
Feature Engineering-Based Detection of Buffer Overflow Vulnerability in Source Code
Using Neural Networks

Mst Shapna Akter1, Hossain Shahriar2, Juan Rodriguez Cardenas3, Sheikh Iqbal Ahamed4, and Alfredo Cuzzocrea5

1Department of Computer Science, Kennesaw State University, USA
2Department of Information Technology, Kennesaw State University, USA
3Department of Information Technology, Kennesaw State University, USA

4Department of Computer Science, Marquette University, USA
5iDEA Lab, University of Calabria, Rende, Italy

Abstract—One of the most significant challenges in the field
of software code auditing is the presence of vulnerabilities in
software source code. Every year, more and more software flaws
are discovered, either internally in proprietary code or publicly
disclosed. These flaws are highly likely to be exploited and can
lead to system compromise, data leakage, or denial of service.
To create a large-scale machine learning system for function-level
vulnerability identification, we utilized a sizable dataset of C and
C++ open-source code containing millions of functions with poten-
tial buffer overflow exploits. We have developed an efficient and
scalable vulnerability detection method based on neural network
models that learn features extracted from the source codes. The
source code is first converted into an intermediate representation
to remove unnecessary components and shorten dependencies. We
maintain the semantic and syntactic information using state-of-
the-art word embedding algorithms such as GloVe and fastText.
The embedded vectors are subsequently fed into neural networks
such as LSTM, BiLSTM, LSTM-Autoencoder, word2vec, BERT,
and GPT-2 to classify the possible vulnerabilities. Furthermore,
we have proposed a neural network model that can overcome
issues associated with traditional neural networks. We have used
evaluation metrics such as F1 score, precision, recall, accuracy,
and total execution time to measure the performance. We have
conducted a comparative analysis between results derived from
features containing a minimal text representation and semantic
and syntactic information. We have found that all neural network
models provide higher accuracy when we use semantic and syntac-
tic information as features. However, this approach requires more
execution time due to the added complexity of the word embed-
ding algorithm. Moreover, our proposed model provides higher
accuracy than LSTM, BiLSTM, LSTM-Autoencoder, word2vec
and BERT models, and the same accuracy as the GPT-2 model
with greater efficiency.

Keywords: Cyber Security; Vulnerability Detection; Neural
Networks; Feature Extraction;

I. INTRODUCTION

Security in the digital realm is becoming increasingly im-
portant, but there is a significant threat to cyberspace from
invasion. Attackers can breach systems and applications due to
security vulnerabilities caused by hidden software defects. In-
ternally, proprietary programming contains thousands of these
flaws each year [1]. For example, the ransomware Wannacry
swept the globe by using a flaw in the Windows server mes-
sage block protocol [2]. According to the Microsoft Security
Response Center, there was an industry-wide surge in high-
severity vulnerabilities of 41.7% in the first half of 2015. This

represents the greatest proportion of software vulnerabilities in
at least three years, accounting for 41.8% [3]. Furthermore,
according to a Frost and Sullivan analysis released in 2018,
severe and high severity vulnerabilities increased from 693 in
2016 to 929 in 2017, with Google Project Zero coming in
second place in terms of disclosing such flaws. On August 14,
2019, Intel issued a warning about a high-severity vulnerability
in the software it uses to identify the specifications of Intel
processors in Windows PCs [4]. The paper claims that these
defects, including information leaking and denial of service
assaults, might substantially affect software systems. Although
the company issued an update to remedy the problems, attack-
ers can still use these vulnerabilities to escalate their privileges
on a machine that has already been compromised. In June
2021, a vulnerability in the Windows Print Spooler service
was discovered that allowed attackers to execute code remotely.
The vulnerability, known as PrintNightmare, was caused by a
buffer overflow and affected multiple versions of Windows in
2021 [5]. Microsoft released a patch to address the issue, but
reports later emerged that the patch was incomplete and still
left systems vulnerable.

To reduce losses, early vulnerability detection is a good
technique. The proliferation of open-source software and code
reuse makes these vulnerabilities susceptible to rapid propaga-
tion. Source code analysis tools are already available; however,
they often only identify a small subset of potential problems
based on pre-established rules. Software vulnerabilities can be
found using a technique called vulnerability detection. Con-
ventional vulnerability detection employs static and dynamic
techniques [6]. Static approaches evaluate source code or exe-
cutable code without launching any programs, such as data flow
analysis, symbol execution [7], and theorem proving [8]. Static
approaches can be used early in software development and have
excellent coverage rates, but they have a significant false pos-
itive rate. By executing the program, dynamic approaches like
fuzzy testing and dynamic symbol execution can confirm or
ascertain the nature of the software. Dynamic methods depend
on the coverage of test cases, which results in a low recall
despite their low false positive rate and ease of implementation.
The advancement of machine learning technology incorporates
new approaches to address the limitations of conventional
approaches. One of the key research directions is to develop



intelligent source code-based vulnerability detection systems. It
can be divided into three categories: using software engineering
metrics, anomaly detection, and weak pattern learning [9].
Initially, software engineering measures, including software
complexity [10], developer activity [11], and code commits
[12] were investigated to train a machine learning model. This
strategy was motivated by the idea that software becomes
more susceptible as it becomes more complicated, but accuracy
and recall need to be improved. Allamanis et al. [13] have
shown that the syntactic and semantic information in the
code increases the detection accuracy in anomaly detection.
Moreover, one work has shown the detection of the anomaly
using fully-fledged codes [14]. It reveals previously uniden-
tified weaknesses, but false positive and false negative rates
are high. Another work has shown an approach with clean
and vulnerable samples to learn vulnerable patterns [15]. This
method performs very well but relies on the quality of the
dataset. In our work, we propose a solution for detecting
software buffer overflow vulnerability using neural networks
such as Simple RNN, LSTM, BilSTM, word2vec, BERT,
GPT2, and LSTM-Autoencoder. We first transform source code
samples into the minimum intermediate representations through
a tokenizer provided by the Keras library. Later, we extract
semantic features using word embedding algorithms such as
GloVe and fastText. After finishing the data preprocessing
stage, we feed the input representation to the neural networks
for classification. Moreover, we develop a neural network that
works best among all the models. All the models have been
evaluated using evaluation metrics such as f1 score, precision,
recall, accuracy, and total execution time. The following is a
summary of our contributions:
1. Extracting semantic and syntactic features using GloVe
and fastText. 2. Vulnerability Detection in Source Code using
LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and
GPT-2 with an minimal intermediate feature representation of
the texts. 3. Vulnerability Detection in Source Code using
LSTM, BiLSTM, LSTM-Autoencoder, word2vec, BERT, and
GPT-2 with semantic and syntactic features. 4. Proposal of
a neural network that outperforms the results derived from
existing models. Comparison between results derived from
neural networks trained with a minimal intermediate feature
representation of the texts and semantic and syntactic features.

