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Abstract
In the United States, regions (such as states or counties)
are frequently divided into districts for the purpose of
electing representatives. How the districts are drawn can
have a profound effect on who’s elected, and drawing the
districts to give an advantage to a certain group is known as
gerrymandering. It can be surprisingly difficult to detect
when gerrymandering is occurring, but one algorithmic
method is to compare a current districting plan to a large
number of randomly sampled plans to see whether it is an
outlier. Recombination Markov chains are often used to
do this random sampling: randomly choose two districts,
consider their union, and split this union up in a new
way. This approach works well in practice and has been
widely used, including in litigation, but the theory behind
it remains underdeveloped. For example, it’s not known
if recombination Markov chains are irreducible, that is, if
recombination moves suffice to move from any districting
plan to any other.

Irreducibility of recombination Markov chains can be
formulated as a graph problem: for a planar graph G, is
the space of all partitions of G into k connected subgraphs
(k districts) connected by recombination moves? While
the answer is yes when districts can be as small as one
vertex, this is not realistic in real-world settings where
districts must have approximately balanced populations.
Here we fix district sizes to be k1 ± 1 vertices, k2 ± 1
vertices, . . . for fixed k1, k2, . . ., a more realistic setting.
We prove for arbitrarily large triangular regions in the
triangular lattice, when there are three simply connected
districts, recombination Markov chains are irreducible. This
is the first proof of irreducibility under tight district size
constraints for recombination Markov chains beyond small or
trivial examples. The triangular lattice is the most natural
setting in which to first consider such a question, as graphs
representing states/regions are frequently triangulated. The
proof uses a sweep-line argument, and there is hope it will
generalize to more districts, triangulations satisfying mild
additional conditions, and other redistricting Markov chains.

1 Introduction

In the United States, regions (such as cities, counties,
or states) are frequently divided into districts for the
purpose of electing officials to positions ranging from a
local school board to the U.S. House of Representatives.
The way these districts are drawn can have a large effect
on who is elected. Drawing the lines of these districts so
as to give an advantage to a certain individual, group,
or political party is known as gerrymandering. It can
be surprisingly difficult to detect if gerrymandering is
occurring or whether outcomes considered ‘unfair’ are a

*Claremont McKenna College. scannon@cmc.edu. Supported
in part by NSF grants CCF-2104795 and DMS-1803325.

result of other factors, such as the spatial distribution
of voters (for example, see [24]).

One method to detect gerrymandering is to see
where the current or proposed districting plan lies
within the context of all possible districting plans for a
region. Districting plans are generally expected to have
contiguous, compact districts, even when not explicitly
required by law, though there are a variety of com-
peting notion of compactness (see, for example, [23]).
Other legal requirements, such as respecting communi-
ties of interest, avoiding county splits, or incorporating
incumbency, are considered in certain jurisdictions as
well. However, no matter the restrictions placed on a
districting plan, the number of possible districting plans
for any state or region is far too large to be studied in
its entirety. For example, the number of ways to di-
vide a 9× 9 square grid into 9 contiguous, equally-sized
districts is more than 700 trillion [31].

Because of this, random sampling of political dis-
tricting plans has become an important tool to help un-
derstand the space of possible plans, beginning with the
work of Chen and Rodden [13, 14]. A collection of ran-
domly sampled districting plans has come to be called
an ensemble. If a current or proposed districting plan
is an outlier with respect to the ensemble, this may be
evidence it is gerrymandered.

A variety of methods for creating ensembles of
randomly sampled districting plans exist (see Related
Work, below). In this paper, the focus is on recombi-
nation Markov chains. These chains create random dis-
tricting plans by repeatedly choosing two random dis-
tricts; merging these two districts together; and split-
ting this union up in a new way so that population
balance and other constraints are still satisfied. Recom-
bination Markov chains have been used in a variety of
academic papers [3, 4, 6, 9, 10, 11, 15, 18, 21, 22, 26, 41],
technical reports [7, 19, 20, 36, 37, 38], and court cases
[5, 12, 25], including in 2021–2022 litigation in Pennsyl-
vania, South Carolina, and Texas.

