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Abstract—TIn this work, we investigate a general federated multi-
task learning (FMTL) problem where each task may be performed
at multiple clients, and each client may perform multiple
tasks. Although the tasks share some common representation
(i.e., feature-map) that can help to learn, the distribution of
the features in the feature space may vary across different
tasks at different clients, which poses a significant challenge
to FMTL. While non-independent and identically distributed
(non-IID) local datasets at different clients are often considered
detrimental to model convergence in federated learning (FL), such
statistical heterogeneity in feature space may be beneficial to the
generalization performance. In this work, we establish the impact
of statistical feature heterogeneity on generalization, through
the lens of a multi-task linear regression model. In order to
leverage the feature distribution heterogeneity, we propose a novel
augmented dataset based approach, and prove that under certain
conditions, FMTL on heterogeneous datasets can outperform
the homogeneous counterpart in terms of the generalization
performance. The theoretical analysis further leads to a simple
client weighting method based on optimizing the excess risk upper
bound. Experimental results demonstrate that the generalization
performance can be improved on a real-world dataset with the
proposed method.

I. INTRODUCTION

Federated learning (FL) [1] is a novel distributed machine
learning (ML) paradigm where a massive number of clients
are orchestrated to train a global ML model collaboratively
while keeping all the training data on local devices [2].
Among the most important characteristics of FL is the non-
independent and identically distributed (non-1ID) local datasets.
While the majority of the existing literature focuses on the
convergence [3]-[5] and communication [6] implications of
such distributional heterogeneity, only a few works investigate
its impact on the generalization performance of FL [7], [8].
In [7], the authors propose a new agnostic federated learning
framework where the objective is to obtain a global model that
minimizes the maximum loss on any target distribution formed
by a mixture of the client distributions. The generalization
performance is characterized by a data-dependent Rademacher
complexity. In [9], it assumes that clients are drawn from a meta-
distribution, with their data drawn from local data distributions.
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Thus the generalization performance depends on both unseen
client data and unseen client distributions. However, the explicit
relationship between data distribution and generalization is not
explicitly characterized.

In this work, we make an initial effort to investigate the
impact of data distributional heterogeneity on the generalization
of FL. In stark contrast to the conventional belief that data
heterogeneity would compromise the performance of FL, we
are able to show that the heterogeneity in feature space can
be utilized to improve the generalization instead. Toward this
end, we focus on a novel federated multi-task learning (FMTL)
model. Specifically, in our setting, we assume that each client
may perform multiple regression tasks, and each task may
be performed by multiple clients. While data collected under
different tasks share a common representation (i.e., feature-
map) [10]-[14], the corresponding linear regression model
varies across tasks. This naturally induces inter-task data
distribution heterogeneity. Meanwhile, the total number of
samples collected under a single task varies among clients,
and different clients could collect data for a single task from
different distributions, leading to the infra-task heterogeneity.
Our objective is to theoretically characterize how these two
different types of heterogeneity influence the excess risk, and
how to adjust the model aggregation weights for each client
in order to improve the generalization performance.

We note that the shared representation among tasks is a
common assumption in multi-task learning [10]-[14] and per-
sonalized FL [15]-[23], where task/domain-specific predictors
are used on top of the common representation function to
model the input-output relations under different tasks/domains.
While the focus of those works is to learn the shared
representation and the personalized predictor heads, in this
work, we focus on the impact of inter-task and intra-task feature
distribution heterogeneity on the FL generalization performance.
Therefore, we begin with a known common representation, and
explicitly analyze how the feature heterogeneity influences the
corresponding excess risk upper bound.

Our main contributions are three-fold:

o First, we introduce a general FMTL model where multiple
clients collaboratively perform multiple learning tasks through
the coordination of a parameter server. Although the data
samples for different tasks share a common representation, the
distributions of features in the feature space vary across tasks
and clients, leading to inter-task and intra-task heterogeneity,



respectively.

e Second, in order to leverage such feature distribution
heterogeneity, we propose a novel augmented dataset-based
approach to solving the federated multi-task linear regression
problem. Such augmented datasets essentially increase the
effective sample size for each task, and potentially improve
the generalization performance of the trained model. We
then explicitly characterize the generalization performance of
the trained model and provide distribution-dependent excess
risk upper bounds. Our results indicate that under certain
assumptions, the excess risk bound is improved compared
with a centralized single-task linear regression problem with
the same total amount of IID samples, and the acceleration can
be up to O(1/m), where m is the number of tasks performed
at each client.

e Third, based on an explicit excess risk upper bound, we
propose a distribution-free weight assignment method for
model aggregation. We then extend the weight assignment
method derived from the linear regression model to more
general regression models and validate the effectiveness of this
approach through experiments on the standard CIFAR-10 and
CIFAR-100 datasets [24]. Our experimental results indicate
that the global model trained from our algorithm outperforms
other global models trained from classic FL algorithms for
about ~ 10% on CIFAR-10 and ~ 7% on CIFAR-100.

