020). See (Diakonikolas and Kane, 2019) for a survey.

Our algorithm relies on a spectral outlier-removal technique common to several works in robust
estimation. Prior to this line of work, similar approaches were employed for robust supervised
learning tasks, namely learning halfspaces with malicious noise (Klivans et al., 2009; Awasthi et al.,
2014).

There has been significant work on robust community detection in the presence of adversaries
(Moitra et al., 2016; Makarychev et al., 2016; Steinhardt et al., 2018; Banks et al., 2021). Most of
this focuses on monotone adversaries (which make only “helpful” changes to the graph) or edge
corruptions. It is not clear how to define monotone adversaries for the Erds-Rényi setting, and for
our estimation problem under edge corruptions, the empirical estimator is trivially optimal in the
worst case. The work of Cai and Li (2015) also considers a node corruption model similar to ours.
However, all of the aforementioned work studies community detection in stochastic block models,
which is different from our goal of parameter estimation.

Our corruption model may seem reminiscent of the classic planted clique problem (Karp, 1976;
Jerrum, 1992; Kucera, 1995), in which an algorithm must distinguish between a) G(n,1/2) and b)
G(n, 1/2) with the addition of a planted clique of size yn. Our adversary is given much more power
(i.e., they can make arbitrary changes to the neighbourhoods of their selected nodes), though the two
goals are incomparable. The planted clique problem is known to be information-theoretically solv-
able for any v > 210%. However, polynomial-time algorithms are only known fory > 1/4/n (Alon
et al., 1998), and there is strong evidence that efficient algorithms do not exist for smaller values
of ~ (Feige and Krauthgamer, 2003; Feldman et al., 2017; Meka et al., 2015; Deshpande and Mon-
tanari, 2015; Hopkins et al., 2018; Barak et al., 2019). We have not run into issues in our setting
related to this intractability, though deeper connections between our model and the planted clique
problem would be interesting. Note that our task of parameter estimation is not interesting for the
cases of the planted clique problem when v < 1/4/n. Simply using the empirical estimator on
the two instances would give error ~ 1/n and ~ 1/n + 2 = O(1/n), which are identical up to
constant factors.

Some prior works have studied robust estimation for graphical models, including Ising mod-
els (Lindgren et al., 2018; Prasad et al., 2020a) and Bayesian networks (Cheng et al., 2018). Despite
the common nomenclature, these works are rather different from our work on random graph mod-
els. Graphical models are distributions over vectors, where correlations between coordinates exist
based on some latent graph structure. On the other hand, random graph models are distributions
over graphs, sampled according to some underlying parameters. While existing work on graphical

19



ACHARYA JAIN KAMATH SURESH ZHANG

models necessitates many samples from the same distribution (due to parameters outnumbering the
samples), our setting requires a single sample from a random graph model.

Our setting is related to the untrusted batches setting of Qiao and Valiant (2018), in which
many batches of samples are drawn from a distribution, but a constant fraction of batches may be
adversarially corrupted, see also followup works by Jain and Orlitsky (2020a,b, 2021) and Chen, Li,
and Moitra (2020a,b). This is somewhat similar to our setting, where each batch is the set of edges
connected to a node. However, the key difference is that in our setting, each edge belongs to both
its two endpoint nodes, whereas in the untrusted batches setting, a sample is only associated with a
single batch.

Estimation in random graph models has also been studied under the constraint of differential pri-
vacy (Borgs et al., 2015, 2018; Sealfon and Ullman, 2019). Despite superficial similarities between
the two settings, we are unaware of deeper technical connections.

Our setting bears some conceptual similarity to a line of robustness work focused on decom-
posing a matrix as a sum of a low rank matrix and a sparse matrix (Chandrasekaran et al., 2011;
Candes et al., 2011; Hsu et al., 2011). Our true parameter matrix is the rank-1 matrix pJ, where J
is the all-ones matrix. However, the uncorrupted adjacency matrix is a sample from the distribution
where each entry is a Bernoulli with the corresponding parameter, which is in general not low rank.
Furthermore, our corruption model allows for a bounded number of rows/columns to be changed,
whereas this line of work requires that the corruptions satisfy some further sparsity, such as a limited
number of changed entries per row/column, or that the corruption positions are chosen randomly.

Appendix B. Spectral norm properties

Matrix Properties. We state some useful properties of matrix spectral norm that will be useful in
our proofs.

Lemma 22 Let M, M' € R™*", then ||M + M'|| < |M]| + || M']].

Lemma 23 Forany M € R™*", S C [m], S’ C [n],

MSXS’H < HMH

Proof For any unit vectors « € R™ and v € R", let & = ug/||ug|| and ¥ = vg: /||vg||. Then

|uT Mgy sv| = [ufMug| = [Jus]| - [Jvg]| - [aTMo| < |aTMo| < ||M]],
where the second last inequality used ||ug|| < [|u|]| = 1 and |jvg/|| < |jv|| = 1 and the last
inequality used that % and v are unit vectors. Finally, in the above equation taking maximum over
all unit vectors u, v completes the proof. |
>i Mi

Lemma 24 Forany M € R™ ", || M| > %

Proof Consider u = ﬁ[l, 1,...,1] and v = ﬁ[l, 1,...,1]7, which are unit vectors in R™ and
R™, respectively. Then |u’ Mv| = ”Tn] < ||M]|| by (3). [ |
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Appendix C. Concentration Inequalities

Lemma 25 (Chernoff bound) Let X, Xo, ..., Xy ~ Ber(p) be t independent Bernoulli random
variables. Then for any A > 0

: (A2 A
Pr ‘ZXi—tp}z)\ §2exp<—mln<3tp,3>). (8)
=1

Appendix D. Proofs for Mean- and Median-Based Algorithms

In this section we provide the proofs for algorithms based on mean and medians. Throughout this
section we assume that n is at least 14400 for computational simplifications.

