

Software Supply Chain Vulnerabilities Detection in
Source Code: Performance Comparison between

Traditional and Quantum Machine Learning Algorithms
Mst Shapna Akter∗, Md Jobair Hossain Faruk∗, Nafisa Anjum†, Mohammad Masum§, Hossain Shahriar†,

Akond Rahman¶, Fan Wu††, Alfredo Cuzzocrea∥

∗Department of Computer Science, Kennesaw State University, USA
†Department of Information Technology, Kennesaw State University, USA

§Department of Applied Data Science, San Jose State University, USA
¶Department of Computer Science and Software Engineering, Auburn University, USA

††Department of Computer Science, Tuskegee University, USA
∥iDEA Lab, University of Calabria, Rende, Italy

{makter2, mhossa21, nanjum}@students.kennesaw.edu | {hshahria}@kennesaw.edu | mohammad.masum@sjsu.edu |

akond@auburn.edu | fwu@tuskegee.edu | alfredo.cuzzocrea@unical.it

Abstract— The software supply chain (SSC) attack has become
one of the crucial issues that are being increased rapidly with the
advancement of the software development domain. In general,
SSC attacks execute during the software development processes
lead to vulnerabilities in software products targeting downstream
customers and even involved stakeholders. Machine Learning
approaches are proven in detecting and preventing software
security vulnerabilities. Besides, emerging quantum machine
learning can be promising in addressing SSC attacks. Considering
the distinction between traditional and quantum machine
learning, performance could be varies based on the proportions of
the experimenting dataset. In this paper, we conduct a
comparative analysis between quantum neural networks (QNN)
and conventional neural networks (NN) with a software supply
chain attack dataset known as ClaMP. Our goal is to distinguish
the performance between QNN and NN and to conduct the
experiment, we develop two different models for QNN and NN by
utilizing Pennylane for quantum and TensorFlow and Keras for
traditional respectively. We evaluated the performance of both
models with different proportions of the ClaMP dataset to identify
the f1 score, recall, precision, and accuracy. We also measure the
execution time to check the efficiency of both models. The
demonstration result indicates that execution time for QNN is
slower than NN with a higher percentage of datasets. Due to recent
advancements in QNN, a large level of experiments shall be
carried out to understand both models accurately in our future
research.

Keywords— Software supply chain Security, Quantum machine
learning, Quantum neural network (QNN), Neural Network (NN),
ClaMP, TensorFlow, Pennylane

I. INTRODUCTION

In recent years, threats to software supply chain security
have evolved gradually. Analyzing threat patterns, detecting and
predicting security vulnerabilities, and suspicious behaviors of

software security threats, Machine Learning (ML) has long been
adopted as a powerful approach [1], [2]. Due to the vast level of
data stores globally and being enormously increasing by 20%
every year, finding innovative approaches to machine learning
is needed for proactive prevention and early detection of security
threats [3], [4]. Quantum Machine Learning (QML) with the
help of quantum random access memory (QRAM) has the
potential and scores of research institutions are exploiting the
promising QML to deal with large amounts of data [5]–[8]. In
general, Quantum Machine Learning refers to an integrated field
of quantum computing, quantum algorithms, and classical
machine learning where the algorithms are developed to address
real-world problems of machine learning [32], [33], leveraging
the efficiency and concepts of quantum computing [9], [10].

The fundamental concepts of quantum machine learning
including quantum coherence, superposition, and entanglement
provide quantum computers with immense power to process and
handle data in such a way that leads toward the emerging
implementation of quantum computing in technological fields
[11], [12]. In contrast to conventional computing, the basic unit
of quantum computing known as Qubit, can make use of both
the values 0 and 1 in order to follow various paths of
computation simultaneously [13]. Mathematically, a qubit state
is a vector in two-dimensional space, illustrated by the linear
combination of the two basis states (|0⟩, and |1⟩) in a quantum
system: |𝜓⟩=𝛼|0⟩+𝛽|1⟩, where 𝛼, 𝛽 ∈ ℂ are probability
amplitudes required to satisfy |𝛼|2+|𝛽|2 = 1 [14]. Such a
sequence of basis states is described as quantum superposition,
and correlations between two qubits through a quantum
phenomenon are termed entanglement.

mailto:%7bmakter2,%20mhossa21,%20nanjum%7d@students.kennesaw.edu%20%7C%20%7bhshahria%7d@kennesaw.edu
mailto:mohammad.masum@sjsu.edu%20%7C
mailto:fwu@tuskegee.edu

