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Abstract—In this work, we investigate a general federated multi-
task learning (FMTL) problem where each task may be performed
at multiple clients, and each client may perform multiple
tasks. Although the tasks share some common representation
(i.e., feature-map) that can help to learn, the distribution of
the features in the feature space may vary across different
tasks at different clients, which poses a significant challenge
to FMTL. While non-independent and identically distributed
(non-IID) local datasets at different clients are often considered
detrimental to model convergence in federated learning (FL), such
statistical heterogeneity in feature space may be beneficial to the
generalization performance. In this work, we establish the impact
of statistical feature heterogeneity on generalization, through
the lens of a multi-task linear regression model. In order to
leverage the feature distribution heterogeneity, we propose a novel
augmented dataset based approach, and prove that under certain
conditions, FMTL on heterogeneous datasets can outperform
the homogeneous counterpart in terms of the generalization
performance. The theoretical analysis further leads to a simple
client weighting method based on optimizing the excess risk upper
bound. Experimental results demonstrate that the generalization
performance can be improved on a real-world dataset with the
proposed method.

I. INTRODUCTION

Federated learning (FL) [1] is a novel distributed machine

learning (ML) paradigm where a massive number of clients

are orchestrated to train a global ML model collaboratively

while keeping all the training data on local devices [2].

Among the most important characteristics of FL is the non-

independent and identically distributed (non-IID) local datasets.

While the majority of the existing literature focuses on the

convergence [3]–[5] and communication [6] implications of

such distributional heterogeneity, only a few works investigate

its impact on the generalization performance of FL [7], [8].

In [7], the authors propose a new agnostic federated learning

framework where the objective is to obtain a global model that

minimizes the maximum loss on any target distribution formed

by a mixture of the client distributions. The generalization

performance is characterized by a data-dependent Rademacher

complexity. In [9], it assumes that clients are drawn from a meta-

distribution, with their data drawn from local data distributions.
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Thus the generalization performance depends on both unseen

client data and unseen client distributions. However, the explicit

relationship between data distribution and generalization is not

explicitly characterized.

In this work, we make an initial effort to investigate the

impact of data distributional heterogeneity on the generalization

of FL. In stark contrast to the conventional belief that data

heterogeneity would compromise the performance of FL, we

are able to show that the heterogeneity in feature space can

be utilized to improve the generalization instead. Toward this

end, we focus on a novel federated multi-task learning (FMTL)

model. Specifically, in our setting, we assume that each client

may perform multiple regression tasks, and each task may

be performed by multiple clients. While data collected under

different tasks share a common representation (i.e., feature-

map) [10]–[14], the corresponding linear regression model

varies across tasks. This naturally induces inter-task data

distribution heterogeneity. Meanwhile, the total number of

samples collected under a single task varies among clients,

and different clients could collect data for a single task from

different distributions, leading to the intra-task heterogeneity.

Our objective is to theoretically characterize how these two

different types of heterogeneity influence the excess risk, and

how to adjust the model aggregation weights for each client

in order to improve the generalization performance.

We note that the shared representation among tasks is a

common assumption in multi-task learning [10]–[14] and per-

sonalized FL [15]–[23], where task/domain-specific predictors

are used on top of the common representation function to

model the input-output relations under different tasks/domains.

While the focus of those works is to learn the shared

representation and the personalized predictor heads, in this

work, we focus on the impact of inter-task and intra-task feature

distribution heterogeneity on the FL generalization performance.

Therefore, we begin with a known common representation, and

explicitly analyze how the feature heterogeneity influences the

corresponding excess risk upper bound.

Our main contributions are three-fold:

• First, we introduce a general FMTL model where multiple

clients collaboratively perform multiple learning tasks through

the coordination of a parameter server. Although the data

samples for different tasks share a common representation, the

distributions of features in the feature space vary across tasks

and clients, leading to inter-task and intra-task heterogeneity,



respectively.

