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Abstract

We study the problem of robustly estimating the parameter p of an Erdős-Rényi random graph on n
nodes, where a γ fraction of nodes may be adversarially corrupted. After showing the deficiencies

of canonical estimators, we design a computationally-efficient spectral algorithm which estimates p
up to accuracy Õ(

√

p(1− p)/n+γ
√

p(1− p)/
√
n+γ/n) for γ < 1/60. Furthermore, we give an

inefficient algorithm with similar accuracy for all γ < 1/2, the information-theoretic limit. Finally,

we prove a nearly-matching statistical lower bound, showing that the error of our algorithms is

optimal up to logarithmic factors.

Keywords: random graphs, robust estimation, spectral algorithms

1. Introduction

Finding underlying patterns and structure in data is a central task in machine learning and statistics.

Typically, such structures are induced by modelling assumptions on the data generating procedure.

While they offer mathematical convenience, real data generally does not match with these idealized

models, for reasons ranging from model misspecification to adversarial data poisoning. Thus for

learning algorithms to be effective in the wild, we require methods that are robust to deviations from

the assumed model.

With this motivation, we initiate the study of robust estimation for random graph models.

Specifically, we will be concerned with the Erdős-Rényi (ER) random graph model (Gilbert, 1959;

Erdős and Rényi, 1959).1

Definition 1 (Erdős-Rényi graphs) The Erdős-Rényi random graph model on n nodes with pa-

rameter p ∈ [0, 1], denoted as G(n, p), is the distribution over graphs on n nodes where each edge

is present with probability p, independently of the other edges.

1. This model was introduced by Gilbert (1959), simultaneously with the related G(n,m) model of Erdős and Rényi

(1959). Nevertheless, the community refers to both models Erdős-Rényi graphs.
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We consider graphs generated according to the Erdős-Rényi random graph model, but which

then have a constant fraction of their nodes corrupted by an adversary. When a node is corrupted,

the adversary can arbitrarily modify its neighborhood. This setting is naturally motivated by social

networks, where random graphs are a common modelling assumption (Newman et al., 2002). Even

if a fraction of individuals in the network are malicious actors, we still wish to perform inference

with respect to the regular users. Apart from adversarial settings, tools for robust analysis of graphs

may also assist in addressing deficiencies of existing models, such as in model misspecification.

For example, certain random graph models have been criticized for not capturing various statistics

of real-world networks (Newman et al., 2002), and some notion of robustness may facilitate better

modelling.

1.1. Problem Setup

Let γ ∈ [0, 1] denote the fraction of corrupted nodes, and G ∼ G(n, p) be a random graph, where

p is unknown. Without loss of generality, we assume that the node set is [n] := {1, . . . , n}. An

adversaryA is then given G, and is allowed to arbitrarily ‘rewire’ the edges adjacent to a set B ⊆ [n]
of nodes of size at most γn, resulting in a graph A(G). In other words, the adversary can change

the status of any edge with at least one end point in B. We call B the set of corrupted nodes. We

consider two kinds of adversaries.

• γ-omniscient adversary: The adversary knows the true value of the edge probability p and

observes the realization of the graph G ∼ G(n, p). They then choose B and how to rewire its

edges.

• γ-oblivious adversary: The adversary knows the true value of the edge probability p. They

must choose B and the distribution of edges from B without knowing the realization G.

Note that the oblivious adversary is weaker than the omniscient adversary. Given a corrupted graph

A(G), our goal is to output p̂ (A(G)), an estimate of the true edge probability p.

1.2. Results

We first analyze standard estimators from the robust statistics toolkit, and show that they provide

sub-optimal rates. We then propose a computationally-efficient spectral algorithm to estimate p with

improved rates. Finally, we prove a lower bound for this problem, showing that our algorithms are

optimal up to logarithmic factors. We note that our upper bounds hold for omniscient adversaries,

whereas the lower bounds are tight even against the weaker oblivious adversary.

1.2.1. STANDARD ROBUST ESTIMATORS AND NATURAL VARIANTS

At first glance, the problem appears deceptively simple, as our goal is to estimate a single univariate

parameter p. A standard technique is the maximum likelihood estimator, which in this case is the

empirical edge density. We call the following the mean estimator

p̂mean(A(G)) =
# of edges present in A(G)

(

n
2

) . (1)
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In robust statistics, the median often provides better guarantees than the mean. Let deg(i) denote

the degree of node i ∈ [n] in A(G). The median estimator is given by

p̂med(A(G)) =
Median{deg(1), . . . , deg(n)}

n− 1
. (2)

Absent corruptions (i.e., γ = 0), we have A(G) = G. In this simple setting, the mean

and median are both very accurate. Specifically, it is not hard to show that |p̂mean(G)− p| ≤
O
(

√

p(1− p)/n
)

and |p̂med(G)− p| ≤ O (1/n) (Lemma 6). However, both estimators perform

much worse under even mild corruption. In Lemma 7 we describe and analyze a simple oblivious

adversary A such that both the mean and median estimator have |p̂(A(G))− p| ≥ γ/2. Note that

if even a single node is corrupted (i.e., γ = 1/n), the “price of robustness” (informally, the addi-

tional error term(s) introduced in the corrupted setting) dominates the baseline O(1/n) error in the

uncorrupted setting.

The adversary against the mean and median estimators is easy to describe: either add or remove

all edges incident to the nodes in B. This suggests the strategy of first pruning a set of cγn nodes

with the largest and smallest degrees and then applying either the mean or median estimator to the

resulting graph. These prune-then-mean/median algorithms are described in Algorithm 1. Despite

this additional step, the pruned estimators are still deficient. We design an oblivious adversary

such that the prune-then-median estimate satisfies |p̂(A(G))− p| ≥ Ω(γ) and the prune-then-mean

estimate satisfies |p̂(A(G))− p| ≥ Ω(γ2) (Theorem 9). Interestingly, we show the tightness of

both these bounds, showing that prune-then-mean improves the error to O
(

γ2
)

(Theorem 8). These

results are summarized in the theorem below.

Theorem 2 (Informal) The price of robustness of the prune-then-mean/median estimators are Θ(γ2)
and Θ(γ), respectively.

1.2.2. A SPECTRAL ALGORITHM FOR ROBUST ESTIMATION

Given the failings of the approaches described so far, it may appear that a poly(γ) cost for robustness

may be unavoidable. Our main result is a computationally-efficient algorithm that bypasses this

barrier.

Theorem 3 Suppose γ < 1/60 and p ∈ [0, 1]. Let G ∼ G(n, p) and A(G) be a rewiring of G
by a γ-omniscient adversary A. There exists a polynomial-time estimator p̂(A(G)) such that with

probability at least 1− 10n−2,

|p̂(A(G))− p| ≤ C ·
(

√

p(1− p) log n

n
+

γ
√

p(1− p) log(1/γ)√
n

+
γ

n
log n

)

,

for some constant C. This estimate can be computed in Õ(γn3 + n2) time.

The first term is the error without corruptions, while the other two terms capture the price of

robustness. Except at extreme values of p, the last term will be dominated by one of the other

two. In this case, note that the cost of robustness in the second term decreases as the number of

nodes n increases. This is in contrast to the previously described approaches, for which the price
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of robustness did not decrease with n. Observe that the non-robust error will dominate for most

regimes when γ ≤ 1/
√
n.

As our lower bounds will establish, our algorithm provides a nearly-tight solution to the prob-

lem. Note that while this algorithm requires knowledge of γ, Jain, Orlitsky, and Ravindrakumar

(2022) recently proposed a simple argument which using Lepski’s method generically removes the

need to know the corruption parameter for robust estimation tasks, leading to such an algorithm

with the same rates.

Our upper bound requires γ < 1/60.2 On the other hand, note that if γ ≥ 0.5, an identifiability

argument implies that no estimator can achieve error better than 0.5.3 This raises the question of

whether the above rates are achievable for all γ < 0.5. We show that this is indeed the case,

providing a computationally inefficient algorithm with the following guarantees.

Theorem 4 Suppose γ < 1/2. There exists an algorithm such that with probability at least 1−n−2,

|p̂(A(G))− p| ≤ C

1/2− γ
·
(

√

p(1− p)√
n

+

√
log n

n

)

,

for some constant C.

Note that for γ > 1/60, the error bound above matches that presented in Theorem 3 up to a factor

of 1/(0.5− γ), and therefore extends the error rates of Theorem 3 to the regime γ ∈ [1/60, 1/2) at

the cost of computational efficiency.

1.2.3. INFORMATION-THEORETIC LOWER BOUNDS

We provide a lower bound to establish near-optimality of our algorithms. While our upper bounds

are against an omniscient adversary, the lower bounds hold for the weaker oblivious adversary.

Theorem 5 For every γ < 1/2, p ∈ [0, 1], and n ≥ 0 and a universal constant C ′, let

∆ = C ′ ·
(

√

p(1− p)

n
+

γ
√

p(1− p)√
n

+
γ

n

)

.

For any p′ ∈ [p + ∆, p − ∆] and G ∼ G(n, p) and G′ ∼ G(n, p′), there exists an oblivious

adversary A such that no algorithm can distinguish between A(G) and A(G′) with probability

more than 0.65.

1.3. Techniques

Upper bound techniques. Broadly speaking, robust estimation is only possible when samples from

the (uncorrupted) distribution enjoy some nice structure. Work in this area generally proceeds by

imposing some regularity conditions on the uncorrupted data, which hold with high probability over

2. We have not tried to optimize the value of γ for computationally efficient algorithms, and could likely be made larger

than 1/60 through a more careful analysis.

3. Consider an empty graph G(n, 0). An adversary can corrupt half the graph into a clique, making it look like it came

from G(n, 1). No algorithm can identify which half of the graph was the original.
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samples from the distribution. The algorithm subsequently relies solely on these regularity condi-

tions to make progress. For example, for mean estimation problems, it is common to assume that the

mean and covariance of the uncorrupted samples are close to the true mean and covariance. How-

ever, the appropriate regularity conditions in our setting are far less obvious. We employ conditions

which bound the empirical edge density and spectral norm for submatrices of the adjacency matrix,

when appropriately centered around the true parameter p (Definition 10), which can be proven using

tools from random matrix theory.

With our regularity conditions established, the algorithmic procedure proceeds in two stages: a

coarse estimator, followed by a fine estimator.

Stage 1: A coarse estimate. Our regularity conditions are suggestive of the following intuition

about how one might estimate the value of p. If one could locate a sufficiently large subgraph S of

the uncorrupted nodes, such that their adjacency matrix centered around p has small spectral norm,

then the empirical edge density of this subgraph would give a good estimate for the true parameter

p. More precisely, we let A be the (corrupted) adjacency matrix ofA(G), let AS×S be the submatrix

of A indexed by the set S, and pS be the empirical edge density of the subgraph S. The goal is to

obtain an S where ‖AS×S − p‖ is small,4 at which point we can output pS .

There are two clear challenges with this approach. First off, we can not center the adjacency

matrix around the unknown parameter p, since estimating that parameter is our goal. However, we

demonstrate that it instead suffices to center around pS (Theorem 13). The other issue is that it is

not clear how to identify such a set S of uncorrupted nodes. One (inefficient) approach is to simply

inspect all sufficiently large subgraphs. This will be accurate (quantified in Theorem 14), but not

computationally tractable.

Instead, our main algorithmic contribution is an efficient algorithm which achieves this same

goal. We give an iterative spectral approach, which starts with S = [n]. In Lemma 16 we show

that if the spectral norm of AS×S − pS is large, then the top eigenvector assigns significant weight

to the set of corrupted nodes. Normalizing this eigenvector and sampling from the corresponding

probability distribution identifies a corrupted node with constant probability. We eliminate this node

from S and repeat the process. Finally, using this approach, we obtain a subset S∗ ⊂ [n] of nodes

such that pS∗ is a coarse estimate of p.