With the ever-growing size of data, the average number of
sophisticated and complicated cyberattacks and data violations
such as software supply chain attacks and network intrusion
attacks are also increasing rapidly globally. Software Supply
Chain (SSC) attack occurs due to penetration of a vendor's
network and insertion of malicious code by a cyber threat actor
that jeopardizes the software before the vendor distributes it to
the customers [15], [16]. SSC attacks affect the software
development, dissemination, and utilization phase and
becoming extremely critical due to excessive complications of
software development strategies over the years [17]. Such
attacks occur during the production phase causing
vulnerabilities to downstream consumers. SSC attacks can also
disrupt newly developed software through patches or hotfixes or
even from the outset, thus compromising the system from the
start. Hence, SSC attacks can have a significant negative impact
on software users in all sectors by gaining complete control over
a software's regular functionality. Hijacking updates,
undermining code signing, and compromising open-source code
are common techniques exclusively used by threat actors to
execute SSC attacks [15], [34].

In Recognition and investigation into SSC attacks, there is
an absence of sufficient information concerning mitigating or
preventing these risks. On the other hand, a network intrusion
attack is an attempt to compromise the security of stored
information or data on a computer connected to the network.
Two distinct types of activities fall under this definition. First,
an attacker can gain unauthorized access to a network, files, or
information to steal sensitive data, leaving the data unharmed.
An attacker can attempt to gain unauthorized access to user
devices, resources, or servers to destabilize the entire network
by encrypting, deleting, mishandling, or simply modifying the
data [18]. To combat such complex, unlawful and unauthorized
attacks, concern grows about preventing attacks from using a
quantum machine learning-based paradigm [19]–[21].

In the past years, none to very little research was conducted
on the software supply chain vulnerabilities dataset using
quantum machine learning perhaps due to the availability of
quantum computing resources. However, considering currently
available QML-based platforms, Pennylane for instance offers
programming quantum computers that enable a new paradigm
termed quantum differentiable programming and provides
seamless collaboration with other QML tools including IBM
quantum, NumPy, and TensorFlow quantum. The main
ideology of these applications is flexibility which allows it to
know how to make a distinction between various quantum
devices and choose the finest algorithm for the task. This paper
conducts a comparative analysis between quantum neural
networks (QNN) and conventional neural networks (NN) by
utilizing a software supply chain attack dataset known as
ClaMP. The primary contribution of this research is as follows:

• We adopt both quantum machine learning and conventional
machine learning to conduct an experiment on a software
supply chain attack dataset.

• We provide a comparative analysis of both QML, and ML's
performance based on the findings of the experiments using
different proportions of the dataset

 We organize the rest of the paper as follows: In Section II,
we provide a brief related study on quantum machine learning
and traditional machine learning. Section III explains the
methodology we adopted for our comparative research. The
experimental setting and results are explained in Section IV
which includes dataset specification and processing. Section V
discusses the findings of this paper. Finally, Section VI
concludes the paper.

II. RELATED WORK

First, Addressing the constraints of traditional machine
learning methods, researchers are interested in newly emerging
quantum machine learning approach for detecting and
preventing software and cybersecurity vulnerability [1]. Various
machine learning techniques including neural network, naïve
bayes, logistic regression, convolutional neural network (CNN),
decision tree and support vector machine are successfully
applied for classifying software security activities including
malware, ransomware, andnetwork intrusion detection [22]–
[24].

Christopher Havenstein et al. [25] presented another
comparative study based on the performance between Quantum
Machine Learning (QML) and Classical Machine Learning
(ML). The authors worked on QML algorithms with
reproducible code and similar code for ML. Later, quantum
variational support vector machines were adopted that show
higher accuracy than classical support vector machines. In
conclusion, the researchers emphasize the potential of quantum
multi-class SVM classifiers for the future.

Luis E. Herrera Rodr´ıguez et al. [31] presented a
comparative study on various machine learning methods for
dissipative quantum dynamics where the authors utilized 22 ML
models to predict long-time dynamics of quantum systems. The
models include convolutional, and fully connected feed-forward
artificial neural networks (ANNs), and kernel ridge regression
(KRR).

