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Let s1, s2, · · · , sn denote a trajectory of length n from an ergodic Markov chain with stationary

distribution ξ, and let {Lt}nt=1 and {bt}nt=1 denote sequences of random functions from the state space,

taking values in R
d×d and R

d, respectively. We study stochastic approximation (SA) procedures for

approximately solving the d-dimensional linear fixed point equation

θ̄ = L̄θ̄ + b̄, where L̄ = Es∼ξ[Lt(s)] and b̄ = Es∼ξ[bt(s)], (1)

In particular, we consider the classical stochastic approximation iterate sequence (with constant stepsize

η), as well as its Polyak–Ruppert averaged analog (with burn-in period n0), given by

θt+1 = θt + η · (Lt+1(st+1)θt − bt(st+1)) and θ̂n = (θn0
+ . . .+ θn−1)/(n− n0), respectively.

The random observations typically satisfy |||Lt(s)|||op = Θ(d) and ‖bt(s)‖2 = Θ(
√
d) almost surely,

and our main goal is to establish that the estimators converge to θ̄ at a rate that depends optimally on

the dimension and mixing time. Accordingly, we first establish the MSE bound on the SA iterates

E[‖θn − θ̄‖22] . ηdtmix, for constant stepsize choice η ∈
(
log n/n, (tmixd)

−1
)

(2)

With the optimal choice of stepsize and burn-in period, we then prove a non-asymptotic, instance-

dependent bound on the averaged iterate θ̂n:

E
[
‖θ̂n − θ̄‖22

]
≤ n−1Tr

(
(Id − L̄)−1Σ∗(Id − L̄)−>

)
+O

(
(dtmix/n)

4/3
)
, (3)

where the matrix Σ∗ is the covariance matrix in the Markovian central limit theorem satisfied by the

appropriately defined noise process at θ̄. Both the leading-order (first) term and high-order (second)

term exhibit sharp dependence on the parameters (d, tmix). We complement these upper bounds with a

non-asymptotic local minimax lower bound over a small neighborhood of a given Markovian transition

kernel, and this matches the leading-order term in Eq. (3). Taken together, these results establish the

instance-optimality of the averaged SA estimator θ̂n in the Markovian setting.

We derive corollaries of these results for policy evaluation with Markov noise—covering the TD(λ)

family of algorithms for all λ ∈ [0, 1)—and parameter estimation in linear autoregressive models.

Our instance-dependent characterizations open the door to designing fine-grained model selection

procedures for hyperparameter tuning (e.g., choosing the value of λ when running the TD(λ) algorithm).

. Extended abstract. Full version appears as [arXiv:2112.12770]
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