D.1. Upper Bounds for Mean and Median Estimators without Corruptions

Mean estimate. The total number of edges in G ~ G(n,p) is a Binomial distribution with pa-
rameters (g) and p. Therefore, its expectation and variance are (g) p and (g) p(1 — p), respectively.
Thus, E [Pmean(G)] = p and Var(pmean(G)) = p(1 — p)/(5) < 4p(1 — p)/n?. By Chebyshev’s

inequality,
1—
Pr (’ﬁmean(G) —]3| > 20 - p(p)> < 0.01.
n

Median estimate. We will show that with probability at least 0.995, the median degree of G is
at least (n — 1)p — C for some constant C'. The main hurdle in showing this is the fact that
the node degrees deg(i) are not independent, which requires a careful analysis. For i € [n], let
Y; = I(deg(i) <p(n—1)—121). Then, ), Y; is the number of nodes with degree at most
p(n —1) —121.

We establish the following bounds for n > 14400:

v
Var (Z Y) <n (10)

With these, we can apply Cantelli’s inequality to obtain:

n Var (> Y;)
Pr( i Y, > 2> < Var (5 V) + (15v/n)? < 0.005.

This shows that with probability at least 0.995 the median degree is at least (n — 1)p — 121. By
symmetry, with probability at least 0.995 the median degree is at most (n — 1)p+ 121. By the union
bound, with probability at least 0.99 the error of the median estimate is at most 121 /(n — 1).

We now prove (9) and (10) to complete the proof.

To prove (9), note that deg(i) ~ Bin(n—1,p) and E [Y;] = Pr[Bin(n—1,p) < p(n—1)—121].

E < g —15vn )
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We show that for any n/, Pr[Bin(n’,p) < pn/ —121] < % - \/7% then (9) follows from the

linearity of expectation. If Pr(Bin(n’,p) < pn/ —1) < § — \/% then we are done. We prove for

: 1 15
the case when Pr(Bin(n',p) <pn’ — 1) > 5 — T

By Chebyshev’s inequality,

=

Pr (Bin(n',p) < n'p —v/n) <
Then, for n’ > 14400,

Pr (Bm(n’,p) e [n'p—Vn!,pn’ — 1)) = Pr(Bin(n/,p) < pn’ — 1) — Pr (Bin(n/,p) < n'p — v/n)
1 15 1

|
)
:\
_l’_
p—t
N
oo =

Since the binomial distribution has a unique mode > pn’ — 1, then for any ¢ < V! ,
t—1 1 t—1 1
L= > Z

Vo' —1 8

Pr (Bin(n',p) € [n'p —t,pn/ — 1)) > .
(Bin(n',p) € ['p—t,pn’ = 1)) > NES
Since the median of Bin(n’,p) is > n’p — 1, (Kaas and Buhrman, 1980), hence Pr[Bin(n’,p) <
pn’ — 1] < 1/2. From it subtracting the above equation for t — 1 = 15 -8 = 120, we get
Pr[Bin(n',p) <pn’ —121] < § — —L—.
We now prove (10). Since Y;’s are identically distributed indicator random variables,

Var <Z Yl> =nVar (Y1) +n(n — 1) Cov(Yy,Ys) < g + n(n —1) Cov(Yr, Ya). (11)

(2

Lett = (n— 1)p — 121, then Y; = [ (deg(i) < t). Let Y72 be the number of edges from node 1 to
[n] \ {2} and I (E} 2) be the indicator that edge between 1 and 2 is present. Then Yi2 ~ Bin(n —
2, p). Elementary computations using the observation that Y, = I (Y1, <t —1)+1 (Yo =1¢)-(1—
I (ELQ)) show that

Cov(Y1,Ys) = p(1 —p) - Pr (Y =t)%.

From Stirling’s approximation at t = np, we have Pr (Y12 =t) < 1/y/7p(1 — p)(n — 2), and

therefore, .

Cov(Y1,Y2) =p(1 —p) - Pr (Y12 = t)Q < m

1
< —
~ 3n
for n > 1202. Plugging this in (11) proves (10).

D.2. Lower Bounds for Mean and Median Estimators under Corruptions

We will prove the /2 lower bound for the mean and median estimates. Consider the following
oblivious adversary .A.

* Pick a random subset B C [n] of size yn.

* Let A;(G) be the graph obtained by adding all edges (u, v) that have at least one node in B
to the graph G, and let A5 (G) be the graph obtained by removing all edges that have at least
one node in B from the graph G.
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e Output A (G) or A3(G) chosen uniformly at random.

Any node in A; (G) has degree at least yn more than the corresponding node in A2(G). There-
fore, |Pmean(A1(G)) — Pmean(A2(G))| > 7, and |Pmed (A1(G)) — Pmed (A2(G))| > . Therefore
by the triangle inequality, with probability 0.5, [pmean (A(G)) — p| > v/2, and |peq (A(G)) — p| >
v/2.

D.3. Upper Bounds for Prune-then-Mean/Median Algorithms

Recall the prune-then mean/median algorithm in Algorithm 1. We remove cy fraction of nodes with
the highest and lowest degrees, and then output the median (or mean) of the remaining subgraphs.
We restate the performance bound of the algorithm here.

Theorem 8 Forc > 1 and 0 < v - c < 0.25, the prune-then-mean and prune-then-median estima-
tors described in Algorithm 1 prune 2cyn nodes in total and with probability 1 — n™2 estimates p

fo an accuracy (9(072 + 10%) and O(c'y + log"), respectively.

n

Proof Let G ~ G(n,p). By Chernoff bound (Lemma 25) and the union bound, with probability
>1-—1/n?

deg(i) € (np — 100+/nlogn, np + 1004/nlog n>

for all nodes ¢ € [n] of G. We condition on this event.

