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ABSTRACT

Offline reinforcement learning (RL) aims at learning an optimal strategy using
a pre-collected dataset without further interactions with the environment. While
various algorithms have been proposed for offline RL in the previous literature,
the minimax optimality has only been (nearly) established for tabular Markov
decision processes (MDPs). In this paper, we focus on offline RL with linear
function approximation and propose a new pessimism-based algorithm for offline
linear MDP. At the core of our algorithm is the uncertainty decomposition via a
reference function, which is new in the literature of offline RL under linear function
approximation. Theoretical analysis demonstrates that our algorithm can match the
performance lower bound up to logarithmic factors. We also extend our techniques
to the two-player zero-sum Markov games (MGs), and establish a new performance
lower bound for MGs, which tightens the existing result, and verifies the nearly
minimax optimality of the proposed algorithm. To the best of our knowledge, these
are the first computationally efficient and nearly minimax optimal algorithms for
offline single-agent MDPs and MGs with linear function approximation.

1 INTRODUCTION

Reinforcement learning (RL) has achieved tremendous empirical success in both single-agent (Kober
et al., 2013) and multi-agent scenarios (Silver et al., 2016; 2017). Two components play a critical role
± function approximations and efficient simulators. For RL problems with a large (or even infinite)
number of states, storing a table as in classical Q-learning is generally infeasible. In these cases,
practical algorithms (Mnih et al., 2015; Lillicrap et al., 2015; Schulman et al., 2015; 2017; Haarnoja
et al., 2018) approximate the true value function or policy by a function class (e.g., neural networks).
Meanwhile, an efficient simulator allows for learning a policy in an online trial-and-error fashion
using millions or even billions of trajectories. However, due to the limited availability of data samples
in many practical applications, e.g., healthcare (Wang et al., 2018) and autonomous driving (Pan
et al., 2017), instead of collecting new trajectories, we may have to extrapolate knowledge only from
past experiences, i.e., a pre-collected dataset. This type of RL problems is usually referred to as
offline RL or batch RL (Lange et al., 2012; Levine et al., 2020).

An offline RL algorithm is usually measured by its sample complexity to achieve the desired statistical
accuracy. A line of works (Xie et al., 2021b; Shi et al., 2022; Li et al., 2022) demonstrates that near-
optimal sample complexity in tabular single-agent MDPs is attainable. However, these algorithms
cannot solve the problem with large or infinite state spaces where function approximation is involved.
To our best knowledge, existing algorithms cannot attain the statistical limit even for linear function
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approximation, which is arguably the simplest function approximation setting. Specifically, for linear
function approximation, Jin et al. (2021c) proposes the first efficient algorithm for offline linear
MDPs, but their upper bound is suboptimal compared with the existing lower bounds in Jin et al.
(2021c); Zanette et al. (2021). Recently, Yin et al. (2022) tries to improve the result by incorporating
variance information in the algorithmic design of offline MDPs with linear function approximation.
However, a careful examination reveals a technical gap, and some additional assumptions may be
needed to fix it (cf. Section 3 and Section 5). Beyond the single-agent MDPs, Zhong et al. (2022)
studies the Markov games (MGs) with linear function approximation and provides the only provably
efficient algorithm with a suboptimal result. Therefore, the following problem remains open:

Can we design computationally efficient offline RL algorithms for problems with linear function
approximation that are nearly minimax optimal?

In this paper, we first answer this question affirmatively under linear MDPs (Jin et al., 2020) and
then extend our results to the two-player zero-sum Markov games (MGs) (Xie et al., 2020). Our
contributions are summarized as follows:

• We identify an implicit and restrictive assumption required by existing approaches in the literature,
which originates from omitting the complicated temporal dependency between different time steps.
See Section 3 for a detailed explanation.

• We handle the temporal dependency by an uncertainty decomposition technique via a reference
function, thus closing the gap to the information-theoretic lower bound without the restrictive

independence assumption. The uncertainty decomposition serves to avoid a
√
d-amplification of

the value function error and also the measurability issue from incorporating variance information
to improve the H-dependence, where d and H are the feature dimension and planning horizon,
respectively. To the best of our knowledge, this technique is new in the literature of offline learning
under linear function approximation.

• We further generalize the developed techniques to two-player zero-sum linear MGs (Xie et al.,
2020), thus demonstrating the broad adaptability of our methods. Meanwhile, we establish a new
performance lower bound for MGs, which tightens the existing results, and verifies the nearly
minimax optimality of the proposed algorithm.

1.1 RELATED WORK

Due to space limit, we defer a comprehensive review of related work to Appendix A.2 but focus on
the works that are most related to the problem setup and our algorithmic designs.

Offline RL with Linear Function Approximation. Jin et al. (2021c) and Zhong et al. (2022) provide
the first results for offline linear MDPs and two-player zero-sum linear MGs, respectively. However,
their algorithms are based on Least-Squares Value Iteration (LSVI), and establish pessimism by

adding bonuses at every time step thus suffering from a
√
d-amplification to the lower bound (Zanette

et al., 2021; Zhong et al., 2022). The amplification results from the statistical dependency between
different time steps. After these, Min et al. (2021) studies the offline policy evaluation (OPE) in
linear MDP with an additional independence assumption that the data samples between different
time steps are independent thus circumventing this core issue. Yin et al. (2022) studies the policy
optimization in linear MDP, which also (implicitly) require the independence assumption. Another
line of work addresses the error amplification from temporal dependency with different algorithmic
designs. Zanette et al. (2020) designs an actor-critic-based algorithm and establishes pessimism via
direct perturbations of the parameter vectors in a linear function approximation scheme. Xie et al.
(2021a); Uehara and Sun (2021) establish pessimism only at the initial state but at the expense of
computational tractability. These algorithmic ideas are fundamentally different from ours and do not
apply to the LSVI-type algorithms. We will compare the proposed algorithms with them in Section 5.

2 OFFLINE LINEAR MARKOV DECISION PROCESS

Notations. Given a semi-definite matrix Λ and a vector u, we denote
√
u⊤Λu as ∥u∥Λ. The 2-

norm of a vector w is ∥w∥2. We also denote λmin(A) as the smallest eigenvalue of the matrix
A. The subscript of f(x)[0,M ] means that we clip the value f(x) to the range of [0,M ], i.e.,
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f(x)[0,M ] = max{0,min{M,f(x)}}. Given a set X , we define the set of probability measure on

it by ∆X . We will use the shorthand notations ϕh = ϕ(xh, ah), ϕ
τ
h = ϕ(xτh, a

τ
h), rh = rh(xh, ah),

and rτh = rh(x
τ
h, a

τ
h) (formally defined in the next subsection). With a slight abuse of notations, we

also use similar notations (e.g. ϕh = ϕ(xh, ah, bh)) for MGs, which shall be clear from the context.
Y ≲ X means Y ≤ CX for some constant C > 0. To improve readability, we also provide a
summary of notations in Appendix A.

Markov Decision Process. We consider an episodic MDP, denoted asM(S,A, H,P, r), where S
and A are the state space and action space, H is the episode length, P = {Ph}Hh=1 and r = {rh}Hh=1
are the state transition kernels and reward functions, respectively. For each h ∈ [H], Ph(·|x, a) is
the distribution of the next state given the state-action pair (x, a) at step h, rh(x, a) ∈ [0, 1] is the
deterministic reward given the state-action pair (x, a) at step h. 1

Policy and Value function. A policy π = {πh}Hh=1 is a collection of mappings from a state
x ∈ S to a distribution of action space πh(·|x) ∈ ∆A. For any policy π, we define the Q-value

function Qπh(x, a) = Eπ[
∑H
h′=h rh′(xh′ , ah′)|(xh, ah) = (x, a)] and the V-value function V πh (x) =

Eπ[
∑H
h′=h rh′(xh′ , ah′)|xh = x], where ah′ ∼ πh′(·|xh′) and xh′+1 ∼ Ph′(·|xh′ , ah′). For any

function V : S → R, we denote the conditional mean as (PhV )(x, a) :=
∑
x′∈S Ph(x

′|x, a)V (x′)
and conditional variance as [Varh V ](x, a) := [PhV

2](x, a)−([PhV ](x, a))2. The Bellman operator
is defined as (ThV )(x, a) := rh(x, a) + (PhV )(x, a).

We consider the MDPs whose rewards and transitions possess a linear structure (Jin et al., 2020).

Definition 1 (Linear MDP). MDP(S,A, H,P, r) is a linear MDP with a (known) feature map

ϕ : S × A → R
d, if for any h ∈ [H], there exist d unknown signed measures µh = (µ

(1)
h , · · · , µ(d)

h )

over S and an unknown vector θh ∈ R
d, such that for any (x, a) ∈ S ×A, we have Ph(· | x, a) =

⟨ϕ(x, a), µh(·)⟩ , rh(x, a) = ⟨ϕ(x, a), θh⟩. With loss of generality, we assume that ∥ϕ(x, a)∥ ≤ 1 for

all (x, a) ∈ S ×A, and max{∥µh(S)∥ , ∥θh∥} ≤
√
d for all h ∈ [H].

For linear MDP, we have the following result, whose proof can be found in Jin et al. (2020).

Lemma 1. For any function V : S → [0, Vmax − 1] and h ∈ [H], there exist vectors βh, wh ∈ R
d

with ∥βh∥ ≤ ∥wh∥ ≤
√
dVmax, such that ∀(x, a) ∈ S ×A such that the conditional expectation and

Bellman equation are both linear in the feature:

(PhV )(x, a) = ϕ(x, a)⊤βh, and (ThV )(x, a) = ϕ(x, a)⊤wh. (1)

Offline RL. In offline RL, the algorithm needs to learn a near-optimal policy or to approximate Nash
Equilibrium (NE) from a pre-collected dataset without further interacting with the environment. We
suppose that we have access to a batch dataset D = {xτh, aτh, rτh : h ∈ [H], τ ∈ [K]}, where each
trajectory is independently sampled by a behavior policy µ. The induced distribution of the state-
action pair at step h is denoted as dbh. We make the following standard dataset coverage assumption
for offline RL with linear function approximation (Wang et al., 2020; Duan et al., 2020):

Assumption 1. We assume κ = minh∈[H] λmin(Edbh [ϕ(x, a)ϕ(x, a)
⊤]) > 0 for MDPs.

This assumption requires the behavior policy to explore the state-action space well and is not
information-theoretic as Jin et al. (2021c) does not necessarily require it. However, we make this
assumption so that we can employ the variance information, which seems challenging otherwise. We
remark the assumption is also made by the existing works that employ the variance information for
the offline RL problems with linear function approximation (Min et al., 2021; Yin et al., 2022).

3 PRELIMINARIES AND TECHNICAL CHALLENGES

Pessimistic Value Iteration (PEVI) is proposed in the seminal work of Jin et al. (2021c), which

constructs the value function estimations {V̂h(·)}Hh=1 and Q-value estimations {Q̂h(·, ·)}Hh=1 back-

ward from h = H to h = 1, with the initialization V̂H+1 = 0. Specifically, given V̂h+1, PEVI

1The results readily generalize to the stochastic reward as the uncertainty of reward is non-dominating
compared with that of state transition.
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approximates the Bellman equation by ridge regression:

Q̂h(x, a)← T̂hV̂h+1(x, a)− β ∥ϕ(x, a)∥Λ−1

h
,

where the linear approximation T̂hV̂h+1(·, ·) = ϕ(·, ·)⊤ŵh is the solution of:

ŵh = argmin
w∈Rd

∑

τ∈D

(
r
τ
h + V̂h+1 (x

τ
h+1)− (φτ

h)
⊤
w
)2

+ λ∥w∥22 = Λ−1
h

(∑

τ∈D

φ
τ
h

(
r
τ
h + V̂h+1(x

τ
h+1)

))
, (2)

where Λh =
∑
τ∈D ϕ (x

τ
h, a

τ
h)ϕ (x

τ
h, a

τ
h)

⊤
+ λId. Γh(x, a) = β ∥ϕ(x, a)∥Λ−1

h
is a bonus function

such that |(ThV̂h+1 − T̂hV̂h+1)(x, a)| ≤ Γh(x, a) for all (x, a) ∈ S × A with high probability.
Intuitively, pessimism means that we use lower confidence bound by subtracting the bonus Γh(·, ·)
to penalize the uncertainty so that Q̂h(x, a) ≤ ThV̂h+1(x, a). If pessimism is achieved for all steps
h ∈ [H], then we have the following key result (formally presented in Lemma 2):

V ∗
1 (x)− V π̂1 (x) ≤ 2

H∑

h=1

Eπ∗ [Γh(xh, ah)|x1 = x] . (3)

Therefore, to establish a sharper suboptimality bound, it suffices to construct a smaller bonus function

Γh that can ensure pessimism. There remains, however, a gap of Õ(
√
dH) between the suboptimality

bound of PEVI and the minimax lower bound in Zanette et al. (2021).

Self-normalized Process and Uniform Concentration. Given a function fh+1, to construct the

bonus function, we can bound |Thfh+1 − T̂hfh+1| as follows (formally presented in Lemma 3):

∣∣∣
(
Thfh+1

)
(x, a)−

(
T̂hfh+1

)
(x, a)

∣∣∣ ≲
∥∥∥
∑

τ∈D

φ (xτ
h, a

τ
h) · ξτh(fh+1)

∥∥∥
Λ−1

h

︸ ︷︷ ︸
(A) ≤ β

∥φ(x, a)∥
Λ−1

h
,

(4)

where ξτh(fh+1) := rτh + fh+1(x
τ
h+1) − (Thfh+1)(x

τ
h, a

τ
h). Bounding (A) is referred to as the

concentration of a self-normalized process in the literature (Abbasi-Yadkori et al., 2011). For any

fixed V̂h+1, Lemma 9 ensures a high-probability upper bound Õ(H
√
d) for (A). However, in the

backward iteration, V̂h+1 is computed by ridge regression in later steps [h+1, H] and thus inevitably
depends on {xτh+1}τ∈D, which is also used to estimate the Bellman equation at step h. Consequently,
the concentration inequality cannot directly be applied since the martingale filtration in Lemma 9 is
not well-defined. To resolve the above measurability issue, the standard approach is to establish a

uniform concentration result over an ϵ-covering of the following function class of V̂h+1:

Vh+1 := max
a
{ϕ(·, a)⊤w + β ∥ϕ(·, a)∥Λ−1

h
, ∥w∥ ≤ R, β ∈ [0, B],Λ ⪰ λ · I}[0,H−h+1].

Then, the self-normalized process is bounded by the uniform bound of the ϵ-covering, plus some
approximation error. We can tune the parameter ϵ > 0 and obtain that ((B.20) of Jin et al. (2021c)):

∥∥∥
∑

τ∈D
ϕ(xτh, a

τ
h) · ξτh(V̂h+1)

∥∥∥
2

Λ−1

h

≤ cH2 ·
(
log (HNh+1(ϵ)/δ) + d log(1 +K) + d2

)

≤ cH2 ·
(

d2︸︷︷︸
Uniform conver.