Stage 2: Pruning the coarse estimate. It turns out that the above coarse estimate gives a price of

robustness which is roughly O(1/
√
n), rather than the O(γ/

√
n) we are trying to achieve. However,

a simple pruning step allows us to complete the argument. Specifically, our coarse estimator gave

us a set S∗ such that the spectral norm of AS∗×S∗ − pS∗ is small and pS∗ is close to p. We employ

this to show that most nodes must have degree close to p (Lemma 33). Thus, we remove Θ(γn)
nodes whose degree (restricted to the subgraph S∗) is furthest from pS∗ . Our final estimate is the

empirical density of the resulting pruned subgraph.

Lower bound techniques. A strategy for proving lower bounds is the following: Suppose there

exists an adversary that with γn corruptions can convert the distribution G(n, p) and G(n, p + δ)
into the same distribution of random graphs, then we cannot estimate p to accuracy better than δ/2.

This is akin to couplings between G(n, p) and G(n, p+δ) by corrupting only a γn nodes. Designing

these couplings over Erdős-Rényi graphs can be tricky due to the fact that degrees of nodes are not

independent of each other.

4. For clarity: in the expression AS×S − p, p is subtracted entry-wise.
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We instead consider directed Erdős-Rényi graphs, where an edge from a node i to j is present

independently of all others. Then, the (outgoing) degrees of all the nodes are independent Binomial

distributions. Using total variation bounds between Binomial distributions we can design couplings

between directed ER graphs with different parameters, thus showing a lower bound on the error of

robustly estimating directed ER graphs. Our final argument is a reduction showing that estimating

the parameters of undirected of graphs is at least as hard as estimating the parameters of directed

ER graphs. Combining these bounds we obtain the lower bounds.

1.4. Related Work

Due to the wealth of study in robust estimation and the page limits, we mention here only a fraction

of the most relevant related work. For additional discussion, please see Section A.

Robust statistics is a classic and mature branch of statistics which focuses on precisely this type

of setting since at least the 1960s (Tukey, 1960; Huber, 1964). However, since the classic literature

typically did not take into account computational considerations, proposed estimators were gen-

erally intractable for settings of even moderate dimensionality (Bernholt, 2006). Recently, results

by Diakonikolas, Kamath, Kane, Li, Moitra, and Stewart (2016, 2019a) and Lai, Rao, and Vempala

(2016) overcame this barrier, producing the first algorithms which are both accurate and compu-

tationally efficient for robust estimation in multivariate settings. While they focused primarily on

parameter estimation of Gaussian data, a flurry of subsequent works have provided efficient and

accurate robust algorithms for a vast array of settings.

A common tool in several of these robust estimation results is to prune suspected outliers from

the dataset so that a natural estimator over the remaining points has a small error. We also use

this meta technique in this paper. We note that as in the previous works, the main challenge lies

in designing efficient schemes to detect and remove corrupted data-points for the particular task at

hand. In most prior works, the uncorrupted data-points are unaffected by corruptions. In our setting

however, the edges from the good nodes are also affected by corruptions to the corrupted nodes.

This presents a new challenge requiring new insights.

2. Notation and Preliminaries

Problem Formulation. Let G ∼ G(n, p). An adversary observes G and chooses a subset B ⊆ [n]
of nodes with |B| ≤ γn. It can then change the status (i.e., presence or non-presence) of any edge

with at least one node in B to get a graph A(G). Let F = [n] \B. We call B the corrupted nodes,

and F the uncorrupted nodes. Let Ã and A be the n × n adjacency matrix of the original graph G
and the modified graph A(G) respectively. Then AF×F = ÃF×F and the remaining entries of A
can be arbitrary. Given A, the goal is to estimate p, the parameter of the underlying random graph

model. The algorithm does not know the set B, though we assume that it knows the value of γ.

Notation. The ℓ2 norm of a vector v = [v1, . . . , vn] ∈ R
n is ‖v‖ :=

√

∑n
i=1 v

2
i . Suppose M is

an m× n real matrix. The spectral norm of M is

‖M‖ := max
u∈Rm,v∈Rn:‖u‖=1,‖v‖=1

|uTMv|. (3)

It is easy to check that ‖M‖ = maxv∈Rn:‖v‖=1‖Mv‖. For a matrix M and real number a ∈ R,

let M − a be the matrix obtained by subtracting a from each entry of M . For S ⊆ [m], S′ ⊆ [n],
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let MS×S′ be the m × n matrix that agrees with M on S × S′ and is zero elsewhere. Similarly

for a vector v ∈ R
n and S ⊆ [n], let vector vS be the vector that agrees with with v on S and has

zero entries elsewhere. Our proofs will use several standard properties of the matrix spectral norm,

which we state in Appendix B for completeness.

3. Mean- and Median-based Algorithms

To demonstrate the need for our more sophisticated algorithms in Section 4, we first analyze canon-

ical robust estimators for univariate settings – specifically, approaches based on trimming and order

statistics (i.e., the median).

Recall the mean and median estimators for p in (1) and (2). The following simple lemma

quantifies their guarantees in the setting absent corruptions.

Lemma 6 Suppose γ = 0. There exists a constant C > 0 such that with probability at least 0.99,

|p̂mean(G)− p| ≤ C ·
√

p(1−p)

n , and |p̂med(G)− p| ≤ C · 1n .

The analysis of these estimators is not difficult, but we include them for completeness in Sec-

tion D.1. Analysis of the median estimator is slightly more involved due to correlations between

nodes.

While both estimators are optimal up to constant factors (for constant p) without corruptions,

their performance decays rapidly in the presence of an adversary, scaling at least linearly in the

corruption fraction γ. In particular, consider an adversary that picks γn nodes at random and either

adds all the edges with at least one endpoint in B or removes all of them. In Section D.2 we

prove the following lower bound on the performance of the mean and median estimators for such

an adversary. Observe that if even one node is corrupted (i.e., γ ≥ 1/n), the error in Lemma 7

dominates the error without corruptions in Lemma 6.

Lemma 7 There exists an adversary A such that for p̂ ∈ {p̂mean(A(G)), p̂med(A(G))} with prob-

ability at least 0.5, we have |p̂− p| ≥ γ/2.

A common strategy in robust statistics is to prune or trim the most extreme outliers. Accord-

ingly, in our setting, one may prune the nodes with the most extreme degrees, described in Algo-

rithm 1. This strategy bypasses the adversary which provides the lower bound in Lemma 7.

Algorithm 1 Prune-then-mean/median algorithm

Require: A graph A(G), corruption parameter γ, a constant c > 0
Remove cγn nodes with largest and smallest degrees from A(G)
Apply the mean/median estimator from (1)/(2) to the resulting graph on (1− 2cγ) · n nodes

However, this strategy can only go so far. Roughly speaking, pruning improves the mean’s

robust accuracy from Θ(γ) to Θ(γ2), while pruning does not improve the median’s robust accuracy.

The upper and lower bounds are described in Theorems 8 and 9, and proved in Sections D.3 and D.4,

respectively.

Theorem 8 For c ≥ 1 and 0 < γ · c < 0.25, the prune-then-mean and prune-then-median estima-

tors described in Algorithm 1 prune 2cγn nodes in total and with probability 1 − n−2 estimates p

to an accuracy O
(

cγ2 + logn
n

)

and O
(

cγ +
√

logn
n

)

, respectively.

7
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Theorem 9 Let p = 0.5, γ > 100 ·
√

log n/n, and c > 0 be such that cγ < 0.25. There exists an

adversary such that with probability at least 0.99, the prune-then-median estimate that deletes cγn
satisfies |p̂(A(G))− p| ≥ C ′γ, and the prune-then-mean estimate satisfies |p̂(A(G))− p| ≥ C ′γ2.

To summarize: none of the standard univariate robust estimators we have explored are able to

achieve error better than Ω(γ2). To bypass this barrier, we turn to more intricate techniques in

designing our main estimator in Section 4.

4. An Algorithm for Robust Estimation

Non-trivial robust estimation in Erdős-Rényi graphs is possible because even if the set of edges

connected to a small set of nodes is changed arbitrarily, the subgraph between the remaining nodes

retains a certain structure. In Section 4.1, we formalize this structure as deterministic regularity con-

ditions and show that the subgraph corresponding to the set of uncorrupted nodes satisfy them with

high probability. In the following subsections, we use only the fact that the subgraph of uncorrupted

nodes satisfy these regularity conditions to derive our robust algorithms for estimating p.

In Section 4.2, we first derive a simple but novel inefficient spectral algorithm for coarse estima-

tion of p. Our efficient algorithm consists of two parts: an efficient version of the spectral algorithm

in Section 4.2 that, as its inefficient counterpart, provides a coarse estimate of p, followed by a trim-

ming algorithm which achieves near-optimal error rates for estimating p. We describe and analyze

the spectral and trimming components of the algorithm in Sections 4.3 and 4.4, respectively. Finally,

in Appendix E.8, we put the pieces together to show that guarantees for these algorithms imply our

upper bound in Theorem 3.

4.1. Regularity Conditions

In this section we state a set of three deterministic regularity conditions. We will then show that

the set of uncorrupted nodes of a random Erdős-Rényi graph satisfy these regularity conditions with

high probability. First, we define the following quantities κ and η, which we use in stating the reg-

ularity conditions and in the bounds of several lemmas and theorems. For p ∈ [0, 1] and n > 0, let

η(p, n) := c ·max
(

√

p(1− p)

n
,

√
lnn

n

)

. (4)

For α ∈ (0, 1], p ∈ [0, 1] and n > 0, let

κ(α, p, n) := c1 ·max
(

α

√

p

n
ln

e

α
,
α

n
ln

e

α
,

√
p lnn

n

)

. (5)

In the above definitions c and c1 are some constants that we determine in Theorem 12.

We employ the following regularity conditions.

Definition 10 Given α1 ∈ [0, 1/2), α2 ∈ [0, 1/2), and an [n] × [n] adjacency matrix A, a set of

nodes F ⊆ [n] of the graph corresponding to A satisfy (α1, α2, p)-regularity if

1. |F c| ≤ α1n.

2. For all F ′ ⊆ F ,

‖(A− p)F ′×F ′‖ ≤ n · η(p, n).

8
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3. For all F ′, F ′′ ⊆ F such that |F ′|, |F ′′| ∈ [0, α2n] ∪ [n− α2n, n], then

∣

∣

∣

∑

i∈F ′

∑

j∈F ′′

(Ai,j − p)
∣

∣

∣
≤ n2 · κ(α2, p, n).

Item 2 implies that upon subtracting p from each entry of the adjacency matrix A, the spectral

norm of the matrix corresponding to all subgraphs of the subgraph F×F is bounded. Item 3 implies

that upon subtracting p from each entry of the adjacency matrix A, the sum of the entries over any

of its submatrices F ′×F ′′ ⊆ F ×F has a small absolute value, as long as each of F ′ and F ′′ either

leave out or include at most α2n nodes. We will informally refer to nodes in the set F ⊆ [n] that

satisfy (α1, α2, p)-regularity as good nodes.

For a subset S ⊆ [n] and adjacency matrix A, we will use pS :=
∑

i,j∈S Ai,j

|S|2 to denote (approx-

imately) the empirical fraction of edges present in the subgraph induced by a set S. Note that this

differs slightly from expression one might anticipate,
(|S|

2

)−1
(

∑

i<j: i,j∈S Ai,j

)

. For convenience,

our sum double-counts each edge and also includes the Ai,i terms (which are always 0 due to the

lack of self-loops). The double counting is accounted for since the denominator is scaled by a factor

of 2. The inclusion of the diagonal 0’s is not accounted for, thus leading to pS being a slight under-

estimate of the empirical edge parameter for this subgraph, but not big enough to make a significant

difference.

The following lemma lists some simple but useful consequences of the regularity conditions that

we use in later proofs. We prove it in Appendix E.1.