The rest of the paper is organized as follows: we provide a
brief background study on software vulnerability detection in
section 2. Then we explain the methods we followed for our
experimental research in section 3. The results derived from
the experiment are demonstrated in Section 4. Finally, section
5 concludes the paper.

II. LITERATURE REVIEW

Researchers are interested in the recently developed ma-
chine learning strategy for identifying and preventing soft-
ware and cybersecurity vulnerabilities in order to address
the shortcomings of conventional static and dynamic code
analysis techniques. Various machine learning techniques, in-
cluding naive bayes, logistic regression, recurrent neural net-
works (RNN), decision trees, and support vector machines are

successfully used for classifying software security activities
like malware, ransomware, and network intrusion detection.
We have examined machine learning-related papers that have
been applied to the software security domain. Previously,
Zeng et al. [16] reviewed software vulnerability analysis and
discovery using deep learning techniques. They found four
game-changing methods that contributed most to software
vulnerability detection using deep learning techniques. These
concepts are automatic semantic feature extraction using deep
learning models, end-to-end solutions for detecting buffer over-
flow vulnerabilities, applying a bidirectional Long Short-Term
Memory (BiLSTM) model for vulnerability detection, and deep
learning-based vulnerability detectors for binary code. Zhou et
al. [17] proposed a method called graph neural network for
vulnerability identification with function-level granularity to
address the issue of information loss during the representation
learning process. They transformed the samples into a code
property graph format. Then, a graph neural network made
up of a convolutional layer and a gated graph recurrent layer
learned the vulnerable programming pattern. This method im-
proves the detection of intra-procedural vulnerabilities. How-
ever, they did not address inter-procedural vulnerabilities. Iorga
et al. [18] demonstrated a process for early detection of
cyber vulnerabilities from Twitter, building a corpus of 650
annotated tweets related to cybersecurity articles. They used
the BERT model and transfer learning model for identifying
cyber vulnerabilities from the articles. The BERT model shows
91% accuracy, which they found adequate for identifying
relevant posts or news articles. Sauerwein et al. [19] presented
an approach for automated classification of attackers’ TTPs
by combining NLP with ML techniques. They extracted the
attackers’ TTPs from unstructured text. To extract the TTPs,
they used a combination of NLP with ML techniques. They
assessed all potential combinations of the specified NLP and
ML approaches with 156 processing pipelines and an automati-
cally generated training set. They found that tokenization, POS
tagging, IoC replacement, lemmatization, one-hot encoding,
binary relevance, and support vector machine performed best
for the classification of techniques and tactics. Harer et al.
[20] created a dataset composed of millions of open-source
functions annotated with results from static analysis. The
performance of source-based models is then compared against
approaches applied to artifacts extracted from the build process,
with source-based methods coming out on top. The best
performance is found when combining characteristics learned
by deep models with tree-based models. They evaluated the use
of deep neural network models alongside more conventional
models like random forests. Finally, their best model achieved
an area under the ROC curve of 0.87 and an area under
the precision-recall curve of 0.49. Pistoia et al. [21] surveyed
static analysis methods for identifying security vulnerabilities
in software systems. They discussed three topics that have
been linked to security vulnerability sources: application pro-
gramming interface conformance, information flow, and access
control. They addressed static analysis methods for stack-based
access control and role-based access control separately since
access control systems can be divided into these two main



types. They reviewed some effective static analysis techniques,
including the Mandatory Access Rights Certification of Objects
(MARCO) algorithm, the Enterprise Security Policy Evaluation
(ESPE) algorithm, the Static Analysis for Validation of Enter-
prise Security (SAVES) algorithm, and Hammer, Krinke, and
Snelting’s algorithm. However, static analysis produces false
positive results and relies on predefined rules. For new errors,
the static analysis method is unsuitable, as it cannot recognize
and detect them.

III. METHODOLOGY

From the standpoint of source code, the majority of flaws
originate in critical processes that pose security risks, such as
functions, assignments, or control statements. Adversaries can
directly or indirectly affect these crucial operations by manip-
ulating factors or circumstances. To successfully understand
patterns of security vulnerabilities from code, neural network
models must be trained on a large number of instances. In this
study, we analyze the lowest level of codes in software package
functions, capable of capturing vulnerable flows. We utilized a
sizable dataset containing millions of function-level examples
of C and C++ code from the SATE IV Juliet Test Suite, the
Debian Linux distribution, and open-source Git repositories
on GitHub, as mentioned in Russell’s work [22]. Our project
employs the CWE-119 vulnerability feature, which indicates
issues related to buffer overflow vulnerability. Buffer overflow
occurs when data written to a buffer exceeds its length,
overwriting storage units outside the buffer. According to a
2019 Common Weakness Enumeration report, buffer overflow
vulnerability has become the most adversely affected issue.
Although we focus on buffer overflow, our method can identify
other vulnerabilities. Figure 1 illustrates an intra-procedural
buffer overflow vulnerability. Our dataset is divided into three
subfolders—train, validation, and test—each containing a CSV
file with 100,000, 20,000, and 10,000 data instances, respec-
tively. The CSV files store text data and corresponding labels,
allowing systematic evaluation of the model’s performance and
adaptability throughout the learning process.

Fig. 1: An example of buffer overflow vulnerability.

We analyzed the dataset and found some common words
(shown in Table 1) with their corresponding counts. The visual-
ization of common words in the dataset provides a preliminary

understanding of what kind of important features the dataset
might have.

