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Abstract
The web serving protocol stack is constantly evolving to

tackle the technological shifts in networking infrastructure and
website complexity. As a result of this evolution, web servers
can use a plethora of protocols and configuration parameters
to address a variety of realistic network conditions. Yet, today,
despite the significant diversity in end-user networks and
devices, most content providers have adopted a “one-size-
fits-all” approach to configuring the networking stack of their
user-facing web servers (or at best employ moderate tuning).

In this paper, we demonstrate that the status quo results in
sub-optimal performance and argue for a novel framework
that extends existing CDN architectures to provide program-
matic control over a web server’s configuration parameters.
We designed a data-driven framework, Configanator, that
leverages data across connections to identify their network
and device characteristics, and learn the optimal configuration
parameters to improve end-user performance. We evaluate
Configanator on five traces, including one from a global
content provider, and evaluate the performance improvements
for real users through two live deployments. Our results show
that Configanator improves tail (p95) web performance by
32-67% across diverse websites and networks.

1 Introduction
Web page performance significantly impacts the revenue of
content distribution networks (CDNs) (e.g., Facebook, Aka-
mai, or Google), with studies showing that a 100ms decrease
in page load times (PLT) can lead to 8% better conversion
rate for retail sites [14, 30]. Yet, uniformly improving web
performance is becoming increasingly challenging due to the
growing disparity in the network conditions (e.g. bandwidth,
RTT) [3, 36, 120, 135] and end-user devices [93, 94, 108, 134].
To address this disparity and improve the quality of experience
(QoE), the networking community is constantly developing
new protocols and configuration parameters for web servers
(AKA, edge servers), e.g., PCC [31], BBR [23], QUIC [51], etc.

The optimal choice of configurations is contingent on

Figure 1: Comparison of various tuning techniques.

the network infrastructure [3, 36, 77, 98, 120, 135, 142],
website complexity [20, 21, 95, 134, 136], and end-user
devices [1, 94, 108]. Furthermore, innovations along any one
of these dimensions will lead to changes to default parameters
and new protocols. Although different regions and ISPs have
radically different networking infrastructure and mobile
devices [1, 93], a majority of CDNs continue to employ a
“one-size-fits-all” [49] approach to configuring their edge
servers, which results in sub-optimal performance [3, 36, 135]
and high tail-latency in certain regions [142].

1.1 Configuration Tuning Status-Quo
Most attempts to tackle this growing diversity involve manu-
ally analyzing the performance of configuration options across
different regions [49], devices [1], or websites [110, 135].
While several CDNs expose configuration knobs to their
customers [40, 45], it is challenging to take the full advantage
of the knobs due to the required manual efforts and the lack
of automated learning techniques for effective tuning.

This paper focuses on tuning a broad set of configuration
knobs across the transport (e.g., congestion control algorithm)
and application layers (e.g., HTTP version) as highlighted
in Table 1. Next, we illustrate the challenges and benefits of
dynamically tuning network configurations.

Challenges in tuning stack: In Figure 1, we illustrate the
difficulty of tuning configurations by comparing page load
time (PLT) of popular websites, when configured using pop-
ular tuning techniques (setup explained in § 2.2). Specifically,
Bayesian Optimization [104] (e.g., CherryPick [4]) a statistical
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technique used for tuning systems configurations [4, 32, 75,
131], operator hand-tuned configurations (discussed in § 2),
TCP connection reuse a traditional optimization (discussed
in § 6.5), and a closed-loop offline-learning technique. We
compare their performance against two baselines: optimal con-
figuration discovered through an exhaustive brute-force search,
and default configurations for Linux and Apache (Table 1).

Hand-tuned configurations are manually selected and are
thus, coarse-grained. While they out-perform the default
at median, they fail to provide optimal performance across
varying network conditions and may even lead to performance
degradation for some networks. TCP connection reuse only
optimizes a subset of knobs (e.g., initial congestion window)
and is unable to take full advantage of the diverse network
stack knobs. Bayesian optimization aims to quickly discover
“good” configuration. While fine-grained, this approach is
relatively static and does not re-evaluate old choices, and is
thus unable to adapt to network dynamics [78]. We observe
the effects of this rigid behavior with wildly varying tail
performance. Lastly, we explore an offline model which learns
on traces from prior days and applies the learned model on
connections for the next day. Offline modeling is fine-grained
but with limited dynamicity: the trained model is unable
to react to real-time issues. Unfortunately, due to the high
dimensionality of the Internet’s dynamics, these real-time
issues are the norm, not the exception [67, 69, 78]. We observe
in Figure 1 that offline performs closest to the optimal but still
falls short because of its inability to react in real-time.

Our brief analysis of tuning approaches highlights the need
for a dynamic, fine-grained approach to tuning configurations.

1.2 Configanator
In this paper, we eschew the notion of a homogeneous ap-
proach to tuning web server configurations and instead argue
for a “curated” approach for configuring on a per-connection
basis. In particular, we argue that edge servers should be
configured to serve each of the incoming connections with the
optimal protocols and configuration parameters, e.g., a web
server may employ Cubic in favor of BBR when serving a low
bottleneck buffer connection [111, 114]. To this end, we argue
for a simple but robust server architecture that introduces
flexibility into the network stack, enables reconfiguration,
and systematically controls configuration heterogeneity. We
also introduce a contextual multi-armed bandit based learning
algorithm, an embodiment of domain-specific insights, which
tunes configuration in a principled manner to find optimal
configurations in minimal time. Taken together the design and
the learning algorithm, our system, Configanator, enables a
CDN to systematically explore heterogeneity in a dynamic and
fine-grained manner while improving end-user performance.
The design of Configanator faces several practical challenges:

• Network dynamics: network may change every few
minutes [67, 83, 146] and thus requires continuous learning.

Layer Protocol Options Default Example parameter

Transport

congestion_control (CC) Cubic BBR, Cubic, Reno
initial congestion window 10 MSS Integer (1, 4, 30)
slow_start_after_idle 1 boolean {true, false}
low_latency 0 boolean {true, false}
autocorking 1 boolean {true, false}
initRTO 1s decimal (0.3,1)s [59]
pacing (fair-queue) 0 boolean {true, false}
timestamps 1 boolean {true, false}
wmem {4096}B {163840}B

Web App

HTTP Protocol 1.1 1.1, 2
H2 push On On, Off
H2 max header list size 16384B Integer values
H2 header table size 4096B Integer values
H2 max concurrent streams 100 Integer values
H2 initial window size 65535B Integer values < 231

H2 max frame size 16384B Integer values < 224

Table 1: Web stack configuration parameters.

• Non-Gaussian noise: CDNs focus on improving tail
latency [27, 53, 145] which is often caused by non-Gaussian
processes (e.g., last-mile contention [125], mobile device
limitations) and are difficult to model.
• High-Dimensionality: Content personalization, diverse de-
vices [94,134], and last-mile connections [125] introduce high
dimensionality that limits the efficacy of offline closed-loop
approaches [67, 68].
• High data cost: Generating data for learning requires testing
configurations and may disrupt user’s performance. Hence,
the negative impact on users must be minimized.
• Limited flexibility: Linux kernel and modern web servers
lack the flexibility to tune configurations on a per-connection
basis, thus requires enhancing the traditional networking stack.

The key insight of Configanator is to simultaneously operate
in two modes depending on the “quality” of the performance
model. Essentially, Configanator intelligently selects samples
that speed up model convergence, then at steady-state it
transitions into a greedy-mode that stochastically samples
points to iteratively improve performance. Configanator
further clusters similar connections together and samples
across clusters to amortize the cost of exploration.

Configanator uses a contextual multi-armed bandit [133]
designed explicitly to continuously converge to an optimal
(or near-optimal) configuration within a minimal number of
exploration steps. Our ensemble fuses the stateful exploration
of Gaussian-bandit with the non-determinism of Epsilon-
bandit, enabling informed exploration of the configuration
space while randomly re-sampling old configurations. The
re-evaluation of data samples enables Configanator to directly
tackle non-Gaussian noise within the domain. The data
collected by the ensemble is encoded in a decision tree – which
enables quick and easy classification but is also amenable to
automatic generation of rules for a CDN’s web server.

To demonstrate the benefits, we conducted large-scale
simulations and live deployments. We used datasets from a
GlobalCDN and public datasets from CAIDA [22], MAWI [8],
Pantheon [142] and FCC [41]. Our simulation results show that
Configanator provides 32-67% (up to 1500ms) improvement
in the PLT at tail (p95) across the different traces. Given the
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Layer Option Top configs. in N.A. (cross-CDN) % of CDNs configuring Example of observed
differently across regions cross-regional difference

Web App

HTTP version H1.1(44.3%), H2(55.7%) 4.7% N.A. H2 -> Asia H1.1
Max header list size 16384 (100%) 0% None

Header table size 4096 (100%) 0% None
Max concurrent streams 100 (44%), 128 (56%) 1% N.A. 100 -> EU 128

Initial window size 65536 (71%), 65535 (15%), >1M (14%) 1.9% N.A. 1048576B -> Asia 65535B
Max frame size 16,777,215 (81%), 16384 (19%) 0% None

Transport
ICW {10 (62%), 4(20.5%), 24(5.3%)} MSS 6.9% N.A. 24 MSS -> Asia 10 MSS

initRTO {0.3(9.2%), 1(82.6%), 3(8.2%)} sec 2.3% N.A. 3s -> EU 1s
RWIN {29200(57.4%), 14600(8.2%), 42780(6.8%)} bytes 3.6% N.A. 29200B -> Asia 12960B

Table 2: Heterogeneity in configs. across 5 regions

recent arms race by CDNs to improve web performance, we
believe that Configanator’s modest improvements will result
in significant revenue savings [14, 19, 30, 103]. Please refer
to the project website 1 for the related resources.

2 Empirical Study
Next, we analyze CDNs to determine the current extent of con-
figuration tuning (§ 2.1) and quantify its implications (§ 2.2).

