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Abstract .  Streaming video recognition reasons about objects and their
actions in every frame of a video. A  good streaming recognition model
captures both long-term dynamics and short-term changes of video. Un-
fortunately, in most existing methods, the computational complexity
grows linearly or quadratically with the length of the considered dy-
namics. This issue is particularly pronounced in transformer-based ar-
chitectures. To  address this issue, we reformulate the cross-attention in a
video transformer through the lens of kernel and apply two kinds of tem-
poral smoothing kernel: A  box kernel or a Laplace kernel. The resulting
streaming attention reuses much of the computation from frame to frame,
and only requires a constant time update each frame. Based on this
idea, we build TeSTra, a Temporal Smoothing Transformer, that takes in
arbitrarily long inputs with constant caching and computing overhead.
Specifically, it runs 6 ×  faster than equivalent sliding-window based trans-
formers with 2,048 frames in a streaming setting. Furthermore, thanks to
the increased temporal span, TeSTra achieves state-of-the-art results on
THUMOS’14 and EPIC-Kitchen-100, two standard online action de-
tection and action anticipation datasets. A  real-time version of TeSTra
outperforms all but one prior approaches on the THUMOS’14 dataset.

Keywords:  Online action detection, action anticipation, transformer,
temporal smoothing kernel

1 Introduction

The problem of online action detection [10] and anticipation [29] aims to deter-
mine what action is happening or will happen shortly at each time step without
seeing the future. The challenge for online action detection is (1) how to ef-
fectively retain both the long-term trends and short-term cues when encoding
the history and (2) how to eficiently compute at each time step in the stream-ing
setting when the history gets longer. Recurrent models such as L S T M  [22] and
GRU [7] excel at updating the output recurrently but do not benefit from
increasing sequence length due to the training dificulty [50]. Attention-based
models [44], like Long Short-Term Transformer ( L S T R )  [54], are capable of han-
dling sequences up to 8 minutes long with impressive prediction results. However,
in the streaming setting, the attention computation of the long-term memory
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Fig. 1: A  comparison of traditional attention computation (left) in streaming videos
and our streaming attention (right). Unlike traditional approaches, our approach has a
constant runtime per frame. Exponential smoothing attention has a constant memory
footprint as well

has to be recomputed for each streaming window considered. Therefore, the
computational cost per frame is proportional to the sequence length.

In this paper, we propose an effective and eficient approach, Temporal Smooth-
ing Transformers (TeSTra), to encode suficiently long history with constant in-
ference cost at each time step. TeSTra relies on an eficient attention that reuses
much of the attention computation between consecutive frames. We reformulate
attention through a kernel perspective [38,43] and explore two temporal kernels:
a Box kernel and a Laplace kernel. Both kernels lead to an eficient streaming
attention computation. A  box kernel results in a First In First Out (F IFO)  at-
tention computation with a constant runtime update, but linear memory costs.
A  Laplace kernel results in an exponential smoothing attention with constant
runtime and memory costs. Fig. 1 shows a comparison of traditional attention
for streaming videos and our streaming attention. Both formulations exploit the
fact that in streaming recognition queries used in cross attention are learned
parameters and fixed during inference. During training, we use windowed atten-
tion in its original matrix multiplication form (with explicitly computed kernels).
This allows us to enjoy all the GPU parallelism of modern transformer training.
At test time, we switch to eficient streaming implementations.

To  show the effectiveness of TeSTra, we conduct extensive experiments on
standard benchmarks for online action detection and anticipation, namely THU-
MOS’14 [24] and EPIC-Kitchen-100 [9]. TeSTra achieves state-of-the-art perfor-
mance on both benchmarks. Running at 142.8 F P S  alone, TeSTra can serve as a
building block for streaming video recognition with low latency. When we include
an accelerated optical flow computing method and an image-based feature ex-
tractor, the overall system can run as fast as 41.1 F P S  and achieves 67.3% mAP
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on THUMOS’14, outperforming all but one prior approaches. Code is publicly
available at https://github.com/zhaoyue- zephyrus/TeSTra/.

2 Related Wo r k

Onl ine Act ion  Detection and Ant ic ipation.  Online action detection [10],
also known as early action detection [21], aims to detect the start of an action in
a video stream as soon as it happens. Much of prior work builds ever longer-term
temporal reasoning using various recurrent units or networks [11,13,53]. Xu  et
al. [53] perform online detection (classification) on current frame and
prediction the near-future actions simultaneously. StartNet [18] decomposes the
online detection into two stages: action classification and start localization. The
recently proposed L S T R  [54] enlarges the effective temporal context to as long
as 512 seconds by adopting the highly flexible cross-attention mechanism in
Transformer [44]. However, the induced computation cost is proportional to the
temporal span. In contrast, our streaming attention incurs the same constant
runtime cost independent of temporal span.