One common problem with all recombination
Markov chains is that it’s not known whether they’re
irreducible. That is, it’s not known whether recombi-
nation moves suffice to reach all districting plans, or
if there are some plans that cannot be created by the
repeated merging and splitting process. This could po-
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tentially create problems if ensembles are created by
sampling from only the reachable subset of plans rather
than the entire space of plans. While there is no evi-
dence so far that any real-world examples of recombi-
nation Markov chains are not irreducible, proofs have
largely remained elusive.

1.1 Dual Graphs, balanced partitions, and irre-
ducibility. Recombination Markov chains work with a
discretization of the real-world political districting prob-
lem by considering dual graphs: graphs whose nodes
are small geographic units (such as census blocks, cen-
sus block groups, or voting precincts) and whose edges
show geographic adjacency [27]. While political districts
may occasionally split census blocks or voting precincts,
this is rare, and it is generally agreed that consider-
ing districting plans built out of only whole geographic
units is both a good approximation to considering all
districting plans as well as necessary to make the prob-
lem tractable. This means districting plans are parti-
tions of the nodes of the dual graphs into k connected
sugraphs, where k is the number of districts. In real-
world examples, nodes also have attached populations
and districts must be population-balanced. This is usu-
ally operationalized by ensuring the population of each
district doesn’t differ by more than an ε multiplicative
factor from its ideal population, which is the total pop-
ulation divided by the number of districts. In practice,
ε is typically about 1-2%; if tighter population balance
is required, this can be achieved by making targeted lo-
cal changes after the fact. Because population can vary
widely between different geographic units, this means
districts will frequently have different numbers of nodes.

A Markov chain consists of states (here, each state
is a partition of the dual graph into k connected
subgraphs) and rules governing probabilistic transitions
between these states (for us, recombination steps). A
Markov chain is irreducible if the transitions of the chain
suffice to go from any state of the Markov chain to any
other state. The set of states of a Markov chain is known
as the state space, and if the chain is irreducible the state
space is said to be connected.

In beginning to study the irreducibility of recom-
bination Markov chains, researchers have introduced a
simplification: assume each node has the same popula-
tion (see, for example, [2]). This means one can deter-
mine if a districting plan is population-balanced by look-
ing only at the number of nodes in each district, rather
than the populations at those nodes. In this setting, the
ideal size of a district is n/k, the total number of ver-
tices divided by the number of districts. In [2], authors
show (1) when districts sizes can get arbitrarily large
or small, recombination Markov chains are irreducible;

(2) when the underlying graph is Hamiltonian, recombi-
nation Markov chains are irreducible when districts are
allowed to get as small as one vertex or as large as twice
their ideal size; and (3) there exist Hamiltonian planar
graphs on which recombination is not irreducible when
districts sizes are constrained to be at least (2/3)n/k
and at most (4/3)n/k. This last result shows how im-
posing tight size constraints makes it much harder to
reach all possible districting plans. The only known
positive irreducibility results under tight size constraints
are for double-cycle graphs and grid-with-a-hole graphs,
where the large amount of structure present makes the
proofs nearly trivial [11]. No positive irreducibility re-
sults are known for recombination Markov chains be-
yond these trivial examples when district sizes are con-
strained any tighter than in result (2) above.

The result of [2] is related to one approach to irre-
ducibility sometimes taken in practice: Initially allow
districts to get arbitrarily small, and then gradually
tighten population constraints (‘cool’ the system) un-
til the districts are as balanced in size or population
as desired. However, if the state space is disconnected
when restricted to partitions whose districts are close
to their ideal sizes, there is no guarantee this process
ends in each connected component of the state space
with the correct relative probabilities and certain parts
of the state space aren’t oversampled or undersampled
as a result. Additionally, this process is computation-
ally expensive and is often skipped in practice.