• Second, in order to leverage such feature distribution

heterogeneity, we propose a novel augmented dataset-based

approach to solving the federated multi-task linear regression

problem. Such augmented datasets essentially increase the

effective sample size for each task, and potentially improve

the generalization performance of the trained model. We

then explicitly characterize the generalization performance of

the trained model and provide distribution-dependent excess

risk upper bounds. Our results indicate that under certain

assumptions, the excess risk bound is improved compared

with a centralized single-task linear regression problem with

the same total amount of IID samples, and the acceleration can

be up to O(1/m), where m is the number of tasks performed

at each client.

• Third, based on an explicit excess risk upper bound, we

propose a distribution-free weight assignment method for

model aggregation. We then extend the weight assignment

method derived from the linear regression model to more

general regression models and validate the effectiveness of this

approach through experiments on the standard CIFAR-10 and

CIFAR-100 datasets [24]. Our experimental results indicate

that the global model trained from our algorithm outperforms

other global models trained from classic FL algorithms for

about ⇠ 10% on CIFAR-10 and ⇠ 7% on CIFAR-100.

Notations. Throughout this paper, bold capital letters (e.g., X)

denote matrices, and calligraphic capital letters (e.g., C) denote

sets. We use tr(X) to denote the trace of matrix X, �min(X)
and �max(X) to denote the minimum and maximum singular

value of X separately. We use diag(x1, · · · , xd) to denote a

d-dimension diagonal matrix with diagonal entries x1, · · · , xd,

and |C| denotes the cardinality of set C. We use hx, yi to denote

the inner product of x and y, use kxk to denote the Euclidean

norm of vector x, and use kxk2
Λ

to denote xT
Λx. For matrix

X, kXk denotes �max(X). For N 2 N, [N ] denotes the set

{1, · · · , N}. We use x ⇠ PX to denote that x is randomly

drawn according to distribution PX .

II. PROBLEM FORMULATION

We consider a general FMTL system consisting of N clients,

indexed by i 2 [N ], and one central server. We assume there

are M different prediction tasks in the system, and each client

i may perform mi  M of them. For simplicity, we assume

mi = m for any client i in this work. We use Ci ✓ [M ] to

denote the subset of tasks performed at client i. Besides, we

also assume that the same task c may be performed at different

clients. We use Ic = {i : c 2 Ci} to denote the set of clients

that perform task c.

Let Dc
i be the collection of training samples for task c 2 Ci

at client i, and nc
i := |Dc

i |. Then, in total, there are ni =
P

c2Ci
nc
i training samples at client i, and there are nc =

PN
i=1 n

c
i total samples for task c from all clients. Let n =

P

i2[N ] ni. Let (x, y) be a training pair in Dc
i . Then, (x, y) ⇠

P c
i,XP c

Y |X , where P c
i,X is the local data distribution for client

i under task c, and P c
Y |X is the conditional distribution of label

Fig. 1. A toy example of a N = 3, M = 3 and m = 2 model.
Each individual client’s dataset contains images of 2 kinds of digits,
drawn from MNIST [25], DIDA [26], and SVHN [27] separately. The
solid ellipses with filled colors refer to each task’s feature distribution
of each client, and the red dashed ellipses represent the agnostic
ground-truth feature distribution of each task.

Y conditioning on data X under task c. We note that P c
Y |X

depends on task c only, and is homogeneous across the clients.

We assume there exists a common representation � that

maps each raw feature vector x to a feature space. Such a

feature map is shared across all tasks. Let z = �(x). Then, the

distribution of x induces the distribution of z in the feature

space. Let the corresponding feature distribution induced by

P c
i,X as Qc

i,Z .

We note that the heterogeneous data distribution introduces

two types of heterogeneity in the feature space. First, as P c
i,X

varies across tasks c, the corresponding Qc
i,Z is different among

tasks, which we term as inter-task heterogeneity. Second, even

for the same task c, P c
i,X , as well as Qc

i,X , may vary across

clients i, owing to different data sources of the clients. This

leads to so-called intra-task distributional heterogeneity in the

feature space. We illustrate these two types of heterogeneity

in Figure 1.