Action anticipation [19], or forecasting [29], aims to predict the action before
it occurs. Vondrick et al. [45] propose to anticipate by regressing the representa-
tions of future frames from past ones. Zeng et al. [58] and Rhinehart et al. [37]
use inverse reinforcement learning to perform forecasting at multiple levels. For
egocentric videos anticipation may additionally incorporate the camera wearer’s
trajectory [35], eye gaze [32], hand-object interaction [30], and environment af-
fordance [34]. In this paper, we handle the problem by taking longer history into
account, which is a general approach to both third-person and egocentric videos.
Transformers and its E f i c i e nt  Variants.  Since the Transformer architec-
ture was introduced in [44], much work has gone into improving the eficiency
of dot-product attention. Low-rank approximation on attention matrix [6,48]
factorizes the attention matrix into two lower-rank matrices. Different eficient
learnable sparsity patterns, such as locality-sensitive hashing [28], differentiable
sorting [41] or fixed patterns [5,57], reduce the total number of attention op-
erations. Query-based cross attention mechanisms compress longer-term input
into a fixed-size representation via memory [36,31] or recurrence [8]. Based on a
kernel-reformation [43], Katharopoulos et al. [27] propose linear attention by de-
composing the kernel function κ(qm , kn )  between a query-key pair into a product
between the feature mapping of query and key, i.e. ϕ(qm )� · ϕ(kn ). In computer
vision, Transformers are made more eficient by (1) leveraging hierarchy using
shifted local window [33] and pooling attention [14], (2) applying axial attention
on separate dimensions [46], and (3) using asymmetric attention (cross attention)
to squeeze high-dimensional inputs into tighter latent variables [26]. In speech
recognition, transformers are tailored to streaming decoding by integrating re-
currence [61] or memory [52]. In this paper, we follow the kernel interpretation of
Tsai et al. [43], and show how to eficiently update streaming attention kernels.
E f i c i e nt  Video Processing. Videos are notoriously expensive to process.
TSN [47] suggests sampling frames sparsely and running 2D CNNs on the se-
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lected frames. MVCNN [59] and C o V i A R  [51] directly learn video representation
from compressed videos. X 3 D  [15] and CSN [42] reduce computation FLOPs  by
leveraging channel-wise separable convolution. However, 3D CNN takes video
clips as input whose span can be 2 − 3 seconds, therefore may not be the best so-
lution in a low-latency application. Par-Inception [3] tackles the latency issue by
introducing depth-parallelism to the vanilla I3D [4] at increased implementation
dificulty. Most of the previous methods focus on trimmed videos whose duration
is often in several seconds while our method focuses on streaming videos whose
length can be as long as hours. However, many of these 3D CNNs may form a
good backbone to our system.

3 Preliminaries

Attent ion.  The attention mechanism [44] is a weighted addition of the input
features. The weights are guided by the similarities between the key and query
elements on an input sequence:

Attention(Q, X) =  Softmax
Q K �

· V  =  Softmax
Q  · ( X W k ) �

· X W v ,

(1)
where Q  � R M × C  is a set of M queries, X  =  · · · x n  · · ·� � R N × d  is the
sequence of N  input tokens, W k / v  � R d × C  is the weight to map the input to
key/value vector and C  is the feature dimension of x�W k .  For self-attention
computes queries from the inputs sequence Q  =  X W q  (M =  N  in this case).
Cross-attention uses a queries Q  that do not relate to the input sequence X
(generally M =  N  in this case). Cross-attention is commonly used in the encoder-
decoder architecture [44]. Cross-attention with M � N  is also used to eficiently
encode large amounts of data into a fixed-size representation [26,54].
Attent ion as kernels. The distance computation in attention is similar to the
mechanism of kernel learning [38]. Tsai et al. [43] reformulated Eq. (1) from the
perspective of kernels:

Attention(qm , {xn }) =  
P

n

n =

κ ( q
q  

, k
k

)v n  , (2)

where κ(·, ·) : R C  × R C  → R +  is a generalized kernel function, which depicts the
similarity between the pair of input vectors. Eq. (1) is equivalent to Eq. (2) for
a kernel κ(qm , kn )  =  e xp( q√ k n  ). In the next section, we show that this kernel
perspective leads to an eficient streaming formulation of attention in the context
of streaming video recognition.