+ d︸︷︷︸
Conver. + fixed V

+ d2︸︷︷︸
Approximation error

)
,

where we use an upper bound of the covering number (Lemma 11), and omit all the logarithmic
terms for a clear comparison. Therefore, we conclude that the uniform concentration leads to an extra√
d from the logarithmic covering number logNh+1(ϵ). The prior work Yin et al. (2022) omits the

dependency between V̂h+1 and {xτh, aτh, xτh+1}τ∈D, thus circumventing the uniform concentration.
To fix this gap, one might make an additional assumption that the dataset is independent across
different time steps h as in Min et al. (2021), which is not realistic in practice because the behavior
policy collects the trajectories by playing the episode starting from the initial state.
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4 REFERENCE-ADVANTAGE DECOMPOSITION UNDER LINEAR FUNCTION

APPROXIMATION

In this section, we introduce the reference-advantage decomposition under linear function approxima-

tion, which serves to avoid a
√
d amplification of the error due to the uniform concentration.

We first define P̂hgh+1(·, ·) to be an estimator of the conditional expectation, which is obtained by

setting rτh = 0 in T̂hgh+1(·, ·). We observe that the following affine properties hold:
(
T̂h(fh+1 + gh+1)

)
(·, ·) = φ(·, ·)⊤Λ−1

h

(∑

τ∈D

φ
τ
h(r

τ
h + fh+1(x

τ
h+1))

)
+ φ(·, ·)⊤Λ−1

h

(∑

τ∈D

φ
τ
hgh+1(x

τ
h+1)

)

= T̂hfh+1(·, ·) + P̂hgh+1(·, ·),

(Th (fh+1 + gh+1)) (·, ·) = ⟨φ(x, a), θh⟩+
∫

S

fh+1(x
′)
〈
φ(x, a), dµh(x

′)
〉
+

∫

S

gh+1(x
′)
〈
φ(x, a), dµh(x

′)
〉

= Thfh+1(·, ·) + Phgh+1(·, ·).

Instead of directly bounding the uncertainty as in Eqn. (4), we now make the following decomposition:

T̂hV̂h+1(x, a)− ThV̂h+1(x, a) =
(
T̂h(V̂h+1 + V

∗
h+1 − V

∗
h+1)

)
(x, a)−

(
Th(V̂h+1 + V

∗
h+1 − V

∗
h+1)

)
(x, a)

= T̂hV ∗
h+1(x, a)− ThV ∗

h+1(x, a)︸ ︷︷ ︸
Reference uncertainty ≤ b0,h(x, a)

+ P̂h(V̂h+1 − V
∗
h+1)(x, a)− Ph(V̂h+1 − V

∗
h+1)(x, a)︸ ︷︷ ︸

Advantage uncertainty ≤ b1,h(x, a)

.

(5)

We have the following key observations about the reference part and the advantage part.

Circumventing the Uniform Concentration for Reference Function. As V ∗
h+1 is deterministic,

we can directly invoke standard concentration inequality (Lemma 3 and 9) to set b0,h(x, a) =

Õ(
√
dH) ∥ϕ(x, a)∥Λ−1

h
, which avoids a

√
d amplification due to uniform concentration.

High-order Error from Correlated Advantage Function. Although we still need the standard
uniform concentration argument to analyze the advantage function and obtain a sub-optimal d-
dependency, under Assumption 1, by a carefully-crafted induction procedure, we can show that

∥V̂h+1 − V ∗
h+1∥∞ = Õ(

√
dH2

√
Kκ

). The much smaller range implies that we can invoke Lemma 9 to

set b1,h(x, a) = Õ(d
3/2H2

√
Kκ

) ∥ϕ(x, a)∥Λ−1

h
, which is non-dominating when K ≥ Ω̃

(
d2H2/κ

)
. The

detailed proof can be found in Appendix D.

Based on the above reasoning, we conclude that we can set Γh(·, ·) = Õ
(√
dH
)
∥ϕ(x, a)∥Λ−1

h
in the

original PEVI algorithm (Jin et al., 2021c) and obtain a new algorithm referred to as LinPEVI-ADV.
Together with a refined analysis, we have the following theoretical guarantee.

Theorem 1 (LinPEVI-ADV). Under the Assumptions 1, and K > Ω̃(d2H2/κ), if we set λ = 1 and

β1 = Õ(
√
dH) in Algorithm 2, then, with probability at least 1− δ, for any x ∈ S , we have

V ∗
1 (x)− V π̂1 (x) ≤ Õ

(√
dH
) H∑

h=1

Eπ∗

[
∥ϕ(x, a)∥Λ−1

h
| x1 = x

]
,

where Λh =
∑
τ∈D ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λId.

We remark that LinPEVI-ADV shares the same pseudo code with PEVI, except for a
√
d-improvement

in the choice of β. For completeness, we present the code in Algorithm 2.

Compared to Xie et al. (2021b). To the best of our knowledge, the reference-advantage decomposi-
tion is new in the literature of offline linear MDP, but it is relatively well-studied in tabular MDPs
(Azar et al., 2017; Zanette and Brunskill, 2019; Zhang et al., 2020; Xie et al., 2021b). Among them,
Xie et al. (2021b) studies the offline tabular MDP and is most related to ours. While we share similar
algorithmic ideas in terms of uncertainty decomposition, we comment on our differences as follows.
First, in terms of algorithmic design, Xie et al. (2021b) uses an independent dataset to explicitly

construct a reference V̂ ref
h+1 but we only use V ∗

h+1 in the theoretical analysis. Second, in terms of the
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Algorithm 1 LinPEVI-ADV+

1: Initialize: Input datasets D, D′, and β2; V̂H+1(·) = 0.
2: Construct variance estimator σ̂2

h(x
τ
h, a

τ
h) as in Section 5 with D′.

3: for h = H, . . . , 1 do
4: Σh =

∑
τ∈D ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤/σ̂2
h(x

τ
h, a

τ
h) + λId;

5: ŵh = Σ−1
h

(∑
τ∈D ϕ(x

τ
h, a

τ
h)
rτh+V̂h+1(x

τ
h+1)

σ̂2
h(x

τ
h,a

τ
h)

)
;

6: Γh(·, ·)← β2 ∥ϕ(·, ·)∥Σ−1

h
;

7: Q̂h(·, ·)← {ϕ(·, ·)⊤ŵh − Γh(·, ·)}[0,H−h+1];

8: π̂h(· | ·)← argmaxπh
⟨Q̂h(·, ·), πh(· | ·)⟩A, V̂h(·)← ⟨Q̂h(·, ·), π̂h(· | ·)⟩A.

9: end for
10: Output: π̂ = {π̂h}Hh=1.

uncertainty estimation, Xie et al. (2021b) estimates the uncertainty separately of each state-action
pair by counting its frequency. On the contrary, in the linear setting, we deal with the regression
and the state-action pairs are coupled with each other because the analysis of the self-normalized
process involves the estimated covariance matrix thus all the samples at step h (4). This brings
distinct challenges to the linear setting, both in terms of the analysis and the coverage condition for
achieving a sharp bound. Finally, the theoretical analyses are distinctly different due to the previous
two points. For instance, we adopt a carefully-crafted induction procedure to control the advantage
function, while Xie et al. (2021b) further introduces some dataset splitting techniques to handle the
temporal dependency in the advantage function. Moreover, for linear MDP, the way in which the
variance is introduced is also different (see Section 5).

5 LEVERAGE THE VARIANCE INFORMATION

The variance-weighted ridge regression technique was introduced by Zhou et al. (2021) in the
literature of RL and was later firstly adapted by Min et al. (2021); Yin et al. (2022) to offline RL
under linear function approximation. Specifically, given a fixed function fh+1 : S → [0, H − 1] as
the target, we perform the following variance-weighted ridge regression to estimate ŵh as:

argmin
w∈Rd

∑

τ∈D

[
(φτ

h)
⊤w − rτh − fh+1 (x

τ
h+1)

]2

σ̂2
h(x

τ
h, a

τ
h)

+ λ∥w∥22 = Σ−1
h

(∑

τ∈D

φ (xτ
h, a

τ
h) · (rτh + fh+1 (x

τ
h+1))

σ̂2
h(x

τ
h, a

τ
h)

)
,

(6)

where Σh =
∑
τ∈D

ϕ(xτ
h,a

τ
h)ϕ(x

τ
h,a

τ
h)

⊤

σ̂2
h(x

τ
h,a

τ
h)

+ λId and σ̂2
h(·, ·) ∈ [1, H2] is an independent variance

estimator. In this case, we can bound the uncertainty by Lemma 3 as follows:

|Thfh+1 − T̂hfh+1|(x, a) ≲ ∥
∑

τ∈D
ϕ (xτh, a

τ
h) · ξτh(fh+1)∥Σ−1

h
· ∥ϕ(x, a)∥Σ−1

h
,

with ξτh(fh+1) =
rτh+fh+1(x

τ
h+1)−(Thfh+1)(x

τ
h,a

τ
h)

σ̂h(xτ
h,a

τ
h)

. The high-level idea is that the normalized ξτh(fh+1)

is of a conditional variance O(1) and the Bernstein-type inequality (Lemma 10) gives a bound of

β2 := Õ(
√
d) for the self-normalized process instead of β1 = Õ(H

√
d) from the Hoeffding-type

one. Therefore, instead of depending on the planning horizon H explicitly, for β2 ∥ϕ(x, a)∥Σ−1

h
, the

H factor is ªhiddenº in the covariance matrix Σh. Furthermore, as Σ−1
h ≼ H2Λ−1

h , we know that
the new bonus function is never worse because β2 ∥ϕ(x, a)∥Σ−1

h
≲ β1 ∥ϕ(x, a)∥Λ−1

h
. Combining

this observation with (3), we conclude that the PEVI with variance-weighted regression is superior
as long as we can construct an independent and approximately accurate variance estimator σ̂2

h(·, ·).
To this end, we also carefully handle the temporal dependency due to the following two reasons:
(i) we need to avoid the measurability issue as described in Section 4; and (ii) the estimation of
the conditional variance of ξτh(fh+1) will be hard otherwise. To further illustrate the idea, we now
discuss the limitations of existing approaches when we do not omit the temporal dependency, thus
motivating our corresponding modifications.
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Limitation of the Existing Approach. Yin et al. (2022) constructs the variance estimator σ̂2
h(·, ·) and

estimate the Bellman equation both with the target function V̂h+1. As discussed in Section 3, σ̂2
h(·, ·) is

statistically dependent with the datasetDh := {(xτh, aτh)}Kτ=1 due to temporal dependency. Therefore,

the random variables { ϕ(x
τ
h,a

τ
h)

σ̂h(xτ
h,a

τ
h)
}Kτ=1 are dependent so the concentration of the covariance matrix

with Lemma 12 (Lemma C.3 of Yin et al. (2022)) does not apply. Moreover, a similar measurability
issue arises from the statistical dependency between the σ̂h(·, ·) and Dh so the concentration of the

self-normalized process also fails. Finally, the conditional variance of V̂h+1(x
τ
h+1)/σ̂h(x

τ
h, a

τ
h) is

hard to control because the numerator and denominator are tightly coupled with each other.

Variance Estimator. Equipped with the reference-advantage decomposition, it suffices to focus
on the reference function V ∗

h+1. If we can construct a σ̂2
h(·, ·) that is independent of D, then

ξτh(V
∗
h+1) =

rτh+V
∗

h+1(x
τ
h+1)−(ThV

∗

h+1)(x
τ
h,a

τ
h)

σ̂h(xτ
h,a

τ
h)

will be independent with each other and easy to deal

with. To this end, we first use an independent dataset D′ to run Algorithm 2 and construct {V̂ ′
h}Hh=1

(this only incurs a factor of 2 in the final sample complexity). Then, by Lemma 1, we know that

there exist βh,1, βh,2 ∈ R
d such that [Ph(V̂

′
h+1)

2](x, a) = ⟨ϕ(x, a), βh,2⟩ and ([PhV̂
′
h+1(x, a)])

2 =

[⟨ϕ(x, a), βh,1⟩]2. Similarly, we can approximate β1,h and β2,h via ridge regression:

β̃h,2 = argmin
β∈Rd

∑

τ∈D′

[
⟨φ (xτ

h, a
τ
h) , β⟩ − (V̂ ′

h+1)
2 (xτ

h+1)
]2

+ λ∥β∥22,

β̃h,1 = argmin
β∈Rd

∑

τ∈D′

[
⟨φ (xτ

h, a
τ
h) , β⟩ − V̂

′
h+1 (x

τ
h+1)

]2
+ λ∥β∥22.

(7)

We then employ the following variance estimator:

σ̂2
h(x, a) := max

{
1,
[
ϕ(x, a)⊤β̃h,2

]
[0,H2]

−
[
ϕ(x, a)⊤, β̃h,1

]2
[0,H]

− Õ
( dH3

√
Kκ

)}
. (8)

With proof essentially similar to that of PEVI, we can show that with high probability (cf. Lemma 5),

[VhV
∗
h+1](x, a)− Õ

(
dH3

√
Kκ

)
≤ σ̂2

h(x, a) ≤ [VhV
∗
h+1](x, a),

where [VhV
∗
h+1](x, a) = max{1, [Varh V ∗

h+1](x, a)} is the truncated variance of V ∗
h+1(·). Therefore,

σ̂2
h(·, ·) defined in (8) approximates the conditional variance of ξτh(V

∗
h+1) well when K exceeds a

threshold. Moreover, since the target function V ∗
h+1 is deterministic thus measurable, we know that

Var
xτ
h+1

|x1:τ
h

,a1:τ
h

,x
1:τ−1

h+1

[V ∗
h+1(x

τ
h+1)

σ̂h(xτ
h, a

τ
h)

]
= Varxτ

h+1
|xτ

h
,aτ

h

[V ∗
h+1(x

τ
h+1)

σ̂h(xτ
h, a

τ
h)

]

=
Varxτ

h+1
|xτ

h
,aτ

h
[V ∗

h+1(x
τ
h+1)]

σ̂h(xτ
h, a

τ
h)

≈ O(1),

where x1:τh , a1:τh , x1:τ−1
h+1 is short for {(xih, aih) : 1 ≤ i ≤ τ} ∪ {xih+1 : 1 ≤ i ≤ τ − 1}. Therefore,

the high-level idea stated at the beginning of this section is realized by the variance estimator defined
by (8). Combining the variance-weighted regression with the reference-advantage decomposition, we
propose LinPEVI-ADV+ (Algorithm 1), which enjoys the following theoretical guarantee.

Theorem 2 (LinPEVI-ADV+). Under Assumption 1, for K ≥ Ω̃(d2H6/κ), if we set λ = 1/H2 and

β2 = Õ(
√
d) in Algorithm 1, then, we have with probability at least 1− δ, for any x ∈ S , we have

V ∗
1 (x)− V π̂1 (x) ≤ Õ(

√
d) ·

H∑

h=1

Eπ∗

[
∥ϕ(xh, ah)∥Σ∗−1

h
|x1 = x

]
,

where Σ∗
h =

∑
τ∈D ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤/[VhV ∗
h+1](x

τ
h, a

τ
h) + λId.

