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Given integers 1 < k1 < -+ < k) < n—1, let Flg, . x;in
denote the type A partial flag variety consisting of all chains
of subspaces (Vi, C --- C Vi,) inside R™, where each V
has dimension k. Lusztig (1994, 1998) introduced the totally
positive part Fllzo,...,kl;n as the subset of partial flags which
can be represented by a totally positive n X n matrix,
and defined the totally nonnegative part FIEIO,.“,k,;n as the

closure of Flk?>10;-v-ykl§n' On the other hand, following Postnikov
(2007), we define FlkAl>O and Flﬁfo as the subsets

of Flg, ... k;;n Where aliuﬁllc{i’gker coordinéflégnare positive and
nonnegative, respectively. It follows from the definitions that
Lusztig’s total positivity implies Pliicker positivity, and it is
natural to ask when these two notions of positivity agree.
Rietsch (2009) proved that they agree in the case of the
Grassmannian Fly.,, and Chevalier (2011) showed that the
two notions are distinct for Fl 3.4. We show that in general,
the two notions agree if and only if k1, ..., k; are consecutive
integers. We give an elementary proof of this result (including
for the case of Grassmannians) based on classical results in
linear algebra and the theory of total positivity. We also show
that the cell decomposition of Flgo,.“,k,;n coincides with its
matroid decomposition if and only if k1, . .., k; are consecutive
integers, which was previously only known for complete flag
varieties, Grassmannians, and Fl; 3;4. Finally, we determine
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which notions of positivity are compatible with a natural
action of the cyclic group of order n that rotates the index
set.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

A real matrix is called totally positive if all of its minors (i.e. determinants of square
submatrices) are positive. Totally positive matrices first appeared in the 1930’s in work
of Schoenberg [52] and Gantmakher and Krein [23]. In the 1990’s, Lusztig [37] gener-
alized the theory of totally positive matrices to arbitrary semisimple algebraic groups
G and their partial flag varieties G/P. These spaces have since been widely studied,
with connections to representation theory [37], combinatorics [45], cluster algebras [16],
high-energy physics [3,4], mirror symmetry [51], topology [19], and many other topics.
The purpose of this paper is to examine the definition of the totally positive and totally
nonnegative parts of a partial flag variety G/P in type A.

1.1. Lusztig’s total positivity vs. Pliicker positivity

Given a subset K = {k1 < --- <k} C{1,...,n—1}, let Flg,,,(R) denote the partial
flag variety of all tuples of subspaces (Vj,)!_, of R", where Vi, C --- C Vj, and each Vj
has dimension k. Equivalently, we may view Flg.,,(R) as a parabolic quotient of GL,, (R),
where a matrix g € GL,(R) represents the flag (Vj,)!_,, where Vj, is the span of the
first k; columns of g. Particular cases of interest are when K = {1,...,n — 1}, in which
case Flg.,(R) is the complete flag variety F1,(R), and when K = {k}, in which case
Flk.n(R) is the Grassmannian Gry ,(R) of all k-dimensional subspaces of R".

Lusztig [37,38] defined the totally positive part Fl}?n of Flg.,(R) to be the subset
of flags which can be represented by a totally positive matrix in GL,(R) (or equiva-
lently, a totally positive lower-triangular unipotent matrix; see Remark 2.6 for further
discussion). He also defined the totally nonnegative part Fllz(?n to be the closure of Flf(?n.
There is an alternative notion of positivity which arises from the Plicker embedding of
Flgk.n(R). Namely, we say that (Vi,)!_, is Pliicker positive if all its Pliicker coordinates
are positive, or equivalently, if it can be represented by an element of GL,(R) whose
left-justified (i.e. initial) minors of orders kq, . .., k; are all positive. We similarly say that
(Vi,)!_, is Pliicker nonnegative if all its Pliicker coordinates are nonnegative. We denote
the Pliicker-positive and Pliicker-nonnegative parts of Flg.,(R) by Fl%?no and Flé?no,
respectively. The Pliicker-nonnegative part GrkA’fo of the Grassmannian was studied by
Postnikov [45], and the space Flﬁ?no was introduced by Arkani-Hamed, Bai, and Lam
[3, Section 6.3], who called it the naive nonnegative part.

We wish to emphasize that both total positivity and Pliicker positivity are natural
notions. Lusztig’s total positivity is compatible with his theory of canonical bases [306]
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and with the combinatorics of Coxeter groups [37]. The space Fllz(?n can be decomposed
into cells [37,48], each of which admits an explicit parametrization [41], and the cell
decomposition forms a regular CW complex [19]. On the other hand, Pliicker positivity
is more concrete, and leads to connections with matroid theory [2] and tropical geometry
[53]. It also arises in the definition of loop amplituhedra [5,6], which are spaces appearing
in the physics of scattering amplitudes; for example, a 1-loop amplituhedron is a certain
projection of the space Fl,ﬁfﬁm »+ The construction of loop amplituhedra is incompatible
with Lusztig’s total positivity, due to the presence of a cyclic symmetry among the
particles in the scattering amplitude, as we explain in Section 1.3.

It follows from the definitions that FI3’, C FIZ7) and FIZ° C FIR=" and it is
natural to ask when equality holds. This question has been explored previously in special
cases, as we discuss in Section 1.4. We answer this question in general:

Theorem 1.1. Let n € N and K C {1,...,n— 1}. Then the following are equivalent:

(i) FI0, = FIRZ;
(ii) FI), = FIZ="; and

(iii) the set K consists of consecutive integers.

We give an elementary proof of Theorem 1.1, using classical results in linear algebra
and the theory of total positivity. In particular, our proof does not rely on any previously
established special cases or on the cell decomposition of Fl%?n.

1.2. Cell decomposition vs. matroid decomposition

Lusztig [37, Remark 8.15] introduced a decomposition of Fl%?n, which Rietsch [48]
showed is a cell decomposition (i.e. each stratum is homeomorphic to an open ball). Tt
is the intersection of the projected Richardson stratification [32] with Fllz(?n. There is
another natural stratification of Flg.,(R), introduced by Gelfand and Serganova [25],
which is the common refinement of the vanishing and nonvanishing sets of all Pliicker
coordinates. We call this the matroid decomposition, since each stratum is labeled by a
tuple of matroids on the ground set {1,...,n} (or alternatively, a Coxeter matroid).