2.1 Fingerprinting web configurations
We aim to understand if modern CDNs employ homogeneous
configurations, as suggested by anecdotal evidence, or
heterogeneous configurations to tackle diversity in the
Internet’s ecosystem. To this end, we developed a tool to infer
and fingerprint a web server’s [49,92] application/L7 and trans-
port/L4 layers configuration parameters by actively probing
the servers and inspecting the packet headers and their reaction
to emulated network events (e.g., packet loss). Please refer to
Appendix A for more details about the tool. Using the tool, we
fingerprinted the configurations for the Alexa top 1k websites
from five different regions (North America (N.A), South
America, Asia, Europe, and Australia), and present the results
in Table 2. We use N.A configurations as the reference point
and compare the observed configurations along two axes:

Observation 1: Heterogeneity across CDNs: In Column
3 (cross-CDN), we observe that different CDNs use different
configurations in N.A. While some of the heterogeneity can
be attributed to differences in the default values for different
OSes, we observe that CDNs do use non-default values, e.g.,
amazon.com uses an ICW of 24 MSS in N.A.

Observation 2: Homogeneity within a CDN: In Column
4 (cross-region), we observe that only a small number of CDNs
tune their network stack to account for regional differences,
i.e., use different configurations in N.A. than the other regions.
The highest amount of tuning occurs at L4, with 6.9% of the
CDNs tuning the ICW differently in N.A. than in other regions,
e.g., 24 MSS in N.A. but 10 MSS in Asia for amazon.de.

Takeaway: Taken together, these observations indicate that
while individual CDNs perform modest tuning, most do not
tune finely enough to account for regional diversity. In fact,
only a small set of CDNs configure differently across regions.

1https://systems.cs.brown.edu/projects/configtron/

2.2 Implications of Configuration Tuning
Next, we quantify the benefits of dynamically tuning a web
server’s networking stack by conducting a large scale study
in our local testbed. We emulate a wide range of representative
networks (extracted from real-world traces [8, 22, 41, 142])
and perform an exhaustive, brute-force search of configuration
space (detailed description of the traces is provided in § 6.1).
Table 1 lists the set of configurations, with default settings for
TCP and HTTP taken from the Linux transport stack (kernel
4.20) and Apache (v2.4.18), respectively. In each trial, the
server iteratively selects a configuration from the possible
configuration space, a representative network is emulated
using NetEM [54], and the PLT of a randomly selected website
from Alexa Top-100 (locally cloned on the server) is measured
five times. The optimal configuration is defined as the one that
results in the lowest PLT for a specific network and website.

Figure 1 explores the implications of using sub-optimal
configurations, by comparing optimal and default configura-
tions for pageloads across diverse networks and websites. We
observe that there is ⇠18% PLT improvement at the median
(over 70% at tail) when optimal configurations are used over
the default. While the number may appear small, they can
result in tremendous revenue improvements [14, 30], and
more in the developing regions where CSPs are investing
heavily to improve network [37, 80]. We observe the highest
reconfiguration benefits for low bandwidth, high RTT/loss
regions, representative of developing region networks.

Next, we analyze congestion control measurements across
different regions from Pantheon [142]. We observe that emerg-
ing protocols, e.g., BBR, PCC, or Remy, which use probing or
ML to improve performance,do not provide uniformly superior
performance. In particular, we observed that in many situations
BBR is suboptimal, performing 3X to 10X worse than the op-
timal congestion control. Moreover, no congestion control is
optimal for more than 25% of the networks tested, and the me-
dian congestion control is optimal for only 6% of the networks.

3 Configanator’s Algorithm
Tuning network configurations to maximize the web perfor-
mance for diverse networks and end-users presents a complex
learning problem. Next, we formulate the problem and present
a domain-specific ensemble to address the challenges.

Problem Formulation: Given a set of networking
configurations (C={c1, c2...cn}), network conditions (N
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= {n1, n2...nn}), devices (D = {d1, d2...dn}), websites (W
= {w1, w2...wn}) and a function, f(), that maps a website,
network condition, device, and configuration to a metric of
web page performance (e.g., PLT or SpeedIndex). Note that,
f (ci,ni,di,wi) returns the web page performance metric value
for applying configuration ci to a user device di loading website
wi in network ni. In this paper, we use PLT as the metric for
web page performance and can be easily replaced with other
metrics. Our goal is to solve Eq. 1 and find a configuration (c⇤)
that minimizes f() for a given combination of ni, di and wi.

argmin
c⇤

f (c⇤,ni,di,wi)={ f (ci,ni,di,wi)|8ci2C} (1)

Solving the black-box function f() requires exploring
sample space. Two possible exploration algorithms are:
• Brute force [2] which tests each possible configuration one
by one until the entire space is explored.

• Bayesian optimization (BO) [16, 104] is a principled global
optimization strategy that uses a prior probability function to
capture the relationship between the objective function (Eq 1)
and the observed data samples. BO models f(c,n,d,w) as a
Gaussian process (GP) [16]. GP is a distribution of candidate
objective functions and is used to select the next promising
point (c*) which is then evaluated on a connection. GP then
updates its posterior belief by adding the new observation
f(c*,n,d,w) to the set of seen observations. With every new
observation, the space of possible candidate functions gets
smaller and the prior gets consolidated with the new evidence.

Challenges: Both approaches are sub-optimal for our use-
case due to several reasons: (1) non-stationary network condi-
tions [10, 67, 69, 146] (network conditions change every few
minutes), (2) BO assumes that data is noise-free or only has
Gaussian noise [118], and non-Gaussian noise (tail latency can
not be modeled by a Gaussian process [78]) disrupts the estima-
tion of next candidate sample and is observed to impact BO’s
hyper-parameters (e.g., threshold on expected improvement
for next sample to stop the exploration), (3) costly data collec-
tion (collecting data requires testing on end-users which can
impacts PLT and revenue), (4) data scarcity (testing on individ-
ual users requires each user to generate a tremendous number
of connections but a user may only visit the site a few times).

Intuition: The intuition behind Configanator’s algorithm is
to decompose the model building into two phases: (i) an initial
phase during which the search should be directed to speed up
the process and build a good (not perfect) model, and (ii) a
steady-state during which the search should be more stochastic
to iteratively improve the model and tackle non-Gaussian noise.
Building on these insights, Configanator leverages a combina-
tion of clustering, an ensemble of bandit-techniques, and ML to
address the aforementioned challenges. Specifically, clustering
is used to group connections based on their network and device
similarity (called Network Class) and aggregate observations
across similar connections to address data scarcity. The use of
a contextual multi-armed bandit [133] enables Configanator to

explore configurations and continuously collect data samples
to learn and tackle dynamic client-side conditions in a balanced
and online manner. To generalize observations across the con-
nections, a Decision Tree is trained for efficient inference.

3.1 Domain-Specific Multi-Armed Bandit
Configanator’s learning algorithm consists of a contextual
multi-armed bandit [76, 84, 133] with three arms:
• Exploration Arm-1 (Gaussian process [104, 112]): The
Gaussian process (GP) bandit [4, 73] uses an acquisition
function to perform a directed search to quickly discover a
“good” (might not be optimal) solution when no information
exists for a Network Class (NC). There are multiple acquisition
functions available [16] and we use Expected Improvement
(EI) [112] because of its well-documented success [4, 32, 47].
This search process includes two terminating conditions: a
threshold on EI and minimum of number of data points to
explore. For non-continuous configurations (e.g., HTTP ver-
sion), we encode them into a number to discretize the space2.
To account for performance differences between websites and
NCs, the GP-arm is composed of a collection of GP models,one
for each unique website and NC combination (Appendix D).

• Exploration Arm-2 (Epsilon-bandit [128]): The Epsilon-
bandit randomly re-samples the data points to overcome issues
endemic with the Gaussian process (and Bayesian Optimiza-
tion in general), e.g., non-stationarity of mean performance.
The network operator bounds the random exploration by
defining a parameter, e, that controls the trade-off between
speed of exploration and the impact on end-user QoE. A high
e improves exploration but results in a negative impact on
clients’ QoE due to constantly changing configurations.

• Exploitation Arm (Decision Trees [107]): The exploita-
tion arm uses ML-powered prediction to model the data col-
lected through the exploration arms. We evaluated several tech-
niques including Support Vector Machines, Decision Trees (D-
Trees), and Random Forests. We found that the D-Tree hits the
sweet spot, providing comparable accuracy to the other models
while being efficient enough to build and update at scale. The
D-Tree encompasses all websites and NCs to learn across web-
sites and networks. Leveraging the config-performance curves
collected by underlying exploitation arms, a single D-Tree
model is trained for the “good” configuration found so far for
each website/NC pair, and the D-Tree maps {website, device,
network/AS characteristics} to their optimal configuration.

Context-based arm switching: Configanator constantly
switches between the arms based on the NC’s “context”
which is defined as the quality of the GP-model for the
website/NC. It operates in two modes: (i) Bootstrap, when no
information exists for a website or NC, the context is empty
and the GP-arm is used to explore the configuration space in a
principled manner until the acquisition function (EI) indicates

2GPyOpt [101] supports mixed (continuous/discrete) domain space [102].
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that a good configuration is found, (ii) steady-state, when
information from the GP-arm indicates “good” configurations,
Configanator uses either the epsilon-bandit to further explore
the configuration space, or the exploitation arm (i.e., D-Tree)
to leverage best configurations. Note that, random exploration
through epsilon-bandit continues after EI threshold is met.

3.2 Discovering Network Classes
Configanator extends on observations from prior stud-
ies [67, 89] and classifies homogeneous connections into
Network Classes (NC) with the intuition that similar connec-
tion characteristics lead to identical optimal configurations.

Design Goals and NC Features: The ideal NC-clustering
should (i) create a small number of clusters, each with a large
number of connections to amortize the cost of explorations, and
(ii) all members of a cluster should have near-identical profiles.
The two goals inherently contradict: the greater the number
of entities in an NCs, the higher the probability that the NC
contains entities with diverging performance. The second goal
is further complicated by the sensitivity of a configuration’s
performance (e.g., PLT) to a myriad of factors in the end-to-end
connection. To this end, we use network characteristics (band-
width, latency, loss rate), AS information (ASN, geo-location),
and device type as the basis for measuring similarity.