FMTL Formulation. Once data is embedded in the same

feature subspace through �, we can deploy a federated multi-

task learning methodology for training from this representation

space. We focus on an empirical risk minimization formulation,

where the objective function is defined as

L̂({wc}) =
1

N

X

i2[N ]

X

c2Ci

�c
i

|Dc
i |

X

(x,y)2Dc
i

`
�

fwc
� �(x), y

�

, (1)

where �c
i is the weight assigned to client i for task c, fwc

is a

task-specific predictor parameterized by wc that maps feature

vector to the label space, � stands for functional composition,

and `(·, ·) is a loss function that measures the error between

the true label y and the predicted label fwc
� �(x).

Excess Risk. In order to measure the generalization perfor-

mance of the trained model, we define the population risk for

any given � as follows:

L({wc}) :=
X

c2[M ]

↵c
E x⇠P̄ c

X
y⇠P c

Y |X

h

`
�

fwc
� �(x), y

�

i

, (2)



where ↵c is an agnostic weight assigned for task c, and P̄ c
X

is the population distribution of the raw features under task c,
which may be different from P c

i,X , 8i, in general.

Let {w⇤
c} be the minimizer of the population risk function

in (2), and {ŵc} be the minimizer of (1). Then, the excess risk

is defined as L({ŵc}) � L({w⇤
c}). While characterizing the

excess risk for a general learning problem seems intractable, in

the following, we focus on multi-task linear regression, which

enables us to explicitly bound the corresponding excess risk

in a closed form.

III. MULTI-TASK LINEAR REGRESSION

We consider the following linear regression model. For raw

feature x 2 R
d under task c, we assume its true label y is

generated according to y = xT
Bw⇤

c + ✏, where B 2 R
d⇥k is

the feature map and w⇤
c 2 R

k is a task-specific linear head.

Then, z = B
Tx.

Let X
c
i be a d ⇥ nc

i matrix whose columns are the raw

feature vectors of the data samples included in Dc
i , and Y c

i be

the corresponding vector of labels. We denote Z
c
i := B

T
X

c
i .

We consider the quadratic loss `(w, z; y) = (wT z � y)2.

Then, the empirical and population risks can be written as

L̂({wc}) =
1

N

X

i2[N ]

X

c2Ci

�c
i

nc
i

�

�

�
(Zc

i )
Twc � Y c

i

�

�

�

2

, (3)

L({wc}) =
X

c2[M ]

↵c
Ez⇠Q̄c

Z ,
✏⇠PE

[(wT
c z � (w⇤

c )
T z � ✏)2], (4)

respectively, where Q̄c
Z is the distribution of feature vectors

induced by P̄ c
X , and PE is the noise distribution.

Assumptions. We make the following assumptions.

Assumption 1: ✏ is �2
✏ -sub-gaussian, i.e., E[✏] = 0 and

E
⇥

exp(�✏)
⇤

 exp
⇣

�2�2
✏

2

⌘

for all � 2 R.

Assumption 2 ([28]): Let z ⇠ Qc
i,Z . Then, for any i 2 [N ]

and c 2 Ci, z is a sub-gaussian random vector with sub-gaussian

norm K, i.e., for all a 2 R
k, hz, ai is a sub-gaussian random

variable and for any b 2 Sk�1 where Sk�1 is the unit sphere

defined in R
k, hz, bi is a sub-gaussian random variable with

sub-gaussian norm K.

In Assumption 2, we follow the definition of sub-gaussian

random variables in Lemma 5.5 of [28]. Note that this sub-

gaussian definition implies that z is not necessarily a centered

random vector. Both Assumptions 1 and 2 are standard in the

literature. Next, we present the following feature heterogeneity

conditions.

Assumption 3: Let z ⇠ Qc
i,Z . Then, Λ

c
i := E[zzT ] is

invertible for any i 2 [N ] and c 2 Ci. Besides, Z
c
i (Z

c
i )

T

is invertible almost surely.

Assumption 3 indicates that the energy of z spans all

directions of the feature space, while nc
i � k will ensure

that Zc
i (Z

c
i )

T is almost surely invertible.