Postnikov [45] studied the matroid decomposition of the Pliicker-nonnegative part of
Grg n(R), which he called the positroid decomposition. He showed that it forms a cell
decomposition [45, Theorem 3.5], and that it coincides with the decomposition of Lusztig
and Rietsch [45, Theorem 3.8] (see Section 1.4 for further discussion). The topology of this
decomposition presents a stark contrast to the matroid decomposition of all of Gry, ,,(R),
which exhibits a phenomenon known as Mnév universality [42]. In general, Tsukerman
and Williams [55, Section 7] showed that the cell decomposition of Fliz(?n is a refinement
of the matroid decomposition. They also showed that the two decompositions coincide
for complete flag varieties, but differ for Flfg;4. We determine in general when the two
decompositions are equal:
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Theorem 1.2. Let n € N and K C {1,...,n — 1}. Then the cell decomposition of Fl%on
coincides with the matroid decomposition if and only if K consists of consecutive integers.

The forward direction of Theorem 1.2 follows from Theorem 1.1, using a topological
argument. However, we do not know how to deduce the reverse direction directly from
Theorem 1.1. Instead, we use a result of Tsukerman and Williams [55, Theorem 7.1],
which in turn builds on unpublished work of Marsh and Rietsch. It states that each cell
of Fl?gn is contained in a single matroid stratum, which is uniquely determined by the
0-dimensional cells in its closure. These 0-dimensional cells have an explicit description
in terms of the Bruhat order on the symmetric group &,,, due to Rietsch [49]. To prove
the reverse direction of Theorem 1.2, we use the combinatorics of &,, to reduce the
statement to the Grassmannian case, which was proved by Postnikov as described above.
Our techniques also have implications in the study of the Bruhat interval polytopes of
Kodama and Williams [34] and Tsukerman and Williams [55]; see Remark 5.17 and
Remark 5.24.

1.3. Cyclic symmetry
For € € Z /27, define the (signed) left cyclic shift map o, € GL,(R) by
(V1,0 00) 1= (Vay ..y, (=1)Toy)  for all v € R™.

Then o also acts on Flg.,,(R). If all elements of K have the same parity ¢, then by
the alternating property of the determinant, o. acts on Pliicker coordinates by rotating
the index set {1,...,n}. Therefore o, preserves both FIIA(?T? and Flé?no. It is natural to
wonder whether o, also preserves Fl}?n and Fllz{on One motivation is that the cyclic
symmetry for Flﬁfﬁzm is important in the definition of loop amplituhedra mentioned
above, coming from a cyclic ordering on the n external particles.

If K = {k} and k has parity €, then o, preserves both Gr,??,l and Gr,i(;, using The-
orem 1.1 for Gry ,(R). We show, however, that in all other cases, o, does not preserve
either Fl}?n or Fllz(?n. In particular, one cannot substitute the notion of total positivity
for Pliicker positivity in the definition of loop amplituhedra.

Theorem 1.3. Let K C {1,...,n — 1} such that |K| > 2, and let ¢ € Z/2Z. Then there
exists V € Flf(?n such that o.(V') ¢ Fllz(?n. In particular, o, does not preserve Fli?n or
FlZ),.

While Theorem 1.3 does not follow directly from Theorem 1.1, we use similar tech-
niques to prove both results.

One of our initial motivations for this work was to understand which gradient flows
on Flg.,(R) are compatible with total positivity, which we discuss in a separate paper
[8]. We discovered that in certain cases, the classification of such flows differs depending
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on whether one works with Lusztig’s total positivity or with Pliicker positivity; see The-
orem 5.14, Theorem 5.18, and Remark 5.20 of [8]. Theorem 1.3 above may be regarded
as an infinitesimal analogue of this phenomenon.

1.4. History

We discuss previous work related to Theorem 1.1 and Theorem 1.2. Much of this work
has focused on the case when Flg,,(R) is a Grassmannian Gry, ,,(R), due to Postnikov’s
study of the matroid decomposition of Gr,ﬁ%o [45].

Rietsch [47, Section 4.5] (also announced in [38, Section 3.12]) stated that Lusztig’s
notion of total positivity coincides with Pliicker positivity for all partial flag varieties
G/ P, but her proof contained an error. She later proved Theorem 1.1 for Grassmanni-
ans Gry ,(R) in unpublished notes [50]. Subsequent proofs were given by Talaska and
Williams [54, Corollary 1.2], Lam [35, Remark 3.8], and Lusztig [39]. Theorem 1.2 for the
complete flag variety Fl,(R) was stated in [19, (9.15)], and proofs were given by Lusztig
[40, p. 4] and Boretsky [9, Theorem 5.25]. Conversely, Chevalier [12, Example 10.1] gave
an example showing that F17 g; 47 Flﬁ;g; see [33, Remark 5.17] for a related discussion.
In a different direction, Geiss, Leclerc, and Schréer [24, Conjecture 19.2] have conjectured
an algebraic description of the totally positive part of any partial flag variety G/P.

Theorem 1.2 was proved in the case of Grassmannians Gr,i?t by Postnikov [45, Corol-
lary 3.8]. We point out that his proof implicitly uses the fact that Gr,i% = Grﬁ%o, which
was only later proved by Rietsch [50], as described above. A subsequent proof was given
by Talaska and Williams [54, Corollary 1.2], and the result can also be proved using
work of Tsukerman and Williams [55, Section 7]. Theorem 1.2 in the cases of F1=° and
Flfg; 4 was proved by Tsukerman and Williams [55, Theorem 7.1 and Remark 7.3].

1.5. Further directions

Lusztig [37,38] introduced the totally positive and totally nonnegative part of an
arbitrary partial flag variety G/P, where G is a semisimple algebraic group G over R
and P is a parabolic subgroup. It would be interesting to study the problems considered
in this paper for such G/P. We mention that Fomin and Zelevinsky [18] have considered
analogous problems for the group G. In particular, they showed that an element of G is
totally positive (respectively, totally nonnegative) in the sense of Lusztig [37] if and only
if all its generalized minors are positive (respectively, nonnegative). We consider only the
type A case here both for the sake of concreteness, and because our proofs of Theorem 1.1
and Theorem 1.3 are elementary. We point out that many of our arguments in Section 5
used to prove Theorem 1.2 can be applied to general Coxeter groups; however, a key tool
in our proof is Postnikov’s Theorem 5.16, which is only known in type A.

Lusztig [38, Theorem 3.4] showed that for any partial flag variety G/P, there ex-
ists a positive weight A such that a partial flag is totally positive (respectively, totally
nonnegative) if and only if its coordinates with respect to the canonical basis of the irre-
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ducible G-module with highest weight A are all positive (respectively, nonnegative). He
also posed the problem of finding the minimal such A. Our Theorem 1.1 gives a partial
answer for type A partial flag varieties G/P = Flg.,(R): it implies that the sum of
fundamental weights ), - ;- w is a valid choice of A (and hence minimal) if and only if
K consists of consecutive integers.