Capturing NC Features: To enable Configanator to
effectively tune both the transport and HTTP layers, we must
identify all features during the TCP handshake before the
HTTP version is negotiated through ALPN [60]. If we identify
features after HTTP negotiations, then tuning the HTTP layer
would require renegotiation and hence incurs latency penalty.
In Figure 2, we highlight the features collected during specific
phases of the connection: (1) During the TCP handshake,
we capture RTT, IP-prefix, and ASN/geo-location3. (2)
During the TLS handshake, we apply TLS fingerprinting
techniques [5, 18, 70, 127] on the TLS Client Hello to perform
device identification and capture device features (accuracy
evaluated in Appendix B). Note that, most operators already
employ TLS fingerprinting for security purposes [6, 61, 126]
and is also supported by major web servers [29]. We use the
Server Name Indication (SNI) in the Client Hello to determine
the website hostname which is one of the input features for the

3Captured using end-user’s IP and publicly available data (RouteViews
for AS [17], MaxMind for geo-location [62])

learning framework. (3) For goodput and loss rates, features
that cannot be captured during handshake, we build and use
a historical archive of these network characteristics.

Network Classification: Clustering can be done using con-
ventional techniques, e.g., K-means, hierarchical, or domain-
specific techniques [17,38,105], e.g., Hobbit [74] or, CFA [67],
or using CDN state of the art [26,87,119,139,140], e.g., latency-
based groups [26, 119, 139]. Although Configanator can in-
corporate any of the aforementioned techniques, our prototype
uses “K-means” clustering because of its simplicity. Confi-
ganator empirically selects the smallest K (i.e., the number of
classes) that bounds the spread of performance within each NC
by a predefined limit4(evaluated in § 6.2 and Appendix D).

3.3 Configanator Workflow
Figure 3 presents the end-to-end workflow. Default config-
uration is initially used for a newly-seen IP-prefix ( 1�, 2�) due
to the lack of information about its goodput and loss-rates. For
any subsequent connection from the IP-prefix, the recorded,
as well as the actively collected features, are used for NC
classification ( 3�). If the network, AS and device character-
istics do not fit into an existing NC, a new NC is created ( 4�)
and the next init_samples connections for the respective NC
are used for bootstrapping ( 5�) its empty context. When the
respective NC is bootstrapped, the multi-armed bandit uses
the actively and passively collected features, as well as the
requested website, for determining the context and alternates
between the arms ( 6�). The connections are correspondingly
tuned ( 7�) and the resulting performance metrics are fed
back into the models to help refine their classifications and
improve accuracy. Due to the computationally intensive nature,
Configanator builds/updates NC clusters in the background
and uses the already-built clusters for real-time classification.

4 Architecture

Our re-architected web server consists of four components
(Figure 4): The HTTP server application [39, 97, 121, 132] op-
erates as it does today: serves content and collects performance
metrics for each connection. The Configuration Manager runs
the learning algorithm on the telemetry collected from the
web servers. The Configanator-API abstracts vendor-specific

4Controlled by NCSpread knob in simulator (Table 4 in Appendix).
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configuration details and provides a uniform interface
for configuring web server’s network stack parameters. A
Configuration Agent runs on each web server and uses the
information received from the Configuration Manager to
configure the connections through the Configanator-API.

Adopting this architecture in an incrementally deploy-
able manner is practically challenging. The configuration
parameters are exposed in an ad-hoc manner, e.g., tuning
transport configuration requires IOCTL and setsockopt,
while tuning HTTP requires changes to application code and
enhancements to the ALPN protocol. Additionally, most
CDNs use well-established code bases and exposing the
configuration interfaces required by Configanator should
incrementally build on the existing code.

4.1 Configanator-API
The Configanator-API presents a uniform interface over the
web server’s serving stack thus abstracting away OS and web
server specific details. This simplified interface enables the
Configuration Agent to easily tune the network stack, without
having to understand vendor-specific details or implications.

Transport tuning: Unfortunately, the traditional kernels
only expose and provide flexible reconfiguration for a subset of
TCP’s parameters. In particular, some parameters (e.g., ICW)
can be configured on the connection level, while others can
only be configured on a global scale (e.g., tcp_low_latency).
Using Configanator at a coarser granularity, either limits the
type of supported connections on a machine or limits the
configuration space. There are several options to address this
issue ranging from user-space TCP/IP stacks [35, 65, 106],
kernel modules, eBPF programs, to leveraging virtualization.
We opt for a kernel module-based design over virtualization
approaches because hosting a single configuration per VM
introduces significant overheads.

HTTP tuning: HTTP version and H2 settings are de-
termined through Application Layer Protocol Negotiation
(ALPN) [60] in TLS handshake and H2 SETTINGS [12]
frame, respectively. Given the requirement for per-connection
tuning, we augment the ALPN and the H2 SETTINGS frame
code to enable fine-grained control over these configurations.
In particular, Configanator configures these settings by
restricting the options presented in the server advertisement
to the configuration setting being tuned, e.g., to set the HTTP
protocol to H2, we limit the “ALPN next protocol” field in
TLS Server_Hello to just H2. Similarly, we restrict the options
in the SETTINGS frame to configure HTTP/2 settings.

Tuning Workflow: Configanator-API tunes both the TCP
and HTTP version during the TLS handshake: after receiving
the Client Hello from the end-user and prior to sending the
Server Hello. This is the perfect location to tune because (1)
the complete feature set required to determine a connection’s
NC and configuration can be captured at this point, and (2)
the server is yet to finalize the HTTP protocol, which the
ALPN selects in Server Hello, thus enabling us to configure

the HTTP version. We note that at this phase of the connection,
the TCP state machine is in its infancy because the sender has
not sent any data, and thus virtually no significant state is lost
when we change the congestion control algorithm or settings.

4.2 Configuration Agent
The Configuration Agent is the glue logic between the Con-
figuration Manager and Configanator-API — it collects the
connection features, uses rules provided by the Configuration
Manager to make configuration decisions, and configures them
using the Configanator-API. We select a proactive approach,
where the Configuration Manager constantly pushes NC
and configuration mappings to the Configuration Agent
which caches them locally. Further for an unseen IP-prefix,
Configuration Agent uses the default configuration, until the
Configuration Manager finds a better mapping.

4.3 Configuration Manager
The manager runs in a centralized location, e.g., a data center
or locally in a Point of Presence (PoP), with the implications
later explored in Appendix F.9. It is charged with running
the learning algorithms (§ 3), network classification models
(§ 3.2), and disseminating the configuration maps to the
Configuration Agents’ cache. The Configuration Manager
disseminates and collects data from the Configuration Agents
using distributed asynchronous communication. For the NC
and configuration maps, Configuration Manager broadcasts to
all Configuration Agents, whereas for reporting performance
data and for making one-off-request for configuration maps,
the Configuration Agents use unicast.

5 Prototype

The implementation highlights of the prototype are as follows:
Configanator-API: partly resides within the kernel (as a
module) and partially resides in user-space in the form of
additions to the web server code (in our case Apache). The
components within the kernel allow us to tune the transport,
while the user-space allows us to tune the HTTP layer.

The kernel module reuses functions provided by ker-
nel’s congestion controls through the tcp_congestion_ops
interface and tunes fields in appropriate structs (e.g.,
inet_connection_sock). For tuning globally-defined knobs at a
per-connection level (e.g., tcp_low_latency ), we leveraged ker-
nel patches [34,55] to define and reference them from tcp_sock
struct. The user-space component within Apache code tunes
HTTP version in Apache and its design is generalizable to other
servers that use OpenSSL. OpenSSL library is used by most
web server implementations and allows web servers to register
a SSL_CTX_set_alpn_select_cb [44] callback to modify ALPN
decisions. To tune HTTP version, we register a call back which
looks up the HTTP version to use for a connection and restricts
the ALPN options advertised to the one specified by the Con-
figuration Agent. For H2 settings, we modify the Apache H2
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module to dynamically select the configurations while sending
the SETTINGS frame. The user-space agent also generates the
TLS fingerprint for device identification. We use JA3 [70] for
TLS fingerprinting. In both our testbed experiments and in the
live deployments, we use the ALPN-centric approach which
modifies protocol options presented in the advertisements.
Configuration Agent: is user-space code and is implemented
in 492 LoC of C++ code. The agent updates TCP and HTTP
settings via the Configanator-API. This component also parses
Apache’s logs for measuring network characteristics. For
measuring the PLT, the web server injects a simple JavaScript
into the webpage to measure the navigation timings.
Configuration Manager: is developed in 1435 LoC (Python).
It uses SciLearn [116] for D-Tree and GPyOpt [101] for the
Gaussian Process. For communication with the Configuration
Agents, we use ZeroMQ [144]. For D-Tree, we use SciLearn’s
CART algorithm with the following configuration: (i)
entropy for the information gain, (ii) set the minimum
number of leaf nodes to 80, (iii) set the minimum number
of samples needed for the split to 2, and (iv) do not limit the
depth of tree. For Gaussian process, we use init_sample=4,
min_sample_tested=7 and EI=8% thresholds. We tested a
range of these hyper-parameters settings 5 and selected the
ones resulting in the highest accuracy. Following [4], we tested
EI threshold in 3-15% range and selected 8% for its best trade-
off between accuracy and search cost. For controlling the “K’
for NCs, we use a NCSpread threshold of 5% (Appendix D).

6 Evaluation
We evaluated Configanator through a large-scale, trace-driven
simulator using real-world traces, and live-deployments (§ 7).
The simulation enables us to understand the system behavior
under dynamic conditions, as well as analyze the implications
of individual design choices.