Suppose an adversary converts GG into A(G) by corrupting nodes in B C [n] with |B| < n.
Note that the degree of a node in F' = [n] \ B cannot change by more than yn. Therefore, for all
nodes i € F in A(G),

deg(i) € (np — 100y/nlogn — yn,np + 1004/nlogn + vn) . (12)

Therefore, at most yn nodes do not satisfy (12). Since we remove cyn nodes with the highest and
the lowest degrees for ¢ > 1 all such nodes are pruned. The degree of any node not pruned decreases
by at most 2cyn, and after pruning all degrees are in the following interval

(np — 1004/nlogn — (2¢ + 1)yn, np + 1004/ nlogn + 7n> . (13)
We can rewrite this interval as follows
(n(l — 2¢7y)p — 100+/nlogn + (2¢p — 2¢ — 1)yn,n(1 — 2¢vy)p + 100/ nlogn + (2¢p + l)fyn) .

The prune-then-median estimator outputs one of these degrees (normalized), and its error is at most

(100\/711(0?;6531;+ 1)~yn> o (W+cv>.

We now bound the performance of prune-then-mean estimator. Let V/ C [n] be the nodes that
are not pruned, so |V’| = (1 —2¢y)n. Let FP := V' N F and BP := V' N B be the uncorrupted and
corrupted nodes that remain after pruning. We have |BP| < |B| < ynand |FP| > (1—(2¢+1)7y)n.
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There are three types of edges among the nodes in V’: (i) £;: edges whose both end points are
good nodes (in FP), (ii) £2: edges with at least one end point in BP. The mean estimator outputs

IE1] + | &2
"

Its error is at most

el L (180 = (50p) (18] = (V= [FPDV'] + [F?] = 1)/2)p
() RS ()
£ = (" )p| 1€l = IBPI((V'| + [ F7] ~ 1)/2)p

V/ V/
("1 ("
We will bound each term individually. Since the subgraph F? x F'P between the uncorrupted nodes
remains unaffected from the original graph G, then Theorem 28 implies that, with probability >

1—3n"2
1] o (e BT 2, 1) < ()

(2) n n n

Therefore,

et = (5= () oo ) = () o (o 5),

This shows that the first error term is at most O (c'yQ + 1"%)

We now consider the second term. Note that [n — (|V’| 4+ |FP| — 1) /2| < 3¢yn. By the triangle
inequality,

1
€2l = 5 21V 117 | <l = 1571 gl 3o 591, 19

Let deg (i) be the degree of node i after pruning. By the triangle inequality adding and subtract-
ing 3, g» deg(i) to the first term we obtain,

[|Eaf = [BP[ - np| <

|Ea] — Z deg(7)

i€ BP

+ Z | deg(i) — np|.

1€ BP

Now note that || is the number of edges with at least one endpoint in B?. Therefore |[E2| — Y-, 5, deg(i)|
is the number of edges inside B? x BP and is at most | B”|2. For the second term we use the fact
that each node in BP satisfies (13), and |BP| < yn. This gives

12| = |BP| - np| <

€2l — 3 deg(i)

i€BP

+ Z | deg (i) — np| < |BP|- (100 nlogn + (2¢ + Z)Vn) .
ieBp

Plugging this along with the fact that | B?| < yn in (14), we obtain
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1
’|52| — 5 1BV + |F7| - 1)p‘ <n- ((100 nlogn + (5¢ + 2)’yn)) .

Since (";‘) > (n/2)2, the second term can be bounded by

(9(47- <W+(5c+2)7>> :(9<c72+bin>,

thus proving the result.

D.4. Lower Bounds for Prune-then-Mean/Median Algorithms
We will prove the following result showing the tight dependence of the upper bounds on ~.

Theorem 9 Letp = 0.5, v > 100 - y/logn/n, and ¢ > 0 be such that ¢y < 0.25. There exists an
adversary such that with probability at least 0.99, the prune-then-median estimate that deletes cyn
satisfies |p(A(G)) — p| > C'v, and the prune-then-mean estimate satisfies |p(A(G)) — p| > C'~2.

Let G ~ G(n,0.5). The oblivious adversary A operates as follows. It partitions G into five
random sets B, Sy, S1, S2, and S3 with |B| = n, = cyn, |S1] = eyn, |Sa| = (1 — (2c +
Dy)n, 183] = 3(1 = (2¢ + 1)y)n.

* Remove all edges with at least one endpoint in B.

* Remove all edges between Sy and B.

Add all edges between S and B.

* Connect each node in B to each node in Sy independently with probability 3/5.
* Connect each node in B to each node in S3 independently with probability 3/10.
* Connect nodes within B to each other with probability 3/5.

By the Chernoff bound (Lemma 25) and the union bound, we obtain the following bounds on
the node degrees in A(G).

Lemma 26 In A(G), the following hold with probability at least 1 — 3n~3

1

deg(u)—n< +1O>i4 nlogn for v e B,
[

deg(u) =n - 573 +4+/nlogn for u e Sy,
L v

deg(u) =n - §+§ +4v/nlogn for u € Sy,
1

deg(u) =n - <2+170>j:4\/nlogn for uw € Sa,
1 v

deg(u) =n - 578 nlogn for u e Ss.
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Since v > 1004/logn/n, the nodes in Sy are the cyn nodes with the lowest degrees and the
nodes in .S are the cyn nodes with the highest degrees, and they are pruned by the algorithm. Now
since the sets Sy and 57 were randomly chosen ahead of time, in the pruned graph, once again by
the Chernoff bound (Lemma 25) and the union bound, the following holds with probability at least
1-3n73

1-2

deg(u) =n ( 5 Dy 1%) £ 8y/nlogn for u € B,
1—2¢y ~

deg(u) =n- 5 +E +8y/nlogn for u € Sy,
1—-2¢y v

deg(u) =n - 5 % +8y/nlogn for u € Ss.