Assumption 4: There exists ∆ � 0 such that for z ⇠ Qc0

i,Z ,

c0 6= c, we have E

h

�

zTw⇤
c

�2
i

 ∆.

When ∆ is small, Assumption 4 indicates that the feature

vector for task c0 is “near-orthogonal” to the predictor head

Fig. 2. Feature vectors associated with three tasks. w∗

1 , w∗

2 , and w
∗

3

are the corresponding linear heads.

w⇤
c associated with task c. Intuitively, for z ⇠ Qc

i,Z , in order

to capture its variation and provide an accurate prediction for

the corresponding y, the corresponding task-specific predictor

w⇤
c should be well aligned with it, i.e., E

h

�

zTw⇤
c

�2
i

should

be relatively large. Assumption 4 thus implies a heterogeneous

scenario where the distributions of feature vectors from different

tasks are well separated in the feature space, where ∆ measures

the level of feature heterogeneity. We illustrate such feature

heterogeneity in Figure 2.

Augmented Datasets. In order to leverage the feature

heterogeneity captured by Assumption 4, we propose a novel

augmented dataset-based approach. Specifically, for every data

sample (x, y) 2 Dc
i , we add another sample (x, 0) to Dc0

i for

every c0 6= c, c0 2 [M ]. We denote the augmented dataset with

the added samples as D̃c
i . Then, |D̃c

i | = ni for any c 2 [M ].
Let X̃c

i 2 R
d⇥ni , Ỹ c

i 2 R
ni , Z̃c

i 2 R
k⇥ni be the corresponding

raw feature matrix, label vector, and feature matrix defined on

the augmented dataset D̃c
i respectively. Then, the new empirical

risk function can be expressed as

L̂({wc}) =
1

nN

X

i2[N ]

X

c2[M ]

�c
i

�̂i

�

�

�
(Z̃c

i )
Twc � Ỹ c

i

�

�

�

2

, (5)

where �̂i = ni/n. Let {ŵc} be the minimizer of (5). Then, the

excess risk can be expressed as

L({ŵc})� L({w⇤
c}) =

X

c2[M ]

↵ckŵc � w⇤
ck

2
Λ̄c , (6)

where Λ̄
c := Ez⇠Q̄c

Z

⇥

zzT
⇤

.

Note that the empirical risk optimization in (5) can be

decomposed into the summation of M independent sub-

problems, one associated with each task c. Thus, to evaluate

the excess risk in (6), it is equivalent to assessingkŵc � w⇤
ck

2
Λ̄c

for each c 2 [M ], where ŵc is the minimizer of

L̂c(wc) =
1

nN

X

i2[N ]

�c
i

�̂i

�

�

�
(Z̃c

i )
Twc � Ỹ c

i

�

�

�

2

. (7)

IV. EXCESS RISK UPPER BOUND

In this section, we analyze the FMTL generalization perfor-

mance in terms of the excess risk upper bound for the linear

regression model under different heterogeneity assumptions.



A. Both inter- and intra-task heterogeneity

We first consider the general case that Qc
i,Z may vary

for different client i and different c, and the sizes of local

datasets are not necessarily equal, i.e., ni 6= nj in general. To

further capture the feature heterogeneity in FMTL, we define

Λ
c
�
:=

P

i2Ic �
c
iΛ

c
i , Λ

\c
�

:=
P

i2[N ] �
c
i

P

c02Ci\c
Λ

c0

i , where

we recall that Λc
i = Ez⇠Qc

i,Z
[zzT ]. We further denote

Γ̃
c
� := (Λ̄c)

1
2 (Λc

�)
� 1

2 , Γ
c
� := (Λc

�)
1
2

✓

Λ
\c
�

m

◆� 1
2

.

In the above definitions, Λc
� is a linear combination of Λc

i for

i 2 Ic, and a smaller kΓ̃c
�k indicates that the Λ

c
� has better

“coveragence” to Λ̄
c in the feature space. Similar interpretations

hold for Γc
� .

We state our main theoretical results below and omit all

detailed proofs due to space limitation.