TABLE I: Most common words and their frequencies

index Common words Count

0 = 505570

1 if 151663

2 {\n 113301

3 == 92654

4 return 77438

5 * 71897

6 the 71595

7 }\n 63182

9 int 53673

10 /* 51910

11 ¡ 43703

12 */\n 43591

13 + 41855

14 to 39072

15 && 36180

16 for 35849

17 }\n\n 34017

18 char 33334

19 else 31358

1) Data Preprocessing: In this study, we conducted a series
of data preprocessing techniques to prepare our dataset for
the neural networks. The data preprocessing steps we em-
ployed include tokenization, stop word removal, stemming,
lemmatization, and the use of pre-trained embeddings. Initially,
we performed tokenization, which is the process of breaking
down the source code into smaller units called tokens. Tokens
represent the basic units of analysis for computational purposes
in natural language processing tasks. For this process, we
utilized the Keras tokenizer, which provides methods such as
tokenize() and detokenize() to process plain text and separate
words [23]. Following tokenization, we applied stop word
removal, stemming, and lemmatization techniques to further
preprocess the tokens. Stop word removal eliminates common
words that do not provide significant information, while stem-
ming and lemmatization normalize the tokens by reducing them
to their root form. These techniques help in reducing noise and
improving the efficiency of the neural networks.

We first converted the tokens into numerical representations
using minimal intermediate representation with the Keras to-
kenizer. The Keras tokenizer assigns a unique integer index
to each token in the vocabulary and represents the source
code as a sequence of these integer indices. This represen-
tation is more efficient than one-hot encoding, as it does not
involve creating large, sparse vectors. However, it still lacks
semantic information about the tokens. To further enhance the
representation of the source code tokens and better capture
semantic and syntactic information, we utilized pre-trained
embeddings, namely GloVe and fastText. We stacked GloVe



and fastText embeddings together for extracting the semantic
and syntactic information from the source code. Both of these
embeddings have demonstrated strong performance in various
NLP tasks and can effectively capture the relationships between
words in the source code. GloVe is an unsupervised learning
algorithm that generates vector representations of words based
on global word-word co-occurrence statistics from a corpus
[24]. FastText, an extension of the skip-gram method, generates
character n-grams of varying lengths for each word and learns
weights for each n-gram, as well as the entire word token,
allowing the model to capture the meaning of suffixes, prefixes,
and short words [25]. We separately fed the minimal inter-
mediate representation with Keras tokenizer and the semantic
and syntactic representations derived from GloVe and fastText
into our neural network models. This approach allowed us to
compare the performance of the models when using different
input representations, helping us identify the most effective
method for detecting security vulnerabilities in the source code.

A. Classification Models

In this section, we discuss various classification models that
were utilized in our study. These models include Simple RNN,
LSTM, BiLSTM, LSTM-Autoencoder, Word2vec, BERT, and
GPT-2. These models are designed to work with different types
of data, such as text, time series, and sequences, and have
been widely employed in natural language processing and other
related tasks.

B. Simple Recurrent Neural Network (RNN)

The Simple Recurrent Neural Network (RNN) is a type of
artificial neural network that can model sequential data by
utilizing a directed graph and temporally dynamic behavior.
RNNs consist of an input layer, a hidden layer, and an output
layer [26]. These networks have a memory state added to each
neuron, allowing them to capture temporal dependencies in the
data. The dimensionality of the input layer in our Simple Re-
current Neural Network (RNN) model is determined based on
the input data features. The hidden layer consists of 256 units,
which use memory states to capture temporal dependencies
in the data. We use the hyperbolic tangent (tanh) activation
function in the hidden layer to introduce non-linearity into
the model. We chose this activation function due to its ability
to handle vanishing gradients more effectively compared to
other activation functions like sigmoid. The output layer of
the Simple RNN model is designed to generate predictions
based on the processed input data. The number of units in
the output layer corresponds to the number of classes, which
is two. We use an appropriate activation function, such as
sigmoid for binary classification, in the output layer to generate
probability scores for each class. To optimize the model, we
choose the Binary Cross entropy loss function and employ the
Adam optimization algorithm. We set hyperparameters such as
learning rate to 0.001, batch size to 32, and the number of
training epochs to 50.

C. Long short-term memory (LSTM)

The Long Short-Term Memory (LSTM) is a type of recurrent
neural network designed to solve the vanishing and exploding

gradient problem of traditional RNNs.It was first proposed
by Hochreiter and Schmidhuber [27]. Using this model for
sequential datasets is effective, as it can handle single data
points. It follows the Simple RNN model’s design and is an
extended version of that model [28, 29]. Our LSTM model
consists of an input layer that determines the dimensionality
of the input data features. We incorporated three hidden layers,
each containing 128 memory cells that can capture long-term
dependencies in the input sequence. The output of each LSTM
layer is fed into a dropout layer with a dropout rate of 0.2 to
prevent overfitting. The final output of the last LSTM layer is
fed into a dense layer with two units and a sigmoid activation
function to produce the final binary classification output. The
LSTM cell comprises three gates: the input gate, forget gate,
and output gate, which regulate the flow of information into
and out of the cell. To introduce non-linearity into the model,
we use the hyperbolic tangent (tanh) activation function in
the LSTM cell. Furthermore, we utilize the Rectified Linear
Unit (ReLU) activation function in the output layer to generate
non-negative predictions. We optimize the LSTM model using
the Binary Cross-Entropy loss function and Adam optimization
algorithm. The model’s hyperparameters include a learning rate
of 0.001, batch size of 32, and 50 training epochs.

D. Bidirectional Long short-term memory (BiLSTM)

The Bidirectional Long Short-Term Memory (BiLSTM) is a
type of recurrent neural network that enhances the capabilities
of the traditional LSTM by introducing bidirectional processing
of the input sequence. It was first proposed by Graves [30].
This idea sets it apart from the LSTM model, which can learn
patterns from the past to the future [31] .Our BiLSTM model
comprises an input layer that determines the dimensionality
of the input data features. We have incorporated three hidden
layers, each containing 128 memory cells that can capture long-
term dependencies in the input sequence. The output of each
BiLSTM layer is fed into a dropout layer with a dropout rate of
0.2 to prevent overfitting. The final output of the last BiLSTM
layer is fed into a dense layer with two units and a sigmoid
activation function to produce the final binary classification
output. The BiLSTM cell has two sets of three gates, namely
the input gate, forget gate, and output gate, one set that
processes the input sequence in the forward direction and
another set that processes the input sequence in the backward
direction. This bidirectional processing allows the model to
capture dependencies in both the past and future context of
the input sequence. To introduce non-linearity into the model,
we use the hyperbolic tangent (tanh) activation function in the
BiLSTM cell. Furthermore, we utilize the Rectified Linear Unit
(ReLU) activation function in the output layer to generate non-
negative predictions. We optimize the BiLSTM model using
the Binary Cross-Entropy loss function and Adam optimization
algorithm. The model’s hyperparameters include a learning rate
of 0.001, batch size of 32, and 50 training epochs.