Interpretation of the result. Since [VhV
∗
h+1](·, ·) ∈ [1, H2], we know that Σ∗−1

h ≼ H2Λ−1
h . This

implies that LinPEVI-ADV+ is never worse than LinPEVI-ADV thus also superior to the PEVI. Such
an improvement is indeed strict when it reduces to the tabular setting. Specifically, let d∗h(x, a) denote
the distribution of visitation of (x, a) at step h under the optimal policy π∗. LinPEVI-ADV gives a

7
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Independence Assumption Suboptimality Bound

Jin et al. (2021c) % Õ(dH) ·∑H
h=1 Eπ∗ [∥ϕ(x, a)∥Λ−1

h
| x1 = x]

Yin et al. (2022) ! Õ(
√
d) ·∑H

h=1 Eπ∗ [∥ϕ(xh, ah)∥Σ∗−1

h
|x1 = x]

Theorem 1 % Õ(
√
dH) ·∑H

h=1 Eπ∗ [∥ϕ(x, a)∥Λ−1

h
| x1 = x]

Theorem 2 % Õ(
√
d) ·∑H

h=1 Eπ∗ [∥ϕ(xh, ah)∥Σ∗−1

h
|x1 = x]

Table 1: A comparison with existing results. Here Λh =
∑
τ∈D ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λId and

Σ∗
h =

∑
τ∈D ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤/[VhV ∗
h+1](x

τ
h, a

τ
h) + λId. The independence assumption repre-

sents the assumption that the data samples are independent across different time steps h. We also
remark that, in the new version of Jin et al. (2021c), they adopt a dataset splitting technique to split
the dataset into H independent subsets. This technique essentially shares the same spirit with the
assumption and is at the expense of an additional H factor in the final sample complexity.

bound Õ(
√
dH

∑
h,x,a d

∗
h(x, a)

√
1

Kdbh(x,a)
) which has a horizon dependence of H2. On the other

hand, LinPEVI-ADV+ gives a bound of the form Õ(
√
d
∑
h,x,a d

∗
h(x, a)

[ [VhV
∗

h+1](x,a)

Kdbh(x,a)

]1/2
), which

has a horizon dependence of H3/2 by law of total variance. Meanwhile, LinPEVI-ADV+ enjoys the
same rate as the VAPVI (Yin et al., 2022) without an additional independence assumption on the
offline dataset, as summarized in the Table 1.

Compared to other methods. Zanette et al. (2020) and Xie et al. (2021a) also achieve a
√
d

improvement but the algorithmic ideas are fundamentally different from ours. In specific, the actor-
critic-based Zanette et al. (2020) establishes pessimism via direct perturbations of the parameter
vectors2. Xie et al. (2021a) establishes pessimism only at the initial value and is only information-
theoretic. We develop techniques to resolve the issue in the LSVI framework because it possesses
an appealing feature that we can assign sample-dependent weights in the regression thus obtaining
a sharp H-dependence. To the best of our knowledge, no similar result is available in the other
two frameworks. When rescaling the range of V-value to [0, H], their bounds will be sub-optimal.
Moreover, their bounds depend on the cardinality of the action space, while the LSVI-based one can
deal with an infinite action space.

To further interpret our result, we state the following lower bound for offline linear MDP.

Theorem 3 (Lower Bound for MDP). For fixed episode length H , dimension d, probability δ, and

sample size K ≥ Ω̃(d4). There exists a class M of linear MDPs and an offline dataset D with
|D| = K, such that for any policy π̂, it holds with probability at least 1− δ that for some universal
constant c > 0, we have

sup
M∈M

EM [V ∗
1 (x1)− V π̂1 (x1)] ≥ c

√
d ·

H∑

h=1

Eπ∗∥ϕ(xh, ah)∥Σ∗−1

h
.

The lower bound matches Theorem 2, thus establishing the optimality of LinPEVI-ADV+ for

sufficiently large K. We also remark that Yin et al. (2022) establishes the lower bound c
√
d ·∑H

h=1 ∥Eπ∗ϕ(xh, ah)∥Σ∗−1

h
, which is smaller than our lower bound due to Jensen’s inequality.

6 EXTENSIONS

6.1 LINEAR MDP WITH FINITE FEATURE SET

As shown in the seminal work of linear contextual bandit Chu et al. (2011), one can further improve

the suboptimality bound by a factor of
√
d, when the action set is finite. Equipped with the technique

developed above, we can obtain a similar improvement in the case of finite features.

Assumption 2 (Finite Feature Set). We assume that |{ϕ(x, a) ∈ R
d : x ∈ S, a ∈ A}| =M <∞.

2See page 17 of Zanette et al. (2020) for a discussion about the error amplification issue.

8



Published as a conference paper at ICLR 2023

We start with bounding |ThV ∗
h+1 − T̂hV ∗

h+1|, which is the key to establishing the bonus function:

(
T̂hV ∗

h+1 − ThV ∗
h+1

)
(x, a)

(a)

≲
∑

τ∈D

〈
φ(x, a),Λ−1

h φ
τ
h

〉
︸ ︷︷ ︸

constant

ξ
τ
h(V

∗
h+1)

(b)

≤ ∥φ(x, a)∥
Λ−1

h

∥∥∑

τ∈D

ξ
τ
h(V

∗
h+1)φ

τ
h

∥∥
Λ−1

h
,

where we prove (a) in Appendix I and (b) follows from Cauchy-Schwarz inequality. The reasoning
proceeds as follows. The key observation is that since V ∗

h+1 is deterministic, {ξτh(V ∗
h+1)}τ∈D are

independent conditioned on Dh = {(xτh, aτh)}τ∈D thus the classic Hoeffding’s inequality applies.
To get a high-probability bound for all features, Assumption 2 allows us to bound the middle term

directly by paying for a log(M) from a union bound argument, instead of a
√
d from Lemma 9. We

remark that the decomposition trick is necessary for the above reasoning. One cannot take condition

on Dh otherwise because this will influence the distribution of {ξτh(V̂h+1)}τ∈D. Combining this with
(3), we have the following result.

Theorem 4 (LinPEVI-ADV with Finite Feature Set). Suppose Assumptions 1 and 2 hold. If K ≥
Ω̃(d2H2/κ) and we set β1 = O

(√
log(2H2M/δ)

)
and λ = 1/d in Algorithm 2, then, with

probability at least 1− δ, for any x ∈ S , with Λh =
∑
τ∈D ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λId, we have

V ∗
1 (x)− V π̂1 (x) ≤ O

(
H
[
log
(
2H2M/δ

) ]1/2) H∑

h=1

Eπ∗

[
∥ϕ(xh, ah)∥Λ−1

h
| x1 = x

]
.

6.2 LINEAR TWO-PLAYER ZERO-SUM MARKOV GAME

In the two-player zero-sum MGs (Xie et al., 2020) where at each step, there is another player taking
action simultaneously from another action space B and the reward function and transition kernel
are linear in a feature map ϕ(x, a, b) : S ×A× B → R

d. The learning objective is to approximate

the Nash equilibrium (NE): (π∗, ν∗) such that V π
∗,ν∗

h (x) = maxπminν V
π,ν
h (x), where the V-value

function is now defined as V π,νh (x) = Eπ,ν [
∑H
h′=h rh′ |xh = x]. With slight abuse of notation, we

can define the Bellman operator for the two-player zero-sum MG as follows:

(ThV )(x, a, b) := rh(x, a, b) +
∑

x′∈S
Ph(x

′|x, a, b)V (x′) = ϕ(x, a, b)⊤wh, (9)

where the linear structure of the Bellman equation (i.e. the existence of wh ∈ R
d) follows from the

linearity of reward and transition. The Pessimistic Minimax Value Iteration (PMVI) proposed in
Zhong et al. (2022) also establishes pessimism at every step and we have

V
∗
1 (x)−min

ν
V

π̂,ν
1 (x)

︸ ︷︷ ︸
Gap to the NE Value

≤ 2 sup
π

H∑

h=1

Eπ,ν∗ [Γh(x, a, b) | x1 = x],
(10)

where Γh(x, a, b) is a bonus function such that |ThV h+1(x, a, b)− T̂hV h+1(x, a, b)| ≤ Γh(x, a, b)
with high probability and V h+1 is the estimated NE value of the first agent at step h+ 1. Although
the learning objective is different, the suboptimality bound essentially also reduces to the uncertainty
estimation at each step, and Zhong et al. (2022) suffers from exactly the same challenge from the

statistical dependency between V h+1 and the data samples used to construct (T̂hV h+1). Therefore,
our techniques can be readily extended to this the MG setting and improve the result in Zhong et al.
(2022). We defer the details to Appendix B.

7 CONCLUSION

In this paper, we study the linear MDPs in the offline setting. We identify the complicated statistical
dependency between different time steps as the bottleneck of the algorithmic design and theoretical
analysis. To address this issue, we develop a new reference-advantage decomposition technique

under the linear function approximation, which serves to avoid a
√
d-amplification of the value

function error due to temporal dependency and is also critical for leveraging the variance information
to achieve a sharp dependence on the planning horizon H . We further generalize the developed
techniques to the linear MDP with finite features and also the two-player zero-sum MGs, which
demonstrate the broad adaptability of our methods.
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A NOTATION TABLE AND COMPARISONS

A.1 NOTATIONS TABLE

We summarize the notations used in this paper in the Table 2.

Notation Explanation

κ = minh∈[H] λmin(Edbh [ϕ(x, a)ϕ(x, a)
⊤]) > 0 Assumption 1 (MDP) and 3 (MG)

(PhV )(x, a) =
∑
x′∈S Ph(x

′|x, a)V (x′) conditional expectation

[Varh V ](x, a) = [PhV
2](x, a)− ([PhV ](x, a))2 conditional variance

(ThV )(x, a) = rh(x, a) + (PhV )(x, a) Bellman equation and Bellman operator

σ̂2
h(·, ·) ∈ [1, H2] empirical variance estimator

[VhV
∗
h+1](x, a) = max{1, [Varh V ∗

h+1](x, a)} clipped conditional variance of V ∗
h+1

Λh =
∑
τ∈D ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λId regular covariance estimator

Σh =
∑
τ∈D

ϕ(xτ
h,a

τ
h)ϕ(x

τ
h,a

τ
h)

⊤

σ̂2
h(x

τ
h,a

τ
h)

+ λId variance-weighted covariance estimator

Σ∗
h =

∑
τ∈D

ϕ(xτ
h,a

τ
h)ϕ(x

τ
h,a

τ
h)

⊤

[VhV ∗

h+1
](xτ

h,a
τ
h)

+ λId variance-weighted covariance matrix

ξτh(fh+1) =
rτh+fh+1(x

τ
h+1)−(Thfh+1)(x

τ
h,a

τ
h)

σ̂h(xτ
h,a

τ
h)

noise in the self-normalized process

Table 2: A summary of notations used in this paper. With slight abuse of notations, the notations for
MGs are defined similarly but we replace (x, a) with (x, a, b) and replace (xτh, a

τ
h) with (xτh, a

τ
h, b

τ
h),

accordingly.

A.2 ADDITIONAL RELATED WORK

We review existing works that are closely related to our paper in this section.

Offline RL. The principle of pessimism is first used by Jin et al. (2021c) to empower efficient offline
learning under only partial coverage. It shows that we can design an efficient offline RL algorithm
with only sufficient coverage over the optimal policy, instead of the previous uniform one required
by Precup (2000); Antos et al. (2008); Levine et al. (2020). After that, a line of work (Rashidinejad
et al., 2021; Yin and Wang, 2021; Uehara et al., 2021; Zanette et al., 2021; Xie et al., 2021a; Uehara
and Sun, 2021; Shi et al., 2022; Li et al., 2022) leverages the principle of pessimism, either in the
tabular case or in the case with function approximation, and we elaborate them separately.

Offline tabular RL. For tabular MDP, a line of works has incorporated the principle of pessimism
to design efficient offline RL algorithms (Rashidinejad et al., 2021; Yin and Wang, 2021; Xie et al.,
2021b; Shi et al., 2022; Li et al., 2022). In particular, Xie et al. (2021b) proposes a variance-reduction
offline RL algorithm for tabular MDP which is nearly optimal after the total sample size exceeds
a certain threshold. After that, Li et al. (2022) proposed an algorithm that is nearly optimal by
introducing a novel subsampling trick to cancel the temporal dependency among time steps. Shi et al.
(2022) proposed the first nearly optimal model-free offline RL algorithm.

Offline RL with function approximation. For RL problems with linear function approximation,
Jin et al. (2021c) designs the first pessimism-based efficient offline algorithm for linear MDP. After
that, Min et al. (2021) considers offline policy evaluation problem under linear MDP and designs a
novel offline algorithm which incorporates the variance information of the value function to improve
the sample efficiency. This technique is later adopted by Yin et al. (2022). However, Min et al.
(2021); Yin et al. (2022) depend (explicitly or implicitly) on an assumption that the data samples are
independent across different time steps h so they do not need to handle the temporal dependency,
which considerably complicates the analysis. Moreover, such an assumption is not very realistic
when the dataset is collected by some behavior policy by interacting with the underlying MDP.
Therefore, it remains open whether we can design computationally efficient algorithms that achieve
minimax optimal sample efficiency for offline learning with linear MDP. Beyond the linear function
approximation, Xie et al. (2021a); Uehara and Sun (2021) propose pessimistic offline RL algorithms
with general function approximation. However, their works are only information-theoretic as they
require an optimization subroutine over the general function class which is computationally intractable
in general.
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Algorithm 2 PEVI (LinPEVI-ADV)

1: Initialize: Input dataset D, β1; V̂H+1(·) = 0.
2: for h = H, . . . , 1 do
3: Λh ←

∑
τ∈D ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λId;

4: ŵh ← Λ−1
h (
∑
τ∈D ϕ (x

τ
h, a

τ
h) (r

τ
h + V̂h+1(x

τ
h+1));

5: Γh(·, ·)← β1 ∥ϕ(·, ·)∥Λ−1

h
;

6: Q̂h(·, ·)← {ϕ(·, ·)⊤ŵh − Γh(·, ·)}[0,H−h+1];

7: π̂h(· | ·)← argmaxπh
⟨Q̂h(·, ·), πh(· | ·)⟩A, V̂h(·)← ⟨Q̂h(·, ·), π̂h(· | ·)⟩A.

8: end for
9: Output: π̂ = {π̂h}Hh=1 and V̂ = {V̂h}Hh=1

Offline MGs. The existing works studying sample-efficient equilibrium finding in offline MARL
include Zhong et al. (2021); Chen et al. (2021); Cui and Du (2022); Zhong et al. (2022). Among these
works, Cui and Du (2022) and Zhong et al. (2022) are most closely related to our algorithm where they
study the offline two-player zero-sum MGs in the tabular and linear case, respectively. In terms of the
minimal dataset coverage assumption, both of them identify that the unilateral concentration, i.e., a
good coverage on the {(π∗, ν), (π, ν∗) : (π∗, ν∗) is an NE and (π, ν) is arbitrary.}, is necessary and
sufficient for efficient offline learning. In terms of sample complexity, similarly, while for the tabular
game, Cui and Du (2022) is nearly optimal in terms of the dependency on the number of states, there

is a Õ(
√
dH) gap between the upper and lower bounds for linear MG (Zhong et al., 2022).

