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Given integers 1 ≤ k1 < · · · < kl ≤ n − 1, let Flk1,...,kl;n

denote the type A partial flag variety consisting of all chains 
of subspaces (Vk1 ⊂ · · · ⊂ Vkl

) inside Rn, where each Vk

has dimension k. Lusztig (1994, 1998) introduced the totally 
positive part Fl>0

k1,...,kl;n as the subset of partial flags which 
can be represented by a totally positive n × n matrix, 
and defined the totally nonnegative part Fl≥0

k1,...,kl;n as the 
closure of Fl>0

k1,...,kl;n. On the other hand, following Postnikov 
(2007), we define FlΔ>0

k1,...,kl;n and FlΔ≥0
k1,...,kl;n as the subsets 

of Flk1,...,kl;n where all Plücker coordinates are positive and 
nonnegative, respectively. It follows from the definitions that 
Lusztig’s total positivity implies Plücker positivity, and it is 
natural to ask when these two notions of positivity agree. 
Rietsch (2009) proved that they agree in the case of the 
Grassmannian Flk;n, and Chevalier (2011) showed that the 
two notions are distinct for Fl1,3;4. We show that in general, 
the two notions agree if and only if k1, . . . , kl are consecutive 
integers. We give an elementary proof of this result (including 
for the case of Grassmannians) based on classical results in 
linear algebra and the theory of total positivity. We also show 
that the cell decomposition of Fl≥0

k1,...,kl;n coincides with its 
matroid decomposition if and only if k1, . . . , kl are consecutive 
integers, which was previously only known for complete flag 
varieties, Grassmannians, and Fl1,3;4. Finally, we determine 
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which notions of positivity are compatible with a natural 
action of the cyclic group of order n that rotates the index 
set.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

A real matrix is called totally positive if all of its minors (i.e. determinants of square 
submatrices) are positive. Totally positive matrices first appeared in the 1930’s in work 
of Schoenberg [52] and Gantmakher and Krein [23]. In the 1990’s, Lusztig [37] gener-
alized the theory of totally positive matrices to arbitrary semisimple algebraic groups 
G and their partial flag varieties G/P . These spaces have since been widely studied, 
with connections to representation theory [37], combinatorics [45], cluster algebras [16], 
high-energy physics [3,4], mirror symmetry [51], topology [19], and many other topics. 
The purpose of this paper is to examine the definition of the totally positive and totally 
nonnegative parts of a partial flag variety G/P in type A.

1.1. Lusztig’s total positivity vs. Plücker positivity

Given a subset K = {k1 < · · · < kl} ⊆ {1, . . . , n − 1}, let FlK;n(R) denote the partial 
flag variety of all tuples of subspaces (Vki

)l
i=1 of Rn, where Vk1 ⊂ · · · ⊂ Vkl

and each Vk

has dimension k. Equivalently, we may view FlK;n(R) as a parabolic quotient of GLn(R), 
where a matrix g ∈ GLn(R) represents the flag (Vki

)l
i=1, where Vki

is the span of the 
first ki columns of g. Particular cases of interest are when K = {1, . . . , n − 1}, in which 
case FlK;n(R) is the complete flag variety Fln(R), and when K = {k}, in which case 
FlK;n(R) is the Grassmannian Grk,n(R) of all k-dimensional subspaces of Rn.

Lusztig [37,38] defined the totally positive part Fl>0
K;n of FlK;n(R) to be the subset 

of flags which can be represented by a totally positive matrix in GLn(R) (or equiva-
lently, a totally positive lower-triangular unipotent matrix; see Remark 2.6 for further 
discussion). He also defined the totally nonnegative part Fl≥0

K;n to be the closure of Fl>0
K;n. 

There is an alternative notion of positivity which arises from the Plücker embedding of 
FlK;n(R). Namely, we say that (Vki

)l
i=1 is Plücker positive if all its Plücker coordinates 

are positive, or equivalently, if it can be represented by an element of GLn(R) whose 
left-justified (i.e. initial) minors of orders k1, . . . , kl are all positive. We similarly say that 
(Vki

)l
i=1 is Plücker nonnegative if all its Plücker coordinates are nonnegative. We denote 

the Plücker-positive and Plücker-nonnegative parts of FlK;n(R) by FlΔ>0
K;n and FlΔ≥0

K;n , 
respectively. The Plücker-nonnegative part GrΔ≥0

k,n of the Grassmannian was studied by 

Postnikov [45], and the space FlΔ≥0
K;n was introduced by Arkani-Hamed, Bai, and Lam 

[3, Section 6.3], who called it the naive nonnegative part.
We wish to emphasize that both total positivity and Plücker positivity are natural 

notions. Lusztig’s total positivity is compatible with his theory of canonical bases [36]
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and with the combinatorics of Coxeter groups [37]. The space Fl≥0
K;n can be decomposed 

into cells [37,48], each of which admits an explicit parametrization [41], and the cell 
decomposition forms a regular CW complex [19]. On the other hand, Plücker positivity 
is more concrete, and leads to connections with matroid theory [2] and tropical geometry 
[53]. It also arises in the definition of loop amplituhedra [5,6], which are spaces appearing 
in the physics of scattering amplitudes; for example, a 1-loop amplituhedron is a certain 
projection of the space FlΔ≥0

k,k+2;n. The construction of loop amplituhedra is incompatible 
with Lusztig’s total positivity, due to the presence of a cyclic symmetry among the 
particles in the scattering amplitude, as we explain in Section 1.3.

It follows from the definitions that Fl>0
K;n ⊆ FlΔ>0

K;n and Fl≥0
K;n ⊆ FlΔ≥0

K;n , and it is 
natural to ask when equality holds. This question has been explored previously in special 
cases, as we discuss in Section 1.4. We answer this question in general:

Theorem 1.1. Let n ∈ N and K ⊆ {1, . . . , n − 1}. Then the following are equivalent:

(i) Fl>0
K;n = FlΔ>0

K;n ;
(ii) Fl≥0

K;n = FlΔ≥0
K;n ; and

(iii) the set K consists of consecutive integers.

We give an elementary proof of Theorem 1.1, using classical results in linear algebra 
and the theory of total positivity. In particular, our proof does not rely on any previously 
established special cases or on the cell decomposition of Fl≥0

K;n.

1.2. Cell decomposition vs. matroid decomposition

Lusztig [37, Remark 8.15] introduced a decomposition of Fl≥0
K;n, which Rietsch [48]

showed is a cell decomposition (i.e. each stratum is homeomorphic to an open ball). It 
is the intersection of the projected Richardson stratification [32] with Fl≥0

K;n. There is 
another natural stratification of FlK;n(R), introduced by Gelfand and Serganova [25], 
which is the common refinement of the vanishing and nonvanishing sets of all Plücker 
coordinates. We call this the matroid decomposition, since each stratum is labeled by a 
tuple of matroids on the ground set {1, . . . , n} (or alternatively, a Coxeter matroid).

Postnikov [45] studied the matroid decomposition of the Plücker-nonnegative part of 
Grk,n(R), which he called the positroid decomposition. He showed that it forms a cell 
decomposition [45, Theorem 3.5], and that it coincides with the decomposition of Lusztig 
and Rietsch [45, Theorem 3.8] (see Section 1.4 for further discussion). The topology of this 
decomposition presents a stark contrast to the matroid decomposition of all of Grk,n(R), 
which exhibits a phenomenon known as Mnëv universality [42]. In general, Tsukerman 
and Williams [55, Section 7] showed that the cell decomposition of Fl≥0

K;n is a refinement 
of the matroid decomposition. They also showed that the two decompositions coincide 
for complete flag varieties, but differ for Fl≥0

1,3;4. We determine in general when the two 
decompositions are equal:
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Theorem 1.2. Let n ∈ N and K ⊆ {1, . . . , n − 1}. Then the cell decomposition of Fl≥0
K;n

coincides with the matroid decomposition if and only if K consists of consecutive integers.