Since we assume that ¢y < 0.25, there are more nodes in S5 than in S5 U B and every node in So U B
had a higher degree than any node in S3. Therefore a node in S5 is chosen as the median node, thus
deviating from the median degree by at least /5 + 8+/logn/n > ~/10 for v > 100,/logn/n.
This proves the lower bound for prune-then-median estimate.

Now for the prune-then-mean estimate, note that each edge that remains after pruning is chosen
at random, independent of all other edges. The total expected number of edges after pruning is

201_ 2 2,2 . .
% . 2267) + 53— and the variance is at most n?/4. Therefore, the total error of the prune-

then-mean estimate is at least 42/20 + O(1/n), and since v > 100,/log n/n, the error is at least
2
~*/40.

Appendix E. Upper Bound Proofs

E.1. Proof of Lemma 11
Proof We first prove Equation (6). From the triangle inequality

(A= pr)psr || < (A=p)prxpll +p—pr| - F.

From Lemma 24 we have
[(A=p)prsr |l = |F'| - [pr — pl.

Combining the above two equations with regularity proves Equation (6),
(A = pr)prcer|| < 2[(A = p)pxp | < 2n-n(p,n),

where the last inequality follows from regularity condition 2.
Next, Equation (7) is obtained by using F’ = F" in regularity condition 3 and |F'| > n/2. W

E.2. Proof of Theorem 12

Proof In a -corrupted graph the set of uncorrupted nodes F has size > (1 — ~)n, which proves
regularity condition 1.

We use the following bound on the spectral norm of a centered version of A, which follows
from Remark 3.13 of (Bandeira and Van Handel, 2016).
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Lemma 27 Let A be the adjacency matrix of a sample from G(n,p) and I be the n X n identity
matrix. There exist a universal constant c such that with probability at least 1 —n =2, || A—p-+pl|| <

cy/np(1 —p) +Inn.

To establish regularity condition 2, note that A and A agree on (i
Lemma 23 and Lemma 27, [|(A — p) g || =|[(A = p) procrr|| < |
pllI|| < ey/np(1 —p) +Inn + 1.

The following theorem implies regularity condition 3. The proof uses a Chernoff and union
bound style argument, and is provided in Section F.

F' x F', and therefore by

,7) € "
[(A=p) <l[(A=p+pD)+

Theorem 28 Let A be the adjacency matrix of a sample from G(n,p). With probability at least
1 — 3n=2, simultaneously for all o € |0, %] we have

max Z (/LJ —p)| < 6max {16an pnln E, 60an In E, 5n\/pln(en)},
Sls'leCa |, £, \ a a
where we define C,, := [0, an| U [n — an,n].

E.3. Proofs for Lemma 16

Proof We first require the following lemma, which lower bounds the spectral norm of a matrix
(A — ps)sxs primarily in terms of the empirical estimates of p corresponding to the submatrices
induced by S and .S N F'. The proof appears in Section E.4.

Lemma 29 Given any symmetric matrix A, and subsets S, F' C [n]

|(A—ps)sxs|l >

[psor —ps| - |SOF| ISNF| |SNEF]|
3 |S N Fe|” 1SN Fe

For a1 < 1/60 and |S| > (1 — 9aq)n, we can deduce that |S N F| > n(1 — 10ay) > 5n/6 and
|S N F¢ <|F¢ < ain < n/60. Therefore, |S N F¢|/|SNF| <1/50. By Lemma 29,

1S N Fe| |SOFC|} 3
<

(A — .
ISNF|’ |SNF] /50 ( Ps)sxs|

ISOF|-|psnr —ps| < 3||(A—p5)5xg||max{ —

Applying Equation (6) with F” = S N F, we have

(A = psar) snryxsnm |l < 2n-n(p,n).

This implies ||(A — psnr)snr)x(snm)ll < 0.1]](A — ps)sxsl|- Next, by the triangle inequality,

(A = ps)snryx(snm)ll < (A= psar)snryxsnm)ll + 1S NV F| - [psar — ps|
1 3
<(L+ 2 V- .
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To interpret the derivation above: we have reasoned that if the spectral norm of (A — pg)gxs is
large, the contribution due to .S N F (i.e., the submatrix induced by the intersection with the good
nodes) is relatively small. This suggests that any top eigenvector must place a constant mass on
S N F°. Indeed, the following theorem formalizes this reasoning, showing that the normalized top
eigenvector contains significant weight in this complementary subset of indices. The proof appears
in Section E.5.