6.1 Large Scale Trace Driven Simulations
Datasets: To simulate client activity, we use data from five
sources: (i) GlobalCDN comprises 8.2M requests sampled
from web and video services from 3 GlobalCDN PoPs (two
in N. America, one in Europe) for a duration of 6 hours. Each
request is a client fetching an object (e.g., web object, video
chunk, etc.) and contains user information (IP prefix, ASN,
etc.), observed server metrics (goodput, RTTs, loss rates etc.),
CDN logs (e.g., user to edge PoP mapping [26, 119]) and
performance metrics (time-to-last-byte). (ii) CAIDA [22],
packet traces from the Equinix data-center in Chicago (in
2016). (iii) MAWI [8], packet traces from the WIDE backbone
in Japan (in 2017). (iv) FCC [41], a U.S. nation-wide home
broadband dataset. (v) Pantheon [141, 142], a data set of client
sessions across different regions.

5(e.g., entropy vs Gini impurity for information gain, number of leaf nodes
ranging from 50 to 500, ID3, C4.5, and CART for D-Tree)

Generating client sessions: We use our traces to charac-
terize the network conditions of real-world users. CAIDA
and MAWI traces are captured at a vantage point between the
client and server and we measure the goodput, RTT and loss
rate by sequence-matching the data packets with their ACKs
6. GlobalCDN7, FCC and Pantheon datasets include the end-
to-end network characteristics between a client and server. We
model a client session as a time series of bandwidth (goodput),
latency and loss rate measured between a pair of end-points.

Configuration Rewards: To avoid the pitfalls of trace-
driven simulations [11], we decouple the modeling of
configuration rewards (i.e., PLT calculation) from the process
of generating client sessions. Our testbed comprises a cluster
of 16 Linux servers (kernel 4.20), divided evenly to act as
server (Apache) and clients (Chromium [50]). Our control over
the machines and network enable us to set arbitrary server-side
configurations (from Table 1) and emulate the bottleneck link
to match the measured goodput, latency and loss rates from
the datasets (using NetEm, TC [54]), with buffer-size set to
Bandwidth Delay Product (BDP). To isolate the impact of
network and configuration on PLT, caching (server or browser)
is disabled and each server serves a single client (no resource
contention). Using this testbed, we exhaustively measure
the PLT for all combinations of configurations (Table 1). For
each {network condition, configuration} pair, each website is
loaded multiple times with the browser8. The final results are
stored in a large tensor that maps {network condition (goodput,
RTT, loss-rate), configuration, website} to PLT – called the
PLT-Tensor comprising data from the pageloads in the testbed.

Simulator (Virtual Browser): Leveraging the client
sessions and the PLT-Tensor, the simulator simulates the
client’s browsing behavior and interaction with Configanator
as follows (visualized in Appendix F.1): (i) website9, user
information (e.g., IP) and session characteristics are taken as
inputs, (ii) the learning framework determines the appropriate
configuration for a connection, and (iii) pageload is simulated
by using the PLT-Tensor to determine PLT for the client given
the selected configuration. The simulator feeds the PLT back
to the learning framework to complete the feedback loop.

PLT is sensitive to a myriad of features, ranging from
dynamic network conditions at different time-of-the-day [67],
user devices, to inherent variability. The session time-series
captures the network dynamics and the testbed isolates the
impact of network conditions on configurations. Table 4 lists
the set of knobs we leveraged to test various realistic design
choices, e.g., NCSpread to test various “K” sizes, PerfMemory
to test the impact of PLT variability, etc. To account for the
other factors like user devices, we conducted a scaled-down

6Over a 5-second window (tunable through ChunkSize parameter in
the simulator), e.g., data ACKed in 5s is used to measure goodput between
vantage point/user. Further, we ignore duplicate ACKs while measuring RTTs.

7Measurements are on a per-request granularity. For multiple readings
within the 5s window, we aggregate and use the median value.

8We repeated each measurement 5 times, similar to [135].
9We iteratively load every website from our corpus for a given session.
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(b) GlobalCDN traces
(c) Heatmap of median PLT improvement

in different networks (GlobalCDN)
Figure 5: Benefits of Configanator (box whiskers show 5th and 95th percentiles).

experiment on a CDN and tested different configurations for
the real-world, diverse user devices (results in § 7.1).

Alternate algorithms: We evaluate against 8 algorithms:
(i, ii) Brute-force (Brute, Brute+NC): explores individual
configurations, in an online manner, until all are explored and
uses the best one (i.e., lowest PLT) for subsequent connections.
Brute learns at the granularity of individual clients (i.e., unique
IP) while Brute+NC clusters clients into Network Class (NC),
and thus learning is spread across each NC.
(iii, iv, v) Bayesian Optimization (BO, BO+NC, Cher-
ryPick+NC): Bayesian Optimization is used to explore
the configuration space and the best-explored option is
exploited once BO-specific thresholds are met (§ 5). BO
learns per client and BO+NC learns on a user group (NC)
granularity. CherryPick+NC is similar to BO+NC but with
hyper-parameters specified in [4].
(vi) Multi-armed Bandit (MAB+NC): uses traditional MAB
with a weighted epsilon-greedy agent [133]. Each arm of the
bandit is a different configuration, tested on NC granularity.
(vii) Random: Randomly selects a configuration in each trial.
(viii) Optimal: An oracle suggests the optimal parameters for
a session by offline brute-force , i.e., PLT is calculated for the
entire configuration space for each session offline and the con-
figuration with the lowest PLT is used. This process is repeated
for every session and puts an upper bound on improvement.

6.2 Effectiveness of Configanator

Figures 5a, 5b present the improvement in PLTs over default
configurations for the different algorithms. The box plots
compile data across the website pageloads for the client
sessions in the respective trace. Configanator outperforms
all alternatives at median and tail, improving p95 PLTs by
67% for GlobalCDN (1500ms), 36% (1100ms) for MAWI,
32% (610ms) for FCC, 48% (640ms) for CAIDA and 57%
for Pantheon (850ms). Unlike Default, while Brute and BO
apply different configurations to users, they assume that the
network remains static and are unable to adapt to fluctuations.
Moreover, due to its inability to adjust to fluctuations, BO
often explores over 90% of the space without achieving the
target EI, behaving similarly to Brute. Brute+NC, BO+NC
and CherryPick+NC improve over the prior by amortizing the
costs of learning but fail to adjust to non-Gaussian variations.

Although MAB+NC is able to handle non-Gaussian noise, it
explores/exploits on a per-NC basis and, due to the lack of a
cross-NC exploitation arm (Configanator’s DT), MAB+NC
falls short in its ability to apply patterns learnt across NCs.

As Configanator continuously learns and tests new
configurations in an online fashion, a ‘bad’ configuration
may be tested during the exploration phase and may lead to
performance degradation. This behavior contributes to the
worse PLT than Default for the p5 pageload in Figures 5a, 5b.
A breakdown of the performance degradation and its causes
are presented in Appendix F.8.

Dissecting Performance Improvements: Next, in Fig-
ure 5c, we analyze performance breakdown for a subset of
websites according to the networking conditions used in prior
work [135]). We make two observations: (i) Improvements
tend to be higher in low bandwidth, low to high RTT/loss
networks (typical for developing regions) with a median value
of 14-67% compared to 10-25% for high bandwidth. We
postulate that this trend is an outcome of the higher focus on
developed region networks (typically high bandwidth, low
RTT/loss) for the default configuration selection [33]. We ob-
serve a similar trend across our traces: GlobalCDN, MAWI and
Pantheon traces (p95 RTT in 100-180ms) tend to show higher
improvements than FCC and CAIDA (US-based, ⇠60ms p95
RTT). (ii) the websites with highest benefits tend to be content-
rich, e.g., 9gag.com and cnn.com observe >45% and >60%
improvement, respectively, for all low bandwidth networks.

6.3 Benefits of Learning Ensemble

Next,we analyze the convergence for the top-3 algorithms from
§ 6.2 to focus on the aspects of Configanator that lead to better
performance. We further split Configanator into two versions
to analyze the benefits of its bandits: “NoGP” lacks GP and
guided exploration, while “NoDT” lacks the decision tree.

Figures 6 plots the median distance from optimal across
all NC and websites, for the first 500 update iterations. The ob-
servations are: (i) As data is gathered, Configanator performs
better than others because of its ability to blend the benefits of
both GP and DT – essentially efficient exploration and effective
exploitation (iterations 3-10). Brute+NC exhaustively explores
the complete space before converging to a choice, while
MAB+NC exploration lacks the guided nature of acquisition
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Figure 7: Impact of number
of NCs (K) on performance.

function. (ii) Eventually, with sufficient data Configanator-
NoGP is able to use the decision tree’s predictive power to
achieve near ideal performance (iterations 100+). Although
MAB+NC gets within 2-3% of optimal for these iterations,
it still needs more iterations to reach the optimal. (iii) While
NoGP perform comparably for median at 200+ iterations,
performance at the tail is still different (Appendix F.4).

6.4 Impact of Network Classes
Impact of Number of NCs: Next, we evaluate the impact of
our clustering configuration (i.e., NCSpread) and analyze how
the cluster size impacts performance. Intuitively, NCSpread
bounds the performance variance within a cluster and has
a direct impact on the number of clusters, or ‘K’. Given a
NCSpread value, the simulator performs a brute-force search
to determine the smallest K that yields the threshold. We tested
three scenarios with K inflated to {1.5, 2, 3} times the baseline
value (Figure 5 experiments). The inversion from NCSpread
to K and its implications on modeling accuracy are further
discussed in Appendix D.

Figure 7 plots the ratio of Configanator and {MAB+NC,
Brute+NC} PLT across the pageloads in GlobalCDN trace (<1
when Configanator outperforms). We observe the performance
gap between Configanator and others increases with the K
size. Although the large K results in a higher number of
tighter NCs with lower performance spread within their
constituents, it leads to an overall increase in exploration steps
for MAB+NC and Brute+NC, as these algorithms explore
the individual NCs independently. Further, the individual
NC’s best-found configuration is exploited for a narrower
set of connections due to a lower number of connections in
each cluster as compared to the case when K is small. On
the other hand, the DT-arm in Configanator builds on the
data collected for all NCs (§ 3.1). As soon as Configanator
switches to DT-arm fairly early (Appendix F.3), it is able to
exploit the best-found configuration for a wider audience,
irrespective of the NC boundaries. The higher degree of
exploration required by MAB+NC and Brute+NC makes their
performance sub-optimal for the NCs with a smaller number
of connections. Moreover, this can also lead to performance
problems for tail connections, who are often in smaller NC
due to their divergent network and device characteristics.