Online RL with function approximation. Jin et al. (2020) and Xie et al. (2020) propose the first
provably efficient algorithm for online linear MDP and linear MG, respectively. However, there is a
gap between their regret bounds and existing lower bounds where we remark that similar issues of
temporal dependency also exist in the analysis of online algorithms for linear MDP and linear MG.
For instance, in Lemma C.3 of Jin et al. (2020), they also need to analyze the self-normalized process

where the uniform concentration leads to an extra factor of
√
d. The recent work Hu et al. (2022)

leverages similar ideas of reference-advantage decomposition, trying to improve the regret bound for
the linear MDP but focus on the online setting, whose algorithmic design (optimism v.s. pessimism,
choices of weights) and proof techniques (online v.s. offline) are different from ours. Chen et al.
(2022) considers the linear mixture MG, which is different from the model considered in this paper.
Beyond the linear function approximation, several works on MDP (Jiang et al., 2017; Jin et al., 2021a;
Dann et al., 2021; Du et al., 2021; Foster et al., 2021) and MG (Jin et al., 2021b; Huang et al., 2021;
Xiong et al., 2022) design algorithms in the online setting with general function approximation. When
applied to the linear setting, though their regret bounds are sharper than that of Jin et al. (2020); Xie
et al. (2020), their algorithms are only information-theoretic and are computationally inefficient.

Variance-weighted Regression. It is known that variance information is essential for sharp horizon
dependence (Azar et al., 2017; Zhang et al., 2020; 2021; Zhou et al., 2021). Particularly, for online
linear mixture MDP, Zhou et al. (2021) develops the variance-weighted regression and achieves the
minimax optimal regret bound; Zhang et al. (2021) considers the time-homogeneous setting and
achieves a horizon-free guarantee. This innovative idea is first introduced to the offline setting by
Min et al. (2021) and Yin et al. (2022). In this paper, we mainly generalize this technique to the more
challenging offline setting without the additional independence assumption required in the existing
approaches. See Section 5 for details.

B RESULTS FOR MARKOV GAME

We extend our techniques to the linear Markov games in this section.

B.1 PROBLEM SETUP

We introduce the two-player zero-sum Markov games (MGs) with notations similar to single-agent
MDPs, which is a slight abuse of notation but should be clear from the context.
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Two-player Zero-sum Markov Game with Linear Function Approximation is defined by a
tuple (S,A,B, H,P, r), where S denotes the state space, A and B are the action spaces for the
two players, H is the length of each episode, P = {Ph : S × A × B → ∆S}Hh=1 is the transition

kernel, and r = {rh : S × A × B → [0, 1]}Hh=1 is the reward function. The first player (referred
to as the max-player) takes action from A aiming to maximize the cumulative reward, while the
second player (referred to as the min-player) want to minimize it. The policy of the max-player
is defined as π = {πh : S → ∆A}Hh=1. Analogously, the policy for the min-player is defined by
ν = {νh : S → ∆B}.
Value Function and Nash Equilibrium. For any fixed policy pair (π, ν), we define the value
function V π,νh and the Q-function Qπ,νh as

V π,νh (x) = Eπ,ν [

H∑

h′=h

rh′ |xh = x], Qπ,νh (x, a, b) = Eπ,ν [

H∑

h′=h

rh′ |(xh, ah, bh) = (x, a, b)].

For any function V : S → R, we also define the shorthand notations for the conditional mean,
conditional variance, and Bellman operator as follows:

(PhV )(x, a, b) :=
∑

x′∈S

Ph(x
′|x, a, b)V (x′), [Varh V ](x, a, b) := [PhV

2](x, a, b)− ([PhV ](x, a, b))2,

(ThV )(x, a, b) := rh(x, a, b) + (PhV )(x, a, b).

For any max-player’s policy π, we define the best-response as br(π) = argminν V
π,ν
h (x) for all

(x, h) ∈ S × [H]. Similarly, we can define br(ν) by br(ν) = argmaxπ V
π,ν
h (x) for all (x, h) ∈

S × [H]. We say (π∗, ν∗) is a Nash equilibrium (NE) if π∗ and ν∗ are the best response to each other.

For simplicity, we denote V π,∗h = V
π,br(π)
h , V ∗,ν

h = V
br(ν),ν
h , and V ∗

h (x) = V π
∗,ν∗

h (x). It is well
known that (π∗, ν∗) is the solution to maxπminν V

π,ν
h (x). Then we can measure the optimality of

a policy pair (π, ν) by the duality gap, which is defined in Zhong et al. (2022); Xie et al. (2020) as
follows:

Gap((π, ν), x) = V ∗,ν
1 (x)− V π,∗1 (x). (11)

We consider the linear MG (Xie et al., 2020), which generalizes the definition of linear MDP.

Definition 2 (Linear MG). MG(S,A,B, H,P, r) is a linear MG with a (known) feature map ϕ :

S×A×B → R
d, if for any h ∈ [H], there exist d unknown signed measures µh =

(
µ
(1)
h , · · · , µ(d)

h

)

over S and an unknown vector θh ∈ R
d, such that for any (x, a) ∈ S ×A, we have

Ph(· | x, a, b) = ⟨ϕ(x, a, b), µh(·)⟩ , rh(x, a, b) = ⟨ϕ(x, a, b), θh⟩ . (12)

We assume that ∥ϕ(x, a, b)∥ ≤ 1 for all (x, a, b) ∈ S × A × B, and max{∥µh(S)∥ , ∥θh∥} ≤
√
d

for all h ∈ [H].

With a slight abuse of notation, we make the following coverage assumption for MGs.

Assumption 3. We assume κ = minh∈[H] λmin(Edbh [ϕ(x, a, b)ϕ(x, a, b)
⊤]) > 0 for MGs.

B.2 LINPMVI-ADV+

LinPMVI-ADV+ (Algorithm 3) is a variant of pessimistic minimax value iteration (PMVI) from
(Zhong et al., 2022). At a high level, LinPMVI-ADV+ constructs pessimistic estimations of the
Q-functions for both players and outputs a policy pair by solving two Nash Equilibrium (NE) based on
these two estimated value functions. For linear MG, these can also be done by regressions. Suppose
we have constructed value functions (V h+1, V h+1) at (h+ 1)-th step, and two independent variance

estimators σ2
h and σ2

h, which are constructed similarly to Section 5. For now, let us focus on the main
components of Algorithm 3 and defer the construction of the variance estimators to next subsection.

Given (9), we approximate the Bellman equations ThV h+1 and ThV h+1 by solving the following
regression problems:

wh ← argmin
w∈Rd

∑

τ∈D

[rτh + V h+1(x
τ
h+1)− (φτ

h)
⊤w]2

σ2
h(x

τ
h, a

τ
h, b

τ
h)

+ λ∥w∥22, and T hV h+1(o) := φ(o)⊤wh,

wh ← argmin
w∈Rd

∑

τ∈D

[rτh + V h+1(x
τ
h+1)− (φτ

h)
⊤w]2

σ2
h(x

τ
h, a

τ
h, b

τ
h)

+ λ∥w∥22, and T hV h+1(o) := φ(o)⊤wh

(13)
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Algorithm 3 LinPMVI-ADV+

1: Initialize: Input datasets D, D′, and β3; V H+1(·) = V H+1(·) = 0.

2: Construct variance estimator σ2
h and σ2

h as in Appendix B.3 with D′.
3: for h = H, . . . , 1 do

4: Σh =
∑
τ∈D

ϕτ
h(ϕ

τ
h)

⊤

σ2
h(x

τ
h,a

τ
h,b

τ
h)

+ λId, Σh =
∑
τ∈D

ϕτ
h(ϕ

τ
h)

⊤

σ2
h(x

τ
h,a

τ
h,b

τ
h)

+ λId;

5: wh = Σ−1
h (
∑
τ∈D ϕ

τ
h(r

τ
h + V h+1(x

τ
h+1))), wh = Σ

−1

h (
∑
τ∈D ϕ

τ
h(r

τ
h + V h+1(x

τ
h+1)));

6: Γh(·, ·, ·)← β3 ∥ϕ(·, ·, ·)∥Σ−1

h
, Γh(·, ·, ·)← β3 ∥ϕ(·, ·, ·)∥Σ−1

h

7: Q
h
(·, ·, ·)← {ϕ(·, ·, ·)⊤wh − Γh(·, ·, ·)}[0,H−h+1].

8: Qh(·, ·, ·)← {ϕ(·, ·, ·)⊤wh + Γh(·, ·, ·)}[0,H−h+1].

9: (π̂h(· | ·), ν′h(· | ·))← NE(Q
h
(·, ·, ·)); V h(·)← ⟨Qh(·, ·, ·), π̂h(· | ·)× ν

′
h(· | ·)⟩A×B.

10: (π′
h(· | ·), ν̂h(· | ·))← NE(Qh(·, ·, ·)); V h(·)← ⟨Qh(·, ·, ·), π′

h(· | ·)× ν̂h(· | ·)⟩A×B.
11: end for
12: Output: (π̂ = {π̂h}Hh=1, ν̂ = {ν̂h}Hh=1).

where (o) is short for (x, a, b), and Phgh+1,Phgh+1 can be obtained by setting rτh = 0 in T hgh+1

and T gh+1. Denoting the covariance estimators as Σh =
∑
τ∈D

ϕτ
h(ϕ

τ
h)

⊤

σ2
h(x

τ
h,a

τ
h,b

τ
h)

+ λId, and Σh =
∑
τ∈D

ϕτ
h(ϕ

τ
h)

⊤

σ2
h(x

τ
h,a

τ
h,b

τ
h)

+ λId, we can estimate the Q-functions by LCB for the max-player and UCB for

the min-player, respectively:

Q
h
(o)← ϕ(o)⊤wh − Γh(x, a, b), Qh(o)← ϕ(o)⊤wh + Γh(x, a, b). (14)

where we remark that they are pessimistic for the max-player and the min-player, respectively. Next,
we solve the matrix games with payoffs Q

h
and Qh:

(π̂h(· | ·), ν′h(· | ·))← NE(Q
h
(·, ·, ·)), and (π′

h(· | ·), ν̂h(· | ·))← NE(Qh(·, ·, ·)). (15)

The V-functions estimations V h and V h are then given by

V h = Ea∼π̂h(·|·),b∼ν′

h(·|·)Qh(·, a, b) and V h = Ea∼π′

h(·|·),b∼ν̂h(·|·)Qh(·, a, b). (16)

After H steps, the algorithm outputs the policy pair (π̂ = {π̂h}Hh=1, ν̂ = {ν̂h}Hh=1) and value

functions (V = {V h}Hh=1, V = {V h}Hh=1).

Similar to the linear MDP, a sharper uncertainty bonus leads to a smaller suboptimality gap. The tech-
niques developed for MDPs can be separately applied to the max-player and min-player. Specifically,
given (V h+1, V h+1), if we denote the Nash Value as V ∗

h+1, we can decompose the uncertainties as
follows:

ThV h+1(o)− T hV h+1(o) = ThV ∗
h+1(o)− T hV

∗
h+1(o) + Ph(V h+1 − V

∗
h+1)(o)− Ph(V h+1 − V

∗
h+1)(o),

ThV h+1(o)− T hV h+1(o) = ThV ∗
h+1(o)− T hV

∗
h+1(o)︸ ︷︷ ︸

Reference Part

+Ph(V h+1 − V
∗
h+1)(o)− Ph(V h+1 − V

∗
h+1)(o).

Then, similar to the single-agent MDP, for sufficiently large K, the uncertainty is dominated by the
reference part with V ∗

h+1. Moreover, when the independent variance estimators could approximate

the conditional variance well, we can set Γh(x, a, b) = Õ
(√

d
)
∥ϕ(x, a, b)∥

Σ
−1

h
and Γh(x, a, b) =

Õ
(√

d
)
∥ϕ(x, a, b)∥Σ−1

h
. The full pseudo code is presented in Algorithm 3 and we have the following

theoretical guarantee.

Theorem 5 (LinPMVI-ADV+). Under Assumption 1, for K ≥ Ω̃(d2H6/κ), if we set 0 < λ < κ

and β3 = Õ(
√
d) in Algorithm 3, then with probability at least 1− δ, we have

V
∗,ν̂
1 (x)− V

π̂,∗
1 (x) ≤ Õ(

√
d) ·

(
max

ν

H∑

h=1

Eπ∗,ν∥φ(xh, ah, bh)∥Σ∗−1

h
+max

π

H∑

h=1

Eπ,ν∗∥φ(xh, ah, bh)∥Σ∗−1

h

)
,

where (π∗, ν∗) is an NE and Σ∗
h =

∑
τ∈D ϕ

τ
h(ϕ

τ
h)

⊤/[VhV ∗
h+1](x

τ
h, a

τ
h, b

τ
h) + λId.
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Algorithm 4 PMVI (LinPMVI-ADV)

1: Initialize: Input dataset D, β3; V H+1(·) = V H+1(·) = 0.
2: for h = H, . . . , 1 do
3: Λh ←

∑
τ∈D ϕ(x

τ
h, a

τ
h, b

τ
h)ϕ(x

τ
h, a

τ
h, b

τ
h)

⊤ + λI .

4: wh ← Λ−1
h (
∑
τ∈D ϕ (x

τ
h, a

τ
h, b

τ
h)
(
rτh + V h+1(x

τ
h+1

)
).

5: wh ← Λ−1
h (
∑
τ∈D ϕ (x

τ
h, a

τ
h, b

τ
h)
(
rτh + V h+1(x

τ
h+1

)
).

6: Γh(·, ·, ·)← β3 · (ϕ(·, ·, ·)⊤Λ−1
h ϕ(·, ·, ·))1/2.

7: Q
h
(·, ·, ·)← {ϕ(·, ·, ·)⊤wh − Γh(·, ·, ·)}[0,H−h+1].

8: Qh(·, ·, ·)← {ϕ(·, ·, ·)⊤wh + Γh(·, ·, ·)}[0,H−h+1].

9: (π̂h(· | ·), ν′h(· | ·))← NE(Q
h
(·, ·, ·)).

10: (π′
h(· | ·), ν̂h(· | ·))← NE(Qh(·, ·, ·)).

11: V h(·)← ⟨Qh(·, ·, ·), π̂h(· | ·)× ν
′
h(· | ·)⟩A×B.

12: V h(·)← ⟨Qh(·, ·, ·), π′
h(· | ·)× ν̂h(· | ·)⟩A×B.

13: end for
14: Output: (π̂ = {π̂h}Hh=1, ν̂ = {ν̂h}Hh=1).

Similar with the single-agent MDPs, LinPMVI-ADV+ replace an explicit dependence on the planning
horizon H in PMVI (Zhong et al., 2022) with an instance-dependent characterization through Σ∗

h.
The instance-dependent bound of LinPMVI-ADV+ is never worse than that of PMVI, and the
improvement is strict when specialized to the special case of tabular setting.

A tighter lower bound. To further interpret the result, we establish the following nearly matching
lower bound which tightens that in Zhong et al. (2022).

Theorem 6 (Lower Bound for MG). Fix horizon H , dimension d, probability δ > 0, and sample size

K ≥ Ω̃(d4). There exists a classM of linear MGs and an offline dataset D with |D| = K, such that
for any policy pair (π̂, ν̂), it holds with probability at least 1− δ that

sup
M∈M

EM [V ∗,ν̂
1 (x1)− V π̂,∗1 (x1)] ≥ c

√
d ·
(
max
ν

H∑

h=1

Eπ∗,ν∥ϕh∥Σ∗−1

h
+max

π

H∑

h=1

Eπ,ν∗∥ϕh∥Σ∗−1

h

)
,

where Σ∗
h =

∑
τ∈D ϕ

τ
h(ϕ

τ
h)

⊤/[VhV ∗
h+1](x

τ
h, a

τ
h, b

τ
h) + λId and c > 0 is a universal constant.