Theorem 30 Let M be a non-zero n X n real symmetric matrix such that for some set S C [n]
and 0 < p < 1 we have ||Mgxs|| < p||M]||. Let v be any normalized top eigenvector of M. Then
25 _(1-p)?
[vgell* > T+(1-p)2
Applying Th 30 with p = 4 + —3_ implies th 2 _ 25 _(1-p)?
pplying Theorem 30 with p = 15 + &5 implies that [vs\(snm)ll® = lvsnrell” > g i
0.15. |

E.4. Proof of Lemma 29

First note that

0= (Aj—ps)= D (Aij—ps)+ > (Aij—ps)+2 > (Aij—ps)

ijES i,jESNF i,jESNFe i€ESNF, jESNFe
Therefore,
o (Aij-ps)|<| D (Aij—ps)| +2 > (Aij—ps)|.
i,jJESNF i, jESNFe i€SNF, jESNFe
Hence,
| 221 jesnp(Aig — ps)
: 3 < max | Z (Aij — ps)|; | Z (Aij —ps)| - (15)
1,jESNF¢C 1ESNF, jeSNFe

From Lemma 23 , Lemma 24 and the above inequality, it follows that

14 = ps)sxsl = max {I(4 = ps)snreyx(snme | (A = ps)saroxsamll ) (16)
> max{ | Zi,jeSﬂFc(AiJ —ps)| ’ZieSﬂFc,jESﬁF(Ai,j —ps)| } a7
- SN Fe| T /IS F[- SN Fe]
> min { | Zi,jeSﬂF(Ai,j —ps)| ’Zi,jeSﬂF(Ai,j —ps)| } (18)
- 3[SNFe " 3/ISNF[-]SNFe]
_ |1 2ijesnr(Aij —ps)| { 1SnF| 1}
3\/[SNF[-[SNFe| |S N Fe|’

_|psnr —pslISNEF] . { 1SN F| \SﬁF!}
= - min , ,
3 |S N Fe|”\ |SNFe

where (16) is from Lemma 23, (17) follows from Lemma 24, (18) from (15).
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E.S. Proof of Theorem 30

Since eigenvalues of symmetric matrices are real, let v € R™ be the normalized top eigenvector
of M with eigenvalue A € R such that Mv = Av and ||[M|| = |A|. Since Mv = v, we have
MSX[n] v = /\Us, and

Mgymv = Msxsvs + Msxge vse (19)
By Lemma 22 on (19),

[Mgyn vl < |Msxsvs|| + [[Msxse vse|l
= Al sl < p[A] - [Jvs| + Al - [lose]] (20)
= (1=p)lvs|l < [lvse|l
= (1—=p)|lvsl® < llvsell?

where (20) uses the assumption of the lemma. Finally using |[vs|? + ||vs<||* = 1 gives the bound.

E.6. An Approximate Top Eigenvector Suffices

As discussed in Remark 17, computing an exact top eigenvector in Algorithm 2 may be costly.
The guarantees associated with this top eigenvector are quantified in Lemma 16, which relies upon
Theorem 30. In this section, we prove a variant of Theorem 30, which works with an approximate
rather than an exact top eigenvector. By repeating the proof of Lemma 16 with Lemma 31 swapped
in place of Theorem 30, we can instead use approximate top eigenvector procedures, reducing the
runtime.

Lemma 31 Let M be a nonzero n X n real matrix such that for some set S C [n] we have
[Msxs|l < 0.53||M||. Let v € R™ be a unit vector such that || Mv|| > 0.99|| M ||, then [|vge||* > 3.

Proof Let u = Mv. Note that Mg, [,) v = ug and Mgey[,,) v = uge, therefore
vl Mo =0T (Mgyjn] + Mgexn)) v = vl (ug + uge) = vh ug + vic uge.
Then by the triangle inequality,

0" M o] < Jvs]| - lus + [[osell - use]
= 099 M| < lvs]| - [Jus|| + [lvsell - [use]]

2
= 0.99M[ < /1 —[lvsel* - [usl| + lvse|l - A/ IM]]" = [lus]]*.

In the last line, we used the fact that [|u|| < ||[M] - |jv]| = ||M] and [|u]® = [us||® + ||luse]>.
2
Rearranging this expression, it is easy to show that in the case ||ug||? < %,

3| M ?
1

the inequality is
violated if ||vge||* < 1. Therefore, [lug||* < implies ||vge||? > £.

3|2
1

To prove the lemma, we must handle the remaining case: we show that if ||Jug||> > , then

[vse|* > §.
Note that

Mgy v = Msxsvs + Msxge vge.
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Then

[Msx ) vll < |Msxsvs|| + [ Msxse vsell

= Jlusl| < 0.53) M| - [los| + [|M] - [[vse]|
= Jus|? < 20533 M| - Jos|® + 2| M| - lvse||”

= Jlus|® < 0.5618| M|2(1 — [Juse||?) + 2| M| - [lvse])”
= [lug|? < 0.5618 M ||? + 1.4382||M|% - |[vse|.

When ||ug||? > 3||M||?/4, the above equation implies ||vg<|> > 1/8, which completes the proof

of the lemma. [ ]

E.7. Proofs for Theorem 18

Before proving the Theorem we state and prove two auxiliary lemmas. The first lemma shows that
the average of entries of all small submatrices of S* x S* are close to pg-.

Lemma 32 Assume the conditions of Theorem 18 hold. For all Sy, Sy C S* with|S1|, |S2| < 3ain

we have

S (Asy — pse)| < 60a1n? - n(p,n).
1€S1,JES2

Proof Since ||(A — ps+) s xs+|| < 20n - n(p,n), and using Lemma 23 and Lemma 24, we get

> (Aij—ps)

(4,7)€S1 %X S2

< VIS - [S2][(A=ps=) s, x5, |l < Barn||(A—pg+) s+ x s+|| <60c1n®n(p, n).

We now show that all the nodes in S/ have normalized degree close to pg-.