Lemma 11 Suppose 0 ≤ α1, α2 < 1/2 and adjacency matrix A has a node subset F ⊆ [n] that

satisfies (α1, α2, p)-regularity, then

1. For all F ′ ⊆ F ,

‖(A− pF ′)F ′×F ′‖ ≤ 2n · η(p, n). (6)

2. For all F ′ ⊆ F of size ≥ (1− α2)n,

|pF ′ − p| ≤ 4κ(α2, p, n). (7)

Equation (6) implies that if the adjacency matrix of any subset of good nodes is centered around

its empirical fraction of the edges, then its spectral norm is bounded. Equation (7) implies that for

any subset of good nodes that excludes at most α2n nodes, the empirical fraction of edges in the

subgraph induced by it estimates p accurately.

The next theorem shows that the set of uncorrupted nodes of a random Erdős-Rényi graph satisfy

these regularity conditions with high probability. The proof of the Theorem is in Appendix E.2.

Theorem 12 For any γ ∈ [0, 1/2), n > 0 and p > 0, let A be a γ-corrupted adjacency matrix of a

sample from G(n, p). There exist universal constants c and c1 in Equations (4) and (5), respectively,

such that with probability at least 1 − 4n−2 the set of uncorrupted nodes F satisfy (α1, α2, p)-
regularity for all α1 ∈ [γ, 1/2] and α2 ∈ [0, 1/2].

9
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4.2. An Inefficient Coarse Estimator

In this section we propose a simple inefficient algorithm to recover a coarse estimate of p, which

has an optimal dependence on all parameters other than α1.

The following theorem serves as the foundation of our coarse estimator. It shows that if, for any

subset S ⊆ [n] of size ≥ n/2 nodes, the spectral norm of its submatrix centered with respect to pS
is small, then pS is a reasonable estimate of p.

Theorem 13 Suppose 0 ≤ α1, α2 < 1/2, and let A be an adjacency matrix containing a (α1, α2, p)-
regular subgraph. Then for all S ⊆ [n] such that |S| ≥ n/2, we have

|pS − p| ≤ ‖(A− pS)S×S‖+ n · η(p, n)
(1/2− α1)n

.

Proof Let F be the (α1, α2, p)-regular subgraph of A. From the triangle inequality,

‖(A− pS)(S∩F )×(S∩F )‖ ≥ |p− pS | · |S ∩ F | − ‖(A− p)(S∩F )×(S∩F )‖.

Then by Lemma 23,

|p−pS |·|S∩F | ≤ ‖(A−pS)(S∩F )×(S∩F )‖+‖(A−p)(S∩F )×(S∩F )‖ ≤ ‖(A−pS)S×S‖+‖(A−p)F×F ‖.

Finally, noting that |S ∩ F | ≥ |S| − |F c| ≥ |S| − α1n ≥ n/2− α1n proves the theorem.

With this in hand, it suffices to locate a subset of nodes S such that ‖(A − pS)S×S‖ is small.

We provide the accuracy guarantee of our inefficient algorithm in the following theorem.

Theorem 14 Suppose 0 ≤ α1, α2 < 1/2, and let A be an adjacency matrix containing a (α1, α2, p)-
regular subgraph. Let

Ŝ = argminS⊆[n]:|S|≥n/2 ‖(A− pS)S×S‖.

Then ‖(A− pŜ)Ŝ×Ŝ‖ ≤ 2n · η(p, n) and |pŜ − p| ≤ 3
(1/2−α1)

· η(p, n).

Proof Let F be the (α1, α2, p)-regular subgraph of A. From the definition of Ŝ,

‖(A− pŜ)Ŝ×Ŝ‖ ≤ ‖(A− pF )F×F ‖ ≤ 2n · η(p, n),

where the last inequality uses Equation (6). The proof follows from Theorem 13.

Theorem 14 implies the following simple algorithm to estimate p: compute Ŝ by iterating over

all subsets of [n], and then output pŜ . Combining with Theorem 12, this proves Theorem 4. The

clear downside of this approach is that it is not computationally efficient, with a running time that

depends exponentially on n. Also, as we will later establish, while this algorithm gives near-optimal

rates for all constant γ bounded away from 1/2 by a constant, it may be sub-optimal for smaller γ.

In the following sections, we address both of these issues: we provide a computationally efficient

algorithm which provides near-optimal rates for γ < 1/60.
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4.3. An Efficient Coarse Spectral Algorithm

In this section, we propose an efficient spectral method (Algorithm 2) which finds a subset S∗ ⊆ [n]
such that both the set (S∗)c and the spectral norm ‖(A− pS∗)S∗×S∗‖ are small. Note that the latter

guarantee is comparable to the inefficient algorithm from Section 4.2. Then Theorem 13 implies

that pS∗ is an accurate estimate of p. We note that this is still a coarse estimate of p, which has a

sub-optimal dependence on α1.5 In the following section, we will post-process the set S∗ returned

by Algorithm 2 to provide our near-optimal bounds.

Theorem 15 Suppose α1 ∈ [ 1n ,
1
60 ], α2 ∈ [0, 1/2] and let A be an adjacency matrix containing an

(α1, α2, p)-regular subgraph. With probability at least 1− 1/n2,6 Algorithm 2 returns a subset S∗

with |S∗| ≥ (1−9α1)n such that ‖(A−pS∗)S∗×S∗‖ ≤ 20n ·η(p, n). Furthermore, these conditions

on S∗ imply |pS∗ − p| ≤ 45 · η(p, n).

Algorithm 2 Spectral algorithm for estimating p

Require: number of nodes n, parameter α1 ∈ [1/n, 1/60], adjacency matrix A
S ← [n], Candidates← {}
Candidates← Candidates ∪ {S}
for t = 1 to 9α1n do

Compute a top normalized eigenvector v of the matrix (A− pS)S×S

Draw it from the distribution where i ∈ S is selected with probability v2i
S ← S \ {it}
Candidates← Candidates ∪ {S}

end for

S∗ ← argminS∈Candidates ‖(A− pS)S×S‖
return S∗

In the remainder of this section we will prove that Algorithm 2 indeed outputs a subset S∗ with

the guarantee in Theorem 15. Let F (unknown) be the (α1, α2, p)-regular subgraph of A. The

key technical argument is that if the spectral norm of (A − pS)S×S is large, the normalized top

eigenvector v of (A − pS)S×S places constant weight on the subset S ∩ F c. Thus, if at a given

iteration Algorithm 2 possesses an unsatisfactory set S, it will remove a node from S ∩ F c with a

constant probability. We formalize this argument in the following key Lemma 16. The proof of the

lemma appears in Appendix E.3.

Lemma 16 Suppose α1 ∈ [ 1n ,
1
60 ], α2 ∈ [0, 1/2] and let A be an adjacency matrix containing an

(α1, α2, p)-regular subgraph F . Let S ⊆ [n] be of size |S| ≥ (1− 9α1)n, and v be the normalized

top eigenvector of (A− pS)S×S . If ‖(A− pS)S×S‖ ≥ 20n · η(p, n) then ‖vS∩F c‖2 ≥ 0.15.

We conclude this section with the proof of Theorem 15.

Proof [Proof of Theorem 15] It suffices to show that at least one of the sets S encountered by

Algorithm 2 satisfies the condition ‖(A − pS)S×S‖ ≤ 20n · η(p, n). From Lemma 16 it follows

5. The guarantees are comparable to Theorem 14, up to constant factors.

6. The probability of success of Algorithm 2 is Pr[Bin(⌊9α1n⌋, 0.15) ≥ ⌊α1n⌋] ≥ 1− exp(−Ω(α1n)). Note that for

all values of α1n the success probability is > 1/2. When α1n = Ω(log n) then it gives the probability of success

at least 1 − 1/n2. When α1n = O(log n), to get the probability of success ≥ 1 − 1/n2 one can run Algorithm 2

O(log n) times and choose an S∗ for which ‖(A− pS∗)S∗×S∗‖ is the minimum among all runs.

11
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that until the algorithm finds such a subset S, in each deletion step the probability of deleting a node

from F c is at least 0.15. Since there are 9α1n steps, a standard Chernoff-style argument implies

that either a subset S (including nodes from both F c and F ) satisfying the conditions of the theorem

will be created, or with probability at least Pr[Bin(⌊9α1n⌋, 0.15) ≥ ⌊α1n⌋] ≥ 1− exp(−Ω(α1n)),
all nodes from F c will be deleted and thus S ⊆ F . In the latter case we apply Equation (6), which

implies that ‖(A− pS)S×S‖ ≤ 20n · η(p, n) and the theorem.

Remark 17 Algorithm 2 runs for 9α1n rounds, and in each round the algorithm finds the top

eigenvector of an n × n matrix. This may be expensive to compute when the spectral gap is small.

However, Lemma 31 shows it suffices to find any unit vector v ∈ R
n such that |v⊺(A− pS)S×Sv| ≥

0.99||(A− pS)S×S ||. Note that such a unit vector can be found in Õ(n2) time (Musco and Musco,

2015). Therefore, one can implement Algorithm 2 to run in Õ(α1n
3) time.

4.4. A Fine Trimming Algorithm

In this section, we provide a trimming method (Algorithm 3), which refines the output of Algo-

rithm 2, improving its guarantee (quantified in Theorem 15) by up to a factor of α1.

The algorithm (Algorithm 3) is easy to describe. For a subset S∗ ⊆ [n] and a node i ∈ S∗,

we define p
(i)
S∗ :=

∑
j∈S∗ Ai,j

|S∗| to be the normalized degree of node i in the subgraph induced by

S∗. We remove the 3α1n nodes for which this normalized degree deviate furthest from the average

parameter pS∗ . Its guarantees are quantified in Theorem 18, whose proof appears in Appendix E.7.

Theorem 18 Let α1 ∈ [ 1n ,
1
60 ], and A be an adjacency matrix containing an (α1, 13α1, p)-regular

subgraph. Suppose we have some S∗ such that |S∗| ≥ (1 − 9α1)n and ‖(A − pS∗)S∗×S∗‖ ≤
20n · η(p, n), Algorithm 3 outputs pSf such that for some universal constants c2, c3 > 0,

∣

∣pSf − p
∣

∣ ≤ c2α1η(p, n) + c3κ(13α1, p, n).

Algorithm 3 Trimming Algorithm

Require: number of nodes n, parameter α1 ∈ [1/n, 1/60], adjacency matrix A, subset S∗ ⊆ [n]

Define the score for each node i ∈ S∗ to be |pS∗ − p
(i)
S∗ |

Remove the 3α1n nodes in S∗ with the highest scores to obtain Sf

return pSf

At this point, we have all the pieces to prove our main upper bound (Theorem 3). The argument

first reasons that a random graph will satisfy certain regularity conditions with high probability.

With these guarantees, we feed it into our coarse spectral algorithm (Algorithm 2), followed by

our fine trimming algorithm (Algorithm 3). Some (mundane) case analysis is required to achieve

the optimal bounds in certain parameter regimes; the full argument is rigorously described in Ap-

pendix E.8.

5. Lower Bounds

In this section, we prove our main lower bound for robust parameter estimation in Erdős-Rényi

random graphs establishing that our algorithms are tight up to logarithmic factors.

12



ROBUST ESTIMATION FOR RANDOM GRAPHS

First we consider the problem of parameter estimation for directed version of Erdős-Rényi ran-

dom graphs. Such graphs have independent (outgoing) degrees across the nodes. We then show a

reduction showing that the directed version of the problem is at least as hard as the standard version.

We start by describing the directed Erdős-Rényi graphs.

Definition 19 (Directed Erdős-Rényi graphs) The directed Erdős-Rényi random graph model on

n nodes with parameter p, denoted as DG(n, p), is the distribution over directed graphs on n nodes

where each edge is present with probability p, independently of the other edges.

We show the following reduction from the directed problem to standard. We provide the proof in

Appendix G.