Theorem 1: Define �c,k := 10
p
b2kp
nc and �0c,k := 10

p
b3kp

n�nc

for some absolute constants b2 and b3, and define ac� :=

maxi2[N ] �
c
i /�̂i. Suppose that Assumptions 1-4 hold and nc,

n are sufficiently large such that �c,k  1/2 and �0c,k  1/2.

Then, for some absolute constant b, with probability at least

1� 3e�100k, we have

kw⇤
c � ŵck

2
Λ̄c 2

✓

Cbias
�,c∆+

LCvar
�,c

m

◆

�

1 +O
�

�c,k + �0c,k
��

,

(8)

where L =
b3�

2
✏k

3/2

n , Cvar
�,c = ac�

�

�Γ
c
�

�

�

4�
�Γ̃

c
�

�

�

2
, and

Cbias
�,c =

�

�Γ̃
c
�

�

�

2�
�(Γc

�)
�1

�

�

2�
�Γ

c
�

�

�

4

1
m2

�

�Γc
�

�

�

4
+ 1

m

�

�Γc
�

�

�

2
+ 1

.

Remark 1: Note that L is the high-probability excess risk

bound for k-dimensional linear regression with n IID samples

and centered �2
✏ sub-gaussian noise, which scales in O( 1n ).

The variance term in (8) scales in O( 1
nm ), leading to an

O
�

1
m

�

acceleration compared with the centralized IID setting.

Meanwhile, the bias term contains a constant term Cbias
�,c∆

that does not diminish as n increases. This trade-off between

variance and bias is due to the utilization of the augmented

datasets. When ∆ is sufficiently small, heterogeneous feature

distributions can indeed help improve generalization.

Remark 2: To further gain some insight into the impact

of weight assignment on this result, let us consider the case

that m � 1. Then, Cbias
�,c ⇡

�

�Γ̃
c
�

�

�

2�
�(Γc

�)
�1

�

�

2�
�Γ

c
�

�

�

4
, while

Cvar
�,c = ac�

�

�Γ
c
�

�

�

4�
�Γ̃

c
�

�

�

2
. Although it is desirable to have

�

�Γ
c
�

�

�

2
,
�

�Γ̃
c
�

�

�, and
�

�(Γc
�)

�1
�

�

2
all as small as possible so that

the excess risk bound can be reduced, we note that adjusting

the assigned weight would affect them in a coupled fashion,

leading to different bias-variance trade-offs.

B. Only inter-task heterogeneity

We next consider a slightly more restrictive case where only

inter-task heterogeneity is considered. Specifically, we assume

that for any task c, there exists a common distribution Qc
z such

that Qc
i,Z = Qc

Z for any client i. We note that in general Qc
Z

may not be equal to Q̄c
Z . Besides, we also assume that all

clients have the same amount of samples in their local datasets,

i.e., ni = nj , 8i 6= j. Define

Γ̃
c := (Λ̄c)

1
2 (Λc)�

1
2 , Γ̄

c
� := (Λc)

1
2

✓

Λ
\c
�

m
P

i2Ic �c
i

◆� 1
2

,

where we denote Λ
c = Ez⇠QC

Z
[zzT ]. Note that for a special

case that Q̄c
Z is a weighted combination of local feature

distributions Qc
i,Z for i 2 Ic, in the inter-task heterogeneity

only case, the matrix Γ̃
c is a k-dimensional identity matrix.

Compared with the definitions of Γ̃c
� and Γ

c
� in Section IV-A,

Γ̃
c cannot be controlled via {�c

i } since intra-task heterogeneity

no longer exists.

Before presenting the theoretical result, we introduce an

additional assumption as follows.

Assumption 5: For any z ⇠ Qc0

i,Z , c0 6= c, random variable

zTw⇤
c is centered, i.e., E

⇥

zTw⇤
c

⇤

= 0.