Notations. Throughout this paper, bold capital letters (e.g., X)
denote matrices, and calligraphic capital letters (e.g., C) denote
sets. We use tr(X) to denote the trace of matrix X, oyin(X)
and oyax(X) to denote the minimum and maximum singular
value of X separately. We use diag(z1, - ,24) to denote a
d-dimension diagonal matrix with diagonal entries x1,- - - , zq,
and |C| denotes the cardinality of set C. We use (z,y) to denote
the inner product of z and y, use ||z|| to denote the Euclidean
norm of vector z, and use ||z||3 to denote 7 Az. For matrix
X, ||IX]|| denotes omax(X). For N € N, [N] denotes the set
{1,--- ,N}. We use x ~ Px to denote that = is randomly
drawn according to distribution Px.

II. PROBLEM FORMULATION

We consider a general FMTL system consisting of IV clients,
indexed by i € [N], and one central server. We assume there
are M different prediction tasks in the system, and each client
1 may perform m; < M of them. For simplicity, we assume
m,; = m for any client 7 in this work. We use C; C [M] to
denote the subset of tasks performed at client . Besides, we
also assume that the same task ¢ may be performed at different
clients. We use Z¢ = {i : ¢ € C;} to denote the set of clients
that perform task c.

Let Df be the collection of training samples for task ¢ € C;
at client 4, and n¢ := |D¢|. Then, in total, there are n; =
Zceci, n{ training samples at client ¢, and there are n°® =
Zi]\il n{ total samples for task ¢ from all clients. Let n =
>_ie(n) M- Let (x,y) be a training pair in Df. Then, (z,y) ~
P x Py . where Pf y is the local data distribution for client
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Fig. 1. A toy example of a N = 3, M = 3 and m = 2 model.
Each individual client’s dataset contains images of 2 kinds of digits,
drawn from MNIST [25], DIDA [26], and SVHN [27] separately. The
solid ellipses with filled colors refer to each task’s feature distribution
of each client, and the red dashed ellipses represent the agnostic
ground-truth feature distribution of each task.

Y conditioning on data X under task c. We note that P, Y‘ x
depends on task c only, and is homogeneous across the clients.

We assume there exists a common representation ¢ that
maps each raw feature vector x to a feature space. Such a
feature map is shared across all tasks. Let z = ¢(z). Then, the
distribution of x induces the distribution of z in the feature
space. Let the corresponding feature distribution induced by
Pix as Qf 5.

We note that the heterogeneous data distribution introduces
two types of heterogeneity in the feature space. First, as P/
varies across tasks c, the corresponding Q¥ , is different among
tasks, which we term as inter-task heterogeneity. Second, even
for the same task ¢, Pfy, as well as ()] i, may vary across
clients %, owing to dlfferent data sources of the clients. This
leads to so-called intra-task distributional heterogeneity in the
feature space. We illustrate these two types of heterogeneity
in Figure 1.

FMTL Formulation. Once data is embedded in the same
feature subspace through ¢, we can deploy a federated multi-
task learning methodology for training from this representation
space. We focus on an empirical risk minimization formulation,
where the objective function is defined as
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where [{ is the weight assigned to client ¢ for task c, f,, is a
task-specific predictor parameterized by w,. that maps feature
vector to the label space, o stands for functional composition,
and £(-,-) is a loss function that measures the error between
the true label y and the predicted label f,,. o ¢(z).

Excess Risk. In order to measure the generalization perfor-
mance of the trained model, we define the population risk for
any given ¢ as follows:
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where af is an agnostic weight assigned for task c, and P§
is the population distribution of the raw features under task c,
which may be different from PZC x> Vi, in general.

Let {w}} be the minimizer of the population risk function
in (2), and {w,} be the minimizer of (1). Then, the excess risk
is defined as L({w.}) — L({w?}). While characterizing the
excess risk for a general learning problem seems intractable, in
the following, we focus on multi-task linear regression, which
enables us to explicitly bound the corresponding excess risk
in a closed form.

III. MULTI-TASK LINEAR REGRESSION

We consider the following linear regression model. For raw
feature x € R under task ¢, we assume its true label y is
generated according to y = 7 Bw? + ¢, where B € R¥¥ is
the feature map and w? € R” is a task-specific linear head.
Then, z = BT x.