Impact of Size of NC (# of connections): Configanator
aggregates network measurement across similar connections

and assumes homogeneity within an NC. Though an NC with
a small number of users may lead to a smaller number of con-
nections to learn from, it also favors the system as connections
in the respective NC are strictly homogeneous. Next, we ex-
plore the impact of this bias on our results. We divide the NCs
based on their unique number of IP prefixes and compare the
PLTs observed for the individual prefixes with the NC’s global
PLT, i.e, median across all the prefixes in the NC. For two of
such divisions, Table 3 presents the PLT comparison across the
prefixes in NC groups. Compared to the <=5 group, i.e., NCs
with a small number of distinct prefixes, where performance
for most prefixes matches the global one; >=30 group shows
more varying performance (e.g., lower than global PLT for the
p25 prefix). However, we observe that the presence of larger
NCs does not drastically impact Configanator as performance
for most of the prefixes is still on par with the global one. For
the tail prefixes that performs poorly as compared to the global
PLT for the >=30 group, Configanator overfits the best-found
configuration for the NC majority to the tail prefixes, and is ob-
served to still outperform the Default (row 4 and 6 in Table 3).

6.5 TCP Connection Reuse (ConnReuse)
CDNs typically employ ConnReuse, allowing a new request to
reuse older TCP connection. The key advantage of this feature
is that the new request inherits matured congestion window
(cwnd) and does not restart the connection from scratch, i.e.
ICW. To analyze connection reuse, we analyzed the trace
(GlobalCDN) to identify if and when requests reused existing
connections and modified our setup to employ the reused
connection’s cwnd as the ICW for the page load10.

Figure 8 plots Configanator improvement over ConnReuse.
We observe that Configanator gains are reduced from 18%
over Default (Figure 5b) to 14% at the median. The benefits
at the tail are still substantial, with 56% p95 improvement.
There are several reasons for this behavior: First, connection
reuse only impacts the slow-start phase (e.g., ICW) and does
not tune the CCA and HTTP, the top two critical knobs (Fig-
ure 13). Second, even with reuse, a connection is not always
guaranteed to reuse the old cwnd, since other TCP settings like
slow_start_after_idle may reset to default ICW — forcing a
reused connection to again go through slow start phase. In fact,
the old cwnd is reused with a probability of 0.27 in our trace,
i.e., only a small subset of requests exploit the benefits of
reuse. Third, unlike Configanator’s exploitation of good con-
figurations for similar connections, the scope of ConnReuse if
limited to a single connection — a new connection from even
the same user will go through the default slow start phase. Con-
sequently, while connection reuse outperforms the Default by
only 4.65% and 19.6% at median and tail respectively, a variant

10We infer ConnReuse if the first cwnd for a request is greater than
connection’s ICW. Our GlobalCDN trace directly captures these fields for
each request. Note that, the reused connection may also inherit the MTU and
SRTT values, but we limit our focus to the key component that limit data
transfer, i.e., cwnd.
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NC PLT ratio Prefix distribution
group p5 p25 p50 p75 95

<=5 Global / Configanator 0.92 1.0 1.0 1.0 1.08
Default/Configanator 1.05 1.07 1.14 1.27 2.34

>=30 Global / Configanator 0.89 0.96 1.0 1.0 1.06
Default/Configanator 1.04 1.09 1.17 1.21 2.67

Table 3: Impact of NC size on performance. Figure 8: Impact
vs TCP connection reuse.

Figure 9:
Impact on fairness.

Figure 10:
Only fair configurations.

of Configanator that only tunes ICW still performs ConnReuse
with 8.7% and 23.4% improvements at median and tail.

These results suggest that ConnReuse alone is not the silver
bullet, also portrayed by other ICW tuning system [42], and
Configanator is expected to bring substantial improvements
even when traditional optimizations are considered.

6.6 System Benchmarks
Next, we evaluate the latency, CPU and memory overheads.
The experiments are performed in a testbed by emulating
network conditions from our traces for 10 randomly selected
websites. We repeat each test 1000 times.

Latency Overheads: For latency overheads, we focus on
the modifications to ALPN to enable HTTP level tuning. We
compare Configanator against a version that does not modify
ALPN and tunes HTTP level by renegotiates which incurs at
least 1-RTT overhead. Figure 11 plots the PLT for the two vari-
ants, normalized by Default (vanilla Apache). Given that Con-
figanator simply edits the “ALPN next protocol” field in TLS
Server_Hello without requiring any extra communication, we
observe no latency overheads and a similar performance to the
Default. For Renegotiation, we observe a slight PLT inflation
(⇠3% at the median) which is due to the TLS renegotiation re-
quired to switch the HTTP version. We note that this approach
still has a minor overhead (4% higher PLT at median) because a
page load requires many RTTs and this overhead get amortized.

CPU and Memory Overheads To measure the CPU and
memory overheads, we leveraged the Apache Benchmark
tool to setup 100, 250 and 500 concurrent connections. We
observe slight CPU overhead (<5%) as compared to Default.
Although reconfiguring the connections do not require
any additional memory, keeping the IP prefixes and their
NC/configuration rules in the KV-store contributed to an
increased memory usage.

6.7 Fairness Implications
Next, we explore the fairness implications. Within the testbed,
we explore the situation where 30 concurrent flows share a
representative bottleneck link, i.e., the access links for 3G,
4G, etc (number of flows from [115] Appendix F.10), under
shallow buffers ({0.5 and 1} BDP). We use Jain’s Fairness
Index [63] to quantify fairness. We split the connections into
two groups – one using Configanator and another using the
default configuration (e.g., Cubic with 10MSS ICW). We then

vary the percentage of connections in each group.
Quantifying Unfairness: Figure 9(a) present Jain’s index

when 75% and 50% of the flows are tuned. We observe that fair-
ness decreases as the percentage of Configanator-tuned flows
increases. Unsurprisingly, unfairness arises for two reasons:
(1) when a flow is configured to use BBR [24,57,111,129,137],
and (2) when a flow is configured to use high ICW values
(even if BBR is not used) [52, 72, 88].

Configanator without unfair configurations: Next, we
excluded the unfair configurations from the configuration
space and tested 3 scenarios: (i) prevent BBR usage, (ii)
prevent high ICW usage, (iii) prevent both. Figure 10 plots the
ratio of PLT seen for vanilla Configanator (all configuration) to
the variants, for GlobalCDN traces. We observe that NoBBR
and NoHighICW perform similar to vanilla system for a
significant fraction of the trace (63% and 35% respectively)
and within 6% for worst case: this is because BBR is not
always the optimal choice and application layer tuning (HTTP
version) helps account for the lack of BBR or HighICW.

The results show that Configanator can provide an alternate
war-chest to CDNs to improve web performance, even without
using the unfair configurations.

6.8 Critical Knobs

We analyze the relative importance of reconfiguring different
configuration parameters (Table 1). Our goal is to understand
the minimal (or critical) parameters that must be tuned to
significantly improve performance. In Figure 13, we plot the
performance benefits of using distinct subset of configuration
parameters, leveraging the brute-force exploration data from
PLT-Tensor. We observe that the top 3 crucial parameters are
HTTP version, congestion control algorithm (TCP-CC) and
ICW. Moreover, when performing a layer to layer comparison,
we observe that the Transport layer parameters combined
(Tran. layer) have a higher impact on performance than the
Application layer knobs combined(App layer). To explain
this discrepancy, we analyze the different knobs in each layer
and we observed that while certain transport knobs, e.g.,
Auto Corking, have little benefit in the median scenario, they
are influential at the tails. Unlike the transport layer, in the
Application layer most of the parameters (e.g., HTTP2 settings
like header table size etc.) do not show significant benefit in
median or tail conditions.
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Pageload PLT diff. (ms) % imp.
p25 671 13.7
p50 767 14.6
p75 1219 21.5
p95 3797 26.3

Figure 14: Live deployment PLTs and improvements.

7 Live Deployment
In this section, we present the results for dynamically tuning
the configurations at scale through a controlled experiment
at GlobalCDN and a live prototype deployment on Google
Cloud with 3161 end-users.

7.1 Validation at GlobalCDN
Next, we validate our approach when applied to data with more
realistic and diverse client settings. We conducted measure-
ments at GlobalCDN to collect data regarding performance of
different configurations for the diverse networks and end-user
devices. Specifically, we used the default configuration for
80% of the connections and explored random configurations
for the rest to generate the data needed to emulate the contextual
multi-armed bandit based exploration. Due to operational con-
straints, we analyzed a subset of configuration knobs: different
congestion control algorithms and ICW. The experiments were
conducted by randomly selecting 1% of the users from 3 of the
CDN PoPs, for a duration of 6 hours. Note, these PoPs have
the same workloads as the GlobalCDN trace described earlier.

We replayed the captured traces in our simulator, with two
key distinctions: (i) the testbed-based PLT-Tensor was replaced
by TTLB measurements collected from production users, since
these TTLB measurements encompass the performance across
real-world users, (ii) This experiment covers diverse user de-
vices in-the-wild. Figure 12 presents the TTLB improvements
for Configanator (versus default configuration) with upto 37%
improvement at the tail (p95). Although this simulation covers
a smaller configuration space, the improvements affirm the
efficacy of tuning at scale, working with the diverse set of NC
features (user device, network, geo-location, AS).

7.2 Google Cloud Deployment
We deployed Configanator on several Google Cloud servers,
each with 8 CPU cores and 32 GB of RAM. We evenly divide

the servers into two groups: one half with the Configanator-
enhanced servers, while the other half with traditional Apache
server. We cloned a variety of real-world websites from Alexa
top-100 and hosted them on servers without sharding. We
hosted the Configuration Manager on a dedicated instance.