E. LSTM-Autoencoder

The LSTM-Autoencoder is a variant of the Long Short-
Term Memory (LSTM) model that utilizes an autoencoder



architecture. The LSTM-Autoencoder is designed to read input
sequences, encode sequences, decode sequences, and recon-
struct sequences for a given sequential dataset, referred to
as encoder-decoder [32]. Its performance is estimated based
on how well the model can recreate the sequence. LSTM
autoencoder can be used on video, text, audio, and time-series
sequence data. The model accepts a series of various lengths
of inputs and outputs for various purposes, such as translating
from one language to another. The series is transformed into
a vector representation by the encoder, and the vector is
transformed back into a sequence of outputs or texts by the
decoder. The meaning of the outputs is maintained in the
vector representation. In this model, we have an input layer
that determines the dimensionality of the input data features.
The LSTM encoder layer contains 128 memory cells that can
capture long-term dependencies in the input sequence. The
LSTM decoder layer has the same number of memory cells
as the encoder layer, which allows the model to reconstruct
the input sequence. To introduce non-linearity into the model,
we use the hyperbolic tangent (tanh) activation function in the
LSTM cells. Additionally, we utilize the Mean Squared Error
(MSE) loss function to calculate the reconstruction loss of the
autoencoder. The model’s hyperparameters include a learning
rate of 0.001, batch size of 32, and 50 training epochs. To eval-
uate the performance of the LSTM-Autoencoder, we calculate
the reconstruction error between the input and reconstructed
sequence. The lower the reconstruction error, the better the
model’s ability to capture the input sequence’s structure.

F. Word2vec

Word2vec is a word embedding model specifically designed
for working with textual data. Word embedding is a tech-
nique for representing words that allows computer programs
to understand words with similar meanings. By employing
a neural network model to map words into vectors of real
numbers, word2vec is capable of capturing significant accurate
syntactic and semantic word relationships. After training, the
two-layer neural network can recognize synonymous terms and
suggest new words for incomplete phrases [33]. Our Word2vec
model comprises an input layer that takes in the one-hot
encoded words and a single hidden layer containing a specified
number of neurons, which represent the latent dimensions of
the word embeddings. We utilize the Skip-gram architecture
with negative sampling to train the Word2vec model. In this
architecture, the model predicts the surrounding words given
a target word or predicts the target word given surrounding
words. The negative sampling technique helps to efficiently
train the model by reducing the computation required to update
the weights of the model. The output layer is not used in the
Word2vec model, and the trained weights of the hidden layer
represent the learned word embeddings. These embeddings
can be used in various downstream NLP tasks such as text
classification, sentiment analysis, and machine translation. To
optimize the model, we use the Stochastic Gradient Descent
(SGD) optimization algorithm with an initial learning rate of
0.025 and decrease the learning rate linearly over time to 0.001.

We set the batch size to 128 and the number of training epochs
to 5.

G. BERT

BERT (Bidirectional Encoder Representations from Trans-
formers) is a state-of-the-art pre-trained language model de-
veloped by Google. BERT is a bidirectional transformer-based
architecture that can capture the context of a word in a sentence
by looking at the surrounding words [34]. The BERT model
consists of 12 transformer blocks for the base version and
24 transformer blocks for the large version. Each transformer
block has a multi-head attention mechanism and a feed-forward
neural network, making it capable of modeling long-term
dependencies in the input sequence. In our implementation of
BERT, we utilized the pre-trained BERT model and fine-tuned
it on our specific NLP task. We utilized the pre-trained BERT
model with 12 transformer blocks, 12 attention heads, and 110
million parameters. We added a dense layer with 2 units and
a sigmoid activation function to perform binary classification.
We utilized the Binary Cross-Entropy loss function and Adam
optimization algorithm to optimize the model. We set the
learning rate to 2e-5 and the batch size to 32. To fine-tune the
pre-trained BERT model, we trained it on our specific NLP
task using a training set of 100,000 instances and a validation
set of 20,000 instances. We trained the model for 3 epochs and
evaluated its performance on a separate test set, which constists
of 10,000 instances.

H. GPT-2

GPT-2 (Generative Pre-trained Transformer 2) is a state-
of-the-art language model developed by OpenAI. It is a
transformer-based language model that can generate coherent
and fluent text in a wide range of styles and topics [35]. GPT-
2 has a large number of parameters, with the base version
having 117 million parameters, and the largest version having
1.5 billion parameters. In our implementation of GPT-2, we
utilized the pre-trained GPT-2 model to generate text for our
specific NLP task. We fine-tuned the pre-trained GPT-2 model
on a large corpus of text relevant to our task to improve its
performance. We used the GPT-2 model with 117 million
parameters for our task. To fine-tune the pre-trained GPT-2
model, we used a training set of 100,000 instances and a
validation set of 20,000 instances. We fine-tuned the model
for 3 epochs and evaluated its performance on a separate test
set. We used the perplexity metric to evaluate the performance
of the model. We utilized the Adam optimization algorithm
with a learning rate of 1e-5 and a batch size of 32 to optimize
the model.

I. Proposed Model

We propose a stacking ensemble learning approach to im-
prove the performance of our system. Stacking ensemble is an
advanced machine learning technique that combines multiple
heterogeneous weak learners (base models) to form a single
stronger model (meta-learner). In this approach, the base mod-
els’ predictions are used as input to the meta-learner, which
ultimately makes the final prediction. The meta-learner used
in this case is a logistic regression model, while the base



models consist of Simple RNN, LSTM, BiLSTM, word2vec,
and LSTM-Autoencoder. These models are trained with one-
dimensional data as input.

Since the predicted dataset from Level 0 already contains
the expected values’ probabilities, the meta-learner can provide
accurate probabilities from Level 0. To mitigate overfitting, the
meta-learner is trained using both the validation dataset and the
outputs. The final result is the level-1 prediction.

Fig. 2: Proposed stacking ensemble learning architecture.