As [VhV
∗
h+1](·, ·, ·) ≥ 1, it holds that ∥ϕ(xh, ah, bh)∥Σ∗−1

h
≥ ∥ϕ(xh, ah, bh)∥Λ−1

h
. Therefore, The-

orem 6 improves the lower bound in Zhong et al. (2022) at least by a factor of
√
d. Moreover,

LinPMVI-ADV+ matches this lower bound up to logarithmic factor thus is nearly minimax optimal
when K exceeds the threshold specified in the theorem.

B.3 LINPMVI-ADV

In this subsection, we first present the full pseudo code of PMVI (Zhong et al., 2022). We first
follow the reasoning in last subsection but with naive variance 1, and thus with the regular ridge
regression. Then, the reference-advantage decomposition allows us to improve PMVI by a factor of√
d by invoking Lemma 9 without a uniform concentration in the reference part. The resulting bonus

is Γh(·, ·, ·) = Õ(
√
dH) ∥ϕ(·, ·, ·)∥Λ−1

h
.

LinPMVI-ADV admits the following theoretical guarantee:

Theorem 7 (LinPMVI-ADV). Under Assumption 1, for K > Ω̃(d2H2/κ), if we set λ = 1 and

β4 = Õ(
√
dH) in Algorithm 4, then with probability at least 1− δ, we have

V ∗,ν̂
1 (x)− V π̂,∗1 (x) ≤ Õ(

√
dH) ·

(
max
ν

H∑

h=1

Eπ∗,ν∥ϕh∥Λ−1

h
+max

π

H∑

h=1

Eπ,ν∗∥ϕh∥Λ−1

h

)
, (17)

where (π∗, ν∗) is an NE and Λh =
∑
τ∈D ϕ(x

τ
h, a

τ
h, b

τ
h)ϕ(x

τ
h, a

τ
h, b

τ
h)

⊤ + λId.

17
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We now proceed to construct the variance estimator for Algorithm 3.

Construction of the Variance Estimators. To begin with, we run Algorithm 4 to construct

{V ′
h, V

′
h}Hh=1 with an independent dataset D′. This will only incur a factor of 2 in the final sample

complexity. Similar to Lemma 1, we can show that there exist βh,1(V
′
h+1) and βh,2(V

′
h+1) such that

[Ph(V
′
h+1)

2](x, a) =
〈
ϕ(x, a), βh,2(V

′
h+1)

〉
and [PhV

′
h+1](x, a) =

〈
ϕ(x, a), βh,1(V

′
h+1)

〉
. We

approximate them via ridge regression with D′:

β̃h,2 = argmin
β∈Rd

∑

τ∈D′

[
⟨ϕτh, β⟩ − (V

′
h+1)

2
(
xτh+1

)]2
+ λ∥β∥22,

β̃h,1 = argmin
β∈Rd

∑

τ∈D′

[
⟨ϕτh, β⟩ − V

′
h+1

(
xτh+1

)]2
+ λ∥β∥22.

Then, the variance estimator is then constructed as

σ2
h(x, a) := max

{
1,
[
ϕ(x, a)⊤β̃h,2

]
[0,H2]

−
[
ϕ(x, a)⊤, β̃h,1

]2
[0,H]

− Õ
(
dH3

√
Kκ

)}
.

Similarly, we can construct the variance estimator σ2
h(x, a) with V ′

h+1 and dataset D′. In particular,
as σh(·, ·) and σh(·, ·) only depend on the dataset D′, they are independent of D. The variance
estimation error is characterized in Lemma 7 and the proof of MGs is presented in Appendix F.

C AUXILIARY LEMMAS

In this section, we provide several useful lemmas to facilitate the proof of linear MDP. The first
lemma states that if we adopt the principle of pessimism, the suboptimality bound essentially reduces
to the the uncertainty estimation, i.e., construction of the bonuses.

Lemma 2 (Regret Decomposition Lemma for MDP). Under the condition that with probability at
least 1− δ, the functions Γh : S ×A → R in Algorithms 2 and 1 (Γh = b0,h + b1,h) satisfying

|ThV̂h+1(x, a)− T̂hV̂h+1(x, a)| ≤ Γh(x, a), ∀(x, a, h) ∈ S ×A× [H],

we have that with probability at least 1− δ, for Algorithm 2 and Algorithm 1 that for any x ∈ S ,

V ∗
1 (x)− V π̂1 (x) ≤ V ∗

1 (x)− V̂1(x) ≤ 2

H∑

h=1

Eπ∗ [Γh(xh, ah) | x1 = x].

Proof. See Lemma 3.1 and Theorem 4.2 in Jin et al. (2021c) for a detailed proof.

Lemma 3 (Decomposition). For a function fh+1, suppose that Thfh+1(·, ·) = ϕ(·, ·)⊤wh.

With ŵh = Σ−1
h

(∑
τ∈D

ϕ(xτ
h,a

τ
h)·(rτh+fh+1(xτ

h+1))
σ̂2
h(x

τ
h,a

τ
h)

)
where σ̂2

h(x
τ
h, a

τ
h) can be either 1 (for reg-

ular ridge regression) or the estimated variance (for variance-weighted ridge regression) and

Σh =
∑
τ∈D

ϕ(xτ
h,a

τ
h)ϕ(x

τ
h,a

τ
h)

⊤

σ̂2
h(x

τ
h,a

τ
h)

+ λId. Then, we have the following decomposition:

(
Thfh+1 − T̂hfh+1

)
(x, a) = ϕ(x, a)⊤wh − ϕ(x, a)⊤ŵh

≤ λ ∥wh∥Σ−1

h
∥ϕ(x, a)∥Σ−1

h
+
∥∥∑

τ∈D

ϕ (xτh, a
τ
h)

σ̂h(xτh, a
τ
h)
ξτh(fh+1)

∥∥
Σ−1

h

∥ϕ(x, a)∥Σ−1

h
,

(18)

where ξτh(fh+1) =
rτh+fh+1(x

τ
h+1)−Thfh+1(x

τ
h,a

τ
h)

σ̂h(xτ
h,a

τ
h)

. In particular, if |fh+1| is bounded by H − 1 and

∥∑τ∈D
ϕ(xτ

h,a
τ
h)

σ̂h(xτ
h,a

τ
h)
· ξτh(fh+1)∥Σ−1

h
≤ β, then we can set λ sufficiently small so that

√
λdH ≤ β. In

this case, the second term is dominating. Phfh+1(·, ·) admits similar results by setting rh ≡ 0.

Proof. See Appendix I for a detailed proof.
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D PROOFS OF LINPEVI-ADV

D.1 PROOF OF THEOREM 1

The proof requires a more refined induction analysis to deal with the temporal dependency. For

instance, when analyzing the h-step, we cannot take the condition on that

∥∥∥V̂h+1 − V ∗
h+1

∥∥∥ is small,

which is required to make sure that the uncertainty of the advantage function is non-dominating. This

is because due to the temporal dependency, taking condition on V̂h+1 may influence the distribution
at step h. A carefully crafted induction analysis is employed to solve the challenge.

Proof of Theorem 1. We will prove the theorem by induction. For h = H , for a function ∥gh+1∥∞ ≤
R− 1, we invoke Lemma 3:

∣∣∣Thgh+1 − T̂hgh+1

∣∣∣ (x, a) ≤
√
λdR ∥ϕ(x, a)∥Σ−1

h︸ ︷︷ ︸
(a)

+

∥∥∥∥∥
∑

τ∈D
ϕ (xτh, a

τ
h) · ξτh(gh+1)

∥∥∥∥∥
Σ−1

h

∥ϕ(x, a)∥Σ−1

h

︸ ︷︷ ︸
(b)

.

For the reference part with gh+1 = V ∗
H+1, since V ∗

H+1 is independent of D, we can directly apply

Lemma 9 with λ = 1 to obtain that with probability at least 1− δH = 1− δ/H2,
∣∣∣THV ∗

H+1 − T̂HV ∗
H+1

∣∣∣ (x, a) ≤ 2
√
dH
√
ι ∥ϕ(x, a)∥Λ−1

H
,

where ι = log(2H2K/δ) ≥ 1. To simplify the proof, we set b0,H(x, a) = 3
√
dH
√
ι ∥ϕ(x, a)∥Λ−1

H

to further capture the uncertainty of (a) from the advantage function. Then, we can focus
on the analysis of (b) for the advantage function. By construction, we have EH+1 = {0 ≤
V ∗
H+1 − V̂H+1 ≤ 8

√
dH·0√ι√
Kκ

} holds with probability 1. By Lemma 9, it suffices to set b1,H(x, a) =

8d3/2H2ι√
Kκ

∥ϕ(x, a)∥Λ−1

H
. It follows that we can set

ΓH(·, ·) = b0,H(·, ·)+b1,H(·, ·) =
(
3
√
dH
√
ι+

8d3/2H2ι√
Kκ

)
∥ϕ(·, ·)∥Λ−1

H
≤ 4
√
dH
√
ι ∥ϕ(·, ·)∥Λ−1

H
,

where we use K ≥ Ω̃(d2H2/κ) to obtain the last inequality. If pessimism at step H is achieved, we
know that

Q∗
H(x, a) = THV ∗

H+1(x, a) ≥ TH V̂H+1(x, a) ≥ Q̂H(x, a), ∀(x, a) ∈ S ×A,

where the last step is due to |ThV̂H+1(x, a) − T̂hV̂H+1(x, a)| ≤ ΓH(x, a). This implies that

V ∗
H(x) ≥ V̂H(x) for all x ∈ S and we proceed to bound the error as follows:

V ∗
H(x)− V̂H(x) =

〈
Q∗
H(x, ·)− Q̂H(x, ·), π∗

H(·|x)
〉
+
〈
Q̂H(x, ·), π∗

H(·|x)− π̂H(·|x)
〉

≤
〈
TH V̂H+1(x, ·)− T̂H V̂H+1(x, ·) + ΓH(x, ·), π∗

H(·|x)
〉
+
〈
TH(V ∗

h+1 − V̂H+1)(x, ·), π∗
H(·|x)

〉

≤ 2Eπ∗ [ΓH(·, ·)|xH = x] + 0,

≤ 8
√
dH · 1√ι√
Kκ

:= RH , ∀x ∈ S,

where the last inequality uses Lemma 13. To summarize, the event EH = {0 ≤ V ∗
H(x)− V̂H(x) ≤

RH , ∀x ∈ S} holds with probability at least 1− δH = 1− δ
H2 . This is the base case. Now suppose

that the event Eh+1 = {0 ≤ V ∗
h+1(x) − V̂h+1(x) ≤ Rh+1 := 8

√
dH(H−h)√ι√

Kκ
, ∀x ∈ S} holds with

probability at least 1 − δh+1. We are going to establish the result for step h. Clearly, we can still

set b0,h(·, ·) = 3
√
dH
√
ι ∥ϕ(·, ·)∥Λ−1

h
. It remains to determine b1,h(·, ·) for (b) of the advantage

function and to ensure that it is non-dominating. We need to deal with the temporal dependency,
which requires a more involved analysis. We first state the following lemma.
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Lemma 4 (Lemma B.2 of Jin et al. (2021c)). Let f : S → [0, R− 1] be any fixed function. For any
δ ∈ (0, 1), we have

P

(∥∥∑

τ∈D
ϕτh · ξτh(f)

∥∥2
Λ−1

h

≥ R2(2 log(
1

δ
) + d log(1 +

K

λ
))
)
≤ δ.

However, as (V̂h+1 − V ∗
h+1) is correlated to {(xτh, aτh, xτh+1)}τ∈D, we need a uniform concentration

argument. In particular, we remark that we cannot take condition that V ∗
h+1 − V̂h+1 ≤ Rh+1 directly.

We consider the function class

Vh(D,B, λ) = {Vh(x; θ, β,Σ) : S → [0, H] with ∥θ∥ ≤ D,β ∈ [0, B],Σ ⪰ λ · I} ,

where Vh(x; θ, β,Σ) = max
a∈A

{
ϕ(x, a)⊤θ − β ·

√
ϕ(x, a)⊤Σ−1ϕ(x, a)

}

[0,H−h+1]

.
(19)

With V ∗
h+1 − V̂h+1 denoted as f , we can estimate D as follows:

∥ŵh(f)∥ =
∥∥∥∥∥Λ

−1
h

(
∑

τ∈D
ϕ(xτh, a

τ
h) · (rτh + f(xτh+1))

)∥∥∥∥∥

≤ H
∑

τ∈D

√
ϕ(xτh, a

τ
h)

⊤Λ−1/2
h Λ−1

h Λ
−1/2
h ϕ(xτh, a

τ
h)

≤ H
√
K

λ

√∑

τ∈D
ϕ(xτh, a

τ
h)

⊤Λ−1
h ϕ(xτh, a

τ
h)

= H

√
K

λ

√
Tr
(
Λ−1
h (Λh − λId)

)
≤ H

√
Kd

λ
.

It follows that

f = V ∗
h+1 − V̂h+1 ∈ Fh+1 := {V ∗

h+1 − Vh+1 : Vh+1 ∈ Vh+1(D0, B0, λ)}

where D0 = H
√

Kd
λ , λ = 1, and B0 = 8

√
dH
√
ι. For any ϵ > 0, we denote the ϵ-cover

of Fh+1 with respect to the supremum norm as Nh+1(ϵ) (short for Nh+1(ϵ;D,B, λ)) and its
ϵ-covering number as |Nh+1(ϵ)|. For each f ∈ Fh+1, we can find fϵ ∈ Nh+1(ϵ), such that
supx∈S |f(x)− fϵ(x)| ≤ ϵ. It follows that

∥∥∥∥∥
∑

τ∈D
ϕτh · ξτh(f)

∥∥∥∥∥

2

Λ−1

h

1 {∥f∥∞ ≤ Rh+1}

≤ 2

∥∥∥∥∥
∑

τ∈D
ϕτh · ξτh(fϵ)

∥∥∥∥∥

2

Λ−1

h

1 {∥fϵ∥∞ ≤ (Rh+1 + ϵ)}+ 2

∥∥∥∥∥
∑

τ∈D
ϕτh · (ξτh(f)− ξτh(fϵ))

∥∥∥∥∥

2

Λ−1

h

≤ 2

∥∥∥∥∥
∑

τ∈D
ϕτh · ξτh(fϵ)

∥∥∥∥∥

2

Λ−1

h

1 {∥fϵ∥∞ ≤ (Rh+1 + ϵ)}+ 2ϵ2K2/λ,

where the first inequality uses {∥f∥∞ ≤ Rh+1} implies {∥fϵ∥∞ ≤ (Rh+1 + ϵ)} and the second
inequality is because the following estimation of the second term:

2

∥∥∥∥∥
∑

τ∈D
ϕτh · (ξτh(f)− ξτh(fϵ))

∥∥∥∥∥

2

Λ−1

h

≤ 2ϵ2
K∑

τ,τ ′=1

|ϕτhΛ−1
h ϕτ

′

h | ≤ 2ϵ2 ∥ϕτh∥ ∥ϕτ
′

h ∥
∥∥Λ−1

h

∥∥
op

≤ 2ϵ2K2/λ,
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where ∥·∥op denotes the operator norm and
∥∥Λ−1

h

∥∥
op
≤ λ−1. With a union bound over Nh+1(ϵ) and

Lemma 4, we obtain that

P


 sup
fϵ∈Nh+1(ϵ)

∥∥∥∥∥
∑

τ∈D
ϕτh · ξτh(fϵ)

∥∥∥∥∥

2

Λ−1

h

1 {∥fϵ∥∞ ≤ Rh+1 + ϵ} >

(Rh+1 + ϵ)2(2 log(
H2 · |Nh+1(ϵ)|

δ
) + d log(1 +

K

λ
))

)
≤ δ/H2.