Mohammad Masum et al. [26] conducted research on
quantum machine learning (QML) to detect software supply
chain attacks [1]. The researchers analyzed speed up the
performance of quantum computing by applying scores of novel
approaches including quantum support vector machine (QSVM)
and quantum neural network (QNN). Utilizing both methods,
the authors detected software supply chain attacks in open-
source quantum simulators, IBM Qiskit and TensorFlow
quantum for instance. According to the research findings,
quantum machine learning surpasses classical machine learning
in terms of processing speed and computational time.

MJH Faruk et al. studied quantum cybersecurity from both
threats and opportunity perspectives. The authors have provided

a comprehensive review of state-of-the-art quantum computing-
based cybersecurity approaches. The research indicated that
quantum computing can be utilized to address software security,
cybersecurity, and cryptographic-related concerns. On the other
hand, the malicious individual also misuses quantum computing
against software infrastructure due to the immense power of
quantum computers [27].

III. METHODOLOGY

We adopt Quantum Neural Network (QNN), a subfield of
Quantum Machine Learning (QML) for this research and
applied the model to the ClaMP dataset. Figure 1 demonstrates
the framework representing the implementation process. At first,
we pre-processed raw data prior to providing as input to the
QML model. We used Python and the shuffle function of the
Scikit-Learn (sklearn) library for data preprocessing. We also
used the index-reset function and drop function from the python
library while labeling the encoder from sklearn library. In order
to maintain a balanced number of classes and to avoid
imbalanced classes that may lead to the wrong prediction, we
ensure the efficiency of all of the separated portions of the
dataset created from the ClaMP.

For the experiment, we consider only the balanced portions
of the dataset. After applying the shuffle functions, we reset the
index towards organizing the dataset in ascending order. The
drop function is used to remove columns that are unnecessary
and does not contribute to making the prediction. In quantum
machine learning models, we need to feed numerical values, so
the categorical values were converted into numerical values, and
all the numerical values were normalized to maintain a similar
scale.

Figure 1: process of the architecture of the framework

After preprocessing steps, we split the entire dataset
comprising 5,210 rows into different smaller portions. We
separated the dataset into 20 smaller datasets; the number of
rows started from 5 percent of the total dataset and gradually
increased by 5 percent up to 100 percent. The quantum machine
learning model was applied to each of the dataset's separated
portions. Before feeding into the QML model, the features were
encoded into quantum states. We provide a comparative analysis
of both QML and ML's performance based on the findings of the
experiments using different proportions of the dataset.

Quantum Neural Network (QNN) comes from
neurocomputing theory, which converges with machine
learning, quantum computing, and artificial neural network
concepts [28]. QNN framework can be applied for processing
neural computing utilizing vast levels of datasets to find the
expected result. Before processing the data through the QNN,
input data is encoded into a suitable qubit state with a proper
number of qubits [29]. Later, the qubit state is modified for a
specific number of layers using two gates: parameterized
rotation gates and entangling gates, where the predicted value of
a Hamilton operator, Pauli gates, for instance, is used to direct
the altered qubit state. The results derived from Pauli gates are
decoded and translated into applicable output data. A variational
quantum circuits-based neural network plays various roles in
QNN.

Adam optimizer updates the parameters with some criteria
including the size of complexity-theoretic measurements, depth,
accuracy, and definite features, while the number of steps is

necessary for solving the issue of in-depth measurement.
Precision describes the setup required to solve a number of
challenges. A quantum neural network consists of three items:
input, output, and L hidden layers where the L hidden layer
consists of a quantum circuit of the quantum perceptron, which
acts on an initial state of the input qubits and produces a mixed
state for the output qubits. QNN is able to do the quantum
computation for also the two input or one input qubit perceptron,
which goes through the quantum-circuit construction with
quantum perceptron on 4 level qubits. The most comprehensive
quantum perceptron implements any quantum channel on the
input qubits.

The precision of p(n) is denoted by {s (n), d(n)}, where size
is denoted by s(n) and depth is denoted by d(n). The number of
qubits in the circuit is measured in size, while the longest
sequence of gates from input to output is measured in depth. The
size and depth are created from gates D and U of precision p(n).
A reversible U gate is usually followed by the D gate to
eliminate the localization problem. The accuracy of the circuits
is denoted by O{s(n)}.

IV. EXPERIMENT & RESULTS

 In this section, we present both the experiments and results.
We first provide details of dataset specification followed by
data processing. In order to explain an effective experiment, we
define the experimental settings where we utilize accuracy,
precision, recall, and F-score metrics for evaluating models’
performance. Lastly, we present the experimental results.