The architecture is divided into two levels, Level 0 and Level
1, as shown in Figure 2. Level 0 consists of Simple RNN,
LSTM, BiLSTM, word2vec, and LSTM-Autoencoder models.
After learning the data patterns, each of the base models
generates predictions simultaneously. All models in Level 0
contribute equally to the overall model performance.

Level 1, also referred to as the meta-learner, is built using
logistic regression. The meta-learner at Level 1 is fed the Level
0 predicted outputs as input. Based on the Level 0 predictions,
the meta-learner calculates the best weighted outputs. A “meta-
learner” is a model that can quickly learn a pattern or adapt to
different datasets with a small amount of training data. It learns
patterns from the outputs generated by the five base models. As
a result, the model can effectively learn completely new data
and produce acceptable output. The meta-learner’s parameters
are a combination of the parameters of the five neural networks
in the base models.

Mathematically, the stacking ensemble learning approach
can be represented as follows:

Let M be the number of base models, pmi be the probability
of the positive class for the i-th sample predicted by the m-th
base model, and wm be the weight assigned to the m-th base
model. The weighted probability pweighted

i for the i-th sample
can be computed as:

pweighted
i =

M∑
m=1

wm · pmi

The weights wm are determined by the meta-learner using
the Level 0 predictions and the validation data. The final

prediction yfinali for the i-th sample can be computed using
the logistic function:

yfinali =
1

1 + e−(pweighted
i )

By using a diverse set of base models, we can mitigate
the limitations of traditional stacking ensemble approaches that
employ similar base models, leading to similar predictions. If
a single base model performs poorly on the dataset, there is
a high likelihood that the final output will also be inferior.
Conversely, with a diverse set of base models, the strengths
and weaknesses of individual models complement each other,
which results in a more robust and accurate overall model.
This is because each base model is able to capture different
aspects or patterns in the data, thereby reducing the reliance on
any single model’s performance. Additionally, the meta-learner
can effectively combine these diverse predictions to generate
a more accurate and stable final prediction, minimizing the
impact of individual model biases or errors. In conclusion,
the utilization of heterogeneous base models in a stacking
ensemble approach provides a more resilient and powerful
predictive model, capable of handling various types of data
and delivering superior performance compared to traditional
ensemble methods.



Algorithm 1 Proposed Stacking Ensemble Learning Algo-
rithm.
Function stacking_ensemble(data, train ratio,
val ratio, test ratio)

// Initialize Level 0 base models
simple rnn ← SimpleRNN();

lstm ← LSTM();
bi lstm ← BiLSTM();
lstm autoencoder ← LSTM Autoencoder();
word2vec model ← Word2Vec();
models ← [simple rnn, lstm, bi lstm,
lstm autoencoder, word2vec model];
// Initialize Level 1 meta-learner

meta learner ← LogisticRegression()

// Split the data into training,
validation, and testing sets

X train, X val, X test, y train, y val, y test ←
data split(data, train ratio, val ratio, test ratio)

// Train Level 0 base models
foreach model in models do

model.fit(X train, y train)
// Make predictions with Level 0 base

models
Level0 outputs ← list()
foreach model in models do

pred ← model.predict(X val)
Level0 outputs.append(pred)

// Concatenate Level 0 outputs
Level0 outputs combined ← concate-
nate(Level0 outputs)

// Train Level 1 meta-learner
meta learner.fit(Level0 outputs combined, y val)

// Make final predictions with Level 1
meta-learner

Level0 test outputs ← list()
foreach model in models do

test pred ← model.predict(X test)
Level0 test outputs.append(test pred)

// Concatenate Level 0 test outputs
Level0 test outputs combined ← concate-

nate(Level0 test outputs)

// Generate Level 1 final predictions
final predictions←meta learner.predict(Level0 test outputs)
return final predictions

IV. EVALUATION METRICS

In order to assess the performance of the Neural Networks
and our proposed stacking ensemble model, we have employed
a range of evaluation metrics that provide insight into various
aspects of model performance. These metrics include precision,
recall, F1-score, accuracy, and execution time. Each of these

metrics contributes to a comprehensive understanding of the
model’s effectiveness, generalization, and efficiency [36–38].
Below, we provide a brief description of each evaluation metric:

A. Precision

Precision is a measure of the accuracy of the positive
predictions made by the model. It is calculated as the ratio of
true positive predictions to the sum of true positive and false
positive predictions. In other words, it quantifies the proportion
of correct positive predictions among all the instances predicted
as positive. A higher precision value indicates that the model
is better at identifying relevant instances and minimizing false
positive predictions.

Precision =
True Positives

True Positives + False Positives
(1)

B. Recall

Recall, also known as sensitivity or true positive rate,
measures the proportion of actual positive instances that are
correctly identified by the model. It is calculated as the ratio of
true positive predictions to the sum of true positive and false
negative predictions. A higher recall value indicates that the
model is better at detecting positive instances and minimizing
false negative predictions.

Recall =
True Positives

True Positives + False Negatives
(2)

C. F1-score

F1-score is the harmonic mean of precision and recall, and it
provides a balanced measure of both metrics. It is particularly
useful when dealing with imbalanced datasets, where one class
is significantly more prevalent than the other. The F1-score
ranges from 0 to 1, with a higher value indicating better overall
performance of the model in terms of both precision and recall.

F1-score = 2 · Precision · Recall
Precision + Recall

(3)

D. Accuracy

Accuracy is a widely-used metric that quantifies the propor-
tion of correct predictions made by the model, both positive and
negative, relative to the total number of instances. It provides
an overall indication of the model’s performance, but it may
not be a reliable metric when dealing with imbalanced datasets,
as it can be biased towards the majority class.

Accuracy =
True Positives + True Negatives

Total Instances
(4)

E. Execution Time

Execution time is a measure of the computational efficiency
of the model. It refers to the amount of time required to
train the model and make predictions. A shorter execution
time indicates that the model is more efficient, which can be
particularly important in real-world applications where time
constraints are critical. By evaluating the execution time, we
can assess the trade-offs between model performance and
computational resources. These evaluation metrics provide a
comprehensive and robust assessment of our neural network



and proposed model’s performance. By considering multiple
aspects of performance, we can ensure that our model is not
only accurate but also efficient, generalizable, and reliable
across various datasets and application scenarios.