As we described above, the combinatorics and topology of the cell decomposition of
FIIZ(?” have been extensively studied. For example, each cell has an explicit parametriza-
tion [41, Section 11], the closure poset is shellable [57, Theorem 1.2], and the cell
decomposition forms a regular CW complex [19, Theorem 1.1]. In light of Theorem 1.1
and Theorem 1.2, it would be interesting to further study the matroid decomposition of
FIIA(%?. Bai, He, and Lam [6] studied the case Flﬁ%g. In [8, Corollary 6.16], we show that

Flﬁfno is homeomorphic to an open ball and Fl@?no is homeomorphic to a closed ball.

1.6. Outline

In Section 2, we give some background on partial flag varieties and total positivity.
In Section 3, we prove Theorem 1.1. In Section 4, we prove Theorem 1.3. In Section 5,
we prove Theorem 1.2.

Acknowledgments

We thank George Lusztig, Lauren Williams, and an anonymous reviewer for helpful
comments.

2. Background

In this section, we define partial flag varieties and their totally positive and totally
nonnegative parts, and recall some classical results in the theory of total positivity. For
further details on total positivity, we refer to [14,17,22,30,37,43].

2.1. Notation

Let N :={0,1,2,...}. For n € N, we let [n] denote {1,2,...,n}, and for i,j € Z, we
let [¢, j] denote the interval of integers {i,i +1,...,5}. Given a set S and k € N, we let
(i) denote the set of k-element subsets of S.

We let e, ..., e, denote the unit vectors of R”™. We let P™(R) denote n-dimensional
real projective space, defined to be R™*! \ {0} modulo multiplication by R*. For
ALy A € R, we let Diag(\1,. .., An) denote the n x n diagonal matrix with diagonal
entries A1,..., A,. We let GL,,(R) denote the group of invertible real n x n matrices.

Given an m x n matrix A, we let AT denote the transpose of A. For 1 < k < m,n and
subsets I € ([7;]) and J € ([Z]), we let Ay j(A) denote the determinant of the submatrix
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of A in rows I and columns J, called a minor of A of order k. If J = [k], we call Ay ;(A)
a left-justified minor of A. We also let > I denote the sum of the elements in I.

We will make repeated use of the Cauchy—Binet identity (see e.g. [20, 1.(14)]): if A is
an m X n matrix, B is an n X p matrix, and 1 < k < m, p, then

Ar,;(AB) Z Ark(A)Ag (B) forall Te (") and Je (P). (21)
Ke()

We now introduce partial flag varieties.

Definition 2.1. Let n € N, and let K = {k1 < --- < k;} C [n—1]. Let P, (R) denote the
parabolic subgroup of GL,(R) of block upper-triangular matrices with diagonal blocks
of sizes k1, ko — k1,...,k — ki—1,n — k;. We define the partial flag variety

Flg.n(R) := GL,(R)/Pg.n(R).
We identify Flg,,(R) with the variety of partial flags of subspaces in R™
V=WV, ..., Vi) :0C Vg, C--- C Vi, CR™ and dim(Vy,) = k; for 1 <i <[}.

The identification sends g € GL,(R)/Pg.n(R) to the tuple (Vi)kek, where Vi is the
span of the first k£ columns of g for all £ € K. More generally, if A is any real matrix
with n rows and at least k; columns such that V} is the span of the first k& columns of A
for all k € K, we say that A represents V. Note that GL,(R) acts on Flg.,,(R) on the
left.

We have the Pliicker embedding

Fln®) = P71 o p((2)-1),

(2.2)
> (A ey (Ar(A) o))
where A denotes any matrix representative of V. (We can check that the definition does
not depend on the choice of A.) We call the left-justified minors A;(A) appearing above
the Pliicker coordinates of V' € Flg.,,(R) (also known as flag minors), which we denote
by A;(V'). We point out that our Pliicker coordinates differ from the generalized Pliicker
coordinates of Gelfand and Serganova [25], though each encodes essentially the same
data; see Remark 5.13
For any K’ C K, we have a projection map

FlK,naR) - FlK”ﬂ(R)? (Vk?)kEK = (Vk)kEK" (23)

The map (2.3) retains only the subspaces of a partial flag whose dimensions lie in K'.
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We mention two instances of Flg.,,(R) which are of particular interest. If K = [n—1],
then Flg.,(R) is the complete flag variety of R™, which we denote by F1,,(R). If K is
the singleton {k}, then Flk.,(R) is the Grassmannian of all k-dimensional subspaces of
R™, which we denote by Grg,(R). We also extend the definition of Gry ,(R) to k=0
and k = n.

Example 2.2. Let n := 4 and K := {1,3}. Then

P1,3;4(R) = Q GL4(R) and F1173;4(R) = GL4(R)/P173;4(R).

O ¥ ¥ ¥
* X X %

OO O *
O ¥ ¥ ¥

We identify Flj 3.4(R) with the variety of partial flags V = (V4, V3) of subspaces of R,
where dim(V;) =1, dim(V3) = 3, and V; C V5.
We can represent a generic partial flag V' € Fl; 3.4(R) by a matrix of the form

A= where a,b,c,d, e € R.

)

o TR
o OO

0
1
0
d

That is, V1 is spanned by the first column of A, and V3 is spanned by all three columns
of A. Then the Plicker embedding (2.2) takes V to

((Al(V) . AQ(V) . Ag(V) . A4(Vv))7 (A123(V) . A124(V) . A134(V) . A234(V)))
=((1:a:b:c),(1:e:—d:—ad+c—be)) € P*(R) x P*(R). ¢

Definition 2.3. We say that a real matrix is totally positive if all its minors are positive.
For n € N, we let GL;" denote the subset of GL,,(R) of totally positive matrices.

For example, we have GL2>0 = ‘CIZ ta,b,c,d,ad — be > O}. We now introduce

Lusztig’s total positivity and Pliicker positivity for partial flag varieties.