A. Dataset Specification

We applied Quantum Neural Network (QNN) to the ClaMP
dataset for malware classification. ClaMP dataset has two
versions such as ClaMP_raw and ClaMP_Integrated. The raw
instance was aggregated from VirusShare, while the benign
instances were integrated from windows files. Portable
executable headers contain the information which is required for
OS to run executable files. Therefore, features were collected
from portable executable headers for malware and benign
samples. Moreover, PE header. Hence, various raw features
such as File Header (7 features), DOS header (19 features), and
Optional header (29 features), were extracted using ruled based
method from PE headers of the samples.

Later, the meaningful features are derived using raw features
including entropy, compilation time, and section time.
Additionally, more information about the PE file was extracted
by expanding a set of raw features from the file header. Finally,
we selected three types of features including raw, derived, and
expanded from the ClaMP_ Integrated dataset, which contains a
total of 68 features and the total number of features contains
several raw, expanded, and derived features which are 28, 26,
and 14 features, respectively [30].

B. Data Preprocessing

 We applied QNN on ClaMP datasets where we utilized
various data sizes to inspect the experimented method's
comparative performance. We first considered the entire dataset,
containing 5210 samples followed by randomly selected 5
percent of the dataset without replacing any instances and
gradually increased the percentage by 5 percent, which are 10
percent, 15 percent, 20 percent, 25 percent, 30 percent, 35
percent, 40 percent, 45 percent, 50 percent, 55 percent, 60
percent, 65 percent, 70 percent, 75 percent, 80 percent, 85
percent, 90 percent, and finally 95 percent with 260, 521, 782,
1042, 1302, 1563, 1834, 2084, 2345, 2605, 2566, 3126, 3387,
3647, 3908, 4168, 4429, 4689, and 4950 samples, respectively,
while preserving the class proportion. We converted the
categorical values from the feature called 'packer type' of ClaMP
data since this type of data cannot be directly entered into the
model. The dataset contains a total of 108 columns, including
one target variable. We used a standardization technique to
transform all the features to a mean of zero and a standard
deviation of one.

C. Experimental Settings

 The present quantum simulator does not accept large
dimensions as input while our dataset contains 108 dimensions,
which we cannot feed into the simulator. Hence, we adopted a
dimension reduction technique on this dataset called Principal
Component Analysis (PCA). PCA was applied to the vector of
size 108 features of the CLaMP dataset for reducing the
dimension. We selected the first 16 principal components, due
to the limitation of qubit numbers in the existing simulator. First,
the classical NN was directly applied to the reduced dataset. The
next step was encoding the classical data as quantum circuits,
which means converting all the features’ values into a qubit
value for processing in the quantum computer.

Figure 2: Demonstrates the quantum neural network with the input
parameter and Linear entanglement structure

 Figure 2 demonstrates the circuit created for a random
sample. The circuits were converted into TensorflowQuantum
(TFQ). Next, a model circuit layer was developed for the QNN
comprising of a two-layer model with the matched size of the
data circuit and finally wrapped the model circuit in a TFQ-
Keras model. We converted the quantum data and fed it to the
model and used a parametrized quantum layer to train the model
circuit on the quantum data. We adopt an optimization function
known as hinge loss during the training phase. The labels were

converted to the -1 to 1 label. Finally, we trained the QNN for
100 epochs.

D. Experimental Results: Quantum Neural Network (QNN)

Our comparative analysis between the classical neural
network (NN) model and the quantum neural network (QNN)
model illustrates in table 1 and Table 2 comprising twenty
different portions of the ClaMP dataset. The results derived from
the quantum neural network model show that the accuracy is
random in the different portions of the dataset. For instance, for
5 percent of the dataset, the accuracy is 57 percent, the f1 score
is 73 percent, precision is 100 percent, and recall is 57 percent,
while for 20 percent of the dataset, the accuracy is 28 percent,
f1 score is 28 percent, recall is 28 percent, and precision is 30
percent. Even if the dataset increases slowly the performance of
the model reduces significantly in terms of accuracy. The
accuracy suddenly jumps from 30, 35, and 40, to 45 percent and
drops off 50 percent of the dataset.