4 Ef ic ient  Attention on streaming input

We use cross-attention to summarize a large stream of past frames into a fixed
size context representation. We use a fixed number learned queries and variable
number of keys and values from past frames as input. See Fig. 1 for an example.
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In streaming tasks, we are constantly receiving input and want to generate
the corresponding output on the fly. Examples include simultaneous interpreta-
tion or online detection in broadcast videos. Let x[1:t] =  {x1 , x2 , · · · , x t }  denote
a sequence of encoded past video frames for the current time-step t. The encoder
may use an image-based [20,25] or short-clip-based [4,15] CNN. Top-performing
video models [54] summarize large parts of the video through cross-attention
on either the entire sequence, i.e. Attention(q1 . . . qM , x[1:t] ) or a chunk of in-
put by sliding a N -sized temporal window, i.e. Attention(q1 . . . qM , x [ t−N + 1 : t ] ) .
Mathematically, this attention operation is captured in Eq. (2). Here, a small
number of queries {q1 . . . qM }  summarize a large temporal context. Queries com-
bine learned parameters {λ 1  . . . λM }  with a temporal embedding ωt of the cur-
rent frame: qm =  λ m  +  ωt. Keys {k 1  . . . kt } combine a frame-level embeddings
fn =  W �x n  with a temporal embedding ωt: k n  =  fn +  ωn. Values {v 1  . . . vt } use
the same frame-level features v n  =  W�x n .  In this setup, keys and values of past
frames remain unchanged, learned queries are constant during inference, only the
temporal query embedding changes frame to frame. This changing tem-poral
embedding does change the attention kernel κ  for each new frame. This means
in a streaming setting, we have no choice but to recompute the entire at-tention
operation frame after frame. This recomputation grows linearly with the size N  of
the temporal context considered. Next, we show how a reformulation of the
attention mechanism leads to a much more eficient streaming evaluation.
Streaming Attent ion.  Note, that both queries and keys combine a temporal
and feature-level embedding in their distance kernel κ(qm , kn )  =  κ (λm  +ω t , fn  +
ωn ). In Streaming Attention, we simple split this kernel into temporal and feature
component: K (ω t , ωn )κ(λm , fn ).  The Streaming Attention operation reduces to

Stream-Attention(qm, x[1:t]) =  
P

n

n =

K (ω t , ω
ω

) κ ( λ
λ  

, f 
f
)vn  . (3)

Most of the features and kernels used in this attention block remain constant
throughout the streaming setting. Moving from timestep t to t +  1 only changes
the temporal kernel K (ω t , ωn ) to K (ω t + 1 , ωn )  and adds one more element (ft +1 , vt + 1 ).
Because of the change in the temporal kernel, a naive evaluation of streaming
attention (3) still requires a linear runtime in the size of the temporal context.
However, the right choice of a temporal kernel can alleviate this. Here, we explore
two kernels: A  box (or uniform) kernel K B (ω t , ωn )  =  1 [ t − n < N ]  and a Laplace
kernel K L (ω t , ωn )  =  exp(−λ(t  −  n)) for λ  >  0. Each of these kernels leads to
an eficient streaming attention mechanism. A  box kernel results in first-in-first-
out (F IFO)  attentionw while a Laplace kernel leads to exponential smoothing
attention. Fig. 2 provides an overview of both kernels.
F I F O  Attent ion.  Let us define the numerator and denominator of Eq. (3) to
be two intermediate variables

Stream-Attention(qm, x[1:t]) =  
ψ(t)

. (4)



n = 1 n = 1

˜ ˜

˜ ˜

˜ ˜

˜ ˜

6 Y .  Zhao and P.  Krähenbühl

ᵃ�ᵃ� ᵱ�ᵆ�,ᵱ�ᵅ�     = 1[ᵆ�−ᵅ�<ᵄ�]

ᵱ� ᵆ� = ᵱ� ᵆ� − 1 + ᵰ� ᵂ�ᵅ�,ᵂ�ᵆ�     − ᵰ� ᵂ�ᵅ�,ᵂ�ᵆ�−ᵄ�

ᵱ� ᵆ� = ᵱ� ᵆ� − 1 + ᵰ� ᵂ�ᵅ�,ᵂ�ᵆ� ᵂ�ᵆ� − ᵰ� ᵂ�ᵅ�,ᵂ�ᵆ�−ᵄ�     ᵂ�ᵆ�−ᵄ�

(a) Box kernel

ᵃ�ᵃ� ᵱ�ᵆ�,ᵱ�ᵅ�     = ᵅ�−ᵰ�(ᵆ�−ᵅ�)