Lemma 20 If there exists an algorithm that estimates p in G(n, p) to within ±∆ with probability

at most 1 − δ under γ-corruptions, then there exists an algorithm for estimating p in DG(n, p) to

within ±∆ with probability at most 1− δ under γ-corruptions.

Then to prove the lower bound in Theorem 5, we prove its analogue for directed Erdős-Rényi

graphs.

Theorem 21 Let p ≤ 0.5. Then there exists a γ-oblivious adversary such that no algorithm can

distinguish between DG(n, p) and DG
(

n, p+ 0.1max
(

γ
√

p/n, γ/n,
√
p/n

))

with probability

at least 0.65.

By symmetry, a similar statement holds for p > 0.5, with p replaced by 1 − p. Combining these

two statements and Lemma 20 gives the lower bound in Theorem 5.

We prove Theorem 21 formally in Appendix G, and conclude the section with a proof sketch.

We consider a weaker γ-oblivious adversary for DG(n, p) that does the following: (a) randomly

choose a subset B of γn nodes, (b) for each node i ∈ B, remove all the outgoing edges from i, and

draw a number di independently from a different distribution over {0, 1, . . . , n}, and (c) select di
nodes from [n] \ {i} at random and add an edge from i to them. Note that both for the uncorrupted

nodes and for nodes corrupted by such an adversary the out-degrees of nodes completely determine

its distribution and is therefore a sufficient statistic. For a random directed graph DG ∼ DG(n, p),
the out-degree of a node is distributed Bin(n− 1, p). We can think of observed degrees of n nodes

of an uncorrupted directed Erdős-Rényi random graph DG ∼ DG(n, p) as independent samples

from binomial distribution Bin(n − 1, p). Let ∆p = 0.1max
(

γ
√

p/n, γ/n
)

. We show that

for p ≤ 0.5, the TV distance between Bin(n − 1, p) and Bin(n − 1, p + ∆) is less than 0.15γ.

Then we show that an adversary that chooses a random set of size Bin(n, 0.15γ), can choose the

distribution of their out-degree in a way that the overall distribution of out-degrees is same for the

both graphs DG ∼ DG(n, p) and DG ∼ DG(n, p + ∆p) after corruption. Finally, we show that

even without corruption (when γ = 0), no algorithm can reliably distinguish between DG(n, p)
and DG(n, p+ 0.1

√
p/n).
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Appendix A. Additional Related Work

Beyond the aforementioned results on efficient robust estimation (Diakonikolas et al., 2016; Lai

et al., 2016), several works have focused on similar estimation tasks in a variety of related settings,

including under weaker moment assumptions (Diakonikolas et al., 2017), with a larger fraction of

corrupted data (Charikar et al., 2017), under sparsity constraints (Balakrishnan et al., 2017; Liu

et al., 2020), for regression or other supervised learning tasks (Klivans et al., 2018; Diakoniko-

las et al., 2019b; Prasad et al., 2020b; Pensia et al., 2021), under more general robustness con-

ditions (Steinhardt et al., 2018), with alternate perturbation models (Zhu et al., 2019), for mix-

ture models (Hopkins and Li, 2018; Kothari et al., 2018; Diakonikolas et al., 2018b), approaching

information-theoretic barriers to accuracy (Diakonikolas et al., 2018a), fast algorithms for robust

estimation (Cheng et al., 2019a,b; Dong et al., 2019), and with gradient descent algorithms (Cheng

et al., 2020). See (Diakonikolas and Kane, 2019) for a survey.

Our algorithm relies on a spectral outlier-removal technique common to several works in robust

estimation. Prior to this line of work, similar approaches were employed for robust supervised

learning tasks, namely learning halfspaces with malicious noise (Klivans et al., 2009; Awasthi et al.,

2014).

There has been significant work on robust community detection in the presence of adversaries

(Moitra et al., 2016; Makarychev et al., 2016; Steinhardt et al., 2018; Banks et al., 2021). Most of

this focuses on monotone adversaries (which make only “helpful” changes to the graph) or edge

corruptions. It is not clear how to define monotone adversaries for the Erdős-Rényi setting, and for

our estimation problem under edge corruptions, the empirical estimator is trivially optimal in the

worst case. The work of Cai and Li (2015) also considers a node corruption model similar to ours.

However, all of the aforementioned work studies community detection in stochastic block models,

which is different from our goal of parameter estimation.

Our corruption model may seem reminiscent of the classic planted clique problem (Karp, 1976;

Jerrum, 1992; Kučera, 1995), in which an algorithm must distinguish between a) G(n, 1/2) and b)

G(n, 1/2) with the addition of a planted clique of size γn. Our adversary is given much more power

(i.e., they can make arbitrary changes to the neighbourhoods of their selected nodes), though the two

goals are incomparable. The planted clique problem is known to be information-theoretically solv-

able for any γ > 2 logn
n . However, polynomial-time algorithms are only known for γ > 1/

√
n (Alon

et al., 1998), and there is strong evidence that efficient algorithms do not exist for smaller values

of γ (Feige and Krauthgamer, 2003; Feldman et al., 2017; Meka et al., 2015; Deshpande and Mon-

tanari, 2015; Hopkins et al., 2018; Barak et al., 2019). We have not run into issues in our setting

related to this intractability, though deeper connections between our model and the planted clique

problem would be interesting. Note that our task of parameter estimation is not interesting for the

cases of the planted clique problem when γ ≤ 1/
√
n. Simply using the empirical estimator on

the two instances would give error ≈ 1/n and ≈ 1/n + γ2 = O(1/n), which are identical up to

constant factors.

Some prior works have studied robust estimation for graphical models, including Ising mod-

els (Lindgren et al., 2018; Prasad et al., 2020a) and Bayesian networks (Cheng et al., 2018). Despite

the common nomenclature, these works are rather different from our work on random graph mod-

els. Graphical models are distributions over vectors, where correlations between coordinates exist

based on some latent graph structure. On the other hand, random graph models are distributions

over graphs, sampled according to some underlying parameters. While existing work on graphical
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models necessitates many samples from the same distribution (due to parameters outnumbering the

samples), our setting requires a single sample from a random graph model.

Our setting is related to the untrusted batches setting of Qiao and Valiant (2018), in which

many batches of samples are drawn from a distribution, but a constant fraction of batches may be

adversarially corrupted, see also followup works by Jain and Orlitsky (2020a,b, 2021) and Chen, Li,

and Moitra (2020a,b). This is somewhat similar to our setting, where each batch is the set of edges

connected to a node. However, the key difference is that in our setting, each edge belongs to both

its two endpoint nodes, whereas in the untrusted batches setting, a sample is only associated with a

single batch.

Estimation in random graph models has also been studied under the constraint of differential pri-

vacy (Borgs et al., 2015, 2018; Sealfon and Ullman, 2019). Despite superficial similarities between

the two settings, we are unaware of deeper technical connections.

Our setting bears some conceptual similarity to a line of robustness work focused on decom-

posing a matrix as a sum of a low rank matrix and a sparse matrix (Chandrasekaran et al., 2011;

Candès et al., 2011; Hsu et al., 2011). Our true parameter matrix is the rank-1 matrix pJ , where J
is the all-ones matrix. However, the uncorrupted adjacency matrix is a sample from the distribution

where each entry is a Bernoulli with the corresponding parameter, which is in general not low rank.

Furthermore, our corruption model allows for a bounded number of rows/columns to be changed,

whereas this line of work requires that the corruptions satisfy some further sparsity, such as a limited

number of changed entries per row/column, or that the corruption positions are chosen randomly.

Appendix B. Spectral norm properties

Matrix Properties. We state some useful properties of matrix spectral norm that will be useful in

our proofs.

Lemma 22 Let M,M ′ ∈ R
m×n, then ‖M +M ′‖ ≤ ‖M‖+ ‖M ′‖.

Lemma 23 For any M ∈ R
m×n, S ⊆ [m], S′ ⊆ [n], ‖MS×S′‖ ≤ ‖M‖.

Proof For any unit vectors u ∈ R
m and v ∈ R

n, let ũ = uS/‖uS‖ and ṽ = vS′/‖vS′‖. Then

|u⊺MS×S′v| = |u⊺SMvS′ | = ‖uS‖ · ‖vS′‖ · |ũ⊺Mṽ| ≤ |ũ⊺Mṽ| ≤ ‖M‖,

where the second last inequality used ‖uS‖ ≤ ‖u‖ = 1 and ‖vS′‖ ≤ ‖v‖ = 1 and the last

inequality used that ũ and ṽ are unit vectors. Finally, in the above equation taking maximum over

all unit vectors u, v completes the proof.

Lemma 24 For any M ∈ R
m×n, ‖M‖ ≥ |

∑
i,j Mi,j|√
mn

.

Proof Consider u = 1√
m
[1, 1, . . . , 1] and v = 1√

n
[1, 1, . . . , 1]T , which are unit vectors in R

m and

R
n, respectively. Then |uTMv| = |

∑
i,j Mi,j |√
mn

≤ ‖M‖ by (3).
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Appendix C. Concentration Inequalities

Lemma 25 (Chernoff bound) Let X1, X2, ..., Xt ∼ Ber (p) be t independent Bernoulli random

variables. Then for any λ > 0

Pr

[

∣

∣

t
∑

i=1

Xi − tp
∣

∣ ≥ λ

]

≤ 2 exp

(

−min

(

λ2

3tp
,
λ

3

))

. (8)

Appendix D. Proofs for Mean- and Median-Based Algorithms

In this section we provide the proofs for algorithms based on mean and medians. Throughout this

section we assume that n is at least 14400 for computational simplifications.

D.1. Upper Bounds for Mean and Median Estimators without Corruptions

Mean estimate. The total number of edges in G ∼ G(n, p) is a Binomial distribution with pa-

rameters
(

n
2

)

and p. Therefore, its expectation and variance are
(

n
2

)

p and
(

n
2

)

p(1− p), respectively.

Thus, E [p̂mean(G)] = p and Var(pmean(G)) = p(1 − p)/
(

n
2

)

≤ 4p(1 − p)/n2. By Chebyshev’s

inequality,

Pr

(

|p̂mean(G)− p| ≥ 20 ·
√

p(1− p)

n

)

≤ 0.01.

Median estimate. We will show that with probability at least 0.995, the median degree of G is

at least (n − 1)p − C for some constant C. The main hurdle in showing this is the fact that

the node degrees deg(i) are not independent, which requires a careful analysis. For i ∈ [n], let

Yi := I (deg(i) ≤ p(n− 1)− 121). Then,
∑

i Yi is the number of nodes with degree at most

p(n− 1)− 121.

We establish the following bounds for n ≥ 14400:

E

[

∑

i

Yi

]

≤ n

2
− 15
√
n (9)

Var

(

∑

i

Yi

)

≤ n (10)

With these, we can apply Cantelli’s inequality to obtain:

Pr

(

∑

i

Yi ≥
n

2

)

≤ Var (
∑

Yi)

Var (
∑

Yi) + (15
√
n)2

< 0.005.

This shows that with probability at least 0.995 the median degree is at least (n − 1)p − 121. By

symmetry, with probability at least 0.995 the median degree is at most (n−1)p+121. By the union

bound, with probability at least 0.99 the error of the median estimate is at most 121/(n− 1).
We now prove (9) and (10) to complete the proof.

To prove (9), note that deg(i) ∼ Bin(n−1, p) and E [Yi] = Pr[Bin(n−1, p) ≤ p(n−1)−121].
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We show that for any n′, Pr[Bin(n′, p) ≤ pn′ − 121] ≤ 1
2 − 15√

n′+1
, then (9) follows from the

linearity of expectation. If Pr(Bin(n′, p) ≤ pn′− 1) ≤ 1
2 − 15√

n′+1
then we are done. We prove for

the case when Pr(Bin(n′, p) ≤ pn′ − 1) ≥ 1
2 − 15√

n′+1
. By Chebyshev’s inequality,

Pr
(

Bin(n′, p) ≤ n′p−
√
n
)

≤ 1

4
.