The forward direction of Theorem 1.2 follows from Theorem 1.1, using a topological 
argument. However, we do not know how to deduce the reverse direction directly from 
Theorem 1.1. Instead, we use a result of Tsukerman and Williams [55, Theorem 7.1], 
which in turn builds on unpublished work of Marsh and Rietsch. It states that each cell 
of Fl≥0

K;n is contained in a single matroid stratum, which is uniquely determined by the 
0-dimensional cells in its closure. These 0-dimensional cells have an explicit description 
in terms of the Bruhat order on the symmetric group Sn, due to Rietsch [49]. To prove 
the reverse direction of Theorem 1.2, we use the combinatorics of Sn to reduce the 
statement to the Grassmannian case, which was proved by Postnikov as described above. 
Our techniques also have implications in the study of the Bruhat interval polytopes of 
Kodama and Williams [34] and Tsukerman and Williams [55]; see Remark 5.17 and 
Remark 5.24.

1.3. Cyclic symmetry

For ε ∈ Z/2Z, define the (signed) left cyclic shift map σε ∈ GLn(R) by

σε(v1, . . . , vn) := (v2, . . . , vn, (−1)ε−1v1) for all v ∈ Rn.

Then σε also acts on FlK;n(R). If all elements of K have the same parity ε, then by 
the alternating property of the determinant, σε acts on Plücker coordinates by rotating 
the index set {1, . . . , n}. Therefore σε preserves both FlΔ>0

K;n and FlΔ≥0
K;n . It is natural to 

wonder whether σε also preserves Fl>0
K;n and Fl≥0

K;n. One motivation is that the cyclic 

symmetry for FlΔ≥0
k,k+2;n is important in the definition of loop amplituhedra mentioned 

above, coming from a cyclic ordering on the n external particles.
If K = {k} and k has parity ε, then σε preserves both Gr>0

k,n and Gr≥0
k,n, using The-

orem 1.1 for Grk,n(R). We show, however, that in all other cases, σε does not preserve 
either Fl>0

K;n or Fl≥0
K;n. In particular, one cannot substitute the notion of total positivity 

for Plücker positivity in the definition of loop amplituhedra.

Theorem 1.3. Let K ⊆ {1, . . . , n − 1} such that |K| ≥ 2, and let ε ∈ Z/2Z. Then there 
exists V ∈ Fl>0

K;n such that σε(V ) /∈ Fl≥0
K;n. In particular, σε does not preserve Fl>0

K;n or 

Fl≥0
K;n.

While Theorem 1.3 does not follow directly from Theorem 1.1, we use similar tech-
niques to prove both results.

One of our initial motivations for this work was to understand which gradient flows 
on FlK;n(R) are compatible with total positivity, which we discuss in a separate paper 
[8]. We discovered that in certain cases, the classification of such flows differs depending 
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on whether one works with Lusztig’s total positivity or with Plücker positivity; see The-
orem 5.14, Theorem 5.18, and Remark 5.20 of [8]. Theorem 1.3 above may be regarded 
as an infinitesimal analogue of this phenomenon.

1.4. History

We discuss previous work related to Theorem 1.1 and Theorem 1.2. Much of this work 
has focused on the case when FlK;n(R) is a Grassmannian Grk,n(R), due to Postnikov’s 
study of the matroid decomposition of GrΔ≥0

k,n [45].
Rietsch [47, Section 4.5] (also announced in [38, Section 3.12]) stated that Lusztig’s 

notion of total positivity coincides with Plücker positivity for all partial flag varieties 
G/P , but her proof contained an error. She later proved Theorem 1.1 for Grassmanni-
ans Grk,n(R) in unpublished notes [50]. Subsequent proofs were given by Talaska and 
Williams [54, Corollary 1.2], Lam [35, Remark 3.8], and Lusztig [39]. Theorem 1.2 for the 
complete flag variety Fln(R) was stated in [19, (9.15)], and proofs were given by Lusztig 
[40, p. 4] and Boretsky [9, Theorem 5.25]. Conversely, Chevalier [12, Example 10.1] gave 
an example showing that Fl>0

1,3;4 �= FlΔ>0
1,3;4; see [33, Remark 5.17] for a related discussion. 

In a different direction, Geiss, Leclerc, and Schröer [24, Conjecture 19.2] have conjectured 
an algebraic description of the totally positive part of any partial flag variety G/P .

Theorem 1.2 was proved in the case of Grassmannians Gr≥0
k,n by Postnikov [45, Corol-

lary 3.8]. We point out that his proof implicitly uses the fact that Gr≥0
k,n = GrΔ≥0

k,n , which 
was only later proved by Rietsch [50], as described above. A subsequent proof was given 
by Talaska and Williams [54, Corollary 1.2], and the result can also be proved using 
work of Tsukerman and Williams [55, Section 7]. Theorem 1.2 in the cases of Fl≥0

n and 
Fl≥0

1,3;4 was proved by Tsukerman and Williams [55, Theorem 7.1 and Remark 7.3].

1.5. Further directions

Lusztig [37,38] introduced the totally positive and totally nonnegative part of an 
arbitrary partial flag variety G/P , where G is a semisimple algebraic group G over R
and P is a parabolic subgroup. It would be interesting to study the problems considered 
in this paper for such G/P . We mention that Fomin and Zelevinsky [18] have considered 
analogous problems for the group G. In particular, they showed that an element of G is 
totally positive (respectively, totally nonnegative) in the sense of Lusztig [37] if and only 
if all its generalized minors are positive (respectively, nonnegative). We consider only the 
type A case here both for the sake of concreteness, and because our proofs of Theorem 1.1
and Theorem 1.3 are elementary. We point out that many of our arguments in Section 5
used to prove Theorem 1.2 can be applied to general Coxeter groups; however, a key tool 
in our proof is Postnikov’s Theorem 5.16, which is only known in type A.

Lusztig [38, Theorem 3.4] showed that for any partial flag variety G/P , there ex-
ists a positive weight λ such that a partial flag is totally positive (respectively, totally 
nonnegative) if and only if its coordinates with respect to the canonical basis of the irre-
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ducible G-module with highest weight λ are all positive (respectively, nonnegative). He 
also posed the problem of finding the minimal such λ. Our Theorem 1.1 gives a partial 
answer for type A partial flag varieties G/P = FlK;n(R): it implies that the sum of 
fundamental weights 

∑
k∈K ωk is a valid choice of λ (and hence minimal) if and only if 

K consists of consecutive integers.
As we described above, the combinatorics and topology of the cell decomposition of 

Fl≥0
K;n have been extensively studied. For example, each cell has an explicit parametriza-

tion [41, Section 11], the closure poset is shellable [57, Theorem 1.2], and the cell 
decomposition forms a regular CW complex [19, Theorem 1.1]. In light of Theorem 1.1
and Theorem 1.2, it would be interesting to further study the matroid decomposition of 
FlΔ≥0

K;n . Bai, He, and Lam [6] studied the case FlΔ≥0
1,3;n. In [8, Corollary 6.16], we show that 

FlΔ>0
K;n is homeomorphic to an open ball and FlΔ≥0

K;n is homeomorphic to a closed ball.