ᵱ� ᵆ� = ᵅ�−ᵰ� ⋅ ᵱ� ᵆ� − 1 + ᵰ� ᵂ�ᵅ�,ᵂ�ᵆ�

ᵱ� ᵆ� = ᵅ�−ᵰ� ⋅ ᵱ� ᵆ� − 1 + ᵰ� ᵂ�ᵅ�,ᵂ�ᵆ�     ᵂ�ᵆ�

(b) Laplace kernel

Fig. 2: A  visualization of a box kernel (a) and Laplace kernel (b) and their streaming
computation

Both ϕ ( t ) =
P t K B (ω t , ωn )κ (λm , fn )v n  and ψ ( t ) =

P t KB (ω t , ωn )κ (λm , fn )
are updated by the following recursion as the streaming attention progresses:

ϕ(t +  1) =  ϕ(t) +  κ(λm , f t )v t  −  κ (λm , f t −N  ) v t − N

ψ(t +  1) =  ψ(t) +  κ(λm , f t )vt  −  κ (λm , f t −N  ),
(5)

where κ (λm , f t −N  ) =  0 and v t − N  =  0 for t ≤  N , ϕ(0) =  0 and ψ(0) =  0.
Like a F I FO queue, we keep track of ϕ(t) and ψ(t) and update them by

subtracting the quantity contributed by the input at time (t −  N )  and adding
up the one at time t in the long run. Therefore, we call this formulation FIFO-
Attention. The advantage of FIFO-Attention is that the computational cost be-
comes O(M C ) for M queries and values of C  channels. Neither the effective
window size N  nor the actual time-step t influences the runtime. However, the
subtraction operation in Eq. (5) requires us to keep a window of features and ker-
nel values in memory. Hence, the memory complexity is still O(N ). The Laplace
kernel addresses this issue.
Exp onential  Smoothing Attent ion.  The Laplace kernel K L  allows for an
even more eficient recursive update:

ϕ(t) =  e−λϕ(t  −  1) +  κ(λm , f t )v t

ψ(t) =  e−λψ (t  −  1) +  κ(λm , ft ),
(6)

where ϕ(0) =  0 and ψ(0) =  0. The parameters λ  controls the temporal ex-tent
of the attention. The above operation (6) is known as exponential smooth-ing
[23]. Therefore we name this attention Exponential Smoothing Attention, or ES-
Attention for short. Both ES-  and FIFO-Attention reduce to the same opera-tion
if λ  =  0 and the windows size N  → ∞. The time complexity of ES-Attention is also
constant in the temporal window considered O(M C ). More importantly, the
space complexity reduces from O(N ) to O(1) since we only maintain ψ, ϕ and
no longer keep values in our window around. Exponential smoothing instead
slowly reduces the influence of older keys and values in the attention.
Video recognition with streaming attention. The streaming attention can
replace the vanilla cross-attention in current Transformer architectures with min-
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Fig. 3: Overview of our streaming attention architecture TeSTra. The basic setup
follows L S T R  [54]: A  long-term memory compresses a long temporal history into M
representative queries. A  short-term attention mechanism uses the compressed memory
and a short history of frames to compute current and future actions. The main advan-
tage of TeSTra is that the long-memory incurs only constant cost, and thus allows for
much more eficient long-term reasoning

imal modification. Specifically, we follow L S T R  architecture [54] for all our ex-
periments, due to its state-of-the-art performance on online action detection.
The overall architecture of TeSTra is sketched in Fig. 3. Given a sequence of en-
coded vectors x[1:t] =  {x1 , x2 , · · · , xt },  where t refers to the current time stamp,
we divide the historic frames into two parts: short-term memory x [ t − L + 1 : t ]  if
size L  ≤  32 and long-term memory which contains the rest of distant inputs,
namely x[ 1 : t− L ] .  The architecture follows an encoder-decoder [44,54] design. The
encoder module encodes the long-term memory into M =  16 query features. The
decoder uses the query features and short-term memory to predict current and
anticipated actions.

The encoder has two stages of memory compression. First, it uses an ES-
Attention-based Transformer decoder unit [44] to compress the long-term mem-
ory into M latent vectors Z  using learnable queries Q.