Corollary 1: Suppose that Assumptions 1-5 hold. Then, for

the inter-task heterogeneity only case, with probability at least

1� 3e�100k and �c,k and �0c,k defined in Theorem 1, we have

kw⇤
c � ŵck

2
Λ̄c 2L

✓

∆C̃bias
�,c

�2
✏

+
C̃var

�,c

m

◆

�

1 +O
�

�c,k + �0c,k
��

,

where

C̃bias
�,c =

ac�
P

i2Ic �c
i

·

�

�(Γ̄c
�)

�1
�

�

2�
�Γ̄

c
�

�

�

4�
�Γ̃

c
�

�

2

1
m2

�

�Γ̄c
�

�

�

4
+ 1

m

�

�Γ̄c
�

�

�

2
+ 1

,

C̃var
�,c =

ac�
P

i2Ic �c
i

·
�

�Γ̄
c
�

�

�

4�
�Γ̃

c
�

�

2
.

Remark 3: Comparing with Theorem 1 where the bias term

is a constant 2Cbias
�,c∆, in Corollary 1 we show that with

Assumption 5, the bias term becomes
2LC̃var

�,c∆

�2
✏

and scales

as O( ∆

�2
✏n

). Essentially, with Assumption 5, the estimation

error caused by the augmented dataset can be treated as a

∆-sub-gaussian noise. If ∆

�2
✏
 1, it implies that the added

samples are more accurate to predict the task head w⇤
c than

the original samples in (x, y) 2 Dc
i .

Next, we investigate the excess risk under the model trained

with the original datasets, and compare it with that using the

augmented datasets. We have the following result.

Theorem 2: Suppose that Assumptions 1-4 hold. Let {w̃c}
be the minimizer for (3). Then, with probability at least 1�
2e�100k, the excess risk can be upper bounded as

kw̃c � w⇤
ck

2
Λ̄c 

ãc�
P

i2Ic �c
i

Lc
�

�Γ̃
c
�

�

2�
1 +O(�c,k)

�

, (9)

where Lc =
b3�

2
✏k

3/2

nc .

Remark 4: Comparing Theorem 2 with Corollary 1, we

see that using the augmented dataset D̃c
i for FMTL leads to

an excess risk upper bound that scales as O

✓

∆C̃bias
�,c

�2
✏

· 1
n

◆

, as

opposed to O

✓

ãc
�kΓ̃ck2

P

i �
c
i

· 1
nc

◆

when Dc
i is used. Hence, as



long as
∆C̃bias

�,c

�2
✏

· 1
n ⌧

ãc
�kΓ̃ck2

P

i �
c
i

· 1
nc (e.g., with large M such

that n � nc for any c), using D̃c
i for linear regression helps

improve the generalization performance.

V. EXCESS RISK-AWARE WEIGHT ASSIGNMENT

Corollary 1 indicates that the bias term would dominate

the excess risk when m � 1. Also note that C̃bias
�,c 

C
amax
�

�min

⇣

Λ
\c
�

⌘

P

i2Ic �c
i

, where C is a constant not related to {�c
i }.

Thus, to reduce the excess risk, for any task c, we can choose

{�c
i } by solving the following optimization problem:

min
{�c

i }i2[N]

ac�

�min

⇣

Λ
\c
�

⌘

P

i2Ic �c
i

s.t.

N
X

i=1

�c
i = 1; �c

i � 0, 8i 2 [N ].

(10)

Note that problem (10) is generally non-convex and Λ
\c
� may

be difficult to estimate in practice. As a first step, we consider

a special case where m = 1, ni = n/N for all clients, and

there exists a constant b̃3 such that
�

�(Λc)�1
�

�  b̃3 almost

surely for any c.
Now we consider to assign weights for task c1 at all clients,

i.e., {�c1
i }i2[N ]. We can show that

C̃bias
�,c1  b̃1b̃2

ac1�
P

i2Ic1 �
c1
i

�

�(Λ
\c1
� )�1

�

�

 b̃1b̃2b̃3
ac1�

(
P

i2Ic1 �
c1
i )2(

P

i/2Ic1 �
c1
i )

, (11)

where the last inequality holds since
P

i2Ic1 �
c1
i  1.