1.6. Outline

In Section 2, we give some background on partial flag varieties and total positivity. 
In Section 3, we prove Theorem 1.1. In Section 4, we prove Theorem 1.3. In Section 5, 
we prove Theorem 1.2.

Acknowledgments

We thank George Lusztig, Lauren Williams, and an anonymous reviewer for helpful 
comments.

2. Background

In this section, we define partial flag varieties and their totally positive and totally 
nonnegative parts, and recall some classical results in the theory of total positivity. For 
further details on total positivity, we refer to [14,17,22,30,37,43].

2.1. Notation

Let N := {0, 1, 2, . . . }. For n ∈ N, we let [n] denote {1, 2, . . . , n}, and for i, j ∈ Z, we 
let [i, j] denote the interval of integers {i, i + 1, . . . , j}. Given a set S and k ∈ N, we let (

S
k

)
denote the set of k-element subsets of S.

We let e1, . . . , en denote the unit vectors of Rn. We let Pn(R) denote n-dimensional 
real projective space, defined to be Rn+1 \ {0} modulo multiplication by R×. For 
λ1, . . . , λn ∈ R, we let Diag(λ1, . . . , λn) denote the n × n diagonal matrix with diagonal 
entries λ1, . . . , λn. We let GLn(R) denote the group of invertible real n × n matrices.

Given an m × n matrix A, we let AT denote the transpose of A. For 1 ≤ k ≤ m, n and 
subsets I ∈

([m]) and J ∈
([n]), we let ΔI,J(A) denote the determinant of the submatrix 
k k
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of A in rows I and columns J , called a minor of A of order k. If J = [k], we call ΔI,J (A)
a left-justified minor of A. We also let 

∑
I denote the sum of the elements in I.

We will make repeated use of the Cauchy–Binet identity (see e.g. [20, I.(14)]): if A is 
an m × n matrix, B is an n × p matrix, and 1 ≤ k ≤ m, p, then

ΔI,J(AB) =
∑

K∈([n]
k )

ΔI,K(A)ΔK,J(B) for all I ∈
([m]

k

)
and J ∈

([p]
k

)
. (2.1)

We now introduce partial flag varieties.

Definition 2.1. Let n ∈ N, and let K = {k1 < · · · < kl} ⊆ [n −1]. Let PK;n(R) denote the 
parabolic subgroup of GLn(R) of block upper-triangular matrices with diagonal blocks 
of sizes k1, k2 − k1, . . . , kl − kl−1, n − kl. We define the partial flag variety

FlK;n(R) := GLn(R)/ PK;n(R).

We identify FlK;n(R) with the variety of partial flags of subspaces in Rn

{V = (Vk1 , . . . , Vkl
) : 0 ⊂ Vk1 ⊂ · · · ⊂ Vkl

⊂ Rn and dim(Vki
) = ki for 1 ≤ i ≤ l}.

The identification sends g ∈ GLn(R)/ PK;n(R) to the tuple (Vk)k∈K , where Vk is the 
span of the first k columns of g for all k ∈ K. More generally, if A is any real matrix 
with n rows and at least kl columns such that Vk is the span of the first k columns of A
for all k ∈ K, we say that A represents V . Note that GLn(R) acts on FlK;n(R) on the 
left.

We have the Plücker embedding

FlK;n(R) ↪→ P

(
( n

k1
)−1

)
× · · · × P

(
( n

kl
)−1

)
,

V 	→
(

(ΔI(A))
I∈([n]

k1
), . . . , (ΔI(A))

I∈([n]
kl

)
)

,
(2.2)

where A denotes any matrix representative of V . (We can check that the definition does 
not depend on the choice of A.) We call the left-justified minors ΔI(A) appearing above 
the Plücker coordinates of V ∈ FlK;n(R) (also known as flag minors), which we denote 
by ΔI(V ). We point out that our Plücker coordinates differ from the generalized Plücker 
coordinates of Gelfand and Serganova [25], though each encodes essentially the same 
data; see Remark 5.13.

For any K ′ ⊆ K, we have a projection map

FlK;n(R) � FlK′;n(R), (Vk)k∈K 	→ (Vk)k∈K′ . (2.3)

The map (2.3) retains only the subspaces of a partial flag whose dimensions lie in K ′.
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We mention two instances of FlK;n(R) which are of particular interest. If K = [n −1], 
then FlK;n(R) is the complete flag variety of Rn, which we denote by Fln(R). If K is 
the singleton {k}, then FlK;n(R) is the Grassmannian of all k-dimensional subspaces of 
Rn, which we denote by Grk,n(R). We also extend the definition of Grk,n(R) to k = 0
and k = n.

Example 2.2. Let n := 4 and K := {1, 3}. Then

P1,3;4(R) =

⎧⎪⎨
⎪⎩
⎡
⎢⎣

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ⊆ GL4(R) and Fl1,3;4(R) = GL4(R)/ P1,3;4(R).

We identify Fl1,3;4(R) with the variety of partial flags V = (V1, V3) of subspaces of R4, 
where dim(V1) = 1, dim(V3) = 3, and V1 ⊂ V3.

We can represent a generic partial flag V ∈ Fl1,3;4(R) by a matrix of the form

A =

⎡
⎢⎣

1 0 0
a 1 0
b 0 1
c d e

⎤
⎥⎦ , where a, b, c, d, e ∈ R.

That is, V1 is spanned by the first column of A, and V3 is spanned by all three columns 
of A. Then the Plücker embedding (2.2) takes V to

(
(Δ1(V ) : Δ2(V ) : Δ3(V ) : Δ4(V )), (Δ123(V ) : Δ124(V ) : Δ134(V ) : Δ234(V ))

)
=

(
(1 : a : b : c), (1 : e : −d : −ad + c − be)

)
∈ P 3(R) × P 3(R). ♦

Definition 2.3. We say that a real matrix is totally positive if all its minors are positive. 
For n ∈ N, we let GL>0

n denote the subset of GLn(R) of totally positive matrices.

For example, we have GL>0
2 =

{[
a b
c d

]
: a, b, c, d, ad − bc > 0

}
. We now introduce 

Lusztig’s total positivity and Plücker positivity for partial flag varieties.

Definition 2.4. Let n ∈ N and K ⊆ [n −1]. Following [37, Section 8] and [38, Section 1.5], 
we define the totally positive part of FlK;n(R), denoted by Fl>0

K;n, as the image of GL>0
n

inside FlK;n(R) = GLn(R)/ PK;n(R). Equivalently, Fl>0
K;n consists of all partial flags 

which can be represented by a totally positive n × n matrix. We define the totally 
nonnegative part of FlK;n(R), denoted by Fl≥0

K;n, as the closure of Fl>0
K;n in the Euclidean 

topology. Note that for any K ′ ⊆ K, the projection map (2.3) restricts to surjections

Fl>0
K;n � Fl>0

K′;n and Fl≥0
K;n � Fl≥0

K′;n . (2.4)

We also define the Plücker-positive part of FlK;n(R), denoted by FlΔ>0
K;n , as the subset 

of partial flags whose Plücker coordinates are all positive (up to rescaling). That is, 
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FlΔ>0
K;n consists of all partial flags which can be represented by a matrix A such that 

all left-justified k × k minors of A are positive for all k ∈ K. We similarly define the 
Plücker-nonnegative part FlΔ≥0

K;n by replacing “positive” with “nonnegative” above.

Note that by definition, we have Fl>0
K;n ⊆ FlΔ>0

K;n and Fl≥0
K;n ⊆ FlΔ≥0

K;n . We also have 

that FlΔ≥0
K;n is the closure of FlΔ>0

K;n ; see Proposition 3.3(ii).