Lemma 33 Assume the conditions of Theorem 18 hold, and let ST be the output of Algorithm 3,
then for every node i € S7,

2k(13aq,p,n)

p8) —porl < ( +2107(p,n)).

aq

Proof Suppose to the contrary that after 3ayn nodes are deleted by Algorithm 3, there is a node
i € S/ such that \p(gz — ps+| > (2“(13+1pn) + 210n(p, n)) Therefore, all the nodes deleted by

Algorithm 3 are such that | pf;2 — P+

> (Ml?’+1pn) + 210n(p, n)) Let D be the set of nodes

deleted by Algorithm 3 such that pgz > pg+ fori € DT and D~ be the set of deleted nodes i such
thatpgz < pg~ fori € D™, Since |[DT|+ |D~7| = 3agnand (DT UD™)\ F| < |F¢| < ain, we
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have that [DT™ N F| > aynor [D™ N F| > ain. Suppose |[Dt N F| > ajn. Let F/ = DT N F.
Then, using |EF’| > ayn and |[S*| > n/2, we have

‘| y 2k(13a1, p,n
> (g —ps) = 2168 pse) > 1F] 157 (PR L 10y5,))

i€F’,jES* icF!
> n2k(13a1,p,n) + 105 F'|n - n(p, n).

Now, note that

Yo (Ai—ps)= > (A—p)+IF[-[S"NF|-(p—ps)+ D>, (Aij—ps)

i€F’ jES* i€F! jES*NF i€F jES*NFe

By Lemma 32 with S; = F’ and Sy = S* N F°¢ the last term in the expression above is at most
60 a1 n2-n(p,n). For the second term note that |p — pg+| < 45 - (p, n) and therefore, the second
term is at most 45| F’|n - n(p, n). Finally using regularity condition 3 with F’ and F" = S*N F
and s = 13a4 bounds the first term by n? - k(13aq, p, n). Combining the three bounds and using
|F'| > agn,

S (Aij—ps-) < n26(13a1,p,n)+(45|F'|+60a1m)nn(p, n) < n?w(13a1, p, n)+105|F' [y (p, n),
i€F’ j€S*

This shows the contradiction and completes the proof for the case | D™ N F| > a;n. The case when
|D~ N F| > ain has a similar argument and is omitted. |

Combining these lemmas appropriately allows us to conclude our main result on the guarantees
of Algorithm 3.
Proof of Theorem 18 We will partition S/ x S/ into the following groups and bound each term
separately.

Z Ai,j = Z Ai,j + 2 Z Ai,j - Z Ai,j-

i,jeST i,j€SINE i€Sf jesfnFe i,jeSfNFe

Since pgr = Y, jegr Aij/1S7 |7, by the triangle inequality,

ZiGSf jesSinre (Aw

2
* ST2

‘ > ,JeSfmF —p)
|psf

!SfP

. | Zigesrore(4is —p)
ISf!2

For the first term, | S/ N F| > (1 — 13a;)n > n/2. Using Equation (7) with F' = S/ N F and
a9 = 130[1,

D i S/ (Aij —p)
‘ e - = |pSfﬂF _p| S 4%(13&17]7,71)-

ST

< Zi,jesfmF(Ai,j —p)
- |ST N F?
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Since | ST x (87 N F°)| < ayn?, and |ST| > n/2, by the triangle inequality, the second term is
bounded by

>iest jestnre(Aij — Ds+)
n?/4

Dicss jesfch(Az}j —p)
|SF|2

2a1n

2 <2

Zies*jesfmFC<Ai,j — Ps+) ZieS*\Sf jeanFC(AiJ - ps+)

<8 8
S 2 + 2

+ 8ay - 45 - n(p,n).

Since |S* \ S7| < 3ain and | ST N F¢| < an, by taking S; = S* \ S/ and Sy = S/ N F¢in
Lemma 32 bounds the second term above by 8(60c; - 17(p, n)). For the first term,

< Z ZieS*(Ai,j_pS*)

2

> ies jesinre(Aij — ps+)
2

n n
jesfnFe
> |S*| > ies+ (Aij — ps+)
n2 ‘S*|
jesSfNFe
L)
< ~|pd! — pg-
< Z n‘Ps* ps
jeSfNFe
2k(13
< aj - (M + 21077(19’ n)),
]

where we use Lemma 33 and |S/ N F¢| < ajn.
For the final term, since |(Sf NF) x (ST NF°)| < adn?,

Susesinr s 1| _|Sugesrordhis =ps)| IS0 Fp
B B R e
which can be bounded again by taking S; = Sy = S/ N F° in Lemma 32. |

E.8. Putting Things Together: Proof of Theorem 3

We now combine our methods from previous sections to prove our main upper bound. This pri-
marily consists of running Algorithm 2 followed by Algorithm 3, as described by Algorithm 4 and
quantified by Theorem 34. For technical reasons, to get the correct scaling of the error with respect
to the parameter p, we run this procedure on both the graph and its complement, and output the
appropriate of the two estimates. This is described in Algorithm 5, and quantified in Theorem 35.
This theorem implies our upper bound (Theorem 3).

Theorem 34 Suppose oy € [n, 60] and let A be an adjacency matrix containing an (a1, 13a, p)-
regular subgraph. With probability at least 1 — n™2, Algorithm 4 outputs pgr such that for some
universal constants cz, c3 > 0,

’pSf - p| < cpa1n(p,n) + czr(13a1,p,n).

The running time of this algorithm is O(an®).
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Proof The estimation guarantees in Theorem 34 follows by combining the guarantees of Theo-
rems 15, and 18. We conclude the proof by analyzing the running time. As discussed in Remark 17,
Algorithm 2 can be implemented in O(a;n?) time. Algorithm 3 takes O(n?) time. Hence, Algo-
rithm 4 runs in O (o n?) time. [ |

Algorithm 4 Algorithm for estimating p

Require: number of nodes n, parameter «; € [1/n,1/60], adjacency matrix A
S* <« run the spectral algorithm (Algorithm 2) with inputs n, o, A
Dgs < run the trimming algorithm (Algorithm 3) with inputs n, o, A, S*
return pgs

Observe that the x(13asq, p, n) error term in Theorem 34 scales proportional to /p, which gives
improved error when p is close to 0. To enjoy the same improvement for p close to 1, we can run
the algorithm on the complement of the graph. Theorem 35 describes the resulting guarantees, and
the procedure appears as Algorithm 5. Note that we apply Theorem 12 to convert from adjacency
matrices containing regular subgraphs (which we have considered up to this point) back to our
original problem.