Because of this, irreducibility results under tight
size constraints are very desireable. The negative
result of [2] mentioned above implies general results for
planar graphs are impossible. However, their examples
are far from the types of planar graphs that might
be encountered in real-world applications, which don’t
usually have faces with long boundary cycles. However,
there are also some negative irreducibility results even
for grids when district sizes are constrained to take on
an exact value. For example, see Figure 1(a) for an
example from Jamie Tucker-Foltz that is rigid under
recombination moves when districts are restricted to
be size 3: any attempt to merge two districts and
split the resulting union into two equal-sized pieces
will always produce this exact partition [40]. It’s
worth noting such examples also exist in the triangular
lattice, which will be our focus. For example, in a
triangle with three vertices along each side (six vertices
total), recombination is not irreducible when districts
are constrained to be size exactly two; see Figure 1(b).
This indicates that even in simple graphs such as grids,
requiring exact sizes for districts is too much to ask for.
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(a) (b)

Figure 1: (a) From Jamie Tucker-Foltz, a partition of
a 6 × 6 grid into 12 districts of size exactly 3 that is
rigid under recombination moves [40]. (b) A partition
of a triangular subgraph T of the triangular lattice
into 3 districts of size exactly 2 that is rigid under
recombination moves.

1.2 Results. In both examples in Figure 1, irre-
ducibility can easily be achieved by allowing districts
sizes to get one larger or one smaller than their pre-
scribed ideal sizes. This motivates the following def-
initions used in this work. We assume districts have
prescribed sizes k1, k2, . . .. A partition is balanced if
each district i has exactly ki vertices, and a partition
is nearly balanced if the partition is not balanced but
the number of vertices in district i is at least ki − 1 and
at most ki + 1. While the case k1 = k2 = . . . is most
interesting, equality of district sizes in not required for
our results.

This paper provides the first irreducibility results
for an infinite class of graphs for the recombination
Markov chain whose state space is all balanced and
nearly balanced partitions. The graphs we consider,
chosen to strike a balance between having enough struc-
ture for proofs to be possible while still being motivated
by real world examples, are subsets of the triangular
lattice. The triangular lattice was chosen instead of the
more frequently used square lattice because dual graphs
derived from geography frequently have mostly triangu-
lar faces: it’s rare to have four or more geographic do-
mains (such as census blocks or voting precincts) meet
at a single point, making faces with a boundary cycle
of length four or more rare in the corresponding dual
graphs. Triangulations also have a nice feature that is
incredibly important for our proofs: The neighbors of
any vertex form a cycle.

Our main result is that for arbitrarily large tri-
angular subgraphs of the triangular lattice (e.g., Fig-
ure 1(b)), recombination Markov chains for three dis-
tricts are irreducible on the state space of balanced and
nearly balanced partitions. There is one small caveat:
we require districts to be simply connected rather than

just connected, and this is crucially used at several
points in our proofs. However, this is not an unrea-
sonable restriction: it’s rare in practice to see one dis-
trict completely encircling another. We also require the
minor technical condition that the districts are not too
small: if the triangular subgraph has side length n, then
ki must be at least n+ 1 for all i = 1, 2, 3. We also as-
sume n ≥ 5. We summarize this result in the following
theorem.

Theorem 1. Let T be a triangular subset of the trian-
gular lattice with side length n ≥ 5. Let k1, k2, and k3
be integers satisfying k1+k2+k3 = n(n+1)/2 = |V (T )|
and each ki ≥ n + 1. Let Ω be all partitions of T
into three simply connected pieces P1, P2, and P3 where
|Pi| ∈ [ki − 1, ki + 1] for i = 1, 2, 3. Recombination
Markov chains on Ω are irreducible.

This is a significant step beyond previ-
ous irreducibility results. We go beyond small,
computationally-verified examples to an infinite class
of graphs, and do so under extremely tight conditions
on the district size: districts never get more than one
vertex larger or smaller than their prescribed size. It is
surprising that relaxing district sizes by just one vertex
is sufficient for proofs to be successful. It is hoped this
first step showing irreducibility for arbitrarily large
graphs, and the ideas and approaches contained in
this paper, can be used as a springboard for further
irreducibility results. Future work includes generalizing
this result to more than three districts, other subsets of
the triangular lattice, and perhaps eventually all planar
triangulations. These all now seem plausibly within
reach.