Example 2.5. We have

FlΔ>0
3 =

{[ 1 0 0
a + c 1 0

bc b 1

]
: a, b, c > 0

}
and GrΔ>0

2,4 =

⎧⎪⎨
⎪⎩
⎡
⎢⎣

1 0
a b
0 1

−c d

⎤
⎥⎦ : a, b, c, d > 0

⎫⎪⎬
⎪⎭ . ♦

Remark 2.6. Lusztig’s original definition of Fl>0
K;n is slightly different than the one we 

give in Definition 2.4, but is equivalent. Namely, let Nn(R) be the subset of GLn(R) of 
all upper-triangular matrices with 1’s on the diagonal. We define N>0

n to be the subset 
of Nn(R) of matrices whose minors are all positive, except for those which are zero due 
to upper triangularity. Let (N−

n )>0 denote the transpose of N>0
n , and let T>0

n denote the 
subset of GLn(R) of diagonal matrices with positive diagonal entries. Then Lusztig [37, 
Section 8] defines Fl>0

K;n to be the image of (N−
n )>0 inside FlK;n(R). This is equal to the 

image of GL>0
n , because

GL>0
n = (N−

n )>0 · T>0
n · N>0

n , (2.5)

and T>0
n · N>0

n ⊆ PK;n(R). (In fact, Lusztig takes (2.5) to hold by definition; see [37, 
Section 2.12].) The decomposition (2.5) is a result of Cryer [13, Theorem 1.1]; we refer 
to [14, Chapter 2] for further discussion and references.

Remark 2.7. A real matrix is called totally nonnegative if all its minors are nonnegative. 
Every totally nonnegative matrix in GLn(R) represents a totally nonnegative flag in 
FlK;n(R). However, not every element of Fl≥0

K;n is represented by a totally nonnegative 

matrix, unless K = ∅. For example, the element 
[ 0 −1

1 0

]
∈ Fl≥0

2 cannot be represented 
by a totally nonnegative matrix, since the top-left entry of a totally nonnegative matrix 
is positive.

We now recall two classical results from the theory of total positivity.

Lemma 2.8. There exists a continuous function f : R≥0 → GLn(R) such that f(0) = In

and f(t) ∈ GL>0
n for all t > 0.

Proof. By [22, II.3.(24)] or [56, (2)] (cf. [44, Problem V.76]), we may take f(t) :=
(t(i−j)2)1≤i,j≤n. Alternatively, by [30, Theorem 3.3.4], we may take f(t) := exp(tA), 
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where A is any tridiagonal n × n matrix whose entries immediately above and below the 
diagonal are positive. �
Theorem 2.9 (Fekete [15]; see [43, Lemma 2.1]). Let A be an n × (k + 1) matrix, where 
n ≥ k + 1. Suppose that all left-justified k × k minors of A are positive, and that all 
(k+1) ×(k+1) minors of A using consecutive rows are positive. Then all (k+1) ×(k+1)
minors of A are positive.

The following two results are duality and restriction statements for totally nonnegative 
Grassmannians. See [1, Section 3] for closely related results. We note that Lemma 2.10
follows from Jacobi’s formula for the matrix inverse; we refer to [31] for further discussion 
and references.

Lemma 2.10 ([31, Lemma 1.11(ii)]). Define the bilinear pairing 〈·, ·〉 on Rn by

〈v, w〉 := v1w1 − v2w2 + v3w3 − · · · + (−1)n−1vnwn.

Given V ∈ Grk,n(R), let V ⊥ := {w ∈ Rn : 〈v, w〉 = 0 for all v ∈ V } ∈ Grn−k,n(R). 
Then

ΔI(V ) = Δ[n]\I(V ⊥) for all I ∈
([n]

k

)
.

In particular, ·⊥ defines bijections GrΔ>0
k,n ↔ GrΔ>0

n−k,n and GrΔ≥0
k,n ↔ GrΔ≥0

n−k,n.

Example 2.11. Let V ∈ Gr2,4(R) be represented by the matrix
⎡
⎢⎣

1 0
0 1
a b
c d

⎤
⎥⎦ .

Then V ⊥ ∈ Gr2,4(R) is represented by the matrix
⎡
⎢⎣

−a c
b −d
1 0
0 1

⎤
⎥⎦ . ♦

Lemma 2.12. Let V ∈ GrΔ≥0
k,n , and let m ≤ n. Define W := V ∩ span(e1, . . . , em), and let 

d := dim(W ). Then W ∈ GrΔ≥0
d,m .

Proof. Take an m × d matrix B representing W . Then there exists an n × k matrix A
representing V of the form

A =
[

B ∗
0 C

]
,
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where C is an (n − m) × (k − d) matrix of rank k − d. We may assume that C is in 
reduced column echelon form, so that C restricted to some subset J ∈

([n−m]
k−d

)
of rows 

equals Ik−d. Let J ′ := {j + m : j ∈ J}. Then for all I ∈
([m]

d

)
, we have

ΔI(B) = ΔI∪J ′(A), so ΔI(W ) = ΔI∪J ′(V ).

Since V ∈ GrΔ≥0
k,n , we have W ∈ GrΔ≥0

d,m . �
3. Lusztig’s total positivity vs. Plücker positivity

In this section we prove Theorem 1.1. Our argument will be based on the preliminary 
results Proposition 3.3, Lemma 3.4, and Lemma 3.5.

Lemma 3.1. For n ∈ N, we have Fl>0
n = FlΔ>0

n .

Proof. We know that Fl>0
n ⊆ FlΔ>0

n . Conversely, let V ∈ FlΔ>0
n . Then there exists 

an n × n matrix A representing V whose left-justified minors are all positive. After 
performing left-to-right column operations, we may assume that A is lower-triangular. 
For t > 0, define

g := ADiag(tn−1, . . . , t, 1)AT ∈ GLn(R),

which also represents V . We claim that g ∈ GL>0
n for all t sufficiently large, whence 

V ∈ Fl>0
n , completing the proof. (In fact, g ∈ GL>0

n for all t > 0, by (2.5).) To see this, 
note that for 1 ≤ k ≤ n and I, J ∈

([n]
k

)
, by (2.1) we have that ΔI,J(g) equals

∑
K∈([n]

k )
ΔI,K(A)ΔJ,K(A)tkn−

∑
K = ΔI,[k](A)ΔJ,[k](A)tkn−(k+1

2 ) + lower order terms

as t → ∞. �
Lemma 3.2. Let K ⊆ [n − 1], and let g ∈ GL>0

n .

(i) For all V ∈ Fl≥0
K;n, we have g · V ∈ Fl>0

K;n.
(ii) For all V ∈ FlΔ≥0

K;n , we have g · V ∈ FlΔ>0
K;n .

Proof. Part (ii) follows from the Cauchy–Binet identity (2.1). For part (i), by (2.4), 
it suffices to prove the result for the complete flag variety (when K = [n − 1]). Since 
Fl≥0

n ⊆ FlΔ≥0
n , this case follows from part (ii) and Lemma 3.1. �

Proposition 3.3. Let K ⊆ [n − 1].