Definition 2.4. Let n € N and K C [n—1]. Following [37, Section 8] and [38, Section 1.5],
we define the totally positive part of Fl,,(R), denoted by F1z,,, as the image of GL;°
inside Flg,,(R) = GL,(R)/ Pk, (R). Equivalently, Flf(?n consists of all partial flags
which can be represented by a totally positive n x n matrix. We define the totally
nonnegative part of Flg.,(R), denoted by Fllz(?n, as the closure of Flf(?n in the Euclidean

topology. Note that for any K’ C K, the projection map (2.3) restricts to surjections
FIZ’, - FIZ%,  and  FI3%, - FIE) . (2.4)

We also define the Plicker-positive part of Flg.,,(R), denoted by Flﬁ?no, as the subset
of partial flags whose Pliicker coordinates are all positive (up to rescaling). That is,
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Fl n O consists of all partial flags which can be represented by a matrix A such that
all left-justified & x k minors of A are positive for all £ € K. We similarly define the
Pliicker-nonnegative part FIIA(;%? by replacing “positive” with “nonnegative” above.

Note that by definition, we have Fl?(?n - Flf‘(?o and Fllz{?n - Flﬁ?no. We also have

in

that F137) is the closure of FI%7,; see Proposition 3.3(ii).

Example 2.5. We have

oo 1o
F1§>0: a+c 1 0f:a,b,c>0p and GrA>0 0 1 ta,b,e,d>0p. O
be b 1 e d

Remark 2.6. Lusztig’s original definition of Fl . 18 slightly different than the one we
give in Definition 2.4, but is equivalent. Namely, let N, (R) be the subset of GL,,(R) of
all upper-triangular matrices with 1’s on the diagonal. We define N’ % to be the subset
of N,,(R) of matrices whose minors are all positive, except for those which are zero due
to upper triangularity. Let (N, )>° denote the transpose of N, >0 and let T>0 denote the
subset of GL,,(R) of dlagonal matrices with positive diagonal entrles. Then Lusztig [37,
Section 8] defines F13°, to be the image of (N;,)>° inside Flg.,(R). This is equal to the
image of GL_°, because

GL;? = (N,;)”° - T;°-N;°, (2.5)

and T;°-N>% C Pg.,(R). (In fact, Lusztig takes (2.5) to hold by definition; see [37,
Section 2.12].) The decomposition (2.5) is a result of Cryer [13, Theorem 1.1]; we refer
to [14, Chapter 2| for further discussion and references.

Remark 2.7. A real matrix is called totally nonnegative if all its minors are nonnegative.
Every totally nonnegative matrix in GL,(R) represents a totally nonnegative flag in
Flk.n(R). However, not every element of Flfon is represented by a totally nonnegative
matrix, unless K = (). For example, the element [ '] € FI5° cannot be represented
by a totally nonnegative matrix, since the top-left entry of a totally nonnegative matrix
is positive.

We now recall two classical results from the theory of total positivity.

Lemma 2.8. There exists a continuous function f : Rso — GL,(R) such that f(0) = I,
and f(t) € GL° for allt > 0.

Proof. By [22, 11.3.(24)] or [56, (2)] (cf. [44, Problem V.76]), we may take f(t) :=
(t(i_j)2)1§i,j§n. Alternatively, by [30, Theorem 3.3.4], we may take f(t) := exp(tA),
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where A is any tridiagonal n x n matrix whose entries immediately above and below the
diagonal are positive. O

Theorem 2.9 (Fekete [15]; see [43, Lemma 2.1]). Let A be an n x (k+ 1) matriz, where
n > k + 1. Suppose that all left-justified k x k minors of A are positive, and that all
(k+1)x (k4+1) minors of A using consecutive rows are positive. Then all (k+1)x (k+1)
minors of A are positive.

The following two results are duality and restriction statements for totally nonnegative
Grassmannians. See [1, Section 3] for closely related results. We note that Lemma 2.10
follows from Jacobi’s formula for the matrix inverse; we refer to [31] for further discussion
and references.

Lemma 2.10 (/31, Lemma 1.11(ii)]). Define the bilinear pairing (-,-) on R™ by

n—1

(v,w) :=viwy — vows +v3ws — -+ + (=1)" tvwy,.

Given V € Grgn(R), let V4 = {w € R" : (v,w) = 0 for allv € V} € Grp_.(R).
Then

Ar(V) = App (V) forall T e ().

> >
kA>O < Gr2>?  and GrkA;LO & Graz?

In particular, -+ defines bijections Gry; ., k. nkn"

Example 2.11. Let V € Gry 4(R) be represented by the matrix

o O+
QLSO

Then V+ € Gra4(R) is represented by the matrix

—a C
b —d
10| ©
0 1

Lemma 2.12. Let V € Gr,ﬁ%o, and let m < n. Define W := V Nspan(ey,...,en), and let
d:=dim(W). Then W € Grﬁrzno.

Proof. Take an m x d matrix B representing W. Then there exists an n x k matrix A
representing V' of the form
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where C is an (n — m) X (k — d) matrix of rank k — d. We may assume that C is in
[n—m]

o ) of rows

reduced column echelon form, so that C' restricted to some subset J € (
equals Iy_4. Let J :={j+m:j € J}. Then forall I € ([ZL]), we have

Ar(B) = A (A), so Ar(W) = A (V).
Since V € GrkAJZLO, we have W € Grﬁio. O

3. Lusztig’s total positivity vs. Pliicker positivity

In this section we prove Theorem 1.1. Our argument will be based on the preliminary
results Proposition 3.3, Lemma 3.4, and Lemma 3.5.

Lemma 3.1. For n € N, we have F1;° = F1$>0,

Proof. We know that F1”° C FI5>°. Conversely, let V € FI15>°. Then there exists
an n X n matrix A representing V whose left-justified minors are all positive. After
performing left-to-right column operations, we may assume that A is lower-triangular.
For t > 0, define

g := ADiag(t""',...,t,1) AT € GL,(R),

which also represents V. We claim that g € GL,>L0 for all ¢ sufficiently large, whence
V € FI°, completing the proof. (In fact, g € GL.’° for all ¢ > 0, by (2.5).) To see this,
note that for 1 <k < n and I, J € (1), by (2.1) we have that Ay ;(g) equals

3 Ark(AA L (AP = Ap g (A)A 3 (A2 4 lower order terms
xe(7)

ast —oo. O

Lemma 3.2. Let K C [n — 1], and let g € GL.°.

(i) For allV € Fl%?n, we have g-V € Flf(?n.
17) For allV € FIA.ZO, we have g-V € F120.
K;n Kin

Proof. Part (ii) follows from the Cauchy-Binet identity (2.1). For part (i), by (2.4),
it suffices to prove the result for the complete flag variety (when K = [n — 1]). Since
F12° C F122°, this case follows from part (i) and Lemma 3.1. O

Proposition 3.3. Let K C [n — 1].