Let X¢ be a d x n{ matrix whose columns are the raw
feature vectors of the data samples included in D, and Y;° be
the corresponding vector of labels. We denote Zf = BTXf.

We consider the quadratic loss /(w,z;y) = (w'z — y)2.
Then, the empirical and population risks can be written as
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respectively, where Q% is the distribution of feature vectors
induced by P%, and Pg is the noise distribution.

Assumptions.
Assumption 1: € is 02 sub-gaussian, i.e., E[e]

E [exp(Ae)] < ) for all A € R.

Assumption 2 ([28]). Let z ~ Qf}z. Then, for any i € [N]
and ¢ € C;, z is a sub-gaussian random vector with sub-gaussian
norm K, i.e., for all a € R¥, (z,a) is a sub-gaussian random
variable and for any b € S¥~! where S¥~1 is the unit sphere
defined in R¥, (2, b) is a sub-gaussian random variable with
sub-gaussian norm K.

In Assumption 2, we follow the definition of sub-gaussian
random variables in Lemma 5.5 of [28]. Note that this sub-
gaussian definition implies that z is not necessarily a centered
random vector. Both Assumptions 1 and 2 are standard in the
literature. Next, we present the following feature heterogeneity
conditions.

Assumption 3: Let z ~ Qf ;. Then, A := E[zz7] is
invertible for any i € [N] and ¢ € C,;. Besides, Z$(Z$)T
is invertible almost surely.

Assumption 3 indicates that the energy of z spans all
directions of the feature space, while n§ > k will ensure
that Z$(Z$)T is almost surely invertible.

Assumption 4: There exists A > 0 such that for z ~ Qf,lz’

2
¢ # ¢, we have EL(ZTUJZ‘) < A.
When A is small, Assumption 4 indicates that the feature
vector for task ¢’ is “near-orthogonal” to the predictor head

We make the following assumptions.
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Fig. 2. Feature vectors associated with three tasks. w7, w3, and w3
are the corresponding linear heads.

w? associated with task c. Intuitively, for z ~ Qf 4. in order
to capture its variation and provide an accurate prediction for
the corresponding y, the corresponding task-specific predictor
w; should be well aligned with it, i.e., E{(szj)QT should
be relatively large. Assumption 4 thus implies a heterogeneous
scenario where the distributions of feature vectors from different
tasks are well separated in the feature space, where A measures
the level of feature heterogeneity. We illustrate such feature
heterogeneity in Figure 2.

Augmented Datasets. In order to leverage the feature
heterogeneity captured by Assumption 4, we propose a novel
augmented dataset-based approach. Specifically, for every data
sample (z,y) € D¢, we add another sample (z,0) to D¢ for
every ¢’ # ¢, ¢ € [M]. We denote the augmented dataset with
the added samples as D¢. Then, |D§| = n; for any ¢ € [M].
Let X¢ € R, Ve € R”l Z¢ € R¥*7 be the corresponding
raw feature matrix, label vector, and feature matrix defined on
the augmented dataset 751-0 respectively. Then, the new empirical
risk function can be expressed as
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where 3; = n; /m. Let {w.} be the minimizer of (5). Then, the
excess risk can be expressed as

L{e}) — L{{we}) = (6)
ce[M)]
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where A°:=E,_ g [227].

Note that the empirical risk optimization in (5) can be
decomposed into the summation of M independent sub-
problems, one associated with each task c. Thus, to evaluate

the excess risk in (6), it is equivalent to assessing[[@, — w|| %«
for each ¢ € [M], where 1, is the minimizer of
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IV. EXCESS RISK UPPER BOUND

In this section, we analyze the FMTL generalization perfor-
mance in terms of the excess risk upper bound for the linear
regression model under different heterogeneity assumptions.



A. Both inter- and intra-task heterogeneity

We first consider the general case that (), may vary
for different client ¢ and different ¢, and the sizes of local
datasets are not necessarily equal, i.e., n; # n; in general. To
further capture the feature heterogeneity in FMTL, we define
Af} = Ziezc BiA§, Agc = ZiG[N] By Ec/eci\c A, where
we recall that Af = E..q: [22T]. We further denote

1
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In the above definitions, Ag is a linear combination of A¢ for
i € I and a smaller ||[I';| indicates that the A§ has better
“coveragence” to A° in the feature space. Similar 1nterpretat10ns
hold for I';.

We state our main theoretical results below and omit all
detailed proofs due to space limitation.