Table 1: displays a comparative analysis of the different portions of
the ClaMP dataset using the quantum machine learning model such
as QNN

Data
percentage

Precision Recall F1-
score

Accur
acy

Execution
Time

5 1.00 0.57 0.73 0.57 12min 24s
10 0.42 0.35 0.37 0.35 11min 42s
15 0.68 0.55 0.58 0.55 9min 48s
20 0.30 0.28 0.28 0.28 9min 22s
25 0.64 0.47 0.53 0.48 9min 53s
30 0.87 0.53 0.61 0.53 9min 28s
35 0.92 0.65 0.72 0.65 10min 23s
40 0.89 0.60 0.65 0.60 9min 36s
45 0.83 0.72 0.74 0.73 9min 45s
50 0.86 0.45 0.59 0.45 9min 30s
55 0.86 0.50 0.63 0.50 10min 35s
60 0.67 0.40 0.50 0.40 9min 20s
65 0.82 0.57 0.68 0.57 9min 45s
70 0.80 0.50 0.62 0.50 9min 19s
75 0.90 0.70 0.74 0.70 9min 42s
80 0.85 0.53 0.63 0.53 9min 40s
85 0.82 0.45 0.51 0.45 10min 21s
90 0.86 0.47 0.61 0.48 10min 7s
95 0.87 0.55 0.67 0.55 10min 24s

100 0.93 0.53 0.67 0.53 11min 21s

The accuracy for 30, 35, 40, 45, and 50 percent data are 53,
65, 60, 70, and 45 percent respectively. From the larger portion
of the data, 60, 70, 85, and 90, accuracy is incredibly low, which
are 40, 50, 45, and 48 percent respectively, while for the data
proportion of 65, 75, 80, 95, and 100, accuracy is comparatively
high, which are 57, 70, 53, 55, and 53 percent respectively.
Considering all of the experiments, the findings indicate that the
accuracy is random on different portions of the dataset. The
number of instances does not affect the accuracy, while it does
affect the total execution time.

Considering the experimental results, the total required
execution time is higher when the number of instances is
smaller, on the other hand, the execution time starts to decrease
when the number of instances increases until a certain threshold.
When the data proportion crosses the threshold, the required
time gradually starts to increase. Table 1 shows that for 5 percent
and 10 percent of the total dataset, the execution times are 12min
24s and 11min 42s respectively. From 15 percent to 80 percent
dataset, except from 35 percent and 55 percent, the execution
time remains 9 min 19s to 9min 48s. From 85 to 100 percent
data, the execution time increases from 10 min to 11 min.
Observing quantum neural network models experiment on
different portions of data, we found that the performance of the
model does not have an effect in terms of accuracy, but the
execution time varies with different proportions of the dataset.

E. Experimental Results: Traditional Neural Network (NN)

The results derived from the conventional neural network
model also show similar results as like the quantum neural
network in terms of the accuracy metric, as the accuracy is
random in different portions of the dataset. Considering 5
percent of the dataset, the accuracy is 50 percent, the f1 score is
67 percent, the precision is 100 percent, and the recall is 50
percent; for 10 percent of the dataset, the accuracy is 46 percent,
the f1 score is 63 percent, the precision is 100 percent, and the
recall is 46 percent; for 15 percent of the dataset, the accuracy is
45 percent, the f1 score is 70 percent, the precision is 100
percent, and the recall is 54 percent, which means for the
smallest portion of the dataset the accuracy is 50 percent, after
increasing the data by 5 percent the accuracy drops by 4 percent,
which is 46 percent, and the accuracy increases by 4 percent,
which is 54 percent, after increasing the percentage by 10
percent. For the large proportion of the dataset, like 80, 85, 90,
and 95 percent, the accuracy values are 53, 52, 54, 54, and 53,
respectively.

Table 2: displays a comparative analysis of the different portions of
the ClaMP dataset using the classical machine learning model such as
NN

N
percent
of total

data
points

Precision Recall F1-
score

Accuracy Execution
Time

5 1.00 0.50 0.67 0.50 22.1s
10 1.00 0.46 0.63 0.46 15.2s
15 1.00 0.54 0.70 0.54 19.8s
20 1.00 0.48 0.65 0.48 44s
25 1.00 0.47 0.64 0.47 26.8s
30 1.00 0.52 0.69 0.52 41.9s
35 1.00 0.58 0.74 0.58 36.4s
40 1.00 0.49 0.66 0.49 42.3s
45 1.00 0.48 0.65 0.48 46.3s
50 1.00 0.54 0.70 0.54 1min 23s
55 1.00 0.53 0.70 0.53 1min 22s
60 1.00 0.51 0.68 0.51 51.1s
65 1.00 0.55 0.71 0.55 53.6s