With probability at least 1− δ/H2, for all f ∈ Fh+1, we have

∥∥∥∥∥
∑

τ∈D
ϕτh · ξτh(f)

∥∥∥∥∥

2

Λ−1

h

1 {∥f∥∞ ≤ Rh+1}

≤ inf
ϵ>0





(
8
√
dH2
√
ι√

Kκ
+ ϵ

)2(
2 log(

H2 · |Nh+1(ϵ)|
δ

) + d log(1 +
K

λ
)

)
+ 2ϵ2K2/λ





≤
(
128dH4ι

Kκ

)(
2 log(H2/δ) + 4d2 log(

512K3ι

d3/2H2
)

)
+

2d3H4

Kκ

≤
(
256dH4ι

Kκ

)(
2 log(H2/δ) + 4d2 log(

512K3ι

d3/2H2
)

)
,

(20)

where the second inequality is because the covering number of Fh+1 is bounded by that of

Vh+1(D,B, λ) and by Lemma 11, we can take ϵ = d3/2H2/(K3/2
√
κ) to obtain

log |Nh+1(ϵ)| ≤ d log(1 +
4K2
√
κ

dH
) + d2 log(1 +

512K3κι

d3/2H2
) ≤ 2d2 log(

512K3ι

d3/2H2
),

where the second inequality holds when K >
√
dH/(128

√
κι). As ι > 1 and log ι ≤ ι, it further

holds that
(
256dH4ι

Kκ

)(
2 log(H2/δ) + 4d2 log(

512K3ι

d3/2H2
)

)
≤
(
256dH4ι

Kκ

)(
2ι+ 4d2 (ι+ log(512)ι+ 3ι)

)

≤ 8704d3H4ι2

Kκ
,

To summarize, it suffices to set b1,h = 94d3/2H2ι√
Kκ

∥ϕ(x, a)∥Λ−1

h
and we have

P

(∥∥∥∥∥
∑

τ∈D
ϕτhξ

τ
h(V

∗
h+1 − V̂h+1)

∥∥∥∥∥ >
94d3/2H2ι√

Kκ

)

≤ P

(∥∥∥∥∥
∑

τ∈D
ϕτhξ

τ
h(V

∗
h+1 − V̂h+1)

∥∥∥∥∥1
{∥∥∥V ∗

h+1 − V̂h+1

∥∥∥
∞
≤ Rh+1

}
>

94d3/2H2ι√
Kκ

)

+ P

(
1

{∥∥∥V ∗
h+1 − V̂h+1

∥∥∥
∞
> Rh+1

})

≤ δ/H2 + δh+1 := δh,

where δh+1 is the failure probability at step h+ 1. As K > Ω̃
(
d2H2/κ

)
, we can set

Γh(·, ·) ≤
(
3
√
dH
√
ι+

94d3/2H2ι√
Kκ

)
∥ϕ(·, ·)∥Λ−1

h
≤ 4
√
dH
√
ι ∥ϕ(·, ·)∥Λ−1

h
,

WithRh := 8
√
dH(H−h+1)

√
ι√

Kκ
, we proceed to analyze the failure probability of Eh = {0 ≤ V ∗

h+1(x)−
V̂h+1(x) ≤ Rh, ∀x ∈ S}. First of all, if |ThV̂h+1 − T̂hV̂h+1| ≤ Γh and event Eh+1 holds, we know
that

Q∗
h(x, a) = ThV ∗

h+1(x, a) ≥ ThV̂h+1(x, a) ≥ Q̂h(x, a), ∀(x, a) ∈ S ×A,
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and thus V ∗
h (x) ≥ V̂h(x) for all x ∈ S . We also have

V ∗
h (x)− V̂h(x) =

〈
Q∗
h(x, ·)− Q̂h(x, ·), π∗

h(·|x)
〉
+
〈
Q̂h(x, ·), π∗

h(·|x)− π̂h(·|x)
〉

≤
〈
ThV̂h+1(x, ·)− T̂hV̂h+1(x, ·) + Γh(x, ·), π∗

h(·|x)
〉
+
〈
Th(V ∗

h+1 − V̂h+1)(x, ·), π∗
h(·|x)

〉

≤ 2Eπ∗ [Γh(·, ·)|xh = x] +Rh+1,

≤ 8
√
dH · (H − h)√ι√

Kκ
:= Rh, ∀x ∈ S.

Therefore, the failure probability at step h can be upper bounded as

P (Ech) ≤ P
(
Ech+1 ∪ Eh+1 ∩ {Γh(·, ·) does not ensures pessimism}

)
≤ δh+1 +

δ

H2
= δh.

Therefore, we have shown that with probability at least 1 − δh = 1 − δh+1 − δ
H2 , pessimism is

achieved at step h and Eh holds with probability at least 1− δh. By induction, and a union bound

over h ∈ [H], we know that if we set Γh = 4
√
dH
√
ι ∥ϕ(·, ·)∥Λ−1

h
, then with probability at least

1 − (δH + · · · + δ1) = 1 − δH(H+1)
2H2 > 1 − δ, |ThV̂h+1 − T̂hV̂h+1|(x, a) ≤ Γh(x, a) holds for all

(h, x, a) ∈ [H]× S ×A. The theorem then follows from Lemma 2.

D.2 PROOF OF THEOREM 4

Proof of Theorem 4. The proof basically follows the same arguments of that of Theorem 1 except
that we can leverage the finite feature condition to derive a different bonus term for the dominating
reference function. We focus on deriving the Γh(·, ·) and omit other details for simplicity.

We first elaborate Eqn. (6.1) via the proof of Lemma 3 (see Section I for details):∣∣∣ThV ∗
h+1 − T̂hV ∗

h+1

∣∣∣ (x, a) ≤
√
λdH ∥ϕ(x, a)∥Σ−1

h︸ ︷︷ ︸
(a)

+
∑

τ∈D

〈
ϕ(x, a),Λ−1

h ϕτh
〉
ξτh(V

∗
h+1)

︸ ︷︷ ︸
(b)

,

where ξτh(V
∗
h+1) = rτh + V ∗

h+1(x
τ
h+1) − ThV ∗

h+1(x
τ
h, a

τ
h). We will bound (b) by β ∥ϕ(x, a)∥Λ−1

h

with some β > 0 and we can set λ sufficiently small so that
√
λdH ≤ β. Therefore, we can focus on

the analysis of (b).

We denote the state-action pairs at step h as Dh = {(xτh, aτh)}τ∈D. The key is that because V ∗
h+1 is

deterministic, conditioned on Dh, the only randomness is from xτh+1 and {ξτh(V ∗
h+1)}τ∈D are still

independent and bounded random variables. In particular, for any fixed Dh = Dh and fixed ϕ(x, a),
by the Hoeffding’s inequality, with probability at least 1− δ

HM , we have

(b) ≤
√∑

τ∈D
H2
〈
ϕ(x, a),Λ−1

h ϕ(xτh, a
τ
h)
〉2

log

(
2H2M

δ

)

= H

√(
∥ϕ(x, a)∥2Λ−1

h
− λ ∥ϕ(x, a)∥2Λ−2

h

)
log

(
2H2M

δ

)

≤ H
√

log

(
2H2M

δ

)
∥ϕ(x, a)∥Λ−1

h
, ∀(x, a, h) ∈ S ×A× [H],

where in the equality, we use
∑

τ∈D

〈
ϕ(x, a),Λ−1

h ϕ(xτh, a
τ
h)
〉2

=
∑

τ∈D
ϕ(x, a)⊤Λ−1

h ϕ(xτh, a
τ
h)ϕ(x

τ
h, a

τ
h)

⊤Λ−1
h ϕ(x, a)

= ∥ϕ(x, a)∥2Λ−1

h
− λϕ(x, a)⊤(Λ−1

h )2ϕ(x, a).

Then, if we denote the event

Eh(x, a) := {
∑

τ∈D

〈
ϕ(x, a),Λ−1

h ϕτh
〉
ξτh(V

∗
h+1) > H

√
log

(
2H2M

δ

)
∥ϕ(x, a)∥Λ−1

h
},
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then it follows that

P(Eh(x, a)) =
∫

P (Eh(x, a)|Dh = Dh) dµ(Dh) ≤
δ

H2M
,

where the last inequality holds for any fixed Dh. By a union bound over all ϕ(x, a), we know that
with probability at least 1− δ/H2, for all (x, a) ∈ S ×A, we have

∑

τ∈D

〈
ϕ(x, a),Λ−1

h ϕτh
〉
ξτh(V

∗
h+1) ≤ H

√
log

(
2H2M

δ

)
∥ϕ(x, a)∥Λ−1

h
.

By similar induction procedure, we can set Γh(·, ·) = O

(
H
√
log
(
2H2M
δ

))
∥ϕ(x, a)∥Λ−1

h
, where

we require K ≥ Ω̃
(
d2H2/κ

)
and λ = 1/d to make the advantage function and (a) non-dominating.

Then, the theorem follows from Lemma 2.

E PROOF OF LINPEVI-ADV+

In this section, we present the proof of Theorem 2.

E.1 ANALYSIS OF THE VARIANCE ESTIMATION ERROR

First, we analyze the estimation error of the conditional variance estimator. We recall that we estimate
[VhV

∗
h+1](x, a) based on dataset D′ as

σ̂2
h(x, a) = max




1,
[〈
ϕ⊤(x, a), β̃h,2

〉]
[0,H2]

−
[〈
ϕ⊤(x, a), β̃h,1

〉]2
[0,H]︸ ︷︷ ︸

Bh(x,a)

−Õ
(
dH3

√
Kκ

)



.

Lemma 5 (Variance Estimator). Under Assumption 1, if K ≥ Ω̃(d2H2/κ), then with probability at
least 1− δ, for all (x, a, h) ∈ S ×A× [H], we have

[VhV
∗
h+1](x, a)− Õ

(
dH3

√
Kκ

)
≤ σ̂2

h(x, a) ≤ [VhV
∗
h+1](x, a) (21)

Proof. We first bound the difference between Bh(x, a) and [Varh V̂
′
h+1](x, a):

∣∣∣∣
〈
ϕ⊤(xh, ah), β̃h,2

〉
[0,H2]

−
[〈
ϕ⊤(xh, ah), β̃h,1

〉]2
[0,H]

− [Ph(V̂
′
h+1)

2](xh, ah)− ([PhV̂
′
h+1(xh, ah)])

2

∣∣∣∣

≤
∣∣∣∣
〈
ϕ⊤(xh, ah), β̃h,2

〉
[0,H2]

− [Ph(V̂
′
h+1)

2](xh, ah)

∣∣∣∣+
[〈
ϕ⊤(xh, ah), β̃h,1

〉]2
[0,H]

− ([PhV̂
′
h+1(xh, ah)])

2

≤
∣∣∣
〈
ϕ⊤(xh, ah), β̃h,2

〉
− [Ph(V̂

′
h+1)

2](xh, ah)
∣∣∣

︸ ︷︷ ︸
(a)

+2H
∣∣∣
〈
ϕ⊤(xh, ah), β̃h,1

〉
− [PhV̂

′
h+1(xh, ah)]

∣∣∣
︸ ︷︷ ︸

(b)

.

We note that both (a) and (b) are analysis of the regular value-target ridge regression, with target

(V̂ ′
h+1)

2 and (V̂ ′
h+1), respectively. The analysis thus follows the same line of those presented in

Appendix D when we deal with the correlated advantage part, except that we invoke Lemma 9 with

range H for V̂ ′
h+1 and H2 for (V̂ ′

h+1)
2. We omit the details here for simplicity and present the results

directly: with probability at least 1− δ/2, for all (x, a, h) ∈ S ×A× [H],

∣∣∣Bh(x, a)− [Varh V̂
′
h+1](x, a)

∣∣∣ ≤ (a) + 2H(b) ≤ Õ
(
dH2

√
Kκ

)
. (22)
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We then use Theorem 2 and Lemma 13 to show that with probability at least 1 − δ/2, for all
(x, a, h) ∈ S ×A× [H],

∥∥∥Varh V̂ ′
h+1 −Varh V

∗
h+1

∥∥∥ (x, a)

≤
∥∥∥Ph

(
(V̂ ′
h+1)

2 − (V ∗
h+1)

2
)∥∥∥ (x, a) +

∥∥∥∥
(
PhV̂

′
h+1

)2
−
(
PhV

∗
h+1

)2
∥∥∥∥ (x, a)

≤2H
∥∥∥V̂ ′

h+1 − V ∗
h+1

∥∥∥ (x, a) + 2H
∥∥∥PhV̂ ′

h+1 − PhV
∗
h+1

∥∥∥ (x, a) ≤ Õ
(√

dH3

√
Kκ

)
.

(23)

With a union bound over the estimations in Eqn. (22) and Eqn. (23), we know that with probability at
least 1− δ, the following derivations hold. First, by triangle inequality, we have

∥∥Bh −Varh V
∗
h+1

∥∥ (x, a) ≤
∥∥∥Bh −Varh V̂

′
h+1

∥∥∥ (x, a) +
∥∥∥Varh V̂ ′

h+1 −Varh V
∗
h+1

∥∥∥ (x, a)

≤ Õ
(
dH3

√
Kκ

)
,

where we use Eqn. (22) and Eqn. (23) in the last inequality. This shows that Bh(x, a)− Õ
(
dH3

√
Kκ

)
≤

[Varh V
∗
h+1](x, a) and the second inequality of the lemma follows from the fact that max{1, ·}

preserves the order of two numbers. On the other hand, we note that max{1, ·} is non-expansive,
meaning that |max{1, a} −max{1, b}| ≤ |a− b|. Then, we have

∥∥σ̂2
h − VhV

∗
h+1

∥∥ (x, a) ≤
∥∥∥σ̂2

h − VhV̂
′
h+1

∥∥∥ (x, a) +
∥∥∥[VhV̂ ′

h+1]− [VhV
∗
h+1]

∥∥∥ (x, a)

≤
∥∥∥∥Bh − Õ

(
dH3

√
Kκ

)
−Varh V̂

′
h+1

∥∥∥∥ (x, a) +
∥∥∥Varh V̂ ′

h+1 −Varh V
∗
h+1

∥∥∥ (x, a)

≤ Õ
(
dH2

√
Kκ

)
+ Õ

(
dH3

√
Kκ

)
+ Õ

(
dH3

√
Kκ

)

= Õ

(
dH3

√
Kκ

)
,

where the third inequality follows from Eqn. (22) and Eqn. (23).