For clients, we used SpeedChecker [81, 82], a platform for
global Internet measurements with vantage points deployed
across the globe. We had 3161 clients in total, spread across
4 of the continents. The clients periodically conducted
pageloads from both the Configanator and the traditional web
servers at the same frequency, resulting in ⇠150K pageloads
in 21 days. Further details about SpeedChecker are provided
in Appendix F.1.

Figure 14 plots the raw PLTs observed for the two systems,
with the accompanying table summarizing the PLT difference
and improvements. Due to the online nature of the exploration
and learning, we observe PLT degradation for a small subset of
pageloads: 4.3% of the pageloads faced upto -13% degradation.
For the rest, Configanator resulted in significant improvements,
with upto 3.8s improved PLT at the tail (upto 767ms for
the median). Dissecting the improvements across networks
and websites, we observe a trend similar to Figure 5c: low
bandwidth, high RTT/loss networks and content-rich websites
get the most benefits. For the top configurations, we observe
no clear winner: top 5 covered 3 CCs (BRR, Cubic and Vegas),
both HTTP versions, and ICW randing from 16 to 40. We
observe a stark difference in the ICW values used by clients
in developed regions (Europe, N.America), with higher ICW
(30-50 MSS), compared to developing regions (16-24 MSS).

Most of the clients (⇠75%) are from N.America/Europe
and the rest are geographically distributed which results in un-
balanced Network Classes (NCs), leading to a higher share of
traffic for the probes in N.America/Europe. Interestingly, NCs
with the most number of pageloads, although showing good
improvements (11-13% at median), are not the ones where we
observe the highest benefits, owing to their good bandwidth,
low RTT connections. We observe that the less-dense NCs
still outperform Default (by more than 8% at median), since
Configanator’s exploitation arm is able to generalize to a
modest extent by using data collected across all NCs.

8 Discussion and Limitations
Security and Equilibrium: Potential implications of
self-learning systems include adversarial attacks [123] or
oscillations. We are working to formulate the interactions
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between different instances of Configanator (i.e., deployments
by different CDNs) as a game-theoretic problem to understand
our system at equilibrium.
Management Overheads: Dynamically reconfiguring the
CDN’s protocol stack complicates performance diagnosis. We
plan to investigate methods for reducing this complexity, e.g.,
minimizing the number of active configuration combinations.
Further, different configurations may vary in their resource-
consumption at the CDN edge and we plan to investigate the
configuration associated resource-overheads in the future.
Data Bias: Configanator’s data-driven workflow can be im-
pacted by the inherent biases of trace-driven systems [11], e.g.,
choice of configuration can have an impact on the feedback
loop’s decision features. We leave a more comprehensive
analysis of biasness to future work.
Testbed Limitations: Owing the lack of cellular connections
and devices in the testbed, our simulator is unable to emulate
different end-user devices and cellular last-miles. Although the
dataset from GlobalCDN covers diverse last-mile connections
and devices, we plan to explore systematic approaches to
incorporate this diversity in the testbed.
Trace Limitations: While several of our traces capture
end-to-end behavior (GlobalCDN, Pantheon, FCC), two of
our traces do not. Specifically, CAIDA and MAWI traces
are from core router and we recreate end-to-end behavior by
matching data with ACKs: this recreation can introduce some
imprecision into our latency, loss and BW calculations.
NC Size Bias: As demonstrated in the evaluation, connection
homogeneity within an NC (due to small NC size) favors Con-
figanator. This bias is prevalent in two of our traces, FCC and
Pantheon (comprising synthetically generated flows). How-
ever, this does not hold for the realistic traces (e.g.,GlobalCDN)
which are mainly focused in the evaluation when discussing
the size bias, and still shows improvements over the Default.

9 Related Work
Web Performance Many measurement stud-
ies [3, 33, 36, 48, 135] have explored the performance of differ-
ent networking protocol settings and the impact of tuning on
web performance. Our system builds on the observations from
these studies: namely that different configurations are required
for different network conditions and websites. Web improve-
ment by cross-layer tuning was earlier motivated in [91]
(Configanator’s workshop paper) and the present paper builds
a practical algorithm and system for tuning the configurations.
It further evaluates idea in a wide range of realistic scenarios.

Self-Tuning Systems: Self-tuning systems have
been explored within the context of transport proto-
cols [31, 64, 77, 98–100, 113, 138], video [2, 68, 85, 124],
databases [32, 56, 131], and cloud systems [4, 13, 78, 147].
While our work shares a similar ideology of exploiting hetero-
geneity, we differ in our methods for learning optimal config-
uration and in the domain specific solution for implementing

reconfiguration. While [68, 85] employ similar multi-armed
bandits, our bandit generalizes across clusters and includes
a Gaussian process to speed up learning. Additionally, while
some model relatively static or offline workloads [2,4,32,131],
Configanator takes an online approach to tackle network and
workload dynamics. Unlike [138] which rely on priori as-
sumptions of the network, Configanator builds a performance
model-based on live feedback which allows it to adapt to net-
work dynamics. In contrast with [31, 64, 77, 79, 98–100, 113]
which focus on tuning specific aspects of stack, Configanator
tunes across a broader set of layers and parameters. Similarly,
while these techniques use features from only network, Con-
figanator also incorporates application features (e.g., website).

While Configanator focuses on control over server config-
urations, others [48, 109] require control over both the servers
and the network switches to perform appropriate learning
and tuning — applicable to data centers. Others [7, 90]
move CCA outside data-path, enabling fast development and
portability. Such innovative techniques simplify the design
of Configanator by externalizing and simplifying tuning.

CrossLayer Optimizations. We differ from existing
cross-layer optimizations [3, 9, 15, 25] which introduce APIs
to enable the different layers to communicate and react
accordingly the network events. Instead, we externalize
the optimization logic and present an interface across the
different layers to enable an external entity to configure the
different layers which requires a learning algorithm agnostic
of applications – a key contribution of Configanator.

10 Conclusion
In this paper, we argue that “one-size-fits-all” approach to con-
figuring web server’s network stack results in sub-par perfor-
mance for end-users, especially those in emerging regions. Due
to the ever-expanding nature of Internet, all end-users do not
face similar network conditions. This argument stands in stark
contrast to the traditional setup of today’s web serving stacks
where a single configuration is used for a divergent set of users.

This paper takes the first step towards realizing hetero-
geneity and fine-grained reconfiguration in a principled and
systematic manner: our system, Configanator, introduces a
principled framework for learning better configurations, than
the default, for a connection by systematically exploring the
performance of different configurations across a set of similar
connections. We demonstrate the benefits of Configanator
using both a live deployment and a large scale simulation.
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Knob Function
TargetAlgo Sets corresponding tuning algorithm.
TargetNC Controls the clustering strategy for NCs.
init_samples Number of samples to initialize an NC.
NCSpread Controls the performance spread that bounds a NC, and hence the

number of cluster (K discussed in § 3.2).
AllowedConfig Limits the space to disallow certain configurations.
PerfMemory Length of history for configuration’s performance over time.
UpdateLatency Set latency b/w central Config. Manager and servers.
UpdateFreq Controls the time after which a model is updated.
ChunkSize Controls the time window for goodput, RTT and loss-rate

measurements from packet traces.

Table 4: Simulator knobs

A Fingerprinting Configurations

Our fingerprinting techniques are inspired from recent
works [49, 92, 110, 143]. Our tool inter-operates with TLS
and infers configurations in the following ways: (i) HTTP
configurations are visible to client during the connection
setup and are fingerprinted from the server response, (ii) TCP
configurations like RWIN are scraped from the packet headers,
(iii) TCP initRTO is measured by emulating a loss during TCP
handshake (i.e., by not acknowledging SYN packet back to the
server), and measuring the time it takes the server to retransmit
the SYN/ACKs, (iv) For TCP ICW, a big enough object URL
is scraped from a website, the corresponding object is fetched
and the number of packets sent by the server in first RTT is
measured. Further, we use MSS=64B to trigger higher number
of packets from server. We used AWS in respective regions
as the vantage points for fingerprinting the configurations.

Figure 15:
Relationship between TLS
fingerprint and User-Agent.

Figure 16:
Comparison of device

identifier’s impact on NCs.

B TLS Fingerprinting for Device Identifica-
tion

Recall that instead of the traditional User-Agent string,
Configanator uses TLS fingerprinting for device identification
as it allows device inference in early stages of the connection
(prior to the HTTP version negotiation through ALPN). To
evaluate its efficacy, we leverage a dataset from GlobalCDN,
comprising 3.6M requests. The dataset consists of server logs
and captures User-Agent strings from HTTP GET requests
and the TLS fingerprint of the respective connections. The

dataset includes 14.5K unique User-Agent strings and 3.2K
unique TLS fingerprints.

Figure 15 plots the number of unique User-Agents (UA) that
map to a TLS fingerprint. Ideally, a single UA should map to
a fingerprint, thereby accurately identifying the corresponding
device. However in practice, we observe that the one-to-one
mapping is limited only to 34% of the fingerprints, with the
rest mapping to atleast 2 UA. We observe that complementing
the TLS fingerprint with the end-user IP-prefix helps in
improving the accuracy, with 78% of the IP/24 and TLS
fingerprint mapping to a single UA and 96% mapping to
at-most 8 unique UA. We observe that for the cases where a
single fingerprint maps to multiple UA strings, there are only
minor differences, e.g., different browser versions, difference
in OS’s minor version (Android 6.0 vs 6.1.1).

In Figure 16, we further compare the two device identifi-
cation techniques for clustering similar connections together.
Using a dataset of 89K PLT measurements from GlobalCDN,
we run our Network Class clustering using either User-Agent
or TLS fingerprint as the basis for device identification. We
compute the Euclidean distance of each connection PLT from
its cluster’s center and the figure plots the ratio of the distance.
We observe that the ratio is between 0.98 and 1.00 for the
overwhelming majority of the pageloads, indicating that the
two technique perform fairly similar. Hence, device identi-
fication through TLS fingerprinting provides nearly similar
accuracy to the User-Agent strings, with the added benefit that
the device is identified prior to negotiating the HTTP version,
whereas User-Agent string can only be inferred through HTTP
requests headers (received after HTTP version negotiation).