Theorem I: Define 6. = % and 5é,k = 10?\/@
for some absolute constants b, and b3, and define ag =

= ()3 (A5) 3,

max;ec(n] ff / ﬁAz Suppose that Assumptions 1-4 hold and n¢,
n are sufficiently large such that d. 4, < 1/2 and 4.,
Then, for some absolute constant b, with probabilit}’l at least
1 — 3¢ 100k we have

char
[w — ][5 <2<Cbld*A +— ) (L+O(0er +004))
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Remark 1: Note that L is the high-probability excess risk
bound for k-dimensional linear regression with n IID samples

and centered o2 sub-gaussian noise, which scales in (’)(%)

The variance term in (8) scales in O(—-), leading to an

O(=) acceleration compared with the centralized IID setting.

Meanwhile, the bias term contains a constant term C’b““A
that does not diminish as n increases. This trade-off between
variance and bias is due to the utilization of the augmented
datasets. When A is sufficiently small, heterogeneous feature
distributions can indeed help improve generalization.
Remark 2: To further gain some insight into the impact
of weight assignment on thls result let us cons1der the case

that m >>1 Then C 1|| HI‘ | , while
C"’elr H Although 1t is desirable to have
||1" H | H 1"C -1 H all as small as possible so that

the excess rrsk bound can be reduced, we note that adjusting
the assigned weight would affect them in a coupled fashion,
leading to different bias-variance trade-offs.

B. Only inter-task heterogeneity

We next consider a slightly more restrictive case where only
inter-task heterogeneity is considered. Specifically, we assume
that for any task c, there exists a common distribution )¢ such
that Qf , = Q% for any client i. We note that in general Q%

<1/2.

may not be equal to Q5. Besides, we also assume that all
clients have the same amount of samples in their local datasets,

i.e., n; =ny, Vi # j. Define
Ay >—5
C 7

= (A€ %(
( ) m ZiEIC B 7
=E. q¢ [22T]. Note that for a special
case that Q% is a weighted combination of local feature
distributions Q5 ; for ¢ € Z¢, in the inter-task heterogeneity
only case, the matrix I'¢ is a k-dimensional identity matrix.
Compared with the definitions of 1:‘,% and I‘% in Section IV-A,
¢ cannot be controlled via {B¢} since intra-task heterogeneity
no longer exists.
Before presenting the theoretical result, we introduce an
additional assumption as follows.
Assumption 5: For any z ~ Qf:z, ¢ # ¢, random variable
2Tw? is centered, i.e., ]E[szZ‘] =0.
Corollary 1: Suppose that Assumptions 1-5 hold. Then, for
the inter-task heterogeneity only case, with probability at least
1 —3e 19 and §,; and o ), defined in Theorem 1, we have

= (A2 (A%,

where we denote A¢ =

.
s — 2, <20 250
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Remark 3: Comparing with Theorem 1 where the bias term
is a constant QCE‘fA, in Corollary 1 we show that with

~yvar
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Assumptlon 5, the bias term becomes J‘;”

as (9( ). Essentially, with Assumption 5, the estimation
error caused by the augmented dataset can be treated as a
A-sub-gaussian noise. If A < 1, it implies that the added
samples are more accurate ‘to predict the task head w} than
the original samples in (x,y) € Df.

Next, we investigate the excess risk under the model trained
with the original datasets, and compare it with that using the
augmented datasets. We have the following result.

Theorem 2: Suppose that Assumptions 1-4 hold. Let {w.}
be the minimizer for (3). Then, with probability at least 1 —
2¢7100% the excess risk can be upper bounded as

and scales

~C

2 as
w:”[\‘ S Z I 50
i€Zc M

2k3/2

. - P (1 +06en). )
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where L¢ = 2%«

Remark 4: Comparing Theorem 2 with Corollary 1, we
see that using the augmented dataset Dj for FMTL leads to

Aébias
% . 717/)’ as

~c fwc 2 .
opposed to O<a§_6l n1> when Dy is used. Hence, as

an excess risk upper bound that scales as (’)(
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that n > n° for any c), using Dy for linear regression helps

improve the generalization performance.

long as . % (e.g., with large M such
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V. EXCESS RISK-AWARE WEIGHT ASSIGNMENT

Corollary 1 indicates that the bias term would dominate
the excess risk when m > 1. Also note that C’gﬁaj <

amax

C v 5
amin (AY°) Sieze B
Thus, to reduce the excess risk, for any task ¢, we can choose

{5} by solving the following optimization problem:

, where C' is a constant not related to {3 }.