Then, for n′ ≥ 14400,

Pr
(

Bin(n′, p) ∈ [n′p−
√
n′, pn′ − 1)

)

= Pr(Bin(n′, p) ≤ pn′ − 1)− Pr
(

Bin(n′, p) ≤ n′p−
√
n
)

≥ 1

2
− 15√

n′ + 1
− 1

4
≥ 1

8
.

Since the binomial distribution has a unique mode ≥ pn′ − 1, then for any t ≤
√
n′,

Pr
(

Bin(n′, p) ∈ [n′p− t, pn′ − 1)
)

≥ t− 1√
n′ − 1

· 1
8
≥ t− 1√

n′ + 1
· 1
8
.

Since the median of Bin(n′, p) is ≥ n′p − 1, (Kaas and Buhrman, 1980), hence Pr[Bin(n′, p) ≤
pn′ − 1] ≤ 1/2. From it subtracting the above equation for t − 1 = 15 · 8 = 120, we get

Pr[Bin(n′, p) ≤ pn′ − 121] ≤ 1
2 − 15√

n′+1
.

We now prove (10). Since Yi’s are identically distributed indicator random variables,

Var

(

∑

i

Yi

)

= nVar (Y1) + n(n− 1)Cov(Y1, Y2) ≤
n

4
+ n(n− 1)Cov(Y1, Y2). (11)

Let t = (n− 1)p− 121, then Yi = I (deg(i) ≤ t). Let Y12 be the number of edges from node 1 to

[n] \ {2} and I (E1,2) be the indicator that edge between 1 and 2 is present. Then Y12 ∼ Bin(n −
2, p). Elementary computations using the observation that Y1 = I (Y12 ≤ t− 1)+ I (Y12 = t) · (1−
I (E1,2)) show that

Cov(Y1, Y2) = p(1− p) · Pr (Y12 = t)2 .

From Stirling’s approximation at t = np, we have Pr (Y12 = t) ≤ 1/
√

πp(1− p)(n− 2), and

therefore,

Cov(Y1, Y2) = p(1− p) · Pr (Y12 = t)2 ≤ 1

π(n− 2)
≤ 1

3n

for n > 1202. Plugging this in (11) proves (10).

D.2. Lower Bounds for Mean and Median Estimators under Corruptions

We will prove the γ/2 lower bound for the mean and median estimates. Consider the following

oblivious adversary A.

• Pick a random subset B ⊂ [n] of size γn.

• Let A1(G) be the graph obtained by adding all edges (u, v) that have at least one node in B
to the graph G, and let A2(G) be the graph obtained by removing all edges that have at least

one node in B from the graph G.
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• Output A1(G) or A2(G) chosen uniformly at random.

Any node in A1(G) has degree at least γn more than the corresponding node in A2(G). There-

fore, |p̂mean(A1(G))− p̂mean(A2(G))| ≥ γ, and |p̂med(A1(G))− p̂med(A2(G))| ≥ γ. Therefore

by the triangle inequality, with probability 0.5, |p̂mean(A(G))− p| ≥ γ/2, and |p̂med(A(G))− p| ≥
γ/2.

D.3. Upper Bounds for Prune-then-Mean/Median Algorithms

Recall the prune-then mean/median algorithm in Algorithm 1. We remove cγ fraction of nodes with

the highest and lowest degrees, and then output the median (or mean) of the remaining subgraphs.

We restate the performance bound of the algorithm here.

Theorem 8 For c ≥ 1 and 0 < γ · c < 0.25, the prune-then-mean and prune-then-median estima-

tors described in Algorithm 1 prune 2cγn nodes in total and with probability 1 − n−2 estimates p

to an accuracy O
(

cγ2 + logn
n

)

and O
(

cγ +
√

logn
n

)

, respectively.

Proof Let G ∼ G(n, p). By Chernoff bound (Lemma 25) and the union bound, with probability

≥ 1− 1/n2,

deg(i) ∈
(

np− 100
√

nlog n, np+ 100
√

nlog n
)

for all nodes i ∈ [n] of G. We condition on this event.

Suppose an adversary converts G into A(G) by corrupting nodes in B ⊂ [n] with |B| ≤ γn.

Note that the degree of a node in F = [n] \ B cannot change by more than γn. Therefore, for all

nodes i ∈ F in A(G),

deg(i) ∈
(

np− 100
√

nlog n− γn, np+ 100
√

nlog n+ γn
)

. (12)

Therefore, at most γn nodes do not satisfy (12). Since we remove cγn nodes with the highest and

the lowest degrees for c ≥ 1 all such nodes are pruned. The degree of any node not pruned decreases

by at most 2cγn, and after pruning all degrees are in the following interval

(

np− 100
√

nlog n− (2c+ 1)γn, np+ 100
√

nlog n+ γn
)

. (13)

We can rewrite this interval as follows

(

n(1− 2cγ)p− 100
√

nlog n+ (2cp− 2c− 1)γn, n(1− 2cγ)p+ 100
√

nlog n+ (2cp+ 1)γn
)

.

The prune-then-median estimator outputs one of these degrees (normalized), and its error is at most

(

100
√
n log n+ (4c+ 1)γn

(1− 2cγ)n

)

= O
(

√

log n

n
+ cγ

)

.

We now bound the performance of prune-then-mean estimator. Let V ′ ⊆ [n] be the nodes that

are not pruned, so |V ′| = (1− 2cγ)n. Let F p := V ′ ∩F and Bp := V ′ ∩B be the uncorrupted and

corrupted nodes that remain after pruning. We have |Bp| ≤ |B| ≤ γn and |F p| ≥ (1− (2c+1)γ)n.
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There are three types of edges among the nodes in V ′: (i) E1: edges whose both end points are

good nodes (in F p), (ii) E2: edges with at least one end point in Bp. The mean estimator outputs

|E1|+ |E2|
(|V ′|

2

)
.

Its error is at most
∣

∣

∣

∣

∣

|E1|+ |E2|
(|V ′|

2

)
− p

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

|E1| −
(|F p|

2

)

p
(|V ′|

2

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

|E2| − (|V ′| − |F p|)((|V ′|+ |F p| − 1)/2)p
(|V ′|

2

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

|E1| −
(|F p|

2

)

p
(|V ′|

2

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

|E2| − |Bp|((|V ′|+ |F p| − 1)/2)p
(|V ′|

2

)

∣

∣

∣

∣

∣

We will bound each term individually. Since the subgraph F p×F p between the uncorrupted nodes

remains unaffected from the original graph G, then Theorem 28 implies that, with probability ≥
1− 3n−2,

∣

∣

∣

∣

∣

|E1|
(|F p|

2

)
− p

∣

∣

∣

∣

∣

= O
(

max

{

cγ

√

ln(e/cγ)

n
,
cγ log n

n
,
1

n

})

≤ O
(

cγ2 +
log n

n

)

.

Therefore,

∣

∣

∣

∣

|E1| −
(|F p|

2

)

p

∣

∣

∣

∣

=

(|F p|
2

)

·O
(

cγ2 +
log n

n

)

≤
(|V ′|

2

)

·O
(

cγ2 +
log n

n

)

.

This shows that the first error term is at most O
(

cγ2 + logn
n

)

.

We now consider the second term. Note that |n− (|V ′|+ |F p| − 1)/2| ≤ 3cγn. By the triangle

inequality,

∣

∣

∣

∣

|E2| −
1

2
· |Bp|(|V ′|+ |F p| − 1)p

∣

∣

∣

∣

≤ ||E2| − |Bp| · np|+ 3γnp · |Bp|. (14)

Let deg(i) be the degree of node i after pruning. By the triangle inequality adding and subtract-

ing
∑

i∈Bp deg(i) to the first term we obtain,

||E2| − |Bp| · np| ≤
∣

∣

∣

∣

∣

|E2| −
∑

i∈Bp

deg(i)

∣

∣

∣

∣

∣

+
∑

i∈Bp

| deg(i)− np|.

Now note that |E2| is the number of edges with at least one endpoint in Bp. Therefore
∣

∣|E2| −
∑

i∈Bp deg(i)
∣

∣

is the number of edges inside Bp × Bp and is at most |Bp|2. For the second term we use the fact

that each node in Bp satisfies (13), and |Bp| ≤ γn. This gives

||E2| − |Bp| · np| ≤
∣

∣

∣

∣

∣

|E2| −
∑

i∈Bp

deg(i)

∣

∣

∣

∣

∣

+
∑

i∈Bp

| deg(i)− np| ≤ |Bp| ·
(

100
√

nlog n+ (2c+ 2)γn
)

.

Plugging this along with the fact that |Bp| ≤ γn in (14), we obtain
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∣

∣

∣

∣

|E2| −
1

2
· |Bp|(|V ′|+ |F p| − 1)p

∣

∣

∣

∣

≤ γn ·
((

100
√

nlog n+ (5c+ 2)γn
))

.

Since
(|V ′|

2

)

> (n/2)2, the second term can be bounded by

O
(

4γ ·
(

√

log n

n
+ (5c+ 2)γ

))

= O
(

cγ2 +
log n

n

)

,

thus proving the result.

D.4. Lower Bounds for Prune-then-Mean/Median Algorithms

We will prove the following result showing the tight dependence of the upper bounds on γ.

Theorem 9 Let p = 0.5, γ > 100 ·
√

log n/n, and c > 0 be such that cγ < 0.25. There exists an

adversary such that with probability at least 0.99, the prune-then-median estimate that deletes cγn
satisfies |p̂(A(G))− p| ≥ C ′γ, and the prune-then-mean estimate satisfies |p̂(A(G))− p| ≥ C ′γ2.

Let G ∼ G(n, 0.5). The oblivious adversary A operates as follows. It partitions G into five

random sets B,S0, S1, S2, and S3 with |B| = γn, |S0| = cγn, |S1| = cγn, |S2| = 2
3(1 − (2c +

1)γ)n, |S3| = 1
3(1− (2c+ 1)γ)n.

• Remove all edges with at least one endpoint in B.

• Remove all edges between S0 and B.

• Add all edges between S1 and B.

• Connect each node in B to each node in S2 independently with probability 3/5.

• Connect each node in B to each node in S3 independently with probability 3/10.

• Connect nodes within B to each other with probability 3/5.

By the Chernoff bound (Lemma 25) and the union bound, we obtain the following bounds on

the node degrees in A(G).

Lemma 26 In A(G), the following hold with probability at least 1− 3n−3

deg(u) = n

(

1

2
+

γ

10

)

± 4
√

n log n for u ∈ B,

deg(u) = n ·
(

1

2
− γ

2

)

± 4
√

n log n for u ∈ S0,

deg(u) = n ·
(

1

2
+

γ

2

)

± 4
√

n log n for u ∈ S1,

deg(u) = n ·
(

1

2
+

γ

10

)

± 4
√

n log n for u ∈ S2,

deg(u) = n ·
(

1

2
− γ

5

)

± 4
√

n log n for u ∈ S3.
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Since γ > 100
√

log n/n, the nodes in S0 are the cγn nodes with the lowest degrees and the

nodes in S1 are the cγn nodes with the highest degrees, and they are pruned by the algorithm. Now

since the sets S0 and S1 were randomly chosen ahead of time, in the pruned graph, once again by

the Chernoff bound (Lemma 25) and the union bound, the following holds with probability at least

1− 3n−3

deg(u) = n

(

1− 2cγ

2
+

γ

10

)

± 8
√

n log n for u ∈ B,

deg(u) = n ·
(

1− 2cγ

2
+

γ

10

)

± 8
√

n log n for u ∈ S2,

deg(u) = n ·
(

1− 2cγ

2
− γ

5

)

± 8
√

n log n for u ∈ S3.