Theorem 35 Suppose v € [L, 4] and p € [0,1]. Let G ~ G(n,p), and A be the adjacency
matrix of a rewiring of G by a y-omniscient adversary. With probability at least 1 — 10n~2, running
Algorithm 5 will output a p such that

1 1—p)log(l
5yl <. VPL=Plogn L =plog/h) vy
n vn n

for some universal constant C. The running time of this algorithm is O(yn?’).

Proof Theorem 34 and Theorem 12 imply that with probability > 1 — 5n~2, p* in Algorithm 5
satisfies:

[p* — p| < coynlp,n) + c3x(137,p,n). 1)

By symmetry, with probability > 1 — 5n2, ¢* in Algorithm 5 satisfies:
| — (1= p)| < coyn(1 = p,n) + c3k(137,1 = p,n). (22)
When p < 0.1, equation (21) implies p* < 0.5, and hence p = p* and |p — p| = [p* — p|. Similarly,
when p > 0.9, (21) implies p* > 0.5, and hence p = 1 — ¢* and [p — p| = [(1 — ¢*) — p| =

|(1 — p) — ¢*|. Finally, for 0.1 < p < 0.9, we have |p — p| < max{|p* — p|,|¢" — (1 — p)|}.
Combining the bound for the three cases completes the proof.
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Algorithm 5 Algorithm for Robust Erd6s-Rényi parameter estimation

Require: number of nodes n, parameter v € [1/n,1/60], adjacency matrix A
p* < run Algorithm 4 with inputs n, vy, A
q* < run Algorithm 4 with inputs n, v, (1 — I — A) (1 and I are the n x n all-ones and identity
matrix)
if p* < 0.5 then
pp*
else
pe1-q
end if
return p

Appendix F. Proof of Theorem 28

Throughout this proof, let 5 = max {160m\/m, 60anIn =, 5n\/p1n(en)}. First fix @ €
[0,1/2]. .

_ We first consider the entire matrix A, namely S = S" = [n]. Recall that the diagonal entries of
A are zero. Then, note that 3 ; o einixn (Aig —P) = 2: 326 5 emixn): i>j(Aig — ) — np. Now
since all the entries A;; are independent for ¢ > j, we can apply the Chernoff bound (Equation (8))

with A = 3 over these entries and with probability at least 1 — n3,
> (Ay-p)| <8 (23)
(,5)€n]x[n]: i>j

Since np < n./p < B, then from the above equation we get | 3 ; ;e x[n] (A;; —p)| < 38, with
probability at least 1 — n 3. Note that for v < 1/n the statement only applies to S = S’ = [n], and
thus this case is handled. In the remaining proof o € [1/n,1/2].

Conditioned on the event | > ; - cn]xn] (A;; —p)| < 38, note that for all T C [n] x [n],

> (Aij—p) > (Aij—p)

(4.4)ET (i,§)€Te

> 60 = > 38, 24)

where 7° = [n] x [n] \ T. In particular, if T = S x S’ with |S| > n — an and |S’| > n — an,
then |T¢| < 2an? and if min{|S|, |S’|} < an, then |T| < an?. Therefore, for T = S x S’ with
|S|, |S'| € Cq, either |T'| or |T¢| is smaller than 2an?. With this in hand, the theorem will follow
from the following lemmas.

Lemma 36 Let T C [n] x [n] be a given subset of size at most 2an?, then

PI“ [ Z (Ai,j —p)

(i,5)€T
We now bound the number of subsets of interest.

> 36] <4dexp(—20anlne/a).
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Lemma 37 For a given o € [1/n,1/2), the number of sets S, S’ with |S|,|S’| € Cq is at most
4exp(4anln(e/a)).

For a given a € [1/n,1/2] and T = S x S’ such that |S],|S’| € C,, since either of T
or T have size < 2an?, therefore, combining the two lemmas implies that with probability >
1 —16exp (—16anlne/a) > 1 —n3,

} <3

min{ Z (/L-J —p)

Then from Equation (24), with probability > 1 — n? — n3, ‘ Z(ij)eT(AiJ - p)‘ < 68. This

completes the proof for a given value of a.. To extend it to all « € [1/n,1/2] first note that it
1 2 10.57

nin n

9

> (Aij—p)

(i,7)eTe

suffices to prove the theorem for a € {
these values of o completes the proof.
We now prove Lemma 36. Note that

o Aj-p= D> Ay-p+ Y. (Ai-p- > p (25)

(3,9)€T (i,§)€T:i>7 (3,7)ET:1<] (i,0)eT

}, and then upon taking the union bound over

Then using the triangle inequality, {(7,7) € T} < n and np < j3 to disregard the third term (as
done before),
9l

Z (Aij—p)
(3,5)€T
The two events on the right hand side are for sums of independent mean-centered Bernoulli
random variables. We will now apply the Chernoff bound (Equation (8)). Note that for a fixed A
the right hand side of (8) is a non-decreasing function of ¢. Further note that |{(i,5) € T : i >
Y, (i, 5) € T i < j} <|T| < 2an?. Therefore,

Pr [ > 6] < 2exp (— min (605:2]7’ g)) < 2exp <—20anln 2) .

Similarly,

Pr > 23

> (Aiy-p)

(4,7)ET:1>3

> (| +Pr

> (Ai-p)

(3,9)€T:i<y

§Pr!