(7) Fllz(?n is the closure of Fl}?n, and Fl}?n is the interior of Fllz(?n,
(i) FIIA(;ZHO is the closure of Flﬁfno, and FIIA(?”O is the interior of Flf(?no.
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Proof. Let f: R>g — GL,,(R) be as in Lemma 2.8.

(i) By definition, FIIZ(?” is the closure of Flf(?n. Also, Fli?n is open, so it is contained
in the interior of Fllz(?n. It remains to show that the interior of Fllz(?n is contained in
Fl}?n. To see this, let V € Flfz(?n \ Fl?(?n. We claim that f(¢)~!-V is not in Fllz(?n for all
t > 0, whence V is not in the interior of Fllz(?n. Indeed, if f(t)~1-V € Fl%?n with ¢ > 0,
then by Lemma 3.2(i) we obtain

V=Fft-(f&)" V) eFIR,,

A>0

a contradiction.
(ii) Note that the closure of Flﬁ?no is contained in FIIA(_ZTP . Conversely, given V € FI};7 ",

we have V' = limy_,0 40 f(¢) -V, and f(¢) -V € Fl%?no for t > 0 by Lemma 3.2(ii).
Therefore FIIA(_ZHO is the closure of FIIA(?HO. The fact that Flf(?no is the interior of FIIA(.Z,?

follows from a similar argument as in the proof of part (i). O

Lemma 3.4. Let V € Gr,ﬁio, where 1 <k <n-—1.
(i) There exists W € GrkAflom such that VC W.
(i) There exists W € GrkAfl(jn such that W C V.

Proof. (i) Take an n x k matrix A representing V whose k x k minors are all positive.
Let B := [A | w] denote the n x (k+1) matrix formed by concatenating A and the vector
w € R™, where we define w as follows. We set wy,...,w :=0,and fori=%k+1,...,n,
we take w; > 0 to be sufficiently large that the minor A[,;_ky,;],[k_H](B) is positive. By
Theorem 2.9, all (k4 1) x (k+ 1) minors of B are positive. Therefore we may define W
to be the column span of B.

(ii) This follows by applying part (i) to V4, using Lemma 2.10. O

Lemma 3.5. Let V' € GrkA’fo and W € Grfffn such that V. C W. If ey + ce, € V for
some c € R, thene; € W.

Proof. If e; € V, then e; € W. Now suppose that e; ¢ V and e; + ce,, € V for some
¢ € R, so that ¢ # 0 and e, ¢ V. Let A denote the n x k matrix representing V in
reduced column echelon form. Let I € (") index the rows containing the pivot 1’s of A;
equivalently, I is lexicographically minimal such that A;(V) # 0. Since e; + ce,, € V
and e, ¢ V, we have 1 € I and n ¢ I, and the first column of A is e; + ce,. Therefore
Ar(A) =1 and A qipugny(A) = (=1)""'c. Since V is Pliicker nonnegative, we get
that (—1)k=1c > 0.

Now take w € W \ V such that w; = 0 for all ¢ € I. Let B := [A|w] denote
the n x (k 4+ 1) matrix representing W, formed by concatenating A and w. Then for
i € [n—1]\ I, there exists e € {1, —1} such that A7;3(B) = ew; and A(p (13yu(e,ny (B) =
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e(—1)*cw;. Since W is Pliicker nonnegative and (—1)*~'c > 0, we get that w; = 0.
Therefore w is a nonzero scalar multiple of e,,. Since e; +ce,, € W, we obtaine; € W. @O

Proof of Theorem 1.1. (i) < (ii): This follows from Proposition 3.3.

(iii) = (i): Suppose that K = [k,[]. Recall that Flf(?n C FllA(?nO. Conversely, we must
show that given V = (V4,...,V}) € FIIA(?nO, we have V' € Fl;on By repeatedly applying
Lemma 3.4, there exist V; € Grffo fori=1+1,...,nand i =k —1,...,1 such that
ViC--CVpy. Let W:=(Vi,...,Vp_1) € FI,(R). Then W € F157° so W € FI1.° by
Lemma 3.1. Then by (2.4), we get V € Fl;?n.

(if) = (iii): We prove the contrapositive. Suppose that K does not consist of consec-
utive integers, so that there exist consecutive elements k < [ of K with [ —k > 2. Define

the element V' = (V;);ex of Flk.,(R) as follows:

span(es, €g, - .., €it14), if i <k
Vi = ¢ span(e1 + ey, es5,€6,...,€x13), ifi =4k
span(e; + eq, €2, €3,€5,€6, ..., €41), if 1 >1.

That is, V' is represented by the n x (n — 1) matrix

0 (-1)*'B 0 (1) ? 8

A= |11 0 0 ,  where B:=
0 0 I 0 0 1
n—k—3 1 0 0

Note that all left-justified minors of A are nonnegative, except for a certain minor of
order k + 1. Since k + 1 ¢ K, we get that V € Flﬁ?ﬂo.

We claim that V ¢ Fllz(?n, which implies that Fllz(?n =+ Flﬁ?no. Indeed, suppose
otherwise that V € Flfz(on Then by (2.4), we can extend V to a complete flag
Vo oy Vi) € Fl%o. For 1 < i < n—1, define W; := V; N span(ey, e, €3,¢e4). Let
d; := dim(W;), so that W; € Grﬁ;io by Lemma 2.12. Note that W} = span(e; + e4) and
W, = span(e; + ey, €2, €3). Since the sequence dg, dgy1, .. .,d; increases by 0 or 1 at each
step, and dj, = 1 and d; = 3, there exists j € [k, [] such that d; = 2. Applying Lemma 3.5
to Wi and W, we get e; € W;. Since W; C W;, this implies e; € W}, a contradiction. O

4. Cyclic symmetry

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. We claim that it suffices to construct W € Fliz(?n such that
o (W) ¢ Fllz(?n. Indeed, let f : Rso — GL,(R) be as in Lemma 2.8, so that by
Lemma 3.2(i), we have f(¢t)-W € Fl}?n for all t > 0. If o (f(t)- W) € Flfz(?n for
all t > 0, then taking ¢ — 0 we obtain . (W) € Fl?{?n, a contradiction. Therefore there
exists ¢ > 0 such that o (f(t) - W) ¢ Fllz(?n, whence we may take V := f(t) - W.
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Now we construct such a W = (W;);ex € Flg.»(R). Fix any two elements k < [ of
K. We set

W, e span(es, eq, ..., €i12), if i < k;
1T . .
span(e; + eg,€3,€4,...,€i41), ifi>k.