Since we assume that cγ < 0.25, there are more nodes in S3 than in S2∪B and every node in S2∪B
had a higher degree than any node in S3. Therefore a node in S3 is chosen as the median node, thus

deviating from the median degree by at least γ/5 ± 8
√

log n/n > γ/10 for γ > 100
√

log n/n.

This proves the lower bound for prune-then-median estimate.

Now for the prune-then-mean estimate, note that each edge that remains after pruning is chosen

at random, independent of all other edges. The total expected number of edges after pruning is
1
2 ·

n2(1−2cγ)2

2 + n2γ2

20 and the variance is at most n2/4. Therefore, the total error of the prune-

then-mean estimate is at least γ2/20 ± O(1/n), and since γ > 100
√

log n/n, the error is at least

γ2/40.

Appendix E. Upper Bound Proofs

E.1. Proof of Lemma 11

Proof We first prove Equation (6). From the triangle inequality

‖(A− pF ′)F ′×F ′‖ ≤ ‖(A− p)F ′×F ′‖+ |p− pF ′ | · F ′.

From Lemma 24 we have

‖(A− p)F ′×F ′‖ ≥ |F ′| · |pF ′ − p|.
Combining the above two equations with regularity proves Equation (6),

‖(A− pF ′)F ′×F ′‖ ≤ 2‖(A− p)F ′×F ′‖ ≤ 2n · η(p, n),

where the last inequality follows from regularity condition 2.

Next, Equation (7) is obtained by using F ′ = F ′′ in regularity condition 3 and |F ′| ≥ n/2.

E.2. Proof of Theorem 12

Proof In a γ-corrupted graph the set of uncorrupted nodes F has size ≥ (1 − γ)n, which proves

regularity condition 1.

We use the following bound on the spectral norm of a centered version of Ã, which follows

from Remark 3.13 of (Bandeira and Van Handel, 2016).
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Lemma 27 Let Ã be the adjacency matrix of a sample from G(n, p) and I be the n × n identity

matrix. There exist a universal constant c such that with probability at least 1−n−2, ‖Ã−p+pI‖ ≤
c
√

np(1− p) + lnn.

To establish regularity condition 2, note that A and Ã agree on (i, j) ∈ F × F , and therefore by

Lemma 23 and Lemma 27, ‖(A− p)F ′×F ′‖=‖(Ã− p)F ′×F ′‖ ≤ ‖(Ã− p)‖ ≤ ‖(Ã− p+ pI)‖+
p‖I‖ ≤ c

√

np(1− p) + lnn+ 1.

The following theorem implies regularity condition 3. The proof uses a Chernoff and union

bound style argument, and is provided in Section F.

Theorem 28 Let Ã be the adjacency matrix of a sample from G(n, p). With probability at least

1− 3n−2, simultaneously for all α ∈ [0, 12 ], we have

max
|S|,|S′|∈Cα

∣

∣

∣

∣

∣

∑

i∈S, j∈S′

(Ãi,j − p)

∣

∣

∣

∣

∣

≤ 6max
{

16αn

√

pn ln
e

α
, 60αn ln

e

α
, 5n
√

p ln(en)
}

,

where we define Cα := [0, αn] ∪ [n− αn, n].

E.3. Proofs for Lemma 16

Proof We first require the following lemma, which lower bounds the spectral norm of a matrix

(A − pS)S×S primarily in terms of the empirical estimates of p corresponding to the submatrices

induced by S and S ∩ F . The proof appears in Section E.4.

Lemma 29 Given any symmetric matrix A, and subsets S, F ⊆ [n]

‖(A− pS)S×S‖ ≥
|pS∩F − pS | · |S ∩ F |

3
·min

{
√

|S ∩ F |
|S ∩ F c| ,

|S ∩ F |
|S ∩ F c|

}

.

For α1 ≤ 1/60 and |S| ≥ (1− 9α1)n, we can deduce that |S ∩F | ≥ n(1− 10α1) ≥ 5n/6 and

|S ∩ F c| ≤ |F c| ≤ α1n ≤ n/60. Therefore, |S ∩ F c|/|S ∩ F | ≤ 1/50. By Lemma 29,

|S ∩F | · |pS∩F −pS | ≤ 3‖(A−pS)S×S‖max
{

√

|S ∩ F c|
|S ∩ F | ,

|S ∩ F c|
|S ∩ F |

}

≤ 3√
50
· ‖(A−pS)S×S‖.

Applying Equation (6) with F ′ = S ∩ F , we have

‖(A− pS∩F )(S∩F )×(S∩F )‖ ≤ 2n · η(p, n).

This implies ‖(A− pS∩F )(S∩F )×(S∩F )‖ ≤ 0.1‖(A− pS)S×S‖. Next, by the triangle inequality,

‖(A− pS)(S∩F )×(S∩F )‖ ≤ ‖(A− pS∩F )(S∩F )×(S∩F )‖+ |S ∩ F | · |pS∩F − pS |

≤
(

1

10
+

3√
50

)

‖(A− pS)S×S‖.
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To interpret the derivation above: we have reasoned that if the spectral norm of (A− pS)S×S is

large, the contribution due to S ∩ F (i.e., the submatrix induced by the intersection with the good

nodes) is relatively small. This suggests that any top eigenvector must place a constant mass on

S ∩ F c. Indeed, the following theorem formalizes this reasoning, showing that the normalized top

eigenvector contains significant weight in this complementary subset of indices. The proof appears

in Section E.5.

Theorem 30 Let M be a non-zero n × n real symmetric matrix such that for some set S ⊆ [n]
and 0 ≤ ρ ≤ 1 we have ‖MS×S‖ ≤ ρ‖M‖. Let v be any normalized top eigenvector of M . Then

‖vSc‖2 ≥ (1−ρ)2

1+(1−ρ)2
.

Applying Theorem 30 with ρ = 1
10 +

3√
50

implies that ‖vS\(S∩F )‖2 = ‖vS∩F c‖2 ≥ (1−ρ)2

1+(1−ρ)2
>

0.15.

E.4. Proof of Lemma 29

First note that

0 =
∑

i,j∈S
(Ai,j − pS) =

∑

i,j∈S∩F
(Ai,j − pS) +

∑

i,j∈S∩F c

(Ai,j − pS) + 2
∑

i∈S∩F, j∈S∩F c

(Ai,j − pS).

Therefore,
∣

∣

∣

∣

∣

∑

i,j∈S∩F
(Ai,j − pS)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑

i,j∈S∩F c

(Ai,j − pS)

∣

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∣

∑

i∈S∩F, j∈S∩F c

(Ai,j − pS)

∣

∣

∣

∣

∣

.

Hence,

|
∑

i,j∈S∩F (Ai,j − pS)|
3

≤ max

{∣

∣

∣

∣

∣

∑

i,j∈S∩F c

(Ai,j − pS)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∑

i∈S∩F, j∈S∩F c

(Ai,j − pS)

∣

∣

∣

∣

∣

}

. (15)

From Lemma 23 , Lemma 24 and the above inequality, it follows that

‖(A− pS)S×S‖ ≥ max
{

‖(A− pS)(S∩F c)×(S∩F c)‖, ‖(A− pS)(S∩F c)×(S∩F )‖
}

(16)

≥ max
{ |
∑

i,j∈S∩F c(Ai,j − pS)|
|S ∩ F c| ,

|
∑

i∈S∩F c, j∈S∩F (Ai,j − pS)|
√

|S ∩ F | · |S ∩ F c|

}

(17)

≥ min
{ |
∑

i,j∈S∩F (Ai,j − pS)|
3|S ∩ F c| ,

|
∑

i,j∈S∩F (Ai,j − pS)|
3
√

|S ∩ F | · |S ∩ F c|

}

(18)

=
|
∑

i,j∈S∩F (Ai,j − pS)|
3
√

|S ∩ F | · |S ∩ F c|
·min

{

√

|S ∩ F |
|S ∩ F c| , 1

}

=
|pS∩F − pS‖S ∩ F |

3
·min

{ |S ∩ F |
|S ∩ F c| ,

√

|S ∩ F |
|S ∩ F c|

}

,

where (16) is from Lemma 23, (17) follows from Lemma 24, (18) from (15).
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E.5. Proof of Theorem 30

Since eigenvalues of symmetric matrices are real, let v ∈ R
n be the normalized top eigenvector

of M with eigenvalue λ ∈ R such that Mv = λv and ‖M‖ = |λ|. Since Mv = λv, we have

MS×[n] v = λvS , and

MS×[n] v = MS×S vS +MS×Sc vSc (19)

By Lemma 22 on (19),

‖MS×[n] v‖ ≤ ‖MS×S vS‖+ ‖MS×Sc vSc‖
⇒ |λ| · ‖vS‖ ≤ ρ|λ| · ‖vS‖+ |λ| · ‖vSc‖ (20)

⇒ (1− ρ)‖vS‖ ≤ ‖vSc‖
⇒ (1− ρ)2‖vS‖2 ≤ ‖vSc‖2

where (20) uses the assumption of the lemma. Finally using ‖vS‖2 + ‖vSc‖2 = 1 gives the bound.

E.6. An Approximate Top Eigenvector Suffices

As discussed in Remark 17, computing an exact top eigenvector in Algorithm 2 may be costly.

The guarantees associated with this top eigenvector are quantified in Lemma 16, which relies upon

Theorem 30. In this section, we prove a variant of Theorem 30, which works with an approximate

rather than an exact top eigenvector. By repeating the proof of Lemma 16 with Lemma 31 swapped

in place of Theorem 30, we can instead use approximate top eigenvector procedures, reducing the

runtime.

Lemma 31 Let M be a nonzero n × n real matrix such that for some set S ⊂ [n] we have

‖MS×S‖ ≤ 0.53‖M‖. Let v ∈ R
n be a unit vector such that ‖Mv‖ ≥ 0.99‖M‖, then ‖vSc‖2 ≥ 1

8 .

Proof Let u = Mv. Note that MS×[n] v = uS and MSc×[n] v = uSc , therefore

vT M v = vT (MS×[n] +MSc×[n]) v = vT (uS + uSc) = vTS uS + vTSc uSc .

Then by the triangle inequality,

|vT M v| ≤ ‖vS‖ · ‖uS‖+ ‖vSc‖ · ‖uSc‖
⇒ 0.99‖M‖ ≤ ‖vS‖ · ‖uS‖+ ‖vSc‖ · ‖uSc‖

⇒ 0.99‖M‖ ≤
√

1− ‖vSc‖2 · ‖uS‖+ ‖vSc‖ ·
√

‖M‖2 − ‖uS‖2.

In the last line, we used the fact that ‖u‖ ≤ ‖M‖ · ‖v‖ = ‖M‖ and ‖u‖2 = ‖uS‖2 + ‖uSc‖2.

Rearranging this expression, it is easy to show that in the case ‖uS‖2 ≤ 3‖M‖2
4 , the inequality is

violated if ||vSc‖2 ≤ 1
8 . Therefore, ‖uS‖2 ≤ 3‖M‖2

4 implies ||vSc‖2 ≥ 1
8 .

To prove the lemma, we must handle the remaining case: we show that if ‖uS‖2 ≥ 3‖M‖2
4 , then

‖vSc‖2 ≥ 1
8 .

Note that

MS×[n] v = MS×S vS +MS×Sc vSc .
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Then

‖MS×[n] v‖ ≤ ‖MS×S vS‖+ ‖MS×Sc vSc‖
⇒ ‖uS‖ ≤ 0.53‖M‖ · ‖vS‖+ ‖M‖ · ‖vSc‖
⇒ ‖uS‖2 ≤ 2(0.532)‖M‖2 · ‖vS‖2 + 2‖M‖2 · ‖vSc‖2

⇒ ‖uS‖2 ≤ 0.5618‖M‖2(1− ‖vSc‖2) + 2‖M‖2 · ‖vSc‖2

⇒ ‖uS‖2 ≤ 0.5618‖M‖2 + 1.4382‖M‖2 · ‖vSc‖2.