1.3 Related Work. .
Extensions of Recombination Markov Chains:
While recombination Markov chains have been widely
used in practice to create ensembles and evaluate po-
tential gerrymandering, they have also formed the basis
for further explorations. For example, [4] gives a multi-
level version of the recombination Markov chain that,
in addition to computational speed-ups, can help pre-
serve communities of interest, such as counties. Addi-
tionally, [10] uses the recombination Markov chain to
find districting plans that have many majority-minority
districts by repeatedly running short ‘bursts’ of the re-
combination chain from carefully chosen starting points.
Since new algorithms are being created with recombi-
nation Markov chains as a key underlying process, it’s
essential we continue to develop a rigorous understand-
ing of recombination Markov chains, as we do here.

Flip Markov Chains: Another type of Markov
chain that has been used for sampling districting plans
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is flip Markov chains [33, 28, 29]. In these chains, only
a single vertex is reassigned to a new district in each
step. Flip moves are a subset of recombination moves:
any flip move can be achieved by a recombination step
that merges two districts and splits them up such that
only one vertex has changed its district assignment. Flip
moves are not known to connect all possible districting
plans under tight population balance constraints. In [1],
authors show in 2-connected graphs when districts can
get arbitrarily large or small, flip moves connect all
districting plans. In [29], the authors note their flip
Markov chain may not be irreducible (and give an
example of this) and instead restrict their attention to
the connected pieces of the state space.

In our work, because flip moves are a subset of re-
combination moves and are simpler, we frequently focus
on flip moves. Most results will apply to both recombi-
nation moves and flip moves. The main exception is the
Cycle Recombination Lemma (Lemma 5) which requires
a recombination step rather than a flip step. Recombi-
nation steps are also used at the end of our sweep line
process to ultimately reach a ground state, and to move
between ground states. If alternate proofs of these lem-
mas using flip steps rather than recombination moves is
found, our results would also imply flip Markov chains
are irreducible in the same settings. We believe such
a result is likely possible, but we have not pursued it
because our focus is on recombination moves.

While Markov chains have been most often used
to create random samples, requiring running the chains
for many steps, flip Markov chains have also been
used to detect ‘careful crafting’ of districting plans by
detecting whether a plan is an outlier with respect to the
stationary distribution [17, 16]. These methods do not
require the Markov chains to be irreducible, but provide
a single significance value rather than a more robust
understanding of the space of possible districting plans.

Other Methods for Generating Ensembles: It
should be noted Markov chains are not the only meth-
ods employed to generate ensembles of districting plans.
For example, the first papers introducing the idea of
ensembles created them by randomly merging precincts
to form the correct number of districts, and then ex-
changing precincts between districts to achieve popula-
tion balance [13, 14]; it is challenging to know which
distribution of districting plans this samples from. A
technique known as Sequential Monte Carlo [35] gen-
erates random districting plans by iteratively sampling
one district at a time using spanning tree methods and
reweighting at each step to ensure convergence to a de-
sired target distribution. The authors of [32, 30] use a
two-stage method to generate districting plans that al-
lows the incorporation of a notion of fairness into the

district selection process.
Proving Irreducibility: The proof of irreducibil-

ity we give here has some features in common with the
irreducibility proofs in [8, 39]. The first shows a Markov
chain on simply connected subgraphs of the triangular
lattice is irreducible, and the second does the same in
the presence of a fixed vertex that is constrained to al-
ways be in the subgraph. As in [8], the main idea we use
is a sweep-line procedure, adjusting the districting in a
left-to-right fashion; sweep line approaches are common
throughout the field of computational geometry. As in
both [8, 39], the idea of towers we use is inspired by the
towers of [34].

2 Proof Overview

The proof proceeds largely from first principles. The
most complicated mathematics used are breadth-first
search trees and some facts about boundaries of planar
sets. Despite this, an incredible attention to detail
and extensive careful constructions are still required
to account for the intricacies that are possible in the
partitions we consider.

Let G∆ be the infinite graph whose edges and
vertices are those of the triangular lattice. Let T
be a triangular subgraph of G∆. We let n denote
the number of vertices along one side of (equilateral)
triangle T , meaning T contains n(n+1)/2 vertices total;
Figure 1(b) gives an example when n = 3 and Figure 2
gives an example when n = 8. For simplicity, we assume
T is always oriented so that it has a vertical edge on its
right side, as in both figures.