(i) Fl≥0
K;n is the closure of Fl>0

K;n, and Fl>0
K;n is the interior of Fl≥0

K;n.
(ii) FlΔ≥0

K;n is the closure of FlΔ>0
K;n , and FlΔ>0

K;n is the interior of FlΔ≥0
K;n .
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Proof. Let f : R≥0 → GLn(R) be as in Lemma 2.8.
(i) By definition, Fl≥0

K;n is the closure of Fl>0
K;n. Also, Fl>0

K;n is open, so it is contained 

in the interior of Fl≥0
K;n. It remains to show that the interior of Fl≥0

K;n is contained in 

Fl>0
K;n. To see this, let V ∈ Fl≥0

K;n \ Fl>0
K;n. We claim that f(t)−1 · V is not in Fl≥0

K;n for all 
t > 0, whence V is not in the interior of Fl≥0

K;n. Indeed, if f(t)−1 · V ∈ Fl≥0
K;n with t > 0, 

then by Lemma 3.2(i) we obtain

V = f(t) · (f(t)−1 · V ) ∈ Fl>0
K;n,

a contradiction.
(ii) Note that the closure of FlΔ>0

K;n is contained in FlΔ≥0
K;n . Conversely, given V ∈ FlΔ≥0

K;n , 
we have V = limt→0, t>0 f(t) · V , and f(t) · V ∈ FlΔ>0

K;n for t > 0 by Lemma 3.2(ii). 
Therefore FlΔ≥0

K;n is the closure of FlΔ>0
K;n . The fact that FlΔ>0

K;n is the interior of FlΔ≥0
K;n

follows from a similar argument as in the proof of part (i). �
Lemma 3.4. Let V ∈ GrΔ>0

k,n , where 1 ≤ k ≤ n − 1.

(i) There exists W ∈ GrΔ>0
k+1,n such that V ⊆ W .

(ii) There exists W ∈ GrΔ>0
k−1,n such that W ⊆ V .

Proof. (i) Take an n × k matrix A representing V whose k × k minors are all positive. 
Let B := [A | w ] denote the n ×(k+1) matrix formed by concatenating A and the vector 
w ∈ Rn, where we define w as follows. We set w1, . . . , wk := 0, and for i = k + 1, . . . , n, 
we take wi > 0 to be sufficiently large that the minor Δ[i−k,i],[k+1](B) is positive. By 
Theorem 2.9, all (k + 1) × (k + 1) minors of B are positive. Therefore we may define W
to be the column span of B.

(ii) This follows by applying part (i) to V ⊥, using Lemma 2.10. �
Lemma 3.5. Let V ∈ GrΔ≥0

k,n and W ∈ GrΔ≥0
k+1,n such that V ⊆ W . If e1 + cen ∈ V for 

some c ∈ R, then e1 ∈ W .

Proof. If e1 ∈ V , then e1 ∈ W . Now suppose that e1 /∈ V and e1 + cen ∈ V for some 
c ∈ R, so that c �= 0 and en /∈ V . Let A denote the n × k matrix representing V in 
reduced column echelon form. Let I ∈

([n]
k

)
index the rows containing the pivot 1’s of A; 

equivalently, I is lexicographically minimal such that ΔI(V ) �= 0. Since e1 + cen ∈ V

and en /∈ V , we have 1 ∈ I and n /∈ I, and the first column of A is e1 + cen. Therefore 
ΔI(A) = 1 and Δ(I\{1})∪{n}(A) = (−1)k−1c. Since V is Plücker nonnegative, we get 
that (−1)k−1c > 0.

Now take w ∈ W \ V such that wi = 0 for all i ∈ I. Let B := [A | w ] denote 
the n × (k + 1) matrix representing W , formed by concatenating A and w. Then for 
i ∈ [n −1] \I, there exists ε ∈ {1, −1} such that ΔI∪{i}(B) = εwi and Δ(I\{1})∪{i,n}(B) =



A.M. Bloch, S.N. Karp / Advances in Mathematics 414 (2023) 108855 13
ε(−1)kcwi. Since W is Plücker nonnegative and (−1)k−1c > 0, we get that wi = 0. 
Therefore w is a nonzero scalar multiple of en. Since e1+cen ∈ W , we obtain e1 ∈ W . �
Proof of Theorem 1.1. (i) ⇔ (ii): This follows from Proposition 3.3.

(iii) ⇒ (i): Suppose that K = [k, l]. Recall that Fl>0
K;n ⊆ FlΔ>0

K;n . Conversely, we must 
show that given V = (Vk, . . . , Vl) ∈ FlΔ>0

K;n , we have V ∈ Fl>0
K;n. By repeatedly applying 

Lemma 3.4, there exist Vi ∈ GrΔ>0
i,n for i = l + 1, . . . , n and i = k − 1, . . . , 1 such that 

V1 ⊂ · · · ⊂ Vn−1. Let W := (V1, . . . , Vn−1) ∈ Fln(R). Then W ∈ FlΔ>0
n , so W ∈ Fl>0

n by 
Lemma 3.1. Then by (2.4), we get V ∈ Fl>0

K;n.
(ii) ⇒ (iii): We prove the contrapositive. Suppose that K does not consist of consec-

utive integers, so that there exist consecutive elements k < l of K with l − k ≥ 2. Define 
the element V = (Vi)i∈K of FlK;n(R) as follows:

Vi :=

⎧⎪⎪⎨
⎪⎪⎩

span(e5, e6, . . . , ei+4), if i < k;
span(e1 + e4, e5, e6, . . . , ek+3), if i = k;
span(e1 + e4, e2, e3, e5, e6, . . . , ei+1), if i ≥ l.

That is, V is represented by the n × (n − 1) matrix

A :=
[ 0 (−1)k−1B 0

Ik−1 0 0
0 0 In−k−3

]
, where B :=

⎡
⎢⎣

1 0 0
0 1 0
0 0 1
1 0 0

⎤
⎥⎦ .

Note that all left-justified minors of A are nonnegative, except for a certain minor of 
order k + 1. Since k + 1 /∈ K, we get that V ∈ FlΔ≥0

K;n .
We claim that V /∈ Fl≥0

K;n, which implies that Fl≥0
K;n �= FlΔ≥0

K;n . Indeed, suppose 

otherwise that V ∈ Fl≥0
K;n. Then by (2.4), we can extend V to a complete flag 

(V1, . . . , Vn−1) ∈ Fl≥0
n . For 1 ≤ i ≤ n − 1, define Wi := Vi ∩ span(e1, e2, e3, e4). Let 

di := dim(Wi), so that Wi ∈ GrΔ≥0
di,4 by Lemma 2.12. Note that Wk = span(e1 + e4) and 

Wl = span(e1 + e4, e2, e3). Since the sequence dk, dk+1, . . . , dl increases by 0 or 1 at each 
step, and dk = 1 and dl = 3, there exists j ∈ [k, l] such that dj = 2. Applying Lemma 3.5
to Wk and Wj , we get e1 ∈ Wj . Since Wj ⊂ Wl, this implies e1 ∈ Wl, a contradiction. �
4. Cyclic symmetry

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. We claim that it suffices to construct W ∈ Fl≥0
K;n such that 

σε(W ) /∈ Fl≥0
K;n. Indeed, let f : R≥0 → GLn(R) be as in Lemma 2.8, so that by 

Lemma 3.2(i), we have f(t) · W ∈ Fl>0
K;n for all t > 0. If σε(f(t) · W ) ∈ Fl≥0

K;n for 
all t > 0, then taking t → 0 we obtain σε(W ) ∈ Fl≥0

K;n, a contradiction. Therefore there 

exists t > 0 such that σε(f(t) · W ) /∈ Fl≥0
K;n, whence we may take V := f(t) · W .
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Now we construct such a W = (Wi)i∈K ∈ FlK;n(R). Fix any two elements k < l of 
K. We set

Wi :=
{

span(e3, e4, . . . , ei+2), if i < k;
span(e1 + e2, e3, e4, . . . , ei+1), if i ≥ k.