Q ′  =  Attention(Q, Q),
Z ′  =  ES-Attention(σ (Q ′ ), X[1:t−L] ), (7)
Z  =  FFN(σ (Z ′ ) ) ,

where σ denotes the nonlinear mapping which is composed of a skip connection
with Q  followed by a LayerNorm [1]. Next, the compressed vectors are further
cross-attended by M ′ learnable queries through ℓenc decoder units into Z ℓ .
Strictly speaking, it should be possible to learn Q ′  directly. However, the training
dynamics of transformer work out better using a self-attention block first. Fig. 4
shows an overview of the encoder.
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Fig. 4: The basic building blocks of TeSTra. Left: the Transformer Encoder with ES-
Attention; Middle: Multi-head ES-Attention at training time; Right: Multi-head ES-
Attention at inference time

The decoder uses the short-term memory as queries to attend the compressed
memory and retrieve relevant information through a stack of ℓdec decoder units.

X [ t − L + 1 : t ]  =  Attention(X[ t− L + 1 : t ] , X[ t− L + 1 : t ] ) ,

O ′  =  Attention(X[t−L+1:t ] ,  Z ℓ e n c  � X [ t − L + 1 : t ]  ), (8)

O  =  FFN(σ (O ′ )) ,

In Eq. (8), we construct the key/value tokens by concatenating [· � ·] both the
compressed long-term memory and short-term memory to incorporate all the
known historic information. This proves to be effective for action anticipation,
where the closer memory is more important to indicate the upcoming action.
The L  output vectors are then passed through a linear layer to produces the
scores s [ t− L + 1 : t ]  � R L × ( K + 1 )  over K  action classes plus one non-action (back-
ground) class . At inference time, we take the score st to be online detection
result. In action anticipation, the frames in the anticipating duration are not ob-
servable. We thus attach L a  learnable tokens after short-term memory predict
L a  anticipated actions s[ t + 1 : t + L a ] .

Tra i n i n g  Te S Tr a .  At inference time, we naturally apply the recursion in Eq. (6)
in the streaming setting. During training, however, it is computationally inefi-
cient to feed all historic inputs and update them recursively on a modern GPU
architecture. To  handle this, we cut the video into a clip x t − L − N + 1 : t .  Multiple
clips share the same length N  and thus can be packed into a batch. Furthermore,

1 st � R K  if the background class is absent.
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instead of recursion, we compute the attention in matrix form:
′ ′       �

ES-Attentiontr ain (Q , X )  =  Softmax log (M E S )  +   √
C

  · V ,

e − λ ( N − 1 )  e − λ ( N − 2 )  · · · 1
�e − λ ( N − 1 )  e − λ ( N − 2 )  · · · 1�

E
S

�
. . .

� 
e − λ ( N − 1 )

e − λ ( N − 2 )  · · · 1

9

(9)

(10)

where log(·) takes the element-wise logarithm of a matrix and the exponential
smoothing matrix M E S  � R M × N  is a Vandermonde matrix. Since we train on
the windowed input and test on un-windowed streaming input, we select a decay
factor λ  and window size N  such that e − λ ( N − 1 )  is suficiently small. This
minimizes the effect of a potential train-test gap. Fig. 4 shows the difference
between training and inference for streaming attention.

We use the cross-entropy loss to predict both current and anticipated actions.
Following [54,19], we predict actions for all frames in short-term memory for a
stronger supervisory signal. We use a causal attention mask [44] on the short-
term memory to avoid future actions from influencing our predictions.

5 Experiments

5.1 Exp erimental  Setup

Datasets. We conduct experiments on THUMOS’14 [24] and Epic-Kitchen-100
(EK100) [9]. THUMOS’14 contains 413 untrimmed videos annotated with 20
actions. We train our model on the validation set (200 videos) and evaluate
on the test set (213 videos). Epic-Kitchen-100 contains 100 hours of egocentric
videos with 90K action segments. The narrations are mapped into 97 verb classes
and 300 noun classes. We follow the train/val split given by Furnari et al. [16].
Evaluation Metrics.  For THUMOS’14, we measure the performance of both
online action detection and anticipation with per-frame mean average precision
(mAP). Anticipation mAP uses an anticipation period τo which varies from
0.25s to 2.0s with a stride of 0.25s. Online detection mAP is as a special case of
anticipation mAP at τo =  0. EK-100 uses mean Top-5 Verb/Noun/Action Recall
to measure anticipation performance per instance with a predefined τo =  1s [9].
Implementation Details. On THUMOS14, we pre-process the videos into 24
FPS,  extract the two-stream deep features pretrained on ActivityNet or Kinetics
following Xu  et al. [54]. The visual stream is a ResNet-50 [20] while the motion
stream uses BN-Inception [25]. On EK100, we first pre-process the videos into
30 F P S  and fine-tune the two-stream TSN [47] on EK100 action classification
task with ImageNet-pretrained parameters, following Furnari et al. [16]. When
training TeSTra, we apply equalization loss [40] to handle the long-tailness of
actions. Our model is not restricted to using 2D CNNs as backbone. Eficient 3D
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(washing, carrots) :