V. RESULT AND DISCUSSION

In this study, we investigated the role of semantic and syntac-
tic features in vulnerability prediction for CWE-119, focusing
on buffer overflow vulnerabilities. We began by converting
the text dataset into a minimal intermediate representation
using a tokenizer provided by the Keras library. This basic
representation assigns a numerical value to each word with-
out considering semantic information. Since the meaning of
code is often better captured by considering the context of
multiple words, we employed state-of-the-art word embedding
algorithms—GloVe and fastText—to extract semantic features
from function-level codes. These features were then fed into
neural network models for vulnerability prediction. We used
100,000 instances for training, 20,000 for validation, and
10,000 for testing. Our evaluation metrics included accuracy,
precision, recall, and F1 score, with a focus on minimizing false
positives and false negatives. We trained seven neural network
models (Simple RNN, LSTM, BiLSTM, word2vec, BERT,
GPT-2, and LSTM-Autoencoder) and our proposed stacking
ensemble neural network model. Our ensemble learning model
outperformed single models, achieving the highest accuracy in
vulnerability prediction.

Table 2 presents the results of vulnerable source code
classification using different neural network models without
word embedding algorithms. The Simple RNN model achieves
an accuracy of 0.89, precision of 0.88, recall of 0.88, and F1
score of 0.92, with an execution time of 42 minutes and 8
seconds. The LSTM model has slightly better performance with
an accuracy of 0.90, precision of 0.90, recall of 0.90, and F1
score of 0.92, and takes 29 minutes and 48 seconds to run.
The BiLSTM model shows further improvement, obtaining an
accuracy of 0.91, precision of 0.93, recall of 0.90, and F1 score
of 0.87, but requires 2 hours and 5 minutes for execution.

The Word2vec model yields an accuracy of 0.89, precision
of 0.92, recall of 0.95, and F1 score of 0.93, with a runtime of
40 minutes and 2 seconds. The LSTM Autoencoder model has
an accuracy of 0.91, precision of 0.93, recall of 0.94, and F1
score of 0.94, taking 53 minutes and 13 seconds for execution.
The BERT model performs better with an accuracy of 0.92,
precision of 0.93, recall of 0.93, and F1 score of 0.95, but
requires 2 hours and 38 minutes to run. The GPT-2 model has
an accuracy of 0.92, precision of 0.97, recall of 0.98, and F1
score of 0.97, with a considerably longer execution time of 7
hours and 48 minutes. Lastly, the proposed model outperforms
the other models with an accuracy of 0.94, precision of 0.99,
recall of 0.98, and F1 score of 0.99, and takes 2 hours and 31
minutes to execute.

Table 3 shows the results when using GloVe and Fast-
Text embeddings. In general, the performance of all models
improved when using these embeddings. The Simple RNN,
LSTM, BiLSTM, and Word2vec models show a similar trend
in improvement, with their respective accuracies increasing to

0.92, 0.92, 0.93, and 0.94. The LSTM Autoencoder model’s
performance slightly decreased with an accuracy of 0.90. The
BERT, GPT-2, and proposed models maintain their superior
performance, with accuracies of 0.94, 0.95, and 0.95, re-
spectively. The execution times for all models vary, with the
proposed model having a runtime of 2 hours and 46 minutes.

Figure 3 shows the performance metrics for different neural
network models on vulnerable source code without using any
word embedding algorithms. The models considered are Sim-
ple RNN, LSTM, BiLSTM, Word2vec, LSTMAutoencoder,
BERT, GPT-2, and a proposed model. The metrics considered
are accuracy, precision, recall, and F1 score. The results
demonstrate that the proposed model outperforms all other
models in terms of accuracy and F1 score, achieving an
accuracy of 0.94 and an F1 score of 0.99. The execution time
of the proposed model is also relatively fast compared to other
models, taking only 2 hours and 31 minutes.

Figure 4 presents the classification results of the same neural
network models on vulnerable source code using GloVe and
fastText word embedding algorithms. The results demonstrate
that all models achieved higher accuracy and F1 score com-
pared to the results in Figure 3. The proposed model continues
to perform the best with an accuracy of 0.95 and an F1 score
of 0.99. However, the execution time of the proposed model is
longer compared to Figure 3, taking 2 hours and 46 minutes.

These figures provide a clear comparison of the performance
of different neural network models and highlight the effective-
ness of using word embedding algorithms for improving the
classification results of vulnerable source code. The proposed
model performs well in both scenarios, showing its potential
as a reliable classification model.

In Table 4, we present a comparison analysis between
our proposed model and previous works in the domain of
vulnerability detection. The table highlights the differences in
terms of the purpose of each study, the data used, whether
semantic or syntactic feature extraction was performed, the
highest performance achieved, and if efficiency measurements
were conducted.

Lorga et al. [18] aimed at vulnerability detection using
Twitter text data, but they did not perform semantic or syn-
tactic feature extraction. Their model achieved an accuracy of
94.96%, and they did not provide any efficiency measurements.
Similarly, Foret et al. [39] worked on vulnerability detection
using news articles without incorporating semantic or syntactic
features, resulting in an 87% accuracy. No efficiency measure-
ment analysis was conducted in their work as well. Harer et
al. [20] and Russell et al. [22] both focused on vulnerability
detection in source code but did not consider semantic or
syntactic feature extraction. Their models achieved F1-scores
of 49.99% and 56.6%, respectively, without any efficiency
measurement analysis. Behzadan et al. [40] also worked on vul-
nerability detection in source code without extracting semantic
or syntactic features. They reported an accuracy of 94.72%,
but no efficiency measurement analysis was performed.

Our proposed model targets vulnerability detection in source
code and incorporates semantic and syntactic feature extraction
using GloVe and fastText embeddings. As a result, our model



TABLE II: Vulnerable Source code Classification results using different Neural network models with no word embedding
algorithms

Models Accuracy precision Recall F1
Score

Execution
Time

Simple RNN 0.89 0.88 0.88 0.92 42min 8s

LSTM 0.90 0.90 0.90 0.92 29min 48s

BiLSTM 0.91 0.93 0.90 0.87 2h 5min

Word2vec 0.89 0.92 0.95 0.93 40min 2s

LSTMAutoencoder 0.91 0.93 0.94 0.94 53min 13s

BERT 0.92 0.93 0.93 0.95 2h 38min

Gpt2 0.92 0.97 0.98 0.97 7h 48min

Proposed Model 0.94 0.99 0.98 0.99 2h 31min

TABLE III: Vulnerable Source code Classification results using different Neural network models with embedding algorithms
GloVe + fastText

Models Accuracy precision Recall F1
Score

Execution
time

Simple RNN 0.92 0.93 0.93 0.97 42min 8s

LSTM 0.92 0.93 0.95 0.97 33min 13s

BiLSTM 0.93 0.96 0.96 0.99 45min 3s

Word2vec 0.94 1.00 0.98 0.99 42min 56s

LSTMAutoencoder 0.90 0.93 0.94 0.95 59min 53s

BERT 0.94 0.95 0.95 0.99 5h 16min

Gpt2 0.95 0.97 0.98 0.99 8h 33min

Proposed Model 0.95 0.97 0.98 0.99 2h 46min

TABLE IV: Comparative analysis with previous work

Previous authors Purpose Data Semantic or Syn-
tactic feature ex-
traction?