That is, W is represented by the n x (n — 1) matrix

0 (=11 0

o (=t 0

A= I 0 0
0 0 Infkfl

Note that all left-justified minors of A are nonnegative, so A represents an element of
FI127%. By Theorem 1.1 we have FI2=% = FI7°, so by (2.4), we get W € FIZ°, .
Let X = (X;)ick denote the left cyclic shift o.(W). Note that

X, =span((—1)"te, +e1,ea,...,e) and  X; =span((—1)"te, +e1 e, ..., €).

Now proceed by contradiction and suppose that X € Fllz((_)n. Then by (2.4), we can extend
X to a complete flag (X7,...,X-1) € FIEO. Applying Lemma 3.5 to X and Xp41, we
get e1 € Xp41. Since X411 C X, this implies e; € X, a contradiction. O

5. Cell decomposition vs. matroid decomposition

In this section, we prove Theorem 1.2. We begin by recalling some background in Sec-
tion 5.1. We then give two proofs of the forward direction of Theorem 1.2 in Section 5.3,
and prove the reverse direction in Section 5.4. Throughout this section, we fix n € N,
and let W denote the symmetric group &,, of all permutations of [n]. Also, J and K will
denote complementary subsets of [n — 1].

5.1. Background on Coxeter combinatorics

We recall some background on the combinatorics of the Coxeter group W = &,,; we
refer to [7] for further details.

Definition 5.1 (/7, Chapter 2/). For 1 < i < n—1,let s; := (i i+ 1) € W be the
simple transposition which exchanges i and i + 1, and let e € W denote the identity
permutation. Given w € W, a reduced word w for w is a word in s1,...,s,_1 of minimal
length whose product is w. Each reduced word for w has the same number of letters,
called the length ¢(w) of w, which is equal to the number of inversions of w. Any two
reduced words for w are related by a sequence of moves of the following form:

(M1) s;s5 = sjs; for 1 <i,j <n—1 with |i — j| > 2; and
(MQ) SiSi4+15i = Si+1S5iSi+1 for 1 S ) S n—2.
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Fig. 1. The Hasse diagram of the Bruhat order on W = G3.

In particular, if s; appears in some reduced word for w, then it appears in every reduced
word for w.

The (strong) Bruhat order < on W is defined as follows: v < w if and only if for some
(or equivalently, for every) reduced word w for w, there exists a reduced word v for v
which is a subword of w. The Bruhat order is graded with rank function £. The Bruhat
order on W = G35 is shown in Fig. 1.

Example 5.2. Let w := 5214763 € W = &7. Then ¢(w) = 9, and a reduced word for w is
W = $15354535981558655.

We will need the following property of reduced words:

Lemma 5.3 ([7, Corollary 1.4.6(ii)]). Let w € W and 1 < i <n — 1. If {(ws;) < {(w),
then w has a reduced word which ends in s;.

We define parabolic subgroups and quotients of W.

Definition 5.4 (/7, Section 2.4]). Given J C [n — 1], let W; := (s; : j € J) be the
subgroup of W generated by the simple transpositions indexed by J, called a parabolic
subgroup. Equivalently, W consists of the elements of W which setwise fix the intervals
[1, k1], [k1 + 1, ko], ..., [ki + 1,n], where [n — 1]\ J = {k1 < -+ < ki }.

Let W denote the set of minimal-length coset representatives of the parabolic quo-
tient W/W ;. Explicitly, we have

W' ={we6&, :w() <w(+1) forall jeJ}
Each w € W has a unique factorization w = w’w; such that w/ € W7 and w; €
W: this factorization is length-additive. In particular, w” is the minimal-length coset

representative of w modulo W.

Example 5.5. Let w := 5214763 € W = G, as in Example 5.2, and let J := {1,2,4,6}.
Then w’ = 1254736 = s354535655 and wy = 3214576 = s51525156. <

We will need the following property of the parabolic factorization:
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Lemma 5.6 (/7, Proposition 2.5.1]). Let J C [n—1], and let v < w in W. Then v’ < w”’.

We now recall the Demazure product and downwards Demazure product, appearing in
work of He [26, Lemma 3.3] and He and Lu [29, Appendix A]. We refer to [28, Section 2.1]
for further discussion and references.

Definition 5.7 (/27, Section 1.3]). There exist binary operations * and < on W defined
by

vxkw:=max{vr:z <w} and v<w:=min{ve:z <w}
for all v,w € W. Equivalently,
v (Si o 8,) = (- (ks )%+ )xs;, and  v<a(syo-sy) = (- (vas,)<Q) sy,

for all v € W and reduced words s;, - --s;, € W, where

vs;, if L(vs;) > £(v); v, if L(vs;) > £(v);
vk S = and wvds; =
v, if (vs;) < £(v) vs;, if L(vs;) < £(v)

for all 1 <i <mn—1. We call x the Demazure product and < the downwards Demazure
product.’

Example 5.8. We have 515953 * $95359 = 51525382 and $15953 < 898389 = §1.

We will need the following property of the Demazure and downwards Demazure prod-
ucts:

Lemma 5.9 ([27, Corollary 1 and Lemma 2/). Let v < w in W. Then for allx € W, we
have vxx <ws*z andv<x <w<zx.

5.2. Background on the cell and matroid decompositions

We recall the cell decomposition and matroid decomposition of FIIZ((_)”, though we will
mainly work with Theorem 5.15 and Theorem 5.16, rather than the definitions. We refer
to [55, Sections 6-7] for further details.

Definition 5.10. Let n € N, and let B,,(R) and B, (R) denote the subgroups of GL,,(R)
of upper-triangular and lower-triangular matrices, respectively. For w € W, let w €
GL,(R) be any signed permutation matrix corresponding to w, i.e., w; ; = £0; ;) for

L Our operation < is the ‘mirror image’ of He’s . We also caution that the symbol < is used in [7] with a
different meaning, namely, to denote a cover relation in the Bruhat order.
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1 < 4,5 < n. Given v,w € W such that v < w, we define the (totally nonnegative)
Richardson cell

which is the intersection inside Fl%o of the opposite Schubert cell indexed by v and the
Schubert cell indexed by w.