MixClip (cutting, courgette) :

(pour-onto-pan, courgette) :

Action instances from
different videos

Non-action instances

Fig. 5: Illustration of MixClip. In the example sequence, we have 4 action instances and 2
of them are replaced by another clip that comes from another video but is annotated
with the same action category

CNN such as X 3 D  [15] is also applicable but the longer input span might cause
higher latency.

The training procedure of TeSTra on THUMOS’14 follows X u  et al. [54] for
fair comparison. Specifically, we train TeSTra with batch size of 16 for 25 epochs
using Adam optimizer with a weight decay of 5e-5 and a base learning rate of 7e-5.
We apply a cosine annealing schedule with linear warm-up, i.e. the learning rate
linearly increases from 0 to 7e-5 in the first 10 epochs and then decays
following a cosine function.
M i x C l i p .  The model takes as input both short clips as working memory and
frames in the longer history as long-term memory. The duration of long history is
significantly larger (often 10×) than the short clip. This means that two neigh-
boring clips of interest share a large portion of historical frames. This causes
the model to overfit to those scene-related cues and fail to generalize to unseen
scenarios. To  resolve this, we propose a simple augmentation technique called
MixClip which increases the diversity of long history by composing short clips
from different recordings into each other.

Assume that the long memory is composed of a sequence of action instances
{(t(s) , t(e) , ai )}, where t(s) , t(e) denotes the start and end time while ai denotes
the action label. With probability pmc , each of the action instances may be
replaced with another instance with the same label from a different video. This
input feature sequence is randomly cropped if the new instance’s duration longer.
Otherwise, the input feature sequence is padded to ensure that the length of
history is unchanged for ease of implementation. Fig. 5 gives an illustration.

MixClip is inspired by some popular augmentation techniques widely used
in image classifications, such as CutOut [12], Mixup [60], and CutMix [55].

5.2 Main  Results

T H U M O S ’1 4 .  We conduct both online action detection and anticipation ex-
periments on THUMOS’14. In both tasks, the backbone network from which the
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Table 1: Result of online action detection on THUMOS’14. denotes optical flow
computed by N V I D I A  Optical Flow S D K ,  a faster alternative to T V - L 1  [56]. More
detailed runtime analysis will be provided in Sec. 5.4

(a) Using ANet-pretrained feature (b) Using Kinetics-pretrained feature

Method m A P

R E D  [17] 45.3
IDN [13] 50.0
T R N  [53] 47.2
O ad T R  [49] 58.3
L S T R  [54] 65.3
Ours 68.2

Method m A P

IDN [13] 60.3
T R N  [53] 62.1
O ad T R  [49] 65.2
L S T R  [54] 69.5
Ours 67.3
Ours 71.2

Table 2: Result of online action anticipation on THUMOS’14. † was reproduced by us
because L S T R  [54] only reported ActivityNet-pretrained results

method Pre-train
0.25 0.50 0.75

mAP@τo

1.0 1.25 1.50 1.75
average

2.0

R E D  [17]
T R N  [53]
T T M  [49]
L S T R  [54]
Ours

T T M  [49]
L S T R †  [54]
Ours

ANet1.3

K400

45.3 42.1
45.1 42.4
45.9 43.7

-           -
64.7 61.8

46.8 45.5
60.4 58.6
66.2 63.5

39.6 37.5
40.7 39.1
42.4 41.0

-           -
58.7 55.7

44.6 43.6
56.0 53.3
60.5 57.4

35.8 34.4 33.2 32.1        37.5
37.7 36.4 35.3 34.3        38.9
39.9 39.4 37.9 37.3        40.9

-           -           -           -           50.1
53.2 51.1 49.2 47.8       55.3

41.9 41.1 40.4 38.7 42.8
50.9 48.9 47.1 45.7 52.6
54.8 52.6 50.5 48.9       56.8

feature is extracted is pretrained on either ActivityNet v1.3 [2] or Kinetics [4].
Table 1 shows the results of online action detection. TeSTra surpasses the pre-
vious states-of-the-art by a large margin. We also adopt NV I D I A  Optical Flow
S D K  (NVOFA) 2 for faster optical flow computation. NVOFA can run as fast as
1 K  F P S  on a 240 × 180 image sequence on a modern GPU. We denote the model
that takes NVOFA optical flow as input to be TeSTra . We observe some per-
formance drop, but an mAP of 67.3% is still competitive. Most importantly, the
runtime of the entire pipeline is significantly sped up. More detailed discussion
on runtime analysis will be provided in Sec. 5.4. Al l  results use ES-Attention.