When ‖uS‖2 ≥ 3‖M‖2/4, the above equation implies ‖vSc‖2 ≥ 1/8, which completes the proof

of the lemma.

E.7. Proofs for Theorem 18

Before proving the Theorem we state and prove two auxiliary lemmas. The first lemma shows that

the average of entries of all small submatrices of S∗ × S∗ are close to pS∗ .

Lemma 32 Assume the conditions of Theorem 18 hold. For all S1, S2 ⊆ S∗ with |S1|, |S2| ≤ 3α1n
we have

∣

∣

∣

∣

∣

∑

i∈S1, j∈S2

(Ai,j − pS∗)

∣

∣

∣

∣

∣

≤ 60α1n
2 · η(p, n).

Proof Since ‖(A− pS∗)S∗×S∗‖ ≤ 20n · η(p, n), and using Lemma 23 and Lemma 24, we get

∣

∣

∣

∣

∣

∑

(i,j)∈S1×S2

(Ai,j−pS∗)

∣

∣

∣

∣

∣

≤
√

|S1| · |S2|·‖(A−pS∗)S1×S2
‖≤ 3α1n‖(A−pS∗)S∗×S∗‖≤60α1n

2·η(p, n).

We now show that all the nodes in Sf have normalized degree close to pS∗ .

Lemma 33 Assume the conditions of Theorem 18 hold, and let Sf be the output of Algorithm 3,

then for every node i ∈ Sf ,

|p(i)S∗ − pS∗ | ≤
(2κ(13α1, p, n)

α1
+ 210η(p, n)

)

.

Proof Suppose to the contrary that after 3α1n nodes are deleted by Algorithm 3, there is a node

i ∈ Sf such that |p(i)S∗ − pS∗ | >
(

2κ(13α1,p,n)
α1

+ 210η(p, n)
)

. Therefore, all the nodes deleted by

Algorithm 3 are such that |p(i)S∗ − pS∗ | >
(

2κ(13α1,p,n)
α1

+ 210η(p, n)
)

. Let D+ be the set of nodes

deleted by Algorithm 3 such that p
(i)
S∗ > pS∗ for i ∈ D+ and D− be the set of deleted nodes i such

that p
(i)
S∗ < pS∗ for i ∈ D−. Since |D+|+ |D−| = 3α1n and |(D+ ∪D−) \ F | ≤ |F c| ≤ α1n, we
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have that |D+ ∩ F | ≥ α1n or |D− ∩ F | ≥ α1n. Suppose |D+ ∩ F | ≥ α1n. Let F ′ = D+ ∩ F .

Then, using |F ′| ≥ α1n and |S∗| > n/2, we have

∑

i∈F ′,j∈S∗

(Ai,j − pS∗) =
∑

i∈F ′

|S∗|(p(i)S∗ − pS∗) > |F ′| · |S∗| ·
(2κ(13α1, p, n)

α1
+ 210η(p, n)

)

≥ n2κ(13α1, p, n) + 105|F ′|n · η(p, n).

Now, note that

∑

i∈F ′,j∈S∗

(Ai,j − pS∗) =
∑

i∈F ′,j∈S∗∩F
(Ai,j − p) + |F ′| · |S∗ ∩ F | · (p− pS∗) +

∑

i∈F ′,j∈S∗∩F c

(Ai,j − pS∗)

By Lemma 32 with S1 = F ′ and S2 = S∗ ∩ F c the last term in the expression above is at most

60 α1 n
2·η(p, n). For the second term note that |p − pS∗ | < 45 · η(p, n) and therefore, the second

term is at most 45|F ′|n · η(p, n). Finally using regularity condition 3 with F ′ and F ′′ = S∗ ∩ F
and α2 = 13α1 bounds the first term by n2 · κ(13α1, p, n). Combining the three bounds and using

|F ′| ≥ α1n,

∑

i∈F ′,j∈S∗

(Ai,j−pS∗) ≤ n2κ(13α1, p, n)+(45|F ′|+60α1n)n·η(p, n) ≤ n2κ(13α1, p, n)+105|F ′|n·η(p, n),

This shows the contradiction and completes the proof for the case |D+ ∩F | > α1n. The case when

|D− ∩ F | > α1n has a similar argument and is omitted.

Combining these lemmas appropriately allows us to conclude our main result on the guarantees

of Algorithm 3.

Proof of Theorem 18 We will partition Sf × Sf into the following groups and bound each term

separately.

∑

i,j∈Sf

Ai,j =
∑

i,j∈Sf∩F
Ai,j + 2

∑

i∈Sf ,j∈Sf∩F c

Ai,j −
∑

i,j∈Sf∩F c

Ai,j .

Since pSf =
∑

i,j∈Sf Ai,j/|Sf |2, by the triangle inequality,

∣

∣pSf − p
∣

∣ ≤
∣

∣

∣

∣

∣

∑

i,j∈Sf∩F (Ai,j − p)

|Sf |2

∣

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∣

∑

i∈Sf j∈Sf∩F c(Ai,j − p)

|Sf |2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

i,j∈Sf∩F c(Ai,j − p)

|Sf |2

∣

∣

∣

∣

∣

.

For the first term, |Sf ∩ F | ≥ (1− 13α1)n ≥ n/2. Using Equation (7) with F ′ = Sf ∩ F and

α2 = 13α1,

∣

∣

∣

∣

∣

∑

i,j∈Sf∩F (Ai,j − p)

|Sf |2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑

i,j∈Sf∩F (Ai,j − p)

|Sf ∩ F |2

∣

∣

∣

∣

∣

= |pSf∩F − p| ≤ 4κ(13α1, p, n).

31



ACHARYA JAIN KAMATH SURESH ZHANG

Since |Sf × (Sf ∩ F c)| ≤ α1n
2, and |Sf | ≥ n/2, by the triangle inequality, the second term is

bounded by

2

∣

∣

∣

∣

∣

∑

i∈Sf j∈Sf∩F c(Ai,j − p)

|Sf |2

∣

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

∣

∑

i∈Sf j∈Sf∩F c(Ai,j − pS∗)

n2/4

∣

∣

∣

∣

∣

+
2α1n

2

n2/4
|pS∗ − p|

≤ 8

∣

∣

∣

∣

∣

∑

i∈S∗ j∈Sf∩F c(Ai,j − pS∗)

n2

∣

∣

∣

∣

∣

+ 8

∣

∣

∣

∣

∣

∑

i∈S∗\Sf j∈Sf∩F c(Ai,j − pS∗)

n2

∣

∣

∣

∣

∣

+ 8α1 · 45 · η(p, n).

Since |S∗ \ Sf | ≤ 3α1n and |Sf ∩ F c| ≤ α1n, by taking S1 = S∗ \ Sf and S2 = Sf ∩ F c in

Lemma 32 bounds the second term above by 8(60α1 · η(p, n)). For the first term,
∣

∣

∣

∣

∣

∑

i∈S∗ j∈Sf∩F c(Ai,j − pS∗)

n2

∣

∣

∣

∣

∣

≤
∑

j∈Sf∩F c

∣

∣

∣

∣

∣

∑

i∈S∗(Ai,j − pS∗)

n2

∣

∣

∣

∣

∣

≤
∑

j∈Sf∩F c

|S∗|
n2

∣

∣

∣

∣

∣

∑

i∈S∗(Ai,j − pS∗)

|S∗|

∣

∣

∣

∣

∣

≤
∑

j∈Sf∩F c

1

n
|p(j)S∗ − pS∗ |

≤ α1 ·
(2κ(13α1, p, n)

α1
+ 210η(p, n)

)

,

where we use Lemma 33 and |Sf ∩ F c| ≤ α1n.

For the final term, since |(Sf ∩ F c)× (Sf ∩ F c)| ≤ α2
1n

2,
∣

∣

∣

∣

∣

∑

i,j∈Sf∩F c(Ai,j − p)

|Sf |2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑

i,j∈Sf∩F c(Ai,j − pS∗)

|Sf |2

∣

∣

∣

∣

∣

+ |pS∗ − p| · |S
f ∩ F c|2
|Sf |2 ,

which can be bounded again by taking S1 = S2 = Sf ∩ F c in Lemma 32.

E.8. Putting Things Together: Proof of Theorem 3

We now combine our methods from previous sections to prove our main upper bound. This pri-

marily consists of running Algorithm 2 followed by Algorithm 3, as described by Algorithm 4 and

quantified by Theorem 34. For technical reasons, to get the correct scaling of the error with respect

to the parameter p, we run this procedure on both the graph and its complement, and output the

appropriate of the two estimates. This is described in Algorithm 5, and quantified in Theorem 35.

This theorem implies our upper bound (Theorem 3).

Theorem 34 Suppose α1 ∈ [ 1n ,
1
60 ] and let A be an adjacency matrix containing an (α1, 13α2, p)-

regular subgraph. With probability at least 1 − n−2, Algorithm 4 outputs pSf such that for some

universal constants c2, c3 > 0,
∣

∣pSf − p
∣

∣ ≤ c2α1η(p, n) + c3κ(13α1, p, n).

The running time of this algorithm is Õ(α1n
3).

32



ROBUST ESTIMATION FOR RANDOM GRAPHS

Proof The estimation guarantees in Theorem 34 follows by combining the guarantees of Theo-

rems 15, and 18. We conclude the proof by analyzing the running time. As discussed in Remark 17,

Algorithm 2 can be implemented in Õ(α1n
3) time. Algorithm 3 takes O(n2) time. Hence, Algo-

rithm 4 runs in Õ(α1n
3) time.

Algorithm 4 Algorithm for estimating p

Require: number of nodes n, parameter α1 ∈ [1/n, 1/60], adjacency matrix A
S∗ ← run the spectral algorithm (Algorithm 2) with inputs n, α1, A
pSf ← run the trimming algorithm (Algorithm 3) with inputs n, α1, A, S∗

return pSf

Observe that the κ(13α1, p, n) error term in Theorem 34 scales proportional to
√
p, which gives

improved error when p is close to 0. To enjoy the same improvement for p close to 1, we can run

the algorithm on the complement of the graph. Theorem 35 describes the resulting guarantees, and

the procedure appears as Algorithm 5. Note that we apply Theorem 12 to convert from adjacency

matrices containing regular subgraphs (which we have considered up to this point) back to our

original problem.

Theorem 35 Suppose γ ∈ [ 1n ,
1
60 ] and p ∈ [0, 1]. Let G ∼ G(n, p), and A be the adjacency

matrix of a rewiring of G by a γ-omniscient adversary. With probability at least 1−10n−2, running

Algorithm 5 will output a p̂ such that

|p̂− p| ≤ C ·
(

√

p(1− p) log n

n
+

γ
√

p(1− p) log(1/γ)√
n

+
γ

n
log n

)

,

for some universal constant C. The running time of this algorithm is Õ(γn3).

Proof Theorem 34 and Theorem 12 imply that with probability ≥ 1 − 5n−2, p∗ in Algorithm 5

satisfies:

∣

∣p∗ − p
∣

∣ ≤ c2γη(p, n) + c3κ(13γ, p, n). (21)

By symmetry, with probability ≥ 1− 5n−2, q∗ in Algorithm 5 satisfies:

∣

∣q∗ − (1− p)
∣

∣ ≤ c2γη(1− p, n) + c3κ(13γ, 1− p, n). (22)

When p ≤ 0.1, equation (21) implies p∗ ≤ 0.5, and hence p̂ = p∗ and |p̂− p| = |p∗− p|. Similarly,

when p ≥ 0.9, (21) implies p∗ > 0.5, and hence p̂ = 1 − q∗ and |p̂ − p| = |(1 − q∗) − p| =
|(1 − p) − q∗|. Finally, for 0.1 ≤ p ≤ 0.9, we have |p̂ − p| ≤ max{|p∗ − p|, |q∗ − (1 − p)|}.
Combining the bound for the three cases completes the proof.
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Algorithm 5 Algorithm for Robust Erdős-Rényi parameter estimation

Require: number of nodes n, parameter γ ∈ [1/n, 1/60], adjacency matrix A
p∗ ← run Algorithm 4 with inputs n, γ, A
q∗ ← run Algorithm 4 with inputs n, γ, (1− I −A) (1 and I are the n× n all-ones and identity

matrix)

if p∗ ≤ 0.5 then

p̂← p∗

else

p̂← 1− q∗

end if

return p̂

Appendix F. Proof of Theorem 28

Throughout this proof, let β = max
{

16αn
√

pn ln e
α , 60αn ln e

α , 5n
√

p ln(en)
}

. First fix α ∈
[0, 1/2].