C

a
min A
{Bf}ie[N] Omin (Agc) ZiGIC ﬁzc

N (10)
st Y BF=1; B >0,Vie[N].

i=1

Note that problem (10) is generally non-convex and A[\f may
be difficult to estimate in practice. As a first step, we consider
a special case where m = 1, n; = n/N for all clients, and
there exists a constant b3 such that |(Ae)7H] < by almost
surely for any c.

Now we consider to assign weights for task c; at all clients,
ie., {8;" }icin). We can show that

- a$}
< __ B
Rl v

< bybabs

~bias

\e1y—1
B,c1 || (Aﬁ 1) H
ag'
Ciezer B Cigzen B
where the last inequality holds since . ., ;' < 1.
Based on the definition of ag, we can show that the right
hand side of (11) can be minimized by setting

(1)

et if i € 7% and |22 < §
50 = sy HIETO ad < a2
e if |Z] > 5.

With the weight selection method in (12), we can modify
the well-known FedAvg algorithm [1] for improved general-
ization performance for multi-task FL.. Moreover, if a good
representation ¢ is not known beforehand, we develop a two-
phased FedAvg+FMTL algorithm that learns the common
representation using FedAvg across all tasks in the first phase
(e.g., the first T3 communication rounds), and then trains the
class-specific layers based on the learned representation layers
in the second phase (e.g., the remaining 7"— 7} communication
rounds). The complete FedAvg+FMTL algorithm is omitted
due to space limitation.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of FMTL using
real-world datasets CIFAR-10 and CIFAR-100. For CIFAR-
10, we consider three (N, m) pairs: (100,2), (100,5), and
(1000, 2). We train a convolutional neural network (CNN) with
two convolution layers, two fully connected layers with ReLU

activation, and a final fully connected layer with a softmax
activation function. For the final 64 x 10 layer, we set its c-th
column as a task-specific head w,. for task c. For CIFAR-100,
we use the following three (NN, m) pairs: (100,5), (100, 10),
and (100, 20). In this case, we train a CNN model with two
convolution layers followed by three fully connected layers with
ReLU activation, and the last fully connected layer is followed
by a softmax activation function. Additionally, a dropout layer
is incorporated between the two convolutional layers. In this
case, we set its c-th column of the final 128 x 100 layer as a
task-specific head w, for task c.

We run the proposed FedAvg+FMTL algorithm with the
weight assignment in (12) for 110 epochs with 77 = 100. For
comparison, we also run the vanilla FedAvg with 110 epochs,
and for FedAvg+EW we run FedAvg for 100 epochs and
only train the output layer for 10 epochs with the empirical
weights 3; = % For FedProx [29], three experiments are
conducted: (1) FedProx+FMTL simply changes the algorithm
for training the representation layer in FedAvg+FMTL from
FedAvg to FedProx, and we run FedProx+FMTL for 110
epochs with weights given in (12). (2) As for FedProx+EW,
we train FedProx for 100 epochs and then only train on the
output layer for another 10 epochs with empirical weights. (3)
As a baseline of comparison, we also train FedProx for 100
epochs. The results are summarized in Table I. We can see
that FedAvg/Fedprox+FMTL has the best test accuracy on
CIFAR-10 and CIFAR-100 among all the methods.

TABLE I
AVERAGE TEST ACCURACY ON CIFAR-10 AND CIFAR-100

(# clients x # tasks/client) 100x 2 100 x 5 1000x 2
FedAvg 40.417 51.940 39.856
FedAvg+FMTL 45.163 54.449 43.127
FedAvg+EW 41.112 51.215 39.084
CIFAR-10 FedProx 40788 52904  34.020
FedProx+FMTL 45.965 54.322 34.730
FedProx+EW 41.475 50.934 33.510

(# clients x # tasks/client) 100x 5 100 x 10  100x 20
FedAvg 22.397 25.110 30.017
FedAvg+FMTL 25.934 28.362 32.564
FedAvg+EW 22.250 25.804 30.347
CIFAR-100 FedProx 21285 24758 29.486
FedProx+FMTL 24.742 26.602 30.260
FedProx+EW 20.318 23.860 28.368

VII. CONCLUSIONS

In this work, we studied the impact of feature heterogeneity
on the generalization performance of FMTL. We analyzed
the excess risk upper bound for a federated multi-task lin-
ear regression problem. Under certain feature heterogeneity
assumptions, we proposed a new augmented dataset based
approach, and proved that the excess risk bound can be
improved by a factor up to O(1/m) compared with that under
a centralized homogeneous setting, where m is the number of
tasks performed at each client. A simple weight assignment
method based on minimizing the excess risk upper bound
was then proposed, whose effectiveness was validated through
numerical experiments.
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