Highest percent-
age

Efficiency Mea-
surement?

Lorga et al. [18] Vulnerability detection Twitter text
data

No 94.96%
(Accuracy)

No

Foret et al. [39] Vulnerability detection News
Articles

No 87% (Accuracy) No

Harer et al. [20] Vulnerability detection Source code No 49.99% (F1-
score)

No

Russell et al. [22] Vulnerability detection Source code No 56.6% (F1-score) No

Behzadan et al.
[40]

Vulnerability detection Source code No 94.72%
(Accuracy)

No

Our Proposed
Model

Vulnerability detection Source code Yes 95% (Accuracy) Yes

achieves the highest accuracy of 95% compared to the previ-
ous works. Moreover, we contribute to efficient measurement
analysis and perform an in-depth analysis of the features that
were not considered in previous studies. This comprehensive
approach allows us to better understand the factors influencing
the performance of vulnerability detection models and develop
more effective methods for detecting security vulnerabilities in
source code.

VI. CONCLUSION

Our research aims to detect implementation vulnerabilities
early in the development cycle by leveraging the power of
neural networks. We have collected a large dataset of open-
source C and C++ code and developed a scalable and efficient
vulnerability detection method based on various neural network
models. We compared the performance of different models,
including Simple RNN, LSTM, BiLSTM, LSTM-Autoencoder,



Fig. 3: Performance Metrics for Different Neural Network Models on Vulnerable Source Code without Word Embedding
Algorithms

Word2Vec, BERT, and GPT-2, and found that models with
semantic and syntactic information extracted using state-of-the-
art word embedding algorithms such as GloVe and FastText
outperform those with a minimal text representation. Our
proposed neural network model has shown to provide higher
accuracy with greater efficiency than the other models evalu-
ated. We have also analyzed the execution time of the models
and proposed a trade-off between accuracy and efficiency.
Overall, our research contributes to the development of large-
scale machine learning systems for function-level vulnerability
identification in source code auditing.

ACKNOWLEDGEMENT

The work is supported by the National Science Founda-
tion under NSF Award #2209638, #2100115, #2209637,
#2100134, #1663350. Any opinions, findings, recommenda-
tions, expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining
mental models: a study of developer work habits,” in Pro-

ceedings of the 28th international conference on Software
engineering, pp. 492–501, 2006.

[2] T. Manikandan, B. Balamurugan, C. Senthilkumar,
R. R. A. Harinarayan, and R. R. Subramanian, “Cyberwar
is coming,” Cyber Security in Parallel and Distributed
Computing: Concepts, Techniques, Applications and Case
Studies, pp. 79–89, 2019.

[3] A. Arora and R. Telang, “Economics of software vulnera-
bility disclosure,” IEEE security & privacy, vol. 3, no. 1,
pp. 20–25, 2005.

[4] K. Jochem, “It security matters,”
[5] “cisa.” https://www.cisa.gov/

news-events/alerts/2021/06/30/
printnightmare-critical-windows-print-spooler-vulnerability,
2022. Accessed April 26, 2023.

[6] T. N. Brooks, “Survey of automated vulnerability de-
tection and exploit generation techniques in cyber rea-
soning systems,” in Science and Information Conference,
pp. 1083–1102, Springer, 2018.

[7] C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee: unas-
sisted and automatic generation of high-coverage tests for
complex systems programs.,” in OSDI, vol. 8, pp. 209–

https://www.cisa.gov/news-events/alerts/2021/06/30/printnightmare-critical-windows-print-spooler-vulnerability
https://www.cisa.gov/news-events/alerts/2021/06/30/printnightmare-critical-windows-print-spooler-vulnerability
https://www.cisa.gov/news-events/alerts/2021/06/30/printnightmare-critical-windows-print-spooler-vulnerability


Fig. 4: Performance Metrics for Different Neural Network Models on Vulnerable Source Code without Word Embedding
Algorithms

224, 2008.
[8] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre,

“Software verification with blast,” in International SPIN
Workshop on Model Checking of Software, pp. 235–239,
Springer, 2003.

[9] S. M. Ghaffarian and H. R. Shahriari, “Software vul-
nerability analysis and discovery using machine-learning
and data-mining techniques: A survey,” ACM Computing
Surveys (CSUR), vol. 50, no. 4, pp. 1–36, 2017.

[10] A. Younis, Y. Malaiya, C. Anderson, and I. Ray, “To fear
or not to fear that is the question: Code characteristics
of a vulnerable functionwith an existing exploit,” in
Proceedings of the sixth ACM conference on data and
application security and privacy, pp. 97–104, 2016.

[11] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne,
“Evaluating complexity, code churn, and developer ac-
tivity metrics as indicators of software vulnerabilities,”
IEEE transactions on software engineering, vol. 37, no. 6,
pp. 772–787, 2010.

[12] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi,
K. Rieck, S. Fahl, and Y. Acar, “Vccfinder: Finding
potential vulnerabilities in open-source projects to assist

code audits,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
pp. 426–437, 2015.

[13] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A
survey of machine learning for big code and naturalness,”
ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–
37, 2018.

[14] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan,
“Bugram: bug detection with n-gram language models,” in
Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, pp. 708–719,
2016.

[15] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and
L. Mounier, “Toward large-scale vulnerability discovery
using machine learning,” in Proceedings of the Sixth
ACM Conference on Data and Application Security and
Privacy, pp. 85–96, 2016.

[16] P. Zeng, G. Lin, L. Pan, Y. Tai, and J. Zhang, “Software
vulnerability analysis and discovery using deep learning
techniques: A survey,” IEEE Access, vol. 8, pp. 197158–
197172, 2020.