We first consider the entire matrix Ã, namely S = S′ = [n]. Recall that the diagonal entries of

Ã are zero. Then, note that
∑

(i,j)∈[n]×[n](Ãi,j − p) = 2·
∑

(i,j)∈[n]×[n]: i>j(Ãi,j − p) − np. Now

since all the entries Ãij are independent for i > j, we can apply the Chernoff bound (Equation (8))

with λ = β over these entries and with probability at least 1− n−3,

∣

∣

∣

∣

∣

∑

(i,j)∈[n]×[n]: i>j

(Ãi,j − p)

∣

∣

∣

∣

∣

≤ β. (23)

Since np ≤ n
√
p ≤ β, then from the above equation we get |

∑

(i,j)∈[n]×[n](Ãi,j − p)| ≤ 3β, with

probability at least 1−n−3. Note that for α < 1/n the statement only applies to S = S′ = [n], and

thus this case is handled. In the remaining proof α ∈ [1/n, 1/2].
Conditioned on the event |

∑

(i,j)∈[n]×[n](Ãi,j − p)| ≤ 3β, note that for all T ⊂ [n]× [n],

∣

∣

∣

∣

∣

∑

(i,j)∈T
(Ãi,j − p)

∣

∣

∣

∣

∣

> 6β ⇒
∣

∣

∣

∣

∣

∑

(i,j)∈T c

(Ãi,j − p)

∣

∣

∣

∣

∣

> 3β, (24)

where T c = [n] × [n] \ T . In particular, if T = S × S′ with |S| ≥ n − αn and |S′| ≥ n − αn,

then |T c| < 2αn2 and if min{|S|, |S′|} ≤ αn, then |T | ≤ αn2. Therefore, for T = S × S′ with

|S|, |S′| ∈ Cα, either |T | or |T c| is smaller than 2αn2. With this in hand, the theorem will follow

from the following lemmas.

Lemma 36 Let T ⊂ [n]× [n] be a given subset of size at most 2αn2, then

Pr

[
∣

∣

∣

∣

∣

∑

(i,j)∈T
(Ãi,j − p)

∣

∣

∣

∣

∣

≥ 3β

]

≤ 4 exp (−20αn ln e/α) .

We now bound the number of subsets of interest.
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Lemma 37 For a given α ∈ [1/n, 1/2], the number of sets S, S′ with |S|, |S′| ∈ Cα is at most

4 exp(4αn ln(e/α)).

For a given α ∈ [1/n, 1/2] and T = S × S′ such that |S|, |S′| ∈ Cα, since either of T
or T c have size ≤ 2αn2, therefore, combining the two lemmas implies that with probability ≥
1− 16 exp (−16αn ln e/α) ≥ 1− n3,

min

{
∣

∣

∣

∣

∣

∑

(i,j)∈T
(Ãi,j − p)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∑

(i,j)∈T c

(Ãi,j − p)

∣

∣

∣

∣

∣

}

≤ 3β.

Then from Equation (24), with probability ≥ 1 − n3 − n3,

∣

∣

∣

∑

(i,j)∈T (Ãi,j − p)
∣

∣

∣
≤ 6β. This

completes the proof for a given value of α. To extend it to all α ∈ [1/n, 1/2] first note that it

suffices to prove the theorem for α ∈ { 1n , 2
n , ...,

⌊0.5n⌋
n }, and then upon taking the union bound over

these values of α completes the proof.

We now prove Lemma 36. Note that

∑

(i,j)∈T
(Ãi,j − p) =

∑

(i,j)∈T :i>j

(Ãi,j − p) +
∑

(i,j)∈T :i<j

(Ãi,j − p)−
∑

(i,i)∈T
p. (25)

Then using the triangle inequality, {(i, i) ∈ T} ≤ n and np ≤ β to disregard the third term (as

done before),

Pr

[∣

∣

∣

∣

∣

∑

(i,j)∈T
(Ãi,j−p)

∣

∣

∣

∣

∣

≥ 2β

]

≤ Pr

[∣

∣

∣

∣

∣

∑

(i,j)∈T :i>j

(Ãi,j−p)
∣

∣

∣

∣

∣

≥ β

]

+Pr

[∣

∣

∣

∣

∣

∑

(i,j)∈T :i<j

(Ãi,j−p)
∣

∣

∣

∣

∣

≥ β

]

.

The two events on the right hand side are for sums of independent mean-centered Bernoulli

random variables. We will now apply the Chernoff bound (Equation (8)). Note that for a fixed λ
the right hand side of (8) is a non-decreasing function of t. Further note that |{(i, j) ∈ T : i >
j}|, |{(i, j) ∈ T : i < j}| ≤ |T | < 2αn2. Therefore,

Pr

[∣

∣

∣

∣

∣

∑

(i,j)∈T :i>j

(Ãi,j − p)

∣

∣

∣

∣

∣

≥ β

]

≤ 2 exp

(

−min

(

β2

6αn2p
,
β

3

))

≤ 2 exp
(

−20αn ln
e

α

)

.

Similarly,

Pr

[∣

∣

∣

∣

∣

∑

(i,j)∈T :i<j

(Ãi,j − p)

∣

∣

∣

∣

∣

≥ β

]

≤ 2 exp
(

−20αn ln
e

α

)

.

Combining the two bounds completes the proof of Lemma 36.

We finally prove Lemma 37. The number of such sets can be upper bounded by 4·
(

∑⌊αn⌋
j=0

(

n
j

)

)2
,

where

⌊αn⌋
∑

j=0

(

n

j

)

≤ (αn+ 1) ·
(

n

⌊αn⌋

)

≤ (αn+ 1) ·
( e

α

)αn
≤ eαn ln( e

α)+ln(αn+1) ≤ eαn ln( e
α)+αn ≤ e2αn ln(e/α).
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Appendix G. Lower bound proofs

Proof of Lemma 20 We prove this lemma by converting a γ-corrupted graph from DG(n, p) to a

γ-corrupted graph from G(n, p). Then one can run the algorithm for the undirected setting to obtain

an estimate of p, which implies the same error guarantees for the directed instance.

Suppose there exists a random directed graph DG ∼ DG(n, p) which is γ-corrupted by an

adversary. Assume there exists some lexicographic ordering of the nodes (e.g., they are numbered

from 1 to n). We define a corresponding undirected graph G as follows: let there be an edge

between nodes i and j in G if there exists an edge from i to j in DG and i < j. Sans corruptions,

this converts DG(n, p) into G(n, p) since the edges are still independent and the probability of each

edge existing is p. Furthermore, when at most γn nodes in the original directed graph are modified,

at most γn nodes are changed in the corresponding undirected graph.

Proof of Theorem 21 Our γ-oblivious adversary for the directed graph model works as follows.

The adversary picks a set B of size Bin(n, 0.15γ) to corrupt, by independently picking each node

in [n] with probability 0.15γ. Note that it is possible that the size of the set of corrupted nodes B
may exceed γn with small probability. We will address this issue later.

The adversary will corrupt outgoing edges of the nodes in B. The adversary’s strategy to corrupt

the neighborhood of node i ∈ B is as follows. They first choose node i’s new out-degree deg (i)
independently from some distribution P over {0, . . . , n − 1}. Then, they select an independent

random subset Si of nodes [n] \ {i} of size deg (i). Finally, they introduce the directed edge (i, j)
for each j ∈ Si, and remove the directed edge (i, j) for each j /∈ Si. The distribution of the degree

of corrupted nodes, P , depends on the parameter p of the Erdős-Rényi graph and will be specified

later.

By this construction, all graphs with a given outgoing degree distribution d1, d2, . . . , dn have

the same probability, and they form a sufficient statistic for estimating p. The out-degree of any

uncorrupted node is distributed as Bin(n − 1, p) and the out-degree of any corrupted node has

distribution P . Since each node is corrupted with probability 0.15γ, the out-degree of each node is

an i.i.d. sample from the mixture distribution (1− 0.15γ) ·Bin(n− 1, p) + 0.15γ · P .

Next, we show that for any p1 ≤ 1/2 and p2 = p1 + 0.1max
(

γ
√

p/n, 0.1γ/n
)

there exist

distributions P1 and P2 such that

(1− 0.15γ) ·Bin(n− 1, p1) + 0.15γ · P1 = (1− 0.15γ) ·Bin(n− 1, p2) + 0.15γ · P2. (26)

This will imply that, with the aforementioned adversary, any estimator that distinguishes between

the two cases will be correct with probability at most 1/2. At this point, we account for the probabil-

ity that the adversary selects a set B of size > γn, which is not allowed according to the corruption

model. By Markov’s inequality, this occurs with probability at most 0.15. Therefore, even counting

such violations as a success at distinguishing the two cases, it still succeeds with probability at most

0.5 + 0.15 = 0.65.

To prove the existence of P1 and P2 satisfying (26) we use the following folklore fact: given

any two distributions D1 and D2 and ε > 0, if dTV (D1, D2) ≤ ε, then there exist distributions Q1

and Q2 such that (1− ε)D1 + εQ1 = (1− ε)D2 + εQ2.

Hence, it suffices to show that

dTV (Bin(n− 1, p1), Bin(n− 1, p2)) ≤ 0.15γ. (27)
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The total variation distance between two binomials can be bounded as (Roos, 2001), (Adell and

Jodrá, 2006, Eq (2.16)).

dTV

(

Bin(n′, p), Bin(n′, p+ x)
)

≤
√

e

2

τ(x)

(1− τ(x))2
, (28)

where τ(x) = x·
√

n′+2
2p(1−p) . We also use the trivial upper bound dTV (Bin(n′, p), Bin(n′, p+ x)) ≤

n′x.

For the case when γ
√

p/n ≥ 0.1γ/n, applying the first bound for x = 0.1γ
√

p/n and n′ =
n− 1 we get

τ(x) = 0.1γ

√

p

n

√

n+ 1

2p(1− p)
≤ 0.1 · 1.1γ = 0.11γ.

For this case, using (28) gives

dTV ((Bin(n− 1, p1), Bin(n− 1, p2)) ≤ 0.15γ.

For the other case when γ
√

p/n < 0.1γ/n, applying the trivial bound gives

dTV ((Bin(n− 1, p1), Bin(n− 1, p2)) ≤ 0.1γ(n− 1)/n < 0.1γ.

This proves (27) and shows the existence of P1 and P2, which completes the proof of the first two

terms in ∆p.

Finally, we show that the third term in the max in ∆p holds even when there is no corruption.

To show this we first note that in absence of corruption the sufficient statistics for estimating p is the

total number of edges in the directed graph, which has a distribution Bin((n−1)2, p). Then to show

that for p ≤ 0.5 no algorithm can distinguish between between DG(n, p) and DG(n, p+0.1
√
p/n)

with probability≥ 0.6 it suffices to show that dTV(Bin((n−1)2, p), Bin((n−1)2, p+0.1
√
p/n)) <

0.2, which can be verified using (28) for x = 0.1
√
p/n, n′ = (n− 1)2, and any p < 1/2.
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