That is, W is represented by the n × (n − 1) matrix

A :=

⎡
⎢⎣

0 (−1)k−1 0
0 (−1)k−1 0

Ik−1 0 0
0 0 In−k−1

⎤
⎥⎦ .

Note that all left-justified minors of A are nonnegative, so A represents an element of 
FlΔ≥0

n . By Theorem 1.1 we have FlΔ≥0
n = Fl≥0

n , so by (2.4), we get W ∈ Fl≥0
K;n.

Let X = (Xi)i∈K denote the left cyclic shift σε(W ). Note that

Xk = span((−1)ε−1en + e1, e2, . . . , ek) and Xl = span((−1)ε−1en + e1, e2, . . . , el).

Now proceed by contradiction and suppose that X ∈ Fl≥0
K;n. Then by (2.4), we can extend 

X to a complete flag (X1, . . . , Xn−1) ∈ Fl≥0
n . Applying Lemma 3.5 to Xk and Xk+1, we 

get e1 ∈ Xk+1. Since Xk+1 ⊆ Xl, this implies e1 ∈ Xl, a contradiction. �
5. Cell decomposition vs. matroid decomposition

In this section, we prove Theorem 1.2. We begin by recalling some background in Sec-
tion 5.1. We then give two proofs of the forward direction of Theorem 1.2 in Section 5.3, 
and prove the reverse direction in Section 5.4. Throughout this section, we fix n ∈ N, 
and let W denote the symmetric group Sn of all permutations of [n]. Also, J and K will 
denote complementary subsets of [n − 1].

5.1. Background on Coxeter combinatorics

We recall some background on the combinatorics of the Coxeter group W = Sn; we 
refer to [7] for further details.

Definition 5.1 ([7, Chapter 2]). For 1 ≤ i ≤ n − 1, let si := (i i + 1) ∈ W be the 
simple transposition which exchanges i and i + 1, and let e ∈ W denote the identity 
permutation. Given w ∈ W , a reduced word w for w is a word in s1, . . . , sn−1 of minimal 
length whose product is w. Each reduced word for w has the same number of letters, 
called the length �(w) of w, which is equal to the number of inversions of w. Any two 
reduced words for w are related by a sequence of moves of the following form:

(M1) sisj = sjsi for 1 ≤ i, j ≤ n − 1 with |i − j| ≥ 2; and
(M2) sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n − 2.
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Fig. 1. The Hasse diagram of the Bruhat order on W = S3.

In particular, if si appears in some reduced word for w, then it appears in every reduced 
word for w.

The (strong) Bruhat order ≤ on W is defined as follows: v ≤ w if and only if for some 
(or equivalently, for every) reduced word w for w, there exists a reduced word v for v
which is a subword of w. The Bruhat order is graded with rank function �. The Bruhat 
order on W = S3 is shown in Fig. 1.

Example 5.2. Let w := 5214763 ∈ W = S7. Then �(w) = 9, and a reduced word for w is 
w = s1s3s4s3s2s1s5s6s5. ♦

We will need the following property of reduced words:

Lemma 5.3 ([7, Corollary 1.4.6(ii)]). Let w ∈ W and 1 ≤ i ≤ n − 1. If �(wsi) < �(w), 
then w has a reduced word which ends in si.

We define parabolic subgroups and quotients of W .

Definition 5.4 ([7, Section 2.4]). Given J ⊆ [n − 1], let WJ := 〈sj : j ∈ J〉 be the 
subgroup of W generated by the simple transpositions indexed by J , called a parabolic 
subgroup. Equivalently, WJ consists of the elements of W which setwise fix the intervals 
[1, k1], [k1 + 1, k2], . . . , [kl + 1, n], where [n − 1] \ J = {k1 < · · · < kl}.

Let W J denote the set of minimal-length coset representatives of the parabolic quo-
tient W/WJ . Explicitly, we have

W J = {w ∈ Sn : w(j) < w(j + 1) for all j ∈ J}.

Each w ∈ W has a unique factorization w = wJwJ such that wJ ∈ W J and wJ ∈
WJ ; this factorization is length-additive. In particular, wJ is the minimal-length coset 
representative of w modulo WJ .

Example 5.5. Let w := 5214763 ∈ W = S7, as in Example 5.2, and let J := {1, 2, 4, 6}. 
Then wJ = 1254736 = s3s4s3s6s5 and wJ = 3214576 = s1s2s1s6. ♦

We will need the following property of the parabolic factorization:
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Lemma 5.6 ([7, Proposition 2.5.1]). Let J ⊆ [n −1], and let v ≤ w in W . Then vJ ≤ wJ .

We now recall the Demazure product and downwards Demazure product, appearing in 
work of He [26, Lemma 3.3] and He and Lu [29, Appendix A]. We refer to [28, Section 2.1]
for further discussion and references.

Definition 5.7 ([27, Section 1.3]). There exist binary operations ∗ and � on W defined 
by

v ∗ w := max{vx : x ≤ w} and v � w := min{vx : x ≤ w}

for all v, w ∈ W . Equivalently,

v ∗ (si1 · · · sil
) = (· · · (v ∗ si1) ∗ · · · ) ∗ sil

and v � (si1 · · · sil
) = (· · · (v � si1) � · · · ) � sil

for all v ∈ W and reduced words si1 · · · sil
∈ W , where

v ∗ si =
{

vsi, if �(vsi) > �(v);
v, if �(vsi) < �(v)

and v � si =
{

v, if �(vsi) > �(v);
vsi, if �(vsi) < �(v)

for all 1 ≤ i ≤ n − 1. We call ∗ the Demazure product and � the downwards Demazure 
product.1

Example 5.8. We have s1s2s3 ∗ s2s3s2 = s1s2s3s2 and s1s2s3 � s2s3s2 = s1. ♦

We will need the following property of the Demazure and downwards Demazure prod-
ucts:

Lemma 5.9 ([27, Corollary 1 and Lemma 2]). Let v ≤ w in W . Then for all x ∈ W , we 
have v ∗ x ≤ w ∗ x and v � x ≤ w � x.

5.2. Background on the cell and matroid decompositions

We recall the cell decomposition and matroid decomposition of Fl≥0
K;n, though we will 

mainly work with Theorem 5.15 and Theorem 5.16, rather than the definitions. We refer 
to [55, Sections 6–7] for further details.

Definition 5.10. Let n ∈ N, and let Bn(R) and B−
n (R) denote the subgroups of GLn(R)

of upper-triangular and lower-triangular matrices, respectively. For w ∈ W , let ẘ ∈
GLn(R) be any signed permutation matrix corresponding to w, i.e., ẘi,j = ±δi,w(j) for 

1 Our operation � is the ‘mirror image’ of He’s �. We also caution that the symbol � is used in [7] with a 
different meaning, namely, to denote a cover relation in the Bruhat order.



A.M. Bloch, S.N. Karp / Advances in Mathematics 414 (2023) 108855 17
1 ≤ i, j ≤ n. Given v, w ∈ W such that v ≤ w, we define the (totally nonnegative) 
Richardson cell

Cv,w := (B−
n (R) · v̊) ∩ (Bn(R) · ẘ) ∩ Fl≥0

n ,

which is the intersection inside Fl≥0
n of the opposite Schubert cell indexed by v and the 

Schubert cell indexed by w.
Now let J and K be complementary subsets of [n −1]. Given v ∈ W and w ∈ W J such 

that v ≤ w, we define the (totally nonnegative) projected Richardson cell CK
v,w ⊆ Fl≥0

K;n
to be the image of Cv,w ⊆ Fl≥0

n under the projection map (2.4). Rietsch [48,49] showed 
that CK

v,w is homeomorphic to an open ball of dimension �(w) − �(v). We have the cell 
decomposition

Fl≥0
K;n = �

v∈W, w∈W J ,
v≤w

CK
v,w,

where Fl>0
K;n is the unique cell of maximum dimension.