C Passively Recording Network Conditions

Configanator passively collects goodput and packet loss rates
for the IP-prefix (/24) and builds a historical archive (§ 3.2).
When an IP connects, Configanator uses the handshake RTT
and looks-up the goodput and packet loss rates from the recent
session for the IP-prefix (/24) to aid in classifying the user into
her Network Class. Configanator prototype uses Apache logs
to collect information about user IP, the requested content,
content size and download time. Additionally, per-connection
TCP statistics are captured through Apache TCP Info
plugin [117]. Using this information, Configanator calculates
bandwidth (goodput) and packet loss rates on a per IP-prefix
(/24) basis. Although we use heuristics for stable goodput
and loss calculations, e.g., ignoring small objects, the goodput
estimate may still under-estimate actual network bottleneck
due to TCP mechanics (e.g., slow start phase). Consequently,
the use of such measurements in the testbed (§ 6.1) may
emulate lower bandwidths and higher loss rates (emulated loss
plus induced buffer overflows) than the actual bottleneck links.
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(a) Low spread (high K) (b) High spread (low K)

Figure 17: GP config-performance curve.

D Gaussian Process and Network Class
Discussion

Bootstrapping GP: The first step of learning is to acquire data
to bootstrap the Gaussian process. The bootstrap methodol-
ogy is crucial for ensuring that the Gaussian-Bandit quickly
finds good direction to explore. Recent works [4, 13, 32] have
demonstrated the applicability of three distinct bootstrapping
approaches: (i) random, in which the initial configurations are
randomly selected; (ii) domain-specific, in which prior domain
knowledge,captured through operator interviews or offline sim-
ulations, are used to rank configurations to sample; (iii) Latin
Hypercube Sampling (LHS) which divides the input space into
partitions and selects a sample from each partition to spread the
samples evenly across space [122]. In this work, we use LHS to
bootstrap the learning process. LHS has been found to aid boot-
strapping Bayesian optimization by reaching an optimal deci-
sion quicker [86]. We observed LHS to speed up exploration in
comparison with others by reducing the number of optimiza-
tion steps by 2-3X, as the bootstrapping samples are spread
evenly across space. A perfect rankings of configurations can-
not be known prior to actually testing configurations, leading
to ranking-based bootstrapping being sub-optimal to LHS.

Individual GP models for each website/Network Class:
Bayesian Optimization is traditionally used for mapping
configurations to their performance per workload (e.g., cloud
configuration to cost [4]). Due to network dynamics and
their implications on web performance [67, 135], a separate
BO/GP model is required to map configuration performance
for each workload (network condition and website), leading to
individual exploration for each workload. The lack of cross net-
work/website exploitation (due to separate BO models) makes
a solely BO-based technique unfit for Configanator. Intuitively,
the system should be able to generalize across networks and
can use the already learnt pattern from other networks to a new
network, e.g., HTTP/1.1 is optimal at high RTT, high loss for
a complex website, no matter the bandwidth [135].

Figure 17 presents the GP model for two websites for the
same set of configurations (x-axis) and the same Network
Class (NC). In Figure 17a, while GP has estimated the curve
for youtube with high confidence, amazon requires more data
samples (wide confidence interval for configuration 7, 8 and

9). The different configuration-performance curves require a
separate GP model for each website/NC for correct modeling
of a configuration’s performance and effective exploration,
as the configuration-performance curve is distinct for every
website and Network Class.

Figure 18: GP modeling error for different NC spread
thresholds.

Impact of performance spread within NC: Next, in
Figure 18, we leverage the NCSpread knob in simulator
(Table 4) to test different bounds for Network Classes (NC)
clustering. Recall that NCSpread controls the “K” for Kmeans
clustering by selecting the lowest K that bounds the standard
deviation of PLTs for a cluster’s constituents within a specified
threshold ({1, 2.5, 5, 10}% in the Figure 18). Determining the
right K involves iterating through K values and is a three step
process: (i) NC features – network characteristics (bandwidth,
latency, loss rate), AS information (ASN, geo-location), and
device type – from past connections are clustered using a
given K, (ii) For each cluster, the list of PLTs observed for its
members connections is generated and is normalized by the
median PLT of the list11, (iii) The standard deviation for each
list is computed and, based on how far is it from the median
and the NCSpread limit, the decision to converge on the given
K or test a different K is made.

Figure 18 uses the testbed generated data from § 6 and
plots the error in GP’s estimate for five randomly selected
configurations. The error is calculated as the absolute
difference of GP’s PLT estimate for a configuration and the
actual PLT, and the boxes plot the error distribution observed
for the various clusters (corresponding to the NCSpread value)
and the websites. Note that, a small error is always expected
due to the inherent variability with PLT measurements. The
5% limit NCSpread performs fairly close to the lower bounds,
while also requiring a lower K: 7% lower K value than the 1%
NCSpread threshold. This analysis serves as the motivation
for using 5% value in the simulator.

Figures 17a and 17b further visualizes the confidence
intervals for the GP models for 2 websites. For the high spread
case (10% NCSpread), connections from slightly different

11As there might be multiple websites, there is one list per website. Further
only PLTs for default configuration are used.
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networks are mapped to the name GP, resulting in wider
confidence intervals, and leads to inefficiency with acquisition
function’s next configuration suggestion.

E Deployment Considerations

Data-driven systems [2, 46, 66–68] traditionally use a
split-plane architecture where a modeling layer (responsible
for ingesting huge amounts of data and updating models) runs
at a slower granularity than the decision layer (responsible for
applying modeled decisions for users at real-time). Configana-
tor’s architecture uses a split-plane model which leverages
the different computational requirements of Configanator’s
workflow: As demonstrated in Figure 4, in the slow path,
the Configuration Manager collects telemetry from the web
servers, uses this telemetry to update the learning model,
and installs the configuration rules created by the model into
the web servers. In the foreground, each web server uses the
pre-installed rules to apply configuration to each connection
and periodically collects telemetry from each connection.

The first phase, the background process, is time-consuming
because of the process of updating the learning algorithms and
Network Classes. The second phase, a fast, real-time process
that applies the configuration rules to each inbound user
connection, is run at the edge on each web server and provides
low-latency, dynamic tuning. We note that although this
decoupling results in the fast-path using stale information, we
observe that this stale information still provides near-optimal
performance [46].

F Supplementary Evaluation Material

BW

RTT

Loss
Client session

Configuration
(HTTP=2.0, CC=Cubic, ICW=10 etc.)

Website to load

Simulator

Performance of given website
and configuration for the client

PLTa     PLTb     PLTc     PLTd

Client info (IP, ASN)

Figure 19: Simulating pageload for a client

F.1 Evaluation Setup
Simulation workflow: Figure 19 presents the workflow
for simulating pageload performance. The client sessions
are extracted from the real-world datasets and are modeled
as time-series. Since we use 5s for measuring the network
characteristics from the trace (a tunable knob as discussed in
§ 6.1), each linear state for BW, RTT, Loss in Figure 19 is at

least 5s long. We extract an IP distribution from the trace to
model the temporal aspects of client’s connections (time at
which a client connection (or IP) is seen in trace), i.e., the user
sessions are fed to the simulator in the order they are observed
in the real-world trace.

The simulator takes the goodput, RTT, loss rates at a certain
time from the session time-series, client info (IP, ASN) and the
target website to load as input. Using these features, it consults
the configuration to test from the learning framework. Once
the target configuration is known, it leverages the PLT-Tensor
to map the network characteristics {goodput, RTT, loss-rate},
website and configuration to the eventual PLT. Note that, we
assume that the network characteristics stay stable throughout
the lifetime on a single pageload, supported by recent studies
that TCP connection is piece-wise stationary and each segment
stays stable in the order of tens of seconds to minutes [10].

Table 4 further summarizes a number of simulator knobs
that allow us to emulate and test a variety of scenarios.

Dataset description and breakdown: While the Global-
CDN, MAWI and CAIDA datasets are adequately described
in § 6.1, here we provide details for the other two datasets.

The Pantheon dataset [141, 142] comprises of synthetically
generated TCP flows across the different parts of the world.
We collected three month’s worth of data (May to July 2018)
from Pantheon’s website [141]. For the generated flows, the
dataset logs the flow IDs, packet ingress/egress timestamps,
packet sizes and one-way delay. Using these fields, we
calculate the goodput, RTT and loss rates between each pair
of end-point and, similar to the case for GlobalCDN, MAWI
and CAIDA datasets, generate the time-series for the network
characteristics. These end-points (vantage points) range from
AWS deployments to university networks and cover multiple
last-mile connection types. The FCC dataset is collected by
the Measuring Broadband America program [41] and consists
of a nation-wide study of end-user’s broadband performance
and an accompanying dataset. This dataset provides coarse
granularity measurements in form of bandwidth, latency and
loss rates distributions measured for real-world users. We use
these distributions to generate synthetic traces, similar to [2].

The breakdown of ⇠21.4M sessions is as follows: 8.2M
from GlobalCDN, 2.7M from MAWI, 8.1M from CAIDA,
1.6M from FCC, 800K from Pantheon. The cross-regional
nature of our datasets provide coverage over a wide range
of representative network conditions, e.g., while FCC and
CAIDA cover connections in U.S., MAWI dataset is from East
Asia. Further, GlobalCDN and Pantheon [142] are even more
diverse with connections from countries across the globe.