Table 2 shows the results of online action anticipation. TeSTra with Kinetics-
pretrained feature achieves an average mAP of 56.8%, outperforming all previous
methods. For fair comparison, we also rerun L S T R  [54] using the same Kinetics-
pretrained feature. This improved L S T R  is still 4% below TeSTra.

2 https://developer.nvidia.com/opticalf low- sdk

https://developer.nvidia.com/opticalflow-sdk
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Table 3: Result of action anticipation on EK100. The upper half lists RGB-only meth-
ods; in lower half all types of inputs are allowed

Method Input Pre-train overall unseen tail

verb noun action verb noun action verb noun action

RU L S T M  [16]
AV T  [19]
AV T  [19]
Ours

RU L S T M  [16]
TempAgg [39]
A V T +  [19]
A V T +  [19]

R G B

R G B
+ O F

+ O b j

IN-1k     27.5 29.0
IN-1k     27.2 30.7

IN-21k 30.2 31.7
IN-1k     26.8 36.2

IN-1k     27.8 30.8
IN-1k     23.2 31.4
IN-1k     25.5 31.8

IN-21k 28.2 32.0

13.3 29.8 23.8
13.6 - -
14.9 - -
17.0 27.1 30.1

14.0 28.8 27.2
14.7 28.0 26.2
14.8 25.5 23.6
15.9 29.5 23.9

13.1 19.9 21.4 10.6
-          -         -           --

-         -           -
13.3 19.3 28.6 13.7

14.2 19.8 22.0 11.1
14.5 14.5 22.5 11.8
11.5 18.5 25.8 12.6
11.9 21.1 25.8 14.1

Ours R G B + O F      IN-1k     30.8 35.8 17.6 29.6 26.0 12.8 23.2 29.2 14.2

E K100 .  We compare TeSTra with prior works on the EPIC-Kitchen-100 ac-
tion anticipation track [9] in Table 3. We split the results into two halves: the
upper half contains methods with only R G B  inputs and the lower half uses
additional information, such as optical flow and object feature. Using the same
ImageNet-1k-pretrained feature, TeSTra significantly outperforms RUL S T M  [16]
and AV T  [19] on the action-level recall. The improvement is most pronounced
in the increase noun-level recall. This demonstrates the effectiveness of incor-
porating longer input for anticipation. The long-memory recalls many objects
that appeared previously. TeSTra with R G B + O F  achieves 4.4% higher verb-
level recall than TeSTra with only RG B .  One reason for this our early-fusion.
Unlike late-fusion approaches, RUL S T M and AV T + ,  we concatenate R G B  and
optical-flow feature at the beginning so that motion-related feature can be more
effectively leveraged. Again, all results use ES-Attention.

5.3 Ablat ion Studies

We conduct ablation experiments on EK100 to study the role of each module in
the architecture. Our full ablations uses the RGB-only model, but conclusions
generally hold for two-stream input as well.
Temporal Smoothing Kernels.  We first verify the correctness of the tempo-
ral smoothing kernels at inference time in Table 4. If we apply the box kernel
and apply the F I FO recursion defined in Eq. (5), the result is 16.14%. However,
if we use the exponential smoothing recursion defined in Eq. (6) with decay fac-
tor λ  =  0, action recall drops by 0.2 � 0.4% on unseen and tail classes. This
indicates the necessity to cache historic elements and pop them when the queue
becomes full. When using the Laplace kernel, we compare batch mode where win-
dowed attention is computed using Eq. (9) and stream mode where exponential
smoothing recursion is computed using Eq. (6). The results are consistent (less
than 0.05% difference).
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Table 4: Temporal smoothing kernels. Using explicit windowed-attention and stream-
attention under the Laplace kernel yield consistent results

Kernel Type

Box
Box

Laplace
Laplace

Test Mode

F I F O  (Eq. (5))
E S  (Eq. (6); λ  =  0)

E S  (Eq. (9))
E S  (Eq. (6))

overall
act. rec.