Remark 5.11. Our definition of the cell decomposition of Fl≥0
K;n is different from, but 

equivalent to, the definition of Rietsch [49, Section 6]. We refer to [28, Appendix] and 
[19, Remark 4.9] for further discussion.

Definition 5.12. Let K ⊆ [n − 1]. Given a tuple M = (Mk)k∈K , where Mk ⊆
([n]

k

)
for 

k ∈ K, we define

SM := {V ∈ Fl≥0
K;n : for all k ∈ K and I ∈

([n]
k

)
, we have ΔI(V ) �= 0 ⇔ I ∈ Mk}.

If SM is nonempty, we call it a (totally nonnegative) matroid stratum. The matroid 
decomposition (or Gelfand–Serganova decomposition) of Fl≥0

K;n is its decomposition into 
matroid strata; equivalently, it is the common refinement of the decompositions

Fl≥0
K;n = {V ∈ Fl≥0

K;n : ΔI(V ) �= 0} � {V ∈ Fl≥0
K;n : ΔI(V ) = 0}

for all Plücker coordinates ΔI .

Remark 5.13. There is a different, but equivalent, way to define Plücker positivity and the 
matroid decomposition for partial flag varieties FlK;n(R), using the generalized Plücker 
coordinates of Gelfand and Serganova [25], rather than the Plücker coordinates of Defini-
tion 2.1. Namely, let K = {k1 < · · · < kl} ⊆ [n −1]. Given a tuple I = (Ik1 , . . . , Ikl

) such 
that Ik1 ⊂ · · · ⊂ Ikl

and Ik ∈
([n]

k

)
for k ∈ K, define the generalized Plücker coordinate

ΔI := ΔIk
ΔIk

· · · ΔIk
.

1 2 l
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Then V ∈ FlK;n(R) is totally positive (respectively, totally nonnegative) if and only if 
all its generalized Plücker coordinates are positive (respectively, nonnegative). Also, the 
matroid decomposition of Fl≥0

K;n is the common refinement of the decompositions

Fl≥0
K;n = {V ∈ Fl≥0

K;n : ΔI(V ) �= 0} � {V ∈ Fl≥0
K;n : ΔI(V ) = 0}

for all generalized Plücker coordinates ΔI . These results follow from [25, Section 9.1] (cf. 
[10, Chapter 1]).

Remark 5.14. We use the name matroid decomposition because if SM is a matroid stra-
tum of Fl≥0

K;n, then each Mk is a (representable) matroid of rank k on the ground set 
[n] (in fact, Mk is a positroid [45,46]). Moreover, M itself is a (representable) Coxeter 
matroid; see [25, Section 9.1] and [10, Section 1.7].

We also recall two results which will be key to our arguments; we refer to Section 1
for further discussion.

Theorem 5.15 (Tsukerman and Williams [55, Theorem 7.1]). Let J and K be comple-
mentary subsets of [n −1], and let v ≤ w, where v ∈ W and w ∈ W J . Then the cell CK

v,w

of Fl≥0
K;n is contained in a single matroid stratum, which is uniquely determined by the 

interval [v, w] modulo WJ .

Note that Theorem 5.15 implies that the cell decomposition of Fl≥0
K;n is a refinement 

of its matroid decomposition.

Theorem 5.16 (Postnikov [45, Theorem 3.8], [50]). For 0 ≤ k ≤ n, the cell decomposition 
of Gr≥0

k,n coincides with the matroid decomposition.

Remark 5.17. While it will be sufficient for our purposes to work with the combinatorial 
statement of Theorem 5.15, we mention that it has the following geometric interpretation; 
see [55, Sections 6–7] for further details. The moment polytope of FlK;n(C) is a convex 
polytope in Rn whose vertices are indexed by W J , or equivalently, by generalized Plücker 
coordinates of FlK;n(C) (see Remark 5.13). The moment polytope of V ∈ FlK;n(C) is 
contained in the moment polytope of FlK;n(C), and its vertices correspond precisely to 
the generalized Plücker coordinates which are nonzero at V [25, Proposition 5.1]. On the 
other hand, the set W J also indexes the zero-dimensional cells of Fl≥0

K;n, i.e., the cells 
CK

x,x for x ∈ W J . If V ∈ CK
v,w, then the zero-dimensional cells in the closure of CK

v,w

are precisely CK
xJ ,xJ for x ∈ [v, w] [49, Theorem 6.1]. Theorem 5.15 can be rephrased as 

saying that the vertices of the moment polytope of V ∈ CK
v,w are indexed precisely by 

the zero-dimensional cells in the closure of CK
v,w. Implicit in this statement is the fact 

that the moment polytope of V is equal to the moment polytope of CK
v,w, even though 

the torus orbit of V may have dimension much less than that of CK
v,w. This moment 
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polytope is called a Bruhat interval polytope, denoted2 by QK
v,w. We will make a further 

comment about QK
v,w in Remark 5.24.

5.3. Proof of the forward direction

In this subsection, we give two proofs of the forward direction of Theorem 1.2. The 
first proof uses Theorem 1.1, while the second proof uses Theorem 5.15.

For the first proof, we will need the following result of Rietsch [47]; see [8, Corol-
lary 6.16] for a stronger result.

Lemma 5.18 (Rietsch [47, Lemma 5.2]). Let K ⊆ [n − 1]. Then FlΔ>0
K;n is connected.

Proof of the forward direction of Theorem 1.2. We prove the contrapositive. Suppose 
that K does not consist of consecutive integers, so that by the implication (i) ⇒ (iii) of 
Theorem 1.1, Fl>0

K;n is strictly contained in FlΔ>0
K;n . By Lemma 5.18, Fl>0

K;n is not closed 
in FlΔ>0

K;n . Hence there exists a point V ∈ (Fl≥0
K;n \ Fl>0

K;n) ∩ FlΔ>0
K;n . Then V and the cell 

Fl>0
K;n of Fl≥0

K;n are contained in the same matroid stratum, namely, the one where all 
Plücker coordinates are nonzero. �

We now proceed to the second proof of the forward direction of Theorem 1.2. It is 
based on the following lemma, which generalizes an example of Tsukerman and Williams 
[55, Remark 7.3].

Lemma 5.19. Let J := [2, n − 2] and K := {1, n − 1}, and let w := (1 n) ∈ W J . Then 
for all j ∈ J , the intervals [e, w] and [sj , w] are equal modulo WJ .

Proof. Consider the reduced word

w := s1s2 · · · sn−2sn−1sn−2 · · · s2s1

for w. In particular, we see that for j ∈ J , we indeed have sj ≤ w. Note that [sj , w] ⊆
[e, w]. Conversely, we must show that given x ∈ [e, w], there exists y ∈ [sj , w] such that 
x and y are equal modulo WJ . Take a subword x of w which is a reduced word for x. We 
will construct a reduced subword y of w which contains sj , and such that the associated 
permutation y is equal to x modulo WJ .