E.2 PROOF OF THEOREM 2

The proof idea is similar to that of LinPEVI-ADV, except that we need to additionally estimate the
conditional variance and apply the Bernstein-type Lemma 10 for the reference function. To simplify
the presentation, we will focus on the uncertainty of the reference function as it is dominating, and
focus on determining the threshold. To this end, we will omit the constants and logarithmic terms by

Õ (·) throughout the proof.

Proof of Theorem 2. We still start with the following decomposition: for a function ∥gh+1∥∞ ≤
R− 1, we invoke Lemma 3:

∣∣∣Thgh+1 − T̂hgh+1

∣∣∣ (x, a)

≤
√
λdR ∥ϕ(x, a)∥Σ−1

h︸ ︷︷ ︸
(a)

+

∥∥∥∥∥∥

∑

τ∈D

ϕ (xτh, a
τ
h)√

[V̄hV̂ ′
h+1](x

τ
h, a

τ
h)
· ξτh(gh+1)

∥∥∥∥∥∥
Σ−1

h

∥ϕ(x, a)∥Σ−1

h

︸ ︷︷ ︸
(b)

.

Similarly, we can set λ = 1/H2 to ensure that (a) ≤ β2 ∥ϕ(x, a)∥Σ−1

h
= Õ

(√
d
)
∥ϕ(x, a)∥Σ−1

h
,

so we focus on the analysis of (b). For the reference function, as [V̄hV̂
′
h+1](x

τ
h, a

τ
h) ≥

1, we know that ξτh(V
∗
h+1) ≤ H . Then we consider the filtration Fτ−1,h =

σ
(
{(xjh, a

j
h)}τj=1,j∈D ∪ {(rjh, x

j
h+1)}τ−1

j=1,j∈D

)
where σ(·) denotes the σ-algebra generated by the
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random variables. As [V̄hV̂
′
h+1](x

τ
h, a

τ
h) is independent of D, ξτh(V

∗
h+1) is mean-zero conditioned on

Fτ−1,h. We proceed to estimate the conditional variance:

Dτ−1,h[ξ
τ
h(V

∗
h+1)] =

Dτ−1,h[V
∗
h+1(x

τ
h+1)]

[V̄hV̂ ′
h+1](x

τ
h, a

τ
h)
≤ [VhV

∗
h+1(x

τ
h+1)]

[V̄hV̂ ′
h+1](x

τ
h, a

τ
h)

≤ 1 +
Õ
(
dH3

√
Kκ

)

[V̄hV̂ ′
h+1](x

τ
h, a

τ
h)− Õ

(
dH3√
Kκ

)

≤ 1 + 2Õ

(
dH3

√
Kκ

)
= O(1),

where in the first equality, we use the fact that [V̄hV̂
′
h+1](·, ·) is independent of D, and in the last

inequality, we use K ≥ Ω̃
(
d2H6/κ

)
to ensure that [V̄hV̂

′
h+1](x

τ
h, a

τ
h)− Õ

(
dH3

√
Kκ

)
≥ 1

2 . Then, we

can directly invoke Lemma 10 to obtain that:

∥∥∥∥∥
∑

τ∈D
ϕ (xτh, a

τ
h) · ξτh(V ∗

h+1)

∥∥∥∥∥
Σ−1

h

≤ Õ
(√

d
)
.

Similar to the proof of LinPEVI-ADV, the uncertainty of the advantage function is non-dominating
for sufficiently large K (determined later) so we can set

Γh(·, ·) = Õ
(√

d
)
∥ϕ(x, a)∥Σ−1

h
.

Moreover, by Lemma 5, we have [V̄hV̂
′
h+1](x

τ
h, a

τ
h) ≤ [VhV

∗
h+1](x

τ
h, a

τ
h) ≤ H2, which implies that

(
∑

τ∈D

φτ
h(φ

τ
h)

⊤

[V̄hV̂
′
h+1](x

τ
h, a

τ
h)

+ λId

)−1

⪯
(
∑

τ∈D

φτ
h(φ

τ
h)

⊤

[VhV
∗
h+1](x

τ
h, a

τ
h)

+ λId

)−1

⪯ H
2

(
∑

τ∈D

φ
τ
h(φ

τ
h)

⊤ + λId

)−1

.

This implies that

∥ϕ(x, a)∥Σ−1

h
≤ ∥ϕ(x, a)∥Σ∗−1

h
≤ H ∥ϕ(x, a)∥Λ−1

h
, ∀(x, a).

Following the same induction analysis procedure of the proof of Theorem 1, we know that∥∥∥V̂h+1 − V ∗
h+1

∥∥∥
∞
≤ Õ

(√
dH2

√
Kκ

)
. Using the standard ϵ-covering argument and Lemma 9, we know

that we can set

b1,h(x, a) = Õ

(
d3/2H2

√
Kκ

)
∥ϕ(x, a)∥Σ−1

h
.

To make it non-dominating, we require that K ≥ Ω̃
(
d2H4/κ

)
. Moreover, to make (a) =√

λdR ∥ϕ(x, a)∥Σ−1

h
non-dominating, we set λ = 1/H2. Then, the theorem follows from

Lemma 2.

F PROOF OF MARKOV GAME

Proof of Theorem 5. The techniques developed for MDPs are readily extended to the MGs by decou-
pling the estimations into the max-player part and min-player part so we start with the following
lemma, which is a counterpart of Lemma 2.

Lemma 6 (Decomposition Lemma for MG). Under the condition that the functions Γh : S×A×B →
R in Algorithms 3 and 4 satisfying

|ThV h+1(x, a, b)− T̂hV h+1(x, a, b)| ≤ Γh(x, a, b),

|ThV h+1(x, a, b)− T̂hV h+1(x, a, b)| ≤ Γh(x, a, b),
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for any (x, a, b, h) ∈ S ×A× B × [H], then for Algorithms 4 and 3, we have

V ∗,ν̂
1 (x)− V ∗

1 (x) ≤ V 1(x)− V ∗
1 (x) ≤ 2 sup

ν

H∑

h=1

Eπ∗,ν [Γh(x, a, b) | x1 = x],

V ∗
1 (x)− V π̂,∗1 (x) ≤ V ∗

1 (x)− V 1(x) ≤ 2 sup
π

H∑

h=1

Eπ,ν∗ [Γh(x, a, b) | x1 = x].

Furthermore, we can obtain that for any x ∈ S ,

V ∗,ν̂
1 (x)− V π̂,∗1 (x) = V ∗,ν̂

1 (x)− V ∗
1 (x) + V ∗

1 (x)− V π̂,∗1 (x)

≤ 2 sup
ν

H∑

h=1

Eπ∗,ν [Γh(x, a, b) | x1 = x] + 2 sup
π

H∑

h=1

Eπ,ν∗ [Γh(x, a, b) | x1 = x].

Proof. See Appendix A in Zhong et al. (2022) for a detailed proof.

Therefore, it suffices to determine the Γh(·, ·, ·) that establishes pessimism. Before continuing, we
first prove Theorem 7, which is required in our subsequent analysis.

Proof of Theorem 7. We first note that Lemma 3 is constructed for (weighted) ridge regression and
can be applied to linear MG by replacing ϕ(x, a) ∈ R

d with ϕ(x, a, b) accordingly. Therefore, for a
function g : S ×A× B → [0, H − 1], we have

∣∣Thgh+1 − T hgh+1

∣∣ (x, a, b) ≲
∥∥∥∥∥
∑

τ∈D

ϕ (xτh, a
τ
h, b

τ
h)

σh(xτh, a
τ
h, b

τ
h)
· ξτh(gh+1)

∥∥∥∥∥
Σ

−1

h

∥ϕ(x, a)∥
Σ

−1

h

|Thgh+1 − T hgh+1| (x, a, b) ≲
∥∥∥∥∥
∑

τ∈D

ϕ (xτh, a
τ
h, b

τ
h)

σh(x
τ
h, a

τ
h, b

τ
h)
· ξτ
h
(gh+1)

∥∥∥∥∥
Σ−1

h

∥ϕ(x, a)∥Σ−1

h
.

(24)

where Σh =
∑
τ∈D

ϕ(xτ
h,a

τ
h,b

τ
h)ϕ(x

τ
h,a

τ
h,b

τ
h)

⊤

σ2
h(x

τ
h,a

τ
h,b

τ
h)

+ λId, ξ
τ

h(gh+1) =
rτh+gh+1(x

τ
h+1)−Thgh+1(x

τ
h,a

τ
h,b

τ
h)

σh(xτ
h,a

τ
h,b

τ
h)

,

and Σh, ξ
τ

h
(gh+1) are defined similarly for σh(·, ·, ·). Moreover, we again omit the

√
λdH as we can

set λ sufficiently small (determined later).

For LinPMVI-ADV, we set σh = σh = 1 so Σh = Σh = Λh. By the reference-advantage
decomposition for MG (Eqn. (B.2)), it suffices to focus on the reference function with the Nash value
V ∗
h+1 where Lemma 9 can be applied directly:

∣∣(ThV h+1 − T hV h+1

)
(x, a, b)

∣∣ ≲ Õ
(√

dH
)
∥ϕ(x, a, b)∥Λ−1

h
= Γh(x, a, b),

∣∣(ThV h+1 − T hV h+1

)
(x, a, b)

∣∣ ≲ Õ
(√

dH
)
∥ϕ(x, a, b)∥Λ−1

h
= Γh(x, a, b).

We follow the same induction analysis procedure of Theorem 1 to obtain that
∥∥V h+1 − V ∗

h+1

∥∥
∞ ≤

Õ
(
H(H−h)√

Kκ

)
and

∥∥V h+1 − V ∗
h+1

∥∥
∞ ≤ Õ

(
H(H−h)√

Kκ

)
. By standard ϵ-covering argument and

Lemma 9, we can set

b1,h(x, a, b) = O

(
d3/2H2ι√

Kκ

)
∥ϕ(x, a, b)∥Λ−1

h
.

To make it non-dominating, we require that K ≥ Ω̃(d2H2/κ). Also, to make
√
λdH ≤ Õ

(√
dH
)

,

it suffices to set λ = 1. Now we invoke Lemma 6 with Γh = Γh = Γh to obtain that for any x ∈ S ,

V ∗,ν̂
1 (x)− V π̂,∗1 (x)

≤ 2 sup
ν

H∑

h=1

Eπ∗,ν [Γh(x, a, b) | x1 = x] + 2 sup
π

H∑

h=1

Eπ,ν∗ [Γh(x, a, b) | x1 = x]

≤ Õ(
√
dH) ·

(
max
ν

H∑

h=1

Eπ∗,ν∥ϕ(xh, ah, bh)∥Λ−1

h
+max

π

H∑

h=1

Eπ,ν∗∥ϕ(xh, ah, bh)∥Λ−1

h

)
.
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With Theorem 7 in hand, similar to Lemma 5, we have the following lemma to control the variance
estimation error and we omit the proof for simplicity.

Lemma 7 (Variance Estimation Error for MGs). Under Assumption 1, in Algorithm 3, if K ≥
Ω̃(d2H2/κ), then with probability at least 1− δ, for all (x, a, b, h) ∈ S ×A× B × [H], we have

[VhV
∗
h+1](x, a, b)− Õ

(
dH3

√
Kκ

)
≤ σh(x, a, b) ≤ [VhV

∗
h+1](x, a, b)

[VhV
∗
h+1](x, a, b)− Õ

(
dH3

√
Kκ

)
≤ σh(x, a, b) ≤ [VhV

∗
h+1](x, a, b).

Similar to the proof of Theorem 2, if K ≥ Ω̃
(
d2H6/κ

)
, the conditional variances of ξ

τ

h(V
∗
h+1)

and ξτ
h
(V ∗
h+1) are O(1) so it suffices to set Γh(·, ·, ·) = Õ

(√
d
)
∥ϕ(·, ·, ·)∥

Σ
−1

h
and Γh(·, ·, ·) =

Õ
(√

d
)
∥ϕ(·, ·, ·)∥Σ−1

h
. Moreover, because [VhV

∗
h+1](x, a, b) ≤ H2, we have

Σ
−1

h ⪯ Σ∗−1
h ⪯ H2Λ−1

h , Σ−1
h ⪯ Σ∗−1

h ⪯ H2Λ−1
h .

We can similarly establish
∥∥V h+1 − V ∗

h+1

∥∥
∞ ≤ Õ

(√
dH2

√
Kκ

)
and

∥∥V h+1 − V ∗
h+1

∥∥
∞ ≤ Õ

(√
dH2

√
Kκ

)
,

respectively. It suffices to set b1,h(·, ·, ·) = Õ
(
d3/2H2/

√
Kκ
)
∥ϕ(·, ·, ·)∥

Σ
−1

h
and b1,h(·, ·, ·) =

Õ
(
d3/2H2/

√
Kκ
)
∥ϕ(·, ·, ·)∥Σ−1

h
where K ≥ Ω̃(d2H4/κ) is sufficient to make them non-

dominating. Moreover, we need to set λ = 1/H2 to make
√
λdH ≤ Õ

(√
d
)

. The theorem

then follows from Lemma 6.

G PROOF OF LOWER BOUNDS

We only provide the proof of the lower bound for MGs, and the lower bound for MDP follows from

the similar argument (see Remark 1 for details). In particular, we remark that the
√
d-dependency

does not contradict Theorem 4 as the feature size of the constructed instances is exponentially in d.

Proof of Theorem 6. Our proof largely follows Zanette et al. (2021); Yin et al. (2022). We construct
a family of MGsM = {Mu}u∈U , where U = {u = (u1, . . . , uH) | uh ∈ {−1, 1}d−2, ∀h ∈ [H]}.
For any fixed u ∈ U , the associated MDPMu is defined by

State space. The state space S = {−1,+1}.
Action space. The action space A = B = {−1, 0, 1}d−2.

Feature map. The feature map ϕ : S ×A× B → R
d defined by

ϕ(1, a, b) =




a√
2d
1√
2
0


 ∈ R

d, ϕ(−1, a, b) =




a√
2d
0
1√
2


 ∈ R

d.

Transition kernel. Let

µh(1) = µh(−1) =




0d−2
1√
2
1√
2


 ∈ R

d.

By the assumption that Ph(s
′ | s, a, b) = ⟨ϕ(s, a, b), µh(s′)⟩, we know the MDP reduces to a

homogeneous Markov chain with transition matrix

P =

(
1
2

1
2

1
2

1
2

)
∈ R

2×2.
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Reward observation. Let

θu,h =




ζuh
1√
3

− 1√
3


 ∈ R

d,

where ζ ∈ [0, 1√
3d
]. By the assumption that rh(s, a, b) = ⟨ϕ(s, a, b), θh⟩, we have

ru,h(s, a, b) =
s√
6
+

ζ√
2d
⟨a, uh⟩

We further assume the reward observation follows a Gaussian distribution:

Ru,h(s, a, b) ∼ N
(
s√
6
+

ζ√
2d
⟨a, uh⟩, 1

)
.

Date collection process. Let {e1, e2, · · · , ed−2} be the canonical bases of Rd−2 and 0d−2 ∈ R
d−2

be the zero vector. The behavior policy µ : S → ∆A×B is defined as

µ(ej ,0d−2 | s) =
1

d
, ∀j ∈ [d− 2], µ(0d−2,0d−2 | s) =

2

d
.