70 1.00 0.55 0.71 0.55 1min 19s
75 1.00 0.52 0.68 0.52 1min 13s
80 1.00 0.53 0.70 0.53 1min 16s
85 1.00 0.52 0.69 0.52 1min 22s
90 1.00 0.54 0.70 0.54 1min 23s
95 1.00 0.53 0.69 0.53 1min 17s

100 1.00 0.52 0.68 0.53 1min 25s

Analyzing the experimental results, accuracy does not
follow any pattern. Neither the accuracy decreases with the
different proportion of the dataset, nor does it increase but
provides a very unpredictable and random result. Therefore, the
model's performance does not have any impact on different
proportions of the dataset in terms of the accuracy metrics.
However, in terms of the total number of execution times,
different portions of the dataset significantly affect the neural
network model. We have observed that for smaller portions like
5, 10, 15, 20, 25, 30, 35, 40, and 45 percent of the total dataset
the execution times required are 22.1s, 15.2s, 19.8s, 44s, 26.8s,
41.9s, 36.4s, 42.3s, and 46.3s respectively. For 50, 55, 70, 75,
80, 85, 90, 95, 100 percent of the total dataset, the execution
times required are 1min 23s, 1min 22s, 1min 19s, 1min 13s,
1min 16s, 1min 22s, 1min 23s, 1min 17s, 1min 25s respectively.

V. DISCUSSION

The Quantum machine learning model is an emerging
approach and has yet to conduct extensive experiments
regarding the performance of the proportion of the dataset. In
this study, we emphasize experimenting with the quantum
machine learning model on different ratios of a dataset and
observed how QML works with different ratios of the dataset.
Further, we conducted a comparative analysis between the
performance of the quantum machine learning model, and the
classical machine learning model, to check how the traditional
machine learning model works in comparison with the quantum
machine learning model.

In accordance with the experiment, QML seems to have a
lower influence on various ratios of data in terms of accuracy;
however, the efficiency metric is applicable in that case as the
efficiency drops with the bigger proportion of the dataset that
continues up to a certain limit. The proportion we have chosen
are 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
85, 90, 95, and 100. The accuracy we have found is random, and
the execution time decreases from 15 percent of data to 80
percent of data; then again, it starts to increase and continues
until 100. The accuracy of the classical machine learning model
is also random, but the efficiency starts to drop with the higher
ratio of the dataset.

The accuracy, f1 score, precision, and recall results show
that the quantum machine learning neural network model and
the classical machine learning model does not have an impact
on various portions of the dataset. The results show a random
pattern throughout the entire dataset. However, we found two
specific patterns of execution time results for both models. For

the QNN, the execution time decreases with the increment
portion of the dataset until a certain threshold of data proportion,
for a large number of instances. For the second model, the
execution time increases with the increment proportion of the
dataset. Therefore, the required execution time is totally
opposite of the quantum machine learning model and the
classical neural network model using the software vulnerability
datasets.

VI. CONCLUSION

Recently, quantum computing has become a prominent topic
with opportunities in the computation of machine learning
algorithms that have solved complex problems. This paper
conducted a comparative study on quantum neural networks
(QNN) and traditional neural networks (NN) and analyzes the
performance of both models using software supply chain attack
datasets. Due to the limited availability of the quantum
computer, the QML model was applied on an open-source
Penny lane simulator. We utilized accuracy and processing
metrics for evaluating the model's performance. The
experimental results indicate that QNN and NN differ in
execution time where the QNN model provides quite higher than
the NN model. However, the execution time for QNN slows
down with the higher proportion of the dataset, while the
execution time for NN increases with the higher percentage of
the dataset. Although quantum machine learning has been
rapidly growing over the last few decades, advancement is still
required as the current version of quantum simulators comes
with a limited number of qubits, which is not appropriate for
software supply chain attacks. A large number of qubits that
converges with quantum machine learning models may play a
big role in terms of improving classification performance and
reducing computation time.

ACKNOWLEDGEMENT

 The work is partially supported by the U.S. National
Science Foundation Awards 2209638, 2209636, and 2209637.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] M. Mohammad et al., “Quantum Machine Learning for
Software Supply Chain Attacks: How Far Can We Go?,”
2022, [Online]. Available: https://arxiv.org/abs/2204.02784.