Now let J and K be complementary subsets of [n—1]. Given v € W and w € W such
that v < w, we define the (totally nonnegative) projected Richardson cell wa - Fl%?n
to be the image of C, ,, C F1=° under the projection map (2.4). Rietsch [48,49] showed
that CX_ is homeomorphic to an open ball of dimension ¢(w) — £(v). We have the cell

VW
decomposition
>0 __ K
FIK;n - |_| Cv,wv
veW, 'UUEI/VJ7
v<w

where Flf(?n is the unique cell of maximum dimension.
Remark 5.11. Our definition of the cell decomposition of Fllz{?n is different from, but
equivalent to, the definition of Rietsch [49, Section 6]. We refer to [28, Appendix] and
[19, Remark 4.9] for further discussion.

Definition 5.12. Let K C [n — 1]. Given a tuple M = (My)kek, where M C ([Z]) for
k € K, we define

Sa={V €FIZ’ :forall k € K and I € (I}), we have Af(V) # 0 I € My}

If Sy is nonempty, we call it a (totally nonnegative) matroid stratum. The matroid
decomposition (or Gelfand-Serganova decomposition) of Fllz(?n is its decomposition into
matroid strata; equivalently, it is the common refinement of the decompositions

FIZ) = {V eFIF, : Ar(V) # 0} u{V e FI, - A(V) =0}
for all Pliicker coordinates Aj.

Remark 5.13. There is a different, but equivalent, way to define Pliicker positivity and the
matroid decomposition for partial flag varieties Flg.,, (R), using the generalized Pliicker
coordinates of Gelfand and Serganova [25], rather than the Pliicker coordinates of Defini-
tion 2.1. Namely, let K = {k1 < --- < k;} C [n—1]. Given a tuple I = (I, ..., Ir,) such
that I, C --- C Iy, and I} € ([Z]) for k € K, define the generalized Pliicker coordinate
A] = A]klA[kz N -A[

kp*
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Then V € Flg.,(R) is totally positive (respectively, totally nonnegative) if and only if
all its generalized Pliicker coordinates are positive (respectively, nonnegative). Also, the

matroid decomposition of Fllz(?n is the common refinement of the decompositions

FIZ), = {V € FIZ), : Ar(V) # 0} U{V € FIZ), : Ar(V) = 0}

for all generalized Pliicker coordinates Aj. These results follow from [25, Section 9.1] (cf.
[10, Chapter 1]).

Remark 5.14. We use the name matroid decomposition because if Sy, is a matroid stra-
tum of FIIZ(?H7 then each My, is a (representable) matroid of rank k on the ground set
[n] (in fact, My is a positroid [45,46]). Moreover, M itself is a (representable) Coxeter
matroid; see [25, Section 9.1] and [10, Section 1.7].

We also recall two results which will be key to our arguments; we refer to Section 1
for further discussion.

Theorem 5.15 (Tsukerman and Williams [55, Theorem 7.1]). Let J and K be comple-
mentary subsets of [n— 1], and let v < w, where v € W and w € W. Then the cell wa
of Flfz(?n is contained in a single matroid stratum, which is uniquely determined by the
interval [v,w] modulo Wy.

Note that Theorem 5.15 implies that the cell decomposition of F1§9n is a refinement
of its matroid decomposition.

Theorem 5.16 (Postnikov [45, Theorem 3.8], [50]). For 0 < k < n, the cell decomposition
of Gr,i?l coincides with the matroid decomposition.

Remark 5.17. While it will be sufficient for our purposes to work with the combinatorial
statement of Theorem 5.15, we mention that it has the following geometric interpretation;
see [55, Sections 6-7] for further details. The moment polytope of Flk.,,(C) is a convex
polytope in R™ whose vertices are indexed by W+, or equivalently, by generalized Pliicker
coordinates of Flk,,(C) (see Remark 5.13). The moment polytope of V' € Flg,,,(C) is
contained in the moment polytope of Flg.,,(C), and its vertices correspond precisely to
the generalized Pliicker coordinates which are nonzero at V' [25, Proposition 5.1]. On the
other hand, the set W also indexes the zero-dimensional cells of Fllz(?n, i.e., the cells
CK, for x € W/ If V e CK,, then the zero-dimensional cells in the closure of CX,
are precisely CX, , for z € [v,w] [49, Theorem 6.1]. Theorem 5.15 can be rephrased as
saying that the vertices of the moment polytope of V' € wa are indexed precisely by
the zero-dimensional cells in the closure of C’fw. Implicit in this statement is the fact
that the moment polytope of V is equal to the moment polytope of wa, even though

the torus orbit of V may have dimension much less than that of CX,,. This moment
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polytope is called a Bruhat interval polytope, denoted” by Qf’w. We will make a further
comment about QUK@ in Remark 5.24.

5.8. Proof of the forward direction

In this subsection, we give two proofs of the forward direction of Theorem 1.2. The
first proof uses Theorem 1.1, while the second proof uses Theorem 5.15.

For the first proof, we will need the following result of Rietsch [47]; see [8, Corol-
lary 6.16] for a stronger result.

Lemma 5.18 (Rietsch [{7, Lemma 5.2]). Let K C [n — 1]. Then Fl%?no is connected.

Proof of the forward direction of Theorem 1.2. We prove the contrapositive. Suppose
that K does not consist of consecutive integers, so that by the implication (i) = (iii) of
Theorem 1.1, Fl}?n is strictly contained in FllA(?nO. By Lemma 5.18, Fl}?n is not closed
in Flﬁ?no. Hence there exists a point V' € (Fllz(on \Flf(on) N Flﬁ?no. Then V and the cell
Flf(?n of Fl%?n are contained in the same matroid stratum, namely, the one where all

Plicker coordinates are nonzero. O

We now proceed to the second proof of the forward direction of Theorem 1.2. It is
based on the following lemma, which generalizes an example of Tsukerman and Williams
[55, Remark 7.3].

Lemma 5.19. Let J := [2,n — 2] and K := {1,n — 1}, and let w := (1 n) € W’. Then
for all j € J, the intervals [e,w] and [sj,w] are equal modulo W .

Proof. Consider the reduced word
W I= 8182 8n—25n—-15n—2 " 5251

for w. In particular, we see that for j € J, we indeed have s; < w. Note that [s;, w] C
[e, w]. Conversely, we must show that given z € [e, w], there exists y € [s;, w] such that
z and y are equal modulo W ;. Take a subword x of w which is a reduced word for . We
will construct a reduced subword y of w which contains s;, and such that the associated
permutation y is equal to x modulo W.