If x contains sj , we set y := x. Now suppose that x does not contain sj . Note that 
w contains two occurrences of sj−1. Since x does not contain sj , it does not contain 
both occurrences of sj−1, since otherwise we could use moves (M1) to obtain s2

j−1, 
contradicting the fact that x is reduced. Similarly, if x contains the second occurrence 
of sj−1 in w, we may replace it with the first occurrence of sj−1. Now let y be obtained 

2 We caution that [55] uses the superscript J, rather than K.
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from x by including the second occurrence of sj in w. Since y does not contain the second 
occurrence of sj−1 in w, we can use (M1) to move sj to the end of y. That is, y = xsj . 
This implies that y is reduced; otherwise, by Lemma 5.3, x would have a reduced word 
ending in sj , whereas x (and hence every reduced word for x) does not contain sj. Since 
sj ∈ WJ , we see that y equals x modulo WJ . �
Proof of the forward direction of Theorem 1.2. We prove the contrapositive. Suppose 
that K does not consist of consecutive integers, so that there exist consecutive ele-
ments k < l of K with l − k ≥ 2. Let w := (k l) ∈ W J . Then by Lemma 5.19, for 
all j ∈ [k + 1, l − 1], the intervals [e, w] and [sj , w] are equal modulo WJ . Hence by 
Theorem 5.15, the cells CK

e,w and CK
sj ,w of Fl≥0

K;n are contained in the same matroid 
stratum. �
5.4. Proof of the reverse direction

In this subsection, we prove the reverse direction of Theorem 1.2. We first establish 
two preliminary results, which will allow us to reduce the proof to Theorem 5.16.

Lemma 5.20. Let v ≤ w in W , and let J ⊆ [n − 1]. Set v′ := v � w−1
J ∈ W and 

w′ := wJ ∈ W J . Then v′ ≤ w′, and the intervals [v, w] and [v′, w′] are equal modulo WJ .

Proof. Note that since the factorization w = wJwJ is length-additive, we have w =
w′ ∗ wJ and w′ = w � w−1

J . In particular, v′ ≤ w′ by Lemma 5.9.
First we show that given x′ ∈ [v′, w′], there exists x ∈ [v, w] such that x and x′ are 

equal modulo WJ . We set x := x′ ∗ wJ . Since wJ ∈ WJ , we see that x equals x′ modulo 
WJ . Also, by Lemma 5.9, we have

v ≤ v′ ∗ wJ ≤ x′ ∗ wJ ≤ w′ ∗ wJ = w,

so x ∈ [v, w].
Conversely, we show that given x ∈ [v, w], there exists x′ ∈ [v′, w′] such that x and x′

are equal modulo WJ . We set x′ := x � w−1
J . Since w−1

J ∈ WJ , we see that x′ equals x
modulo WJ . Also, x′ ∈ [v′, w′] by Lemma 5.9. �
Example 5.21. As in Example 5.5, we let w := s1s3s4s3s2s1s5s6s5 and J := {1, 2, 4, 6}. 
Take v := s1s4s3s2s1s5, so that v ≤ w. We set

v′ := v � w−1
J = s1s4s3s2s1s5 � s6s1s2s1 = s4s3s5

and w′ := wJ = s3s4s3s6s5. Then Lemma 5.20 asserts that the intervals [v, w] and [v′, w′]
are equal modulo WJ . Indeed, we can verify that both intervals modulo WJ are equal to

{s4s3s5, s3s4s3s5, s4s3s6s5, s3s4s3s6s5},

where above, we represent equivalence classes by elements of W J . ♦
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Lemma 5.22. Let J and K be complementary subsets of [n −1], and let v1, v2 ≤ w, where 
v1, v2 ∈ W and w ∈ W J . Suppose that the intervals [v1, w] and [v2, w] are equal modulo 
WJ . Then v1(i) = v2(i) for all i ≤ min(K) and all i ≥ max(K) + 1.

Proof. We prove the statement for i ≤ min(K); the statement for i ≥ max(K) +1 follows 
by symmetry. Set k := min(K) and J ′ := [n − 1] \ {k}, and note that J ⊆ J ′. As in 
Lemma 5.20, we define v′

1 := v1 �w−1
J ′ , v′

2 := v2 �w−1
J ′ , and w′ := wJ ′ , so that the intervals 

[v1, w], [v2, w], [v′
1, w′], and [v′

2, w′] are all equal modulo WJ ′ . By Theorem 5.16 (using 
Theorem 5.15), we obtain v′

1 = v′
2. Now since w ∈ W J , we have w(1) < · · · < w(k), so wJ ′

is contained in the parabolic subgroup W[k+1,n−1]. Hence v1(i) = v′
1(i) = v′

2(i) = v2(i)
for all i ≤ k. �
Proof of the reverse direction of Theorem 1.2. Suppose that K = [k, l]. Let v1 ≤ w1

and v2 ≤ w2, where v1, v2 ∈ W and w1, w2 ∈ W J . By Theorem 5.15, it suffices to show 
that if the intervals [v1, w1] and [v2, w2] are equal modulo WJ , then v1 = v2 and w1 = w2. 
To this end, we regard [v1, w1] and [v2, w2] modulo WJ as a subset of W J ; by Lemma 5.6, 
this subset has minimum vJ

1 = vJ
2 and maximum w1 = w2. In particular, v1(i) = v2(i)

for all i ∈ [k + 1, l]. Therefore it remains to show that v1(i) = v2(i) for all i ≤ k and all 
i ≥ l + 1. This follows from Lemma 5.22. �
Example 5.23. We show how the argument above can fail when K is not an interval of 
integers. Take n := 4, J := {2}, K := {1, 3}, and

v1 := 1234 = e, v2 := 1324 = s2, w := 4231 = s1s2s3s2s1.

By Lemma 5.19 and Theorem 5.15, CK
v1,w and CK

v2,w are contained in the same matroid 
stratum. In agreement with Lemma 5.22, we have v1(i) = v2(i) for all i ≤ 1 and all i ≥ 4. 
Also, we have vJ

1 = vJ
2 = e, but this does not imply that v1 = v2. ♦

Remark 5.24. Recall the Bruhat interval polytopes QK
v,w discussed in Remark 5.17. It 

follows from the theory of Coxeter matroids (namely, [10, Corollary 1.13.5]), along with 
a result of Tsukerman and Williams [55, Corollary 7.14] (cf. [10, Preface], [11, Theo-
rem 6.3]), that every Bruhat interval polytope for FlK;n(R) can be expressed as the 
Minkowski sum over k ∈ K of a Bruhat interval polytope for Grk,n(R). Lemma 5.20
allows us to write this Minkowski sum explicitly. Namely, for v ≤ w with v ∈ W and 
w ∈ W J , we have

QK
v,w =

∑
k∈K

Q{k}
v � w−1

[n−1]\{k}, w[n−1]\{k} . (5.1)

We point out that the Bruhat interval polytopes for Grk,n(R) are known as positroid 
polytopes [1]; see [55, Proposition 2.8] for how to formulate (5.1) in terms of positroids.



22 A.M. Bloch, S.N. Karp / Advances in Mathematics 414 (2023) 108855
As an illustration of (5.1), we adopt the setup of Example 5.23, with v = v1. Then 
(5.1) gives

Q{1,3}
e,s1s2s3s2s1

= Q{1}
e � (s2s3)−1,s3s2s1

+ Q{3}
e � (s2s1)−1,s1s2s3

,

or equivalently,

Q{1,3}
1234,4231 = Q{1}

1234,4123 + Q{3}
1234,2341.

Note that if we had instead taken v = v2, we would have obtained the same Minkowski 
sum decomposition for Q{1,3}

1324,4231. Indeed, Lemma 5.19 implies that Q{1,3}
1234,4231 =

Q{1,3}
1324,4231.
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