[2] A. Jain et al., “Overview and Importance of Data Quality for
Machine Learning Tasks,” Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. Data Min., pp. 3561–3562, 2020, doi:
10.1145/3394486.3406477.

[3] M. Hilbert and P. López, “The world’s technological capacity
to store, communicate, and compute information,” Science
(80-.)., vol. 332, no. 6025, pp. 60–65, 2011, doi:
10.1126/science.1200970.

[4] T. M. Khan and A. Robles-Kelly, “Machine Learning:

Quantum vs Classical,” IEEE Access, vol. 8, pp. 219275–
219294, 2020, doi: 10.1109/ACCESS.2020.3041719.

[5] V. Giovannetti, S. Lloyd, and L. MacCone, “Quantum
random access memory,” Phys. Rev. Lett., vol. 100, no. 16,
2008, doi: 10.1103/PhysRevLett.100.160501.

[6] C. Ciliberto et al., “Quantum machine learning: A classical
perspective,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 474,
no. 2209, 2018, doi: 10.1098/rspa.2017.0551.

[7] H. Y. Huang et al., “Power of data in quantum machine
learning,” Nat. Commun., vol. 12, no. 1, 2021, doi:
10.1038/s41467-021-22539-9.

[8] D. Ristè et al., “Demonstration of quantum advantage in
machine learning,” npj Quantum Inf., vol. 3, no. 1, 2017, doi:
10.1038/s41534-017-0017-3.

[9] A. Manzari, “Quantum Machine Learning: A Roadmap For
Technologists,” Quantumstrategyinstitute, 2022, [Online].
Available:
https://quantumstrategyinstitute.com/2022/02/28/quantum-
machine-learning-a-roadmap-for-technologists/.

[10] H. Alyami et al., “The evaluation of software security through
quantum computing techniques: A durability perspective,”
Appl. Sci., vol. 11, no. 24, 2021, doi: 10.3390/app112411784.

[11] L. Gyongyosi and S. Imre, “A Survey on quantum computing
technology,” Comput. Sci. Rev., vol. 31, pp. 51–71, 2019, doi:
10.1016/j.cosrev.2018.11.002.

[12] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C.
Monroe, and J. L. O’Brien, “Quantum computers,” Nature,
vol. 464, no. 7285, pp. 45–53, 2010, doi:
10.1038/nature08812.

[13] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction
to quantum machine learning,” Contemp. Phys., vol. 56, no.
2, pp. 172–185, 2015, doi: 10.1080/00107514.2014.964942.

[14] M. A. Nielsen, I. Chuang, and L. K. Grover, “
Quantum Computation and Quantum Information
,” Am. J. Phys., vol. 70, no. 5, pp. 558–559, 2002, doi:
10.1119/1.1463744.

[15] Cybersecurity and Infrastructure Security Agency,
“Defending Against Software Supply Chain Attacks,” no.
April, 2021.

[16] A. L. Buczak and E. Guven, “A Survey of Data Mining and
Machine Learning Methods for Cyber Security Intrusion
Detection,” IEEE Commun. Surv. Tutorials, vol. 18, no. 2, pp.
1153–1176, 2016, doi: 10.1109/COMST.2015.2494502.

[17] H. F. Md Jobair, M. Tasnim, H. Shahriar, M. Valero, A.
Rahman, and F. Wu, “Investigating Novel Approaches to
Defend Software Supply Chain Attacks,” 33rd IEEE Int.
Symp. Softw. Reliab. Eng., 2022.

[18] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with
unlabeled data using clustering,” Proc. ACM CSS Work. Data
Min. Appl. to Secur. Philadelphia PA, pp. 1–25, 2001,
[Online]. Available:
http://freeworld.thc.org/root/docs/intrusion_detection/nids/I
D-with-Unlabeled-Data-Using-Clustering.pdf.

[19] V. Mkrttchian, S. Kanarev, and L. A. Gamidullaeva,
“Machine Learning and Cyber Security,” Encycl. Crim. Act.
Deep Web, pp. 1034–1042, 2020, doi: 10.4018/978-1-5225-
9715-5.ch070.

[20] K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M.