[17] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Ef-



fective vulnerability identification by learning comprehen-
sive program semantics via graph neural networks,” Ad-
vances in neural information processing systems, vol. 32,
2019.

[18] D. Iorga, D.-G. Corlatescu, O. Grigorescu, C. Sandescu,
M. Dascalu, and R. Rughinis, “Yggdrasil—early detec-
tion of cybernetic vulnerabilities from twitter,” in 2021
23rd International Conference on Control Systems and
Computer Science (CSCS), pp. 463–468, IEEE, 2021.

[19] C. Sauerwein and A. Pfohl, “Towards automated clas-
sification of attackers’ ttps by combining nlp with ml
techniques,” arXiv preprint arXiv:2207.08478, 2022.

[20] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R.
Kosta, A. Rangamani, L. H. Hamilton, G. I. Centeno,
J. R. Key, P. M. Ellingwood, et al., “Automated software
vulnerability detection with machine learning,” arXiv
preprint arXiv:1803.04497, 2018.

[21] M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav, “A
survey of static analysis methods for identifying security
vulnerabilities in software systems,” IBM systems journal,
vol. 46, no. 2, pp. 265–288, 2007.

[22] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer,
O. Ozdemir, P. Ellingwood, and M. McConley, “Auto-
mated vulnerability detection in source code using deep
representation learning,” in 2018 17th IEEE interna-
tional conference on machine learning and applications
(ICMLA), pp. 757–762, IEEE, 2018.

[23] A. Ahmed and M. A. Yousuf, “Sentiment analysis on
bangla text using long short-term memory (lstm) recur-
rent neural network,” in Proceedings of International
Conference on Trends in Computational and Cognitive
Engineering, pp. 181–192, Springer, 2021.

[24] J. Pennington, R. Socher, and C. D. Manning, “Glove:
Global vectors for word representation,” in Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543, 2014.

[25] V. Gaikwad and Y. Haribhakta, “Adaptive glove and fast-
text model for hindi word embeddings,” in Proceedings
of the 7th ACM IKDD CoDS and 25th COMAD, pp. 175–
179, 2020.

[26] M. S. Akter, H. Shahriar, R. Chowdhury, and M. Mahdy,
“Forecasting the risk factor of frontier markets: A novel
stacking ensemble of neural network approach,” Future
Internet, vol. 14, no. 9, p. 252, 2022.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[28] M. S. Akter, H. Shahriar, N. Ahmed, and A. Cuzzocrea,
“Deep learning approach for classifying the aggressive
comments on social media: Machine translated data vs
real life data,” in 2022 IEEE International Conference on
Big Data (Big Data), pp. 5646–5655, 2022.

[29] M. S. Akter, H. Shahriar, and Z. A. Bhuiya, “Automated
vulnerability detection in source code using quantum
natural language processing,” in Ubiquitous Security: Sec-
ond International Conference, UbiSec 2022, Zhangjiajie,
China, December 28–31, 2022, Revised Selected Papers,

pp. 83–102, Springer, 2023.
[30] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-

based lstm for aspect-level sentiment classification,” in
Proceedings of the 2016 conference on empirical methods
in natural language processing, pp. 606–615, 2016.

[31] M. S. Akter, H. Shahriar, A. Cuzzocrea, N. Ahmed, and
C. Leung, “Handwritten word recognition using deep
learning approach: A novel way of generating handwritten
words,” in 2022 IEEE International Conference on Big
Data (Big Data), pp. 5414–5423, 2022.

[32] H. Nguyen, K. P. Tran, S. Thomassey, and M. Hamad,
“Forecasting and anomaly detection approaches using
lstm and lstm autoencoder techniques with the applica-
tions in supply chain management,” International Journal
of Information Management, vol. 57, p. 102282, 2021.

[33] K. W. Church, “Word2vec,” Natural Language Engineer-
ing, vol. 23, no. 1, pp. 155–162, 2017.

[34] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding,” arXiv preprint arXiv:1810.04805,
2018.

[35] R. Dale, “Gpt-3: What’s it good for?,” Natural Language
Engineering, vol. 27, no. 1, pp. 113–118, 2021.

[36] D. S. Depto, S. Rahman, M. M. Hosen, M. S. Akter,
T. R. Reme, A. Rahman, H. Zunair, M. S. Rahman, and
M. Mahdy, “Automatic segmentation of blood cells from
microscopic slides: a comparative analysis,” Tissue and
Cell, vol. 73, p. 101653, 2021.

[37] M. S. Akter, M. J. H. Faruk, N. Anjum, M. Masum,
H. Shahriar, N. Sakib, A. Rahman, F. Wu, and A. Cuz-
zocrea, “Software supply chain vulnerabilities detection
in source code: Performance comparison between tradi-
tional and quantum machine learning algorithms,” in 2022
IEEE International Conference on Big Data (Big Data),
pp. 5639–5645, IEEE, 2022.

[38] M. S. Akter, H. Shahriar, S. Sneha, and A. Cuz-
zocrea, “Multi-class skin cancer classification architecture
based on deep convolutional neural network,” in 2022
IEEE International Conference on Big Data (Big Data),
pp. 5404–5413, IEEE, 2022.

[39] P. F. de la Foret, S. Ruseti, C. Sandescu, M. Dascalu, and
S. Travadel, “Interpretable identification of cybersecurity
vulnerabilities from news articles,” in Proceedings of the
International Conference on Recent Advances in Natural
Language Processing (RANLP 2021), pp. 428–436, 2021.

[40] V. Behzadan, C. Aguirre, A. Bose, and W. Hsu, “Corpus
and deep learning classifier for collection of cyber threat
indicators in twitter stream,” in 2018 IEEE International
Conference on Big Data (Big Data), pp. 5002–5007,
IEEE, 2018.


	Introduction
	Literature Review
	Methodology
	Data Preprocessing
	Classification Models
	Simple Recurrent Neural Network (RNN)
	 Long short-term memory (LSTM)
	Bidirectional Long short-term memory (BiLSTM)
	LSTM-Autoencoder
	Word2vec
	BERT
	GPT-2
	Proposed Model

	Evaluation metrics
	Precision
	Recall
	F1-score
	Accuracy
	Execution Time

	Result and Discussion
	Conclusion