16.14
16.08

16.95
16.94

unseen
act. rec.

12.64
12.22

13.33
13.28

tail
act. rec.

12.89
12.70

13.73
13.72

Table 5: Ablation studies on position embeddings. Temporal position embeddings
are unnecessary for long-term memory, justifying our design of separate the temporal
smoothing kernel and feature vector

P E  @ long memory

✗
✓
✗

P E  @ short memory

✓
✓
✗

overall act. rec.

17.0
16.8
15.7

Effectiveness of Positional Emb edding.  The rationale behind streaming
attention is that we can separate the attention kernel into temporal and feature
components. To  justify this, we add a temporal positional embedding in the
long-term memory and observe no performance improvement from Table 5. We
also try to remove the temporal embedding in the short-term memory but this
changes the result significantly (-1.3%).
Effectiveness of M i x C l i p  Table 6a shows the effect of MixClip rate on the
anticipation result. When no MixClip is applied, the baseline drops to 15.5%
action recall. The performance consistently improves with MixClip and achieves
the best (17.0%) at pmc =  0.5.
Fus ing  long- and short-term memory Table 6b compares different ways of
fusing long- and short-term memory. The naive way is to treat long- and short-
term memory separately, i.e. (1) use the TeSTra encoder to compress distant
inputs and (2) use closer inputs as queries in the TeSTra decoder to attend to
this compressed set of vectors. We observe that this no-fuse approach achieves
15.9% which is even 0.2% lower than short-memory-only baseline, where N  =  0
and the TeSTra decoder is instantiated by self-attention. This indicates that we
might need to incorporate the relationship within the short-term memory too.
To  achieve this, we try to augment long-term memory by attaching short-term
memory, denoted by “@ long mem.”, but see no significant improvement. It
might be because long-term memory is much longer than the short-term one so
that the short-term information is overwhelmed at the first stage of compression.
Since the memory length after compressed is in the same order as the short-term
memory, we concatenate both (“@ comp. mem.”) and get 17.0% action recall,
improving the naive way by 1.1%.
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Table 6: Ablation studies on MixClip and long-/short-term memory fusing

(a) The effect of MixClip (b) Long- and short-term memory fusion

MixClip Rate 0 0.2 0.5 0.8 How to fuse overall act. rec.

overall v. rec.     25.8 26.0 26.8 26.2
overall n. rec.     34.6 35.3 36.2 35.2

overall act. rec. 15.5 16.0 17.0 16.2

w/o. long mem. 16.1
no fuse 15.9
@ long mem. 16.0
@ comp. mem. 17.0

cross attn.

0.15
stream attn.

Comp. Feat. Feat. TeSTra  Total
0.10

Ours
0.05

Ours
1,000 150.0

 
104.7 142.8 41.1

12.6
0.00  

102 103 104

long mem. length (N)

Fig. 6: Runtime comparison between
vanilla cross attention and our expo-
nential smoothing attention

Table 7: Runtime profile (in F P S )  for the
entire detection system. Real-time TeS-
Tra uses N V O FA  optical-flow while the
default one uses T V - L 1  [56]

5.4 Runt ime Analysis

Finally, we study the runtime speed of TeSTra using an NV I D I A  Quadro R T X
6000 GPU. Fig. 6 shows the comparison of inference speed between L S T R  with
cross attention and TeSTra with ES-Attention. We choose the length of the long
memory N  to be {32, 128, 512, 2048, 8196}. We can clearly see that the runtime
per time step scales linearly for cross-attention-based L S T R  but keeps constant
for TeSTra. Specifically, TeSTra runs at a speed of 142.8 FPS .  If we integrate
TeSTra into the online detection system, we need to take into account of the
computation overhead by the optical flow computation and feature extraction.
The runtime profile is summarized in Table 7. The full TeSTra runs at 12.6 FPS .
The bottleneck is computing optical flow using T V - L 1  algorithm [56]. Using the
NVOFA, the real-time TeSTra can run at 41.1 FPS .

6 Conclusion

We propose stream attention based on the kernel-based reformulation of cross-
attention and apply two kinds of temporal smoothing kernels that reduce the in-
ference computation to constant cost per frame. The resultant temporal smooth-
ing transformer achieves excellent performance while running at a low latency.
We hope that our design can shed some light on developing more eficient models
for long-term videos understanding.
Acknowledgement This material is in part based upon work supported by the Na-
tional Science Foundation under Grant No. IIS-1845485, IIS-2006820, and the NSF
Institute for Foundations of Machine Learning.
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