SpeedChecker and vantage points: SpeedChecker [81]
is a platform for global Internet measurements, with vantage
points deployed in over 170 countries and thousands of
ISPs. SpeedChecker provides an API to conduct automated
measurements ranging from ping, DNS, web pageloads to
video tests. We leveraged vantage points (windows machines)
on this platform for conducting the pageloads. The API call
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(a) Network at vantage points (b) # of pageloads per prefix

Figure 20: Live-deployment vantage points

requires CountryCode and Destinations (a list of URLs to
load). Vantage points (probes) from the specified country are
selected internally by their platform and pageloads are con-
ducted (upto 100 pageload every hour, per city in the country).
Figures 20 presents various distributions about our vantage
points. 20a compiles the distribution of network conditions
observed for each pageload. The vantage points vary across the
three dimensions and have mostly RTTs greater than 100ms.
20b presents the number of pageloads per prefix. We observe a
heavy tail distribution, where certain vantage points conducted
more pageloads than others, e.g., Europe, N.America had
4X more pageloads than Asia and Africa due to the higher
number of the SpeedChecker clients in the developed regions.
Africa had the smallest number of vantage points among all
continents and the hourly limits were frequently reached,
resulting in a lower number of total pageloads. Note that,
diverse network conditions were still observed for the vantage
points (Figure 20a) in spite of this skew in vantage point
location. We further observe that 90% of the vantage points
have unique IP-prefix (/24), showing that they are distributed
and are not placed in a single facility, in the same subnet.
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F.2 Configanator Performance for CAIDA,
FCC and Pantheon Traces

Figure 21 presents the distributions for Configanator’s PLT
improvement for the CAIDA, FCC and Pantheon traces. These
figures complement the results in § 6.2 where we could not add

the results for all the traces due to space limitations. CAIDA
and FCC traces are collected from U.S.A and mostly cover high
bandwidth, low RTT/loss connections, e.g., p95 RTT is 60ms.
Following the trend observed in Figure 5c, we observe their
PLT improvements over default to be lower as compared to
other traces. Especially FCC dataset covers broadband connec-
tions and we observe the lowest p95 PLT improvement for FCC
among all the datasets. Nevertheless, the improvements are still
substantial with 610-640ms decrease in p95 PLT. On the other
hand, Pantheon traces cover wider range of networks, often
across continents, and result in upto 850ms improvement at tail.
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F.3 Bandit Contribution
Figure 22 uses the same convergence analysis as Figure 6 and
plots the percentage of connections that uses a certain bandit.
Initially GP bandit is largely used for a guided exploration.
However, as more data is collected, DT bandit starts to
overshadow the GP bandit, highlighting that a per-NC guided
exploration is over-shadowed by cross-NC exploitation, when
large data is available.

F.4 Bandit Performance at Tail
Figure 23 focuses on tail by dividing the entire trace into one
minute segments and plotting the distance to optimal for the
worst-case tail of each minute. Configanator’s use of bandits
enables it to perform better than individual bandits, being
closer to optimal by more than 7%.

Figure 24: Time of last config. change in NC
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F.5 Configuration Stability
Figure 24 plots the number of connections across NCs after
which the DT-bandit’s decision stays stable, i.e., configuration
decision for the NC does not change. While for the median NC,
the configuration choice becomes stable at⇠400th connection;
we observe that it can take as much as 10K connections to
reach the final configuration for some NCs. We observe the DT-
bandit to stuck on a near-optimal configuration for these NCs.
Down the line, the epsilon-bandit, randomly exploring, finds
the optimal configuration and updates the NC. We note that
Configanator switches to DT-bandit in the first 10-15 iterations
for these NC, highlighting that the GP model’s EI threshold was
reached very early, and the initial exploration through GP was
not very beneficial in uncovering the optimal configuration.

F.6 Design Choices for Network Classes
We use GlobalCDN dataset to evaluate design choices
for classifying similar users together. We compare Confi-
ganator’s clustering with: (i) IP-Prefix clusters /24 users
together, (ii) Hobbit [74] improves /24 groups by merging
dis-contiguous /24s based on co-location in Internet topology
and homogeneous performance, (iii) Latency Driven inspired
from AP-Atoms [105] where users with similar latency are
grouped together, (iv) since CDNs group users based on their
performance similarity [26, 119], CDN Aggregation use the
natural CDN grouping and assigns all users mapped to a
PoP to the same NC. We extract these mappings from the
GlobalCDN dataset and, as these mappings can vary over time,
build a time-series of user to CDN PoP mapping.

Figure 25: Impact
of clustering on # of NC

Figure 26: Spread of
TTLBs within NC

Figure 25 and 26 plots the number of NCs and the spread
of TTLBs within an NC for the different strategies. Ideally,
Configanator favors small number of NCs and aims for small
to negligible variations within NC performance metric, as the
goal is to cluster similarly performing users together (§ 3.2).
We observe Hobbit subnets /24 groups to have a poor coverage
over the trace (Hobbit only covers 12% of prefixes in Global-
CDN dataset), with non-Hobbit /24s being treated as individ-
ual groups, leading to similar results as IP-Prefix (figure 25).
Although NCs built by Hobbit and IP-Prefix have lowest per-
formance divergence, (low std. dev. in figure 26); Configanator
NCs are almost similarly compact, while using less than half

(a) Observed PLT variations. (b) Impact of PLT variability.

Figure 27: PLT variability

number of NCs. Although Latency Driven uses least number of
NCs, the lack of device, bandwidth, loss etc. information leads
to diverse users being grouped together (high TTLB std. dev.).
Similarly, since CDNs maps user based on latency to their
closest PoPs, network and device heterogeneity still exist (e.g.,
the closest PoP to a user can be 10ms-600ms [26]), leading to
highest performance variation within an NC for CDN Aggr.

We further modified the simulator to explore Configanator
performance when different NC techniques are used. We
observe that Configanator out-performs the rest for the
majority of the pageloads. The prefix and CDN based
approaches either do not account for network dynamics
or overfit to specific regions respectively. Latency driven
performs slightly better but ignoring the important metrics,
like packet loss and bandwidth, degrades its effectiveness.

F.7 PLT Variability
PLT measurements are inherently noisy [96] and the variability
in PLT can disrupt the learning algorithm’s model, e.g., GP
is sensitive to noise [78]. Using data from a web performance
observability company (NewRelic [71]), we modeled PLT
variability distribution and used it to introduce variability in
testbed-generated PLT-Tensor. Figure 27a plots a PDF of the
variations with x-axis as the mode PLT multiple (x-axis is
PLT normalized by mode PLT). We fit an Erlang curve to
the observed PDF, owing to its right-skewed, long-tail nature.
Using PLT from PLT-Tensor as the mode PLT (since mode
PLT is the most stable PLT measurement), the PDF is used
to calculate the noisy PLT observed by a real-world user.

Figure 27b plots the extent to which Configanator decisions
(in face of PLT noise) are optimal, compared to the case when
there is no noise (Configanator-NoVari). A proximity score of
1 indicates that Configanator decisions stay exactly the same
for both (noise, no-noise) cases. Leveraging the PerfMemory
knob, we test 2 scenarios with different length of historical
memory. Configanator uses this historical memory to amortize
the impact of any sudden change in performance metrics. We
observe Configanator’s decisions to slightly deteriorate in face
of noise. However the extent is mild at worst — with the system
still assigning the optimal decisions more than 95% at median.
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Figure 28: % sessions with PLT degradation.

F.8 Dissecting PLT Degradation
As shown in Figure 5, all algorithms result in some PLT degra-
dation. Figure 28 plots the percentage of sessions that faced
PLT degradation and further divide them into the root-causes.
Our observations are as follows: (i) During exploration, mul-
tiple configurations are tested and may result in degradation.
Around 5-6.2% of the sessions in two of the datasets are such
exploration steps. (ii) As network conditions change over time,
Configanator’s estimate of historical network characteristics
for an IP-prefix may diverge from the actual network. The
stale information is used for classifying the connection into an
NC and predicting the optimal configuration. Due to the global
nature of GlobalCDN dataset, we observe a higher network
churn, with 6.6% of total sessions resulting in PLT degradation
due to stale NC. Only a small proportion of sessions in MAWI
dataset (⇠0.1%) resulted in PLT degradation with correct NC
view, indicating that the exploitation arm momentary got stuck
at a sub-optimal configuration.

F.9 CM Design Choices
Configuration Manager Design: CM can run locally in a
PoP or centrally within a data-center [46], trading-off between
data-size to learn and the speed to react to changes. We evalu-
ate both scenarios in our simulator: In the local design, there’s
a separate CM for each trace, while for the global case there’s a
single CM for all traces. To simulate each scenario, we vary the
latencies between CM and the web servers. We observe that
while the global CM is able to make slightly better predictions
at the tail (2% better than local), the difference at median is

12 It takes ⇠2 minutes to update the models for 10K sessions.

Figure 29: Number of flows through access link

negligible. Despite the larger data set, global CM is not signifi-
cantly better due to distinctly diverse network conditions across
regions (only 17% NCs are common in U.S and Japan traces).

Frequency of model updates: Next, we analyze the
impact of updating our performance model less frequently: we
explore a range of values from every 2 minutes 12 up to every
day. We observed performance to stay relatively stable at the
median, whereas hourly or lower update intervals result in
⇠8% better improvement at tail, than a per-day granularity.
F.10 Flows Through Access Link

We use packet trace from [115] to measure the typical number
of TCP flows through an access link. Figure 29 presents the
number of TCP flows with at least 10Kb data transferred, in a
60s time interval. On the median 60s time interval, we observe
around 25-30 flows competing through the access link.

F.11 Additional Micro-benchmarks

In addition to the system benchmarks in § F.9, we also evalu-
ated two alternate design choices: VMs and LD_Preload. For
VMs, we used one VM for each configuration and used Open
vSwitch (OVS) [43] for routing flows to the appropriately con-
figured VM. We explored the use of LD_Preload to intercept
system call and tuned socket using setsockopt(). In comparing
both choices with Configanator, we observed that the VM-
based approach introduced a 20% increase in latency where
as the LD_Preload introduced a much smaller latency of 2.2%.
We also observed overheads for CPU and Memory utilization:
the VM-based approach introduced 30% (memory taken by
the guest OS) while LD_Preload introduced a 5% increase.
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