By construction, a Nash equilibrium of Mu is (π∗, ν∗) satisfying π∗
h(·) = uh and ν∗h(·) = uh.

Since the reward and transition are irrelevant with the min-player’s policy, we use the notation
uπ = (uπ1 , . . . , u

π
H) = (sign(Eπ[a1]), . . . , sign(Eπ[aH ])). Moreover, for any vector v, we denote by

its i-th element v[i]. By the proof of Lemma 9 in Zanette et al. (2021) we know

V ∗
u − V π,νu ≥ ζ√

2d

H∑

h=1

d∑

i=1

1{uπh[i]− uh[i]}

:=
ζ√
2d
DH(uπ, u). (25)

By Assouad’s method (cf. Lemma 2.12 in Tsybakov (2009)), we have

sup
u∈U

Eu[DH(uπ, u)] ≥ (d− 2)H

2
min

u,u′|DH(u,u′)=1
inf
ψ
[Pu(ψ ̸= u) + Pu′(ψ ̸= u′)],

where ψ is the test function mapping from observations to {u, u′}. Furthermore, by Theorem 2.12 in
Tsybakov (2009), we have

min
u,u′|DH(u,u′)=1

inf
ψ
[Pu(ψ ̸= u) + Pu′(ψ ̸= u′)] ≥ 1−

(
1

2
max

u,u′|DH(u,u′)=1
KL(Qu∥Qu′)

)1/2

,

(26)

where Qu takes form

Qu =

K∏

k=1

ξ1
(
sk1
) H∏

h=1

µ
(
akh, b

k
h | skh

) [
Ru,h

(
skh, a

k
h, b

k
h

)] (
rkh
)
Ph

(
skh+1 | skh, akh, bkh

)
,

where ξ = [ 12 ,
1
2 ] is the initial distribution.

KL(Qu∥Qu′) = K ·
H∑

h=1

Eu[log([Ru,h(s
1
h, a

1
h, b

1
h)](r

1
h)/[Ru′,h(s

1
h, a

1
h, b

1
h)](r

1
h))]

=
K

d

d−2∑

j=1

KL

(
N
( ζ√

2d
⟨ej , uh⟩, 1

)∥∥∥N
( ζ√

2d
⟨ej , u′h⟩, 1

))

=
K

d
·KL

(
N
( ζ√

2d
, 1
)∥∥∥N

( −ζ√
2d
, 1
))

=
2Kζ2

d2
, (27)
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where the third equality uses the fact that DH(u, u′) = 1. Choosing ζ = Θ(d/
√
K), (25), (26), and

(27) imply that

inf
π,ν

max
u∈U

Eu[V
∗
u − V π,νu ] ≳

d
√
dH√
K

. (28)

Here K ≥ Ω(d3) ensures that ζ ≤ 1√
3d

. On the other hand, we have

Var[V ∗
h+1](s, a, b)

=
1

2

[
V ∗
h+1(−1)−

1

2

(
V ∗
h+1(+1) + V ∗

h+1(−1)
)]2

+
1

2

[
V ∗
h+1(+1)− 1

2

(
V ∗
h+1(+1) + V ∗

h+1(−1)
)]2

=

[
1

2

(
r∗h+1(+1, uh+1, uh+1)− r∗h+1(−1, uh+1, uh+1)

)]2

=
1

6
,

where the second equality follows from Bellman equation, and the last inequality uses the facts that
ru,h+1(1, a, b)− ru,h+1(−1, a, b) = 2√

6
. By calculation, we have

EΣ∗
h =

3K

2

(
2
d2 Id−2

1
d
√
d
1(d−2)×2

1
d
√
d
12×(d−2) I2

)
∈ R

d×d.

By Gaussian elimination, we know ∥(EΣ∗
h/K)−1∥ ≤ d2. For all h ∈ [H], (s, a, b) and K ≥

Ω(d4 log(2Hd/δ)), it holds with probability 1− δ that

∥ϕ(s, a, b)∥2(Σ∗

h)
−1

≤ 2 · ∥ϕ(s, a, b)∥2(EΣ∗

h)
−1

=
4

3K

{
d

4
a⊤
{
Id−2 +

1

d− 2
1(d−2)×(d−2)

}
a− d

2(d− 2)
1
⊤
d−2a+

d− 1

2(d− 2)

}

=
4

3K

{
d

4
· a⊤a+ d

4(d− 2)

(
1− 1

⊤
d−2a

)2
+

1

4

}

≤ 4

3K

{
d(d− 2)

4
+

d

4(d− 2)

(
1− 1

⊤
d−2a

)2
+

1

4

}

≤ 4

3K

{
d(d− 2)

4
+
d(d− 1)2

4(d− 2)
+

1

4

}
≲
d2

K
,

where the first inequality uses Lemma 13. Hence, we have

max
ν

H∑

h=1

Eπ∗,ν∥ϕ(sh, ah, bh)∥(Σ∗

h)
−1 +max

π

H∑

h=1

Eπ,ν∗∥ϕ(sh, ah, bh)∥(Σ∗

h)
−1 ≲

dH√
K
. (29)

for any u ∈ U . Combining (28), (29), and the fact that |V ∗
u − V π,νu | ≤ |V ∗,ν

u − V π,∗u | for any u ∈ U ,
we have with probability at least 1− δ that

inf
π,ν

max
u∈U

Eu[V
∗,ν
u − V π,∗u ]

≥ c
√
d ·
(
max
ν

H∑

h=1

Eπ∗,ν∥ϕ(sh, ah, bh)∥(Σ∗

h)
−1 +max

π

H∑

h=1

Eπ,ν∗∥ϕ(sh, ah, bh)∥(Σ∗

h)
−1

)
,

which concludes our proof.

Remark 1. In our construction, the min-player will not affect the rewards and transitions. So by

the similar derivations of (28) and (29) , we can obtain infπmaxu∈U Eu[V
∗
u − V πu ] ≳ d

√
dH√
K

and
∑H
h=1 Eπ∗∥ϕ(sh, ah)∥(Σ∗

h)
−1 ≲ dH√

K
. Hence, we can establish the lower bound for MDP as desired.

29



Published as a conference paper at ICLR 2023

H NUMERICAL SIMULATIONS

For completeness, we adopt a similar synthetic linear MDP instance that is also used in Min et al.
(2021) and Yin et al. (2022), and redo the experiments to verify the theoretical findings. The adopted
MDP has S = {1, 2}, A = {0, · · · , 99}, and d = 10. For the feature, we apply binary encoding to
represent a ∈ A by a ∈ R

8. For the last two bits of the feature, we define δ(x, a) = 1(x = 0, a = 0)
where 1 is the indicator function. Then, the MDP is characterized as follows.

(a) Horizon H = 20. (b) Horizon H = 40.

Figure 1: Suboptimality v.s. The number of trajectories K. The results are averaged aver 100
independent trails and the mean result is plotted as solid lines. The error bar area corresponds to the
standard deviation.

• Feature mapping:

ϕ(x, a) = (a⊤, δ(x, a), 1− δ(x, a))⊤ ∈ R
d.

• True measure νh:

νh(x) = (0, · · · , 0, (1− s)⊕ αh, x⊕ αh),

where {αh}h∈[H] is a sequence of integers taking values in 0 or 1 generated randomly and

fixed, and ⊕ is the XOR operator. The tranision is given by Ph(x
′|x, a) = ⟨ϕ(x, a), νh(x′)⟩.

• Reward function: we define

θh = (0, · · · , 0, r, 1− r) ∈ R
10

with r = 0.9 to obtain the mean reward rh(x, a) = ⟨ϕ(x, a), θh⟩. Thr reward is then
generated as a Bernoulli random variable.

• Behavior policy: always choose a = 0 with probability p, and other actions uniformly with
(1− p)/99. We choose p = 0.5.

• The initial state is chosen uniformly from S .

• The regularization parameter λ is set to be 0.1 as suggested by Yin et al. (2022) and we
estimate the value of the learned policy by 1000 i.i.d. trajectories where we also set the
reward to be its mean during the this evaluation process.

Figure 1(a) and Figure 1(b) match our theoretical findings that a sharper bonus function leads to a
smaller suboptimality. Therefore, LinPEVI-ADV+ achieves the best sample complexity, and PEVI
performs worst. In particular, as H increases, we can see that both LinPEVI-ADV and PEVI perform
worse significantly, while the convergence rate of LinPEVI-ADV+ is rather stable. This demonstrates
the power of variance information, which has been observed by the previous work on offline linear
MDP (Min et al., 2021; Yin et al., 2022).
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I PROOF OF AUXILIARY LEMMAS

Proof of Lemma 3. We add and subtract ϕ(x, a)⊤Σ−1
h (Σh−λId)wh in the second equality to obtain

that

(Thfh+1) (x, a)−
(
T̂hfh+1

)
(x, a) = ϕ(x, a)⊤ (wh − ŵh)

=ϕ(x, a)⊤wh − ϕ(x, a)⊤Σ−1
h

(
∑

τ∈D
ϕτh ·

(
rτh + fh+1

(
xτh+1

))

σ̂2
h(x

τ
h, a

τ
h)

)

=ϕ(x, a)⊤wh − ϕ(x, a)⊤Σ−1
h (Σh − λId)wh

+ ϕ(x, a)⊤Σ−1
h

(
∑

τ∈D

ϕτh(ϕ
τ
h)

⊤

σ̂2
h(x

τ
h, a

τ
h)
wh

)
− ϕ(x, a)⊤Σ−1

h

(
∑

τ∈D
ϕτh ·

(
rτh + fh+1

(
xτh+1

))

σ̂2
h(x

τ
h, a

τ
h)

)

=λϕ(x, a)⊤Σ−1
h wh + ϕ(x, a)⊤Σ−1

h

(
∑

τ∈D
ϕτh ·

(
Thfh+1(x

τ
h, a

τ
h)− rτh − fh+1(x

τ
h+1)

)

σ̂2
h(x

τ
h, a

τ
h)

)

≤λ ∥wh∥Σ−1

h
∥ϕ(x, a)∥Σ−1

h︸ ︷︷ ︸
(i)

+

∥∥∥∥∥
∑

τ∈D

ϕτh
σ̂h(xτh, a

τ
h)
· ξτh(fh+1)

∥∥∥∥∥
Σ−1

h︸ ︷︷ ︸
(ii)

∥ϕ(x, a)∥Σ−1

h
.

This proves the first part of the lemma. Now suppose that |fh+1| is bounded by H − 1. We have,

∥wh∥ =
∥∥∥∥θh +

∫

S
fh+1(x

′)µh(x
′)dx′

∥∥∥∥ ≤ (1 + max
x′

fh+1(x
′))
√
d ≤ H

√
d,

and

λ
√
w⊤
h Σ

−1
h wh ≤ ∥wh∥

√∥∥Σ−1
h

∥∥ ≤ λ ∥wh∥
√
λ−1 ≤

√
λdH,

where we use λmin(Σh) ≤ λ−1. Therefore, by setting λ sufficiently small such that
√
λdH ≤ β, (i)

is non-dominating and we can focus on bounding (ii).

J TECHNICAL LEMMAS

Lemma 8 (Hoeffding’s inequality (Wainwright, 2019)). Let X1, · · · , Xn be mean-zero independent
random variables such that |Xi| ≤ ξi almost surely. Then, for any t > 0, we have

P

(
1

n

n∑

i=1

Xi ≥ t
)
≤ exp

(
− 2n2t2∑n

i=1 ξ
2
i

)
.

Lemma 9 (Hoeffding-type inequality for self-normalized process Abbasi-Yadkori et al. (2011)).
Let {ηt}∞t=1 be a real-valued stochastic process and let {Ft}∞t=0 be a filtration such that ηt is Ft-
measurable. Let {xt}∞t=1 be an R

d-valued stochastic process where xt is Ft−1 measurable and

∥xt∥ ≤ L. Let Λt = λId +
∑t
s=1 xsx

⊤
s . Assume that conditioned on Ft−1, ηt is mean-zero and

R-subGaussian. Then for any δ > 0, with probability at least 1− δ, for all t > 0, we have
∥∥∥∥∥

t∑

s=1

xsηs

∥∥∥∥∥
Λ−1

t

≤ R
√
d log (1 + (tL)/λ) + 2 log(1/δ) ≤ R

√
d log

(
λ+ tL

λδ

)
= Õ

(
R
√
d
)
.

Lemma 10 (Bernstein-type inequality for self-normalized process Zhou et al. (2021)). Let {ηt}∞t=1
be a real-valued stochastic process and let {Ft}∞t=0 be a filtration such that ηt is Ft-measurable.
Let {xt}∞t=1 be an R

d-valued stochastic process where xt is Ft−1 measurable and ∥xt∥ ≤ L. Let

Λt = λId +
∑t
s=1 xsx

⊤
s . Assume that

|ηt| ≤ R,E[ηt|Ft−1] = 0,E[η2t |Ft−1] ≤ σ2.

Then for any δ > 0, with probability at least 1− δ, for all t > 0, we have
∥∥∥∥∥

t∑

s=1

xsηs

∥∥∥∥∥
Λ−1

t

≤ 8σ

√
d log

(
1 +

tL2

λd

)
· log

(
4t2

δ

)
+ 4R log

(
4t2

δ

)
= Õ

(
σ
√
d
)
.
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Lemma 11 (ϵ-Covering Number (Jin et al., 2021c)). For all h ∈ [H] and all ϵ > 0, let N (·) be the
covering number of the function space specified in (19), we have

log |N (ϵ;R,B, λ)| ≤ d · log(1 + 4R/ϵ) + d2 · log(1 + 8d1/2B2/(ϵ2λ)).

Lemma 12 (Lemma H.4 of Min et al. (2021)). Let ϕ : S ×A → R
d satisfying ∥ϕ(x, a)∥ ≤ C for all

(x, a) ∈ S ×A. For any K > 0 and λ > 0, define ḠK =
∑K
k=1 ϕ(xk, ak)ϕ(xk, ak)

⊤ + λId where

(xk, ak)’s are i.i.d. samples from some distribution ν over S × A. Let G = Ev[ϕ(x, a)ϕ(x, a)
⊤].

Then, for any δ ∈ (0, 1), with probability at least 1− δ, it holds that

∥∥∥∥
Ḡ

−1
K

K
− Eν [

Ḡ
−1
K

K
]

∥∥∥∥ ≤
4
√
2C2

√
K

(
log

2d

δ

)1/2

.

Lemma 13 (Lemma H.5 of Min et al. (2021)). Let ϕ : S ×A → R
d satisfying ∥ϕ(x, a)∥ ≤ C for all

(x, a) ∈ S ×A. For any K > 0 and λ > 0, define ḠK =
∑K
k=1 ϕ(xk, ak)ϕ(xk, ak)

⊤ + λId where

(xk, ak)’s are i.i.d. samples from some distribution ν over S × A. Let G = Ev[ϕ(x, a)ϕ(x, a)
⊤].

Then, for any δ ∈ (0, 1), if K satisfies that

K ≥ max

{
512C4

∥∥G−1
∥∥2 log

(
2d

δ

)
, 4λ

∥∥G−1
∥∥
}
. (30)

Then with probability at least 1− δ, it holds simultaneously for all u ∈ R
d that

∥u∥
Ḡ

−1

K
≤ 2√

K
∥u∥

G−1 .
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