Xu, “A Survey on Machine Learning Techniques for Cyber
Security in the Last Decade,” IEEE Access, vol. 8, pp.
222310–222354, 2020, doi:
10.1109/ACCESS.2020.3041951.

[21] G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and M.
Marchetti, “On the effectiveness of machine and deep
learning for cyber security,” Int. Conf. Cyber Conflict,
CYCON, vol. 2018-May, pp. 371–389, 2018, doi:
10.23919/CYCON.2018.8405026.

[22] M. J. Hossain Faruk et al., “Malware Detection and
Prevention using Artificial Intelligence Techniques,” in
Proceedings - 2021 IEEE International Conference on Big
Data, Big Data 2021, 2022, pp. 5369–5377, doi:
10.1109/bigdata52589.2021.9671434.

[23] M. Masum et al., “Bayesian Hyperparameter Optimization
for Deep Neural Network-Based Network Intrusion
Detection,” Proc. - 2021 IEEE Int. Conf. Big Data, Big Data
2021, pp. 5413–5419, 2021, doi:
10.1109/BigData52589.2021.9671576.

[24] M. Masum, M. J. Hossain Faruk, H. Shahriar, K. Qian, D. Lo,
and M. I. Adnan, “Ransomware Classification and Detection
With Machine Learning Algorithms,” pp. 0316–0322, 2022,
doi: 10.1109/ccwc54503.2022.9720869.

[25] C. Havenstein, D. Thomas, S. Chandrasekaran, C. L.
Havenstein, and D. T. Thomas, “Comparisons of
Performance between Quantum and Classical Machine
Learning,” SMU Data Sci. Rev., vol. 1, no. 4, p. 11, 2018,
[Online]. Available:
https://scholar.smu.edu/datasciencereviewhttp://digitalreposi
tory.smu.edu.Availableat:https://scholar.smu.edu/datascienc
ereview/vol1/iss4/11.

[26] Y. Wang, H. Tang, J. Huang, T. Wen, J. Ma, and J. Zhang,
“A comparative study of different machine learning methods
for reservoir landslide displacement prediction,” Eng. Geol.,
vol. 298, 2022, doi: 10.1016/j.enggeo.2022.106544.

[27] H. F. Md Jobair, T. Sharaban, T. Masrura, S. Hossain, and S.
Nazmus, “A Review of Quantum Cybersecurity: Threats,
Risks and Opportunities,” 2022.

[28] Y. Kwak, W. J. Yun, S. Jung, and J. Kim, “Quantum Neural
Networks: Concepts, Applications, and Challenges,” in
International Conference on Ubiquitous and Future
Networks, ICUFN, 2021, vol. 2021-Augus, pp. 413–416, doi:
10.1109/ICUFN49451.2021.9528698.

[29] A. Kariya and B. K. Behera, “Investigation of Quantum
Support Vector Machine for Classification in NISQ era,”
2021, [Online]. Available: http://arxiv.org/abs/2112.06912.

[30] A. Kumar, K. S. Kuppusamy, and G. Aghila, “A learning
model to detect maliciousness of portable executable using
integrated feature set,” J. King Saud Univ. - Comput. Inf. Sci.,
vol. 31, no. 2, pp. 252–265, 2019, doi:
10.1016/j.jksuci.2017.01.003.

[31] A. Ullah, K. J. R. Espinosa, P. O. Dral, A. A. Kananenka, et
al., “A comparative study of different
machine learning methods for dissipative quantum
dynamics,” 2022

[32] M. S. Akter, H. Shahriar, R. Chowdhury, and M. Mahdy,
“Forecasting the risk factor of frontier markets:
A novel stacking ensemble of neural network approach,”
Future Internet, vol. 14, no. 9, p. 252, 2022.

[33] D. S. Depto, S. Rahman, M. M. Hosen, M. S. Akter, T. R.
Reme, A. Rahman, H. Zunair, M. S. Rah-
man, and M. Mahdy, “Automatic segmentation of blood
cells from microscopic slides: a comparative
analysis,” Tissue and Cell, vol. 73, p. 101653, 2021

[34] K. R. R. Turjo, P. A. D’Costa, S. Bhowmick, A. Galib, S.

Raian, M. S. Akter, N. Ahmed, and M. Mahdy, “Design of
low-cost smart safety vest for the prevention of physical
abuse and sexual harassment,” in 2021 24th International
Conference on Computer and Information Technology
(ICCIT), pp. 1–6, IEEE, 2021.