Based on the definition of ac� , we can show that the right

hand side of (11) can be minimized by setting

�c1
i =

8

>

>

<

>

>

:

1
2|Ic1 | , if i 2 Ic1 and |Ic1 |  N

2
1

2(N�|Ic1 |)
, if i /2 Ic1 and |Ic|  N

2

1
N , if |Ic1 | > N

2 .

(12)

With the weight selection method in (12), we can modify

the well-known FedAvg algorithm [1] for improved general-

ization performance for multi-task FL. Moreover, if a good

representation � is not known beforehand, we develop a two-

phased FedAvg+FMTL algorithm that learns the common

representation using FedAvg across all tasks in the first phase

(e.g., the first T1 communication rounds), and then trains the

class-specific layers based on the learned representation layers

in the second phase (e.g., the remaining T �T1 communication

rounds). The complete FedAvg+FMTL algorithm is omitted

due to space limitation.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of FMTL using

real-world datasets CIFAR-10 and CIFAR-100. For CIFAR-

10, we consider three (N,m) pairs: (100, 2), (100, 5), and

(1000, 2). We train a convolutional neural network (CNN) with

two convolution layers, two fully connected layers with ReLU

activation, and a final fully connected layer with a softmax

activation function. For the final 64⇥ 10 layer, we set its c-th

column as a task-specific head wc for task c. For CIFAR-100,

we use the following three (N,m) pairs: (100, 5), (100, 10),
and (100, 20). In this case, we train a CNN model with two

convolution layers followed by three fully connected layers with

ReLU activation, and the last fully connected layer is followed

by a softmax activation function. Additionally, a dropout layer

is incorporated between the two convolutional layers. In this

case, we set its c-th column of the final 128⇥ 100 layer as a

task-specific head wc for task c.
We run the proposed FedAvg+FMTL algorithm with the

weight assignment in (12) for 110 epochs with T1 = 100. For

comparison, we also run the vanilla FedAvg with 110 epochs,

and for FedAvg+EW we run FedAvg for 100 epochs and

only train the output layer for 10 epochs with the empirical

weights �i =
1

|It| . For FedProx [29], three experiments are

conducted: (1) FedProx+FMTL simply changes the algorithm

for training the representation layer in FedAvg+FMTL from

FedAvg to FedProx, and we run FedProx+FMTL for 110

epochs with weights given in (12). (2) As for FedProx+EW,

we train FedProx for 100 epochs and then only train on the

output layer for another 10 epochs with empirical weights. (3)

As a baseline of comparison, we also train FedProx for 100

epochs. The results are summarized in Table I. We can see

that FedAvg/Fedprox+FMTL has the best test accuracy on

CIFAR-10 and CIFAR-100 among all the methods.

TABLE I
AVERAGE TEST ACCURACY ON CIFAR-10 AND CIFAR-100

(# clients× # tasks/client) 100× 2 100 × 5 1000× 2

CIFAR-10

FedAvg 40.417 51.940 39.856
FedAvg+FMTL 45.163 54.449 43.127

FedAvg+EW 41.112 51.215 39.084
FedProx 40.788 52.904 34.020

FedProx+FMTL 45.965 54.322 34.730

FedProx+EW 41.475 50.934 33.510

(# clients× # tasks/client) 100× 5 100 × 10 100× 20

CIFAR-100

FedAvg 22.397 25.110 30.017
FedAvg+FMTL 25.934 28.362 32.564

FedAvg+EW 22.250 25.804 30.347
FedProx 21.285 24.758 29.486

FedProx+FMTL 24.742 26.602 30.260

FedProx+EW 20.318 23.860 28.368

VII. CONCLUSIONS

In this work, we studied the impact of feature heterogeneity

on the generalization performance of FMTL. We analyzed

the excess risk upper bound for a federated multi-task lin-

ear regression problem. Under certain feature heterogeneity

assumptions, we proposed a new augmented dataset based

approach, and proved that the excess risk bound can be

improved by a factor up to O(1/m) compared with that under

a centralized homogeneous setting, where m is the number of

tasks performed at each client. A simple weight assignment

method based on minimizing the excess risk upper bound

was then proposed, whose effectiveness was validated through

numerical experiments.
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