If x contains s;, we set y := x. Now suppose that x does not contain s;. Note that

w contains two occurrences of s;j_;. Since x does not contain s;, it does not contain
2

-1
contradicting the fact that x is reduced. Similarly, if x contains the second occurrence

both occurrences of s;_1, since otherwise we could use moves (M1) to obtain s

of s;_1 in w, we may replace it with the first occurrence of s;_;. Now let y be obtained

2 We caution that [55] uses the superscript J, rather than K.
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from x by including the second occurrence of s; in w. Since y does not contain the second
occurrence of s;_1 in w, we can use (M1) to move s; to the end of y. That is, y = xs,.
This implies that y is reduced; otherwise, by Lemma 5.3,  would have a reduced word
ending in s;, whereas x (and hence every reduced word for x) does not contain s;. Since
s; € Wy, we see that y equals  modulo W;. O

Proof of the forward direction of Theorem 1.2. We prove the contrapositive. Suppose
that K does not consist of consecutive integers, so that there exist consecutive ele-
ments k < [ of K with | —k > 2. Let w := (k 1) € WY. Then by Lemma 5.19, for
all j € [k + 1,1 — 1], the intervals [e,w] and [s;,w] are equal modulo W;. Hence by
Theorem 5.15, the cells C, and C’Sffyw of Fllz(?n are contained in the same matroid
stratum. 0O

5.4. Proof of the reverse direction

In this subsection, we prove the reverse direction of Theorem 1.2. We first establish
two preliminary results, which will allow us to reduce the proof to Theorem 5.16.

Lemma 5.20. Let v < w in W, and let J C [n — 1]. Set v' = vaw;' € W and
w' =w’ € W7. Thenv' < w', and the intervals [v,w] and [v',w'] are equal modulo W .

Proof. Note that since the factorization w = w’wy is length-additive, we have w =
w' % wy and w’ = w<aw;'. In particular, v’ < w’ by Lemma 5.9.

First we show that given 2’ € [v/,w’'], there exists z € [v,w] such that z and 2’ are
equal modulo W;. We set x := 2’ x wy. Since w; € W, we see that z equals 2’ modulo
W. Also, by Lemma 5.9, we have

v<v xwy <z rxwy<uwrw;=uw,

so x € [v,w].

Conversely, we show that given z € [v, w], there exists ' € [v/,w’] such that x and
are equal modulo W;. We set 2’ := z < w;l. Since w}l € Wy, we see that =’ equals x
modulo Wj. Also, 2’ € [v/,w'] by Lemma 5.9. O

Example 5.21. As in Example 5.5, we let w := $153554538281855655 and J := {1,2,4,6}.
Take v := 5154835251585, so that v < w. We set

v i=wvd wjl = 515453525155 156515251 = 545355

J

and w’ := w” = $354835655. Then Lemma 5.20 asserts that the intervals [v, w] and [v, w']

are equal modulo W;. Indeed, we can verify that both intervals modulo W are equal to

{545355, 53545355, 54535655, 5354535655 },

where above, we represent equivalence classes by elements of W7. ¢
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Lemma 5.22. Let J and K be complementary subsets of [n— 1], and let vy, ve < w, where
v1,v2 € W and w € W7, Suppose that the intervals [v1,w] and [vs, w] are equal modulo
Wy. Then v1(i) = v2(i) for all i < min(K) and all i > max(K) + 1.

Proof. We prove the statement for ¢ < min(K); the statement for ¢ > max(K)+1 follows
by symmetry. Set k := min(K) and J' := [n — 1]\ {k}, and note that J C J'. As in
Lemma 5.20, we define v} := vy <1wj,1, vh 1= vy <1wj,1, and w’ := w”’’, so that the intervals
[v1,w], [va,w], [v],w'], and [vh,w'] are all equal modulo Wj,. By Theorem 5.16 (using
Theorem 5.15), we obtain v} = vj. Now since w € W, we have w(1) < --- < w(k), so w
is contained in the parabolic subgroup Wi,y1,,—1). Hence v (i) = vy (i) = v5(i) = va(i)

foralli<k. O

Proof of the reverse direction of Theorem 1.2. Suppose that K = [k,l]. Let v; < w;
and vy < way, where vi,vo € W and wq,wy € W7. By Theorem 5.15, it suffices to show
that if the intervals [v1,w;] and [vg, ws] are equal modulo W, then v1 = v9 and wy = wa.
To this end, we regard [vy,w1] and [vg, ws] modulo W as a subset of W; by Lemma 5.6,
this subset has minimum v{ = v§ and maximum w; = w,. In particular, v1(i) = v (i)
for all i € [k + 1,1]. Therefore it remains to show that v1 (i) = v2(¢) for all i <k and all

1 > 1+ 1. This follows from Lemma 5.22. O

Example 5.23. We show how the argument above can fail when K is not an interval of
integers. Take n :=4, J := {2}, K := {1,3}, and

v1:=1234 =e, vy :=1324 =39, w:=4231 = 5152538251

By Lemma 5.19 and Theorem 5.15, quf w and C’fg » are contained in the same matroid

stratum. In agreement with Lemma 5.22, we have v1 (i) = vo(4) for all4 < 1 and all ¢ > 4.

Also, we have v{ = v{ = e, but this does not imply that v; = v3. ¢

Remark 5.24. Recall the Bruhat interval polytopes QUKM discussed in Remark 5.17. It
follows from the theory of Coxeter matroids (namely, [10, Corollary 1.13.5]), along with
a result of Tsukerman and Williams [55, Corollary 7.14] (cf. [10, Preface], [11, Theo-
rem 6.3]), that every Bruhat interval polytope for Flg.,(R) can be expressed as the
Minkowski sum over k € K of a Bruhat interval polytope for Gry ,(R). Lemma 5.20
allows us to write this Minkowski sum explicitly. Namely, for v < w with v € W and
w € WY, we have

k
ng = Z Q{ ) 1 wln—1\{k}" (5.1)

vdw, 1,
keK [n—1]\{k}

We point out that the Bruhat interval polytopes for Gry ,(R) are known as positroid
polytopes [1]; see [55, Proposition 2.8] for how to formulate (5.1) in terms of positroids.
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As an illustration of (5.1), we adopt the setup of Example 5.23, with v = v;. Then
(5.1) gives

{1,3} _ i1} {3}
Q675132S3S251 - Qe<1(32$3)*1,535251 + Qeq(szsl)*l,slsgsy

or equivalently,
{1,3} _ ot {3}
Q2344231 = Qu234,4123 Q1234 2341

Note that if we had instead taken v = vy, we would have obtained the same Minkowski

sum decomposition for Q%zi]:4231~ Indeed, Lemma 5.19 implies that Qgéi}:zmm
{1,3}

Q1354 4231+
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