Z (Ai,j —p)

(4,§)€T:i>5

Pr >

Z (Ai,j —p)

< 2exp <—200m In E) .
(4,5)ET <] «

Combining the two bounds completes the proof of Lemma 36.

2
We finally prove Lemma 37. The number of such sets can be upper bounded by 4- (ZJLZTSJ (’;)) ,

where

lan]

§ : n n € on anln(E)—Hn(an—i-l) anln(E)—i-om 2anln(e/a)
< 1) - < 1) - < o < o < .
i=0 (J) = lant 1) (LOM) = lan 1) (Oé) = = =

35



ACHARYA JAIN KAMATH SURESH ZHANG

Appendix G. Lower bound proofs

Proof of Lemma 20 We prove this lemma by converting a -y-corrupted graph from DG(n,p) to a
~-corrupted graph from G(n, p). Then one can run the algorithm for the undirected setting to obtain
an estimate of p, which implies the same error guarantees for the directed instance.

Suppose there exists a random directed graph DG ~ DG(n,p) which is y-corrupted by an
adversary. Assume there exists some lexicographic ordering of the nodes (e.g., they are numbered
from 1 to n). We define a corresponding undirected graph G as follows: let there be an edge
between nodes ¢ and j in G if there exists an edge from ¢ to j in DG and ¢ < j. Sans corruptions,
this converts DG(n, p) into G(n, p) since the edges are still independent and the probability of each
edge existing is p. Furthermore, when at most yn nodes in the original directed graph are modified,
at most yn nodes are changed in the corresponding undirected graph. |

Proof of Theorem 21 Our v-oblivious adversary for the directed graph model works as follows.
The adversary picks a set B of size Bin(n,0.15v) to corrupt, by independently picking each node
in [n] with probability 0.15+. Note that it is possible that the size of the set of corrupted nodes B
may exceed yn with small probability. We will address this issue later.

The adversary will corrupt outgoing edges of the nodes in B. The adversary’s strategy to corrupt
the neighborhood of node i € B is as follows. They first choose node i’s new out-degree deg (7)
independently from some distribution P over {0,...,n — 1}. Then, they select an independent
random subset .S; of nodes [n] \ {i} of size deg (7). Finally, they introduce the directed edge (i, j)
for each j € S;, and remove the directed edge (4, j) for each j ¢ S;. The distribution of the degree
of corrupted nodes, P, depends on the parameter p of the Erd6s-Rényi graph and will be specified
later.

By this construction, all graphs with a given outgoing degree distribution d1, do, . .., d, have
the same probability, and they form a sufficient statistic for estimating p. The out-degree of any
uncorrupted node is distributed as Bin(n — 1,p) and the out-degree of any corrupted node has
distribution P. Since each node is corrupted with probability 0.15, the out-degree of each node is
an i.i.d. sample from the mixture distribution (1 — 0.157) - Bin(n — 1,p) + 0.15v - P.

Next, we show that for any p; < 1/2 and p2 = p; + 0.1 max (fy\/p/n, 0.17/71) there exist
distributions P; and P, such that

(1 -0.157) - Bin(n — 1,p1) + 0.15y - P, = (1 — 0.157) - Bin(n — 1,p2) + 0.15 - P5.  (26)

This will imply that, with the aforementioned adversary, any estimator that distinguishes between
the two cases will be correct with probability at most 1/2. At this point, we account for the probabil-
ity that the adversary selects a set B of size > «n, which is not allowed according to the corruption
model. By Markov’s inequality, this occurs with probability at most 0.15. Therefore, even counting
such violations as a success at distinguishing the two cases, it still succeeds with probability at most
0.5+ 0.15 = 0.65.

To prove the existence of P; and P, satisfying (26) we use the following folklore fact: given
any two distributions D and D9 and € > 0, if dpy (D1, D2) < ¢, then there exist distributions Q);
and ()9 such that (1 — E)Dl +e@Q = (1 — E)DQ + Q.

Hence, it suffices to show that

dry (Bin(n —1,p1), Bin(n — 1,p2)) < 0.157. (27)
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The total variation distance between two binomials can be bounded as (Roos, 2001), (Adell and
Jodrd, 2006, Eq (2.16)).

drv (Bin(n/,p), Bin(n',p + z)) < \/Z 7(2) (28)

2(1—7(x))*

n+2 . We also use the trivial upper bound dv (Bin(n',p), Bin(n',p + x)) <

where 7(x) = z- Sp(iop)" <

n'z.

For the case when v+/p/n > 0.1vy/n, applying the first bound for x = 0.1yy/p/n and n’ =

n — 1 we get
p n+1
T(z) = 0.17\/7 — <0.1-1.1y=0.117.
(®) n\ 2p(1 - p)

For this case, using (28) gives
dry (Bin(n — 1,p1), Bin(n — 1,p2)) < 0.157.
For the other case when ’y\/]% < 0.1v/n, applying the trivial bound gives
drv ((Bin(n —1,p1), Bin(n — 1,p2)) < 0.1y(n — 1)/n < 0.17.

This proves (27) and shows the existence of P; and P», which completes the proof of the first two
terms in A,

Finally, we show that the third term in the max in A, holds even when there is no corruption.
To show this we first note that in absence of corruption the sufficient statistics for estimating p is the
total number of edges in the directed graph, which has a distribution Bin((n—1)2,p). Then to show
that for p < 0.5 no algorithm can distinguish between between DG (n, p) and DG(n, p+0.1,/p/n)
with probability > 0.6 it suffices to show that dpv (Bin((n—1)?, p), Bin((n—1)2,p+0.1,/p/n)) <
0.2, which can be verified using (28) for z = 0.1,/p/n, n’ = (n — 1)%, and any p < 1/2. [
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