Let k1, k2, and k3 be such that each ki ≥ n + 1
and k1 + k2 + k3 = n(n + 1)/2. We are interested
in partitions of the vertices of T into three simply
connected subgraphs P1, P2, and P3, of sizes k1 ± 1,
k2 ± 1, and k3 ± 1, respectively. In analogy to the
redistricting motivation, we will call each of P1, P2, and
P3 a district of this partition. In an abuse of notation,
we will let Pi represent both the vertices in district i
as well as the induced subgraph of T on this vertex
set. Because it is a partition, the three sets P1, P2,
and P3 must be disjoint and their union must be T . To
avoid cumbersome language, throughout this paper we
will say ‘partition’ to mean a partition of T into three
simply connected districts. If |P1| = k1, |P2| = k2, and
|P3| = k3, the partition is balanced. If the partition is
such that ki − 1 ≤ |Pi| ≤ ki + 1 for i = 1, 2, 3 but it is
not balanced, we say the partition is nearly balanced.

We will consider the state space Ω consisting of the
balanced and nearly-balanced partitions of T into three
districts. We will examine the graph GΩ whose ver-
tices are the partitions in Ω where an (undirected) edge
exists between σ and τ if one district of σ is identical
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to one district of τ . These are exactly the transitions
allowed by recombination Markov chains, which recom-
bine two districts but leave a third untouched. If GΩ

is connected, this implies recombination Markov chains
are irreducible, and our main theorem is equivalent to
showing GΩ is connected. We now outline our approach
for proving this theorem; all details can be found in the
full version of this paper.

2.1 Ground States and Sweep Lines. We show,
for every balanced or nearly balanced partition, there
exists a sequence of moves transforming it into one of
six ground states. Throughout this paper we consider
a left-to-right, top-to bottom ordering of the vertices of
T , where the leftmost vertex of T is first; followed by
the vertices in the next column, ordered from top to
bottom; followed by the vertices in the third column,
ordered from top to bottom; etc. Using this ordering,
ground state σ123 has the first k1 vertices in P1, the
next k2 vertices in P2, and the final k3 vertices in P3.
Other ground states σ132, σ213, σ231, σ312, and σ321

are defined similarly. Because each ki ≥ n + 1, this
is always a valid partition. It is straightforward to see
the six ground states are connected to each other by
one or two recombination moves. Because for every
recombination step, the reverse step is also valid, for
irreducibility it suffices to show every balanced or nearly
balanced partition can be transformed into one of these
ground states.

Without loss of generality, we suppose T ’s single
leftmost vertex, which we call C1, is in P1, and we
are trying to reach the ground state σ123. We let Ci
be the first column which contains vertices not in P1;
see Figure 2(a) for an example. We will show how
to (1) increase the number of vertices in Ci ∩ P1 and
(2) if necessary, transform the result from a nearly
balanced to a balanced partition without decreasing
Ci ∩ P1. In both (1) and (2), any vertices left of Ci
remain unaffected. Figure 2 (b,c) gives an example of
what this process looks like. After repeating this process
for gradually increasing i, we eventually reach a state
where there are no vertices in P1 right of Ci. In this
case, a small number of recombination steps suffice to
reach σ123.

We begin by outlining some key definitions and
lemmas, and then give a high-level overview of how
(1) and (2) are achieved. The lemmas presented here
lack some formality for ease of presentation; formal
statements and complete proofs of these lemmas can
be found in the full version of this paper.

2.2 Key facts and lemmas. Let bd(T ) be the ver-
tices in T that are adjacent to a vertex outside of T . We

(a)

(b)

(c)

Figure 2: An example of our sweep line process on a
partition where k1 = k2 = k3 = 12. P1 is red, P2 is
blue, and P3 is green. (a) A balanced partition where
the first i − 1 columns are in P1 but the ith column is
not entirely within P1 yet. (b) After applying a tower
move, the number of vertices of P1 in the ith column
has increased, but the partition is now nearly balanced
instead of balanced, with |P1| = k1+1 and |P3| = k3−1.
(c) After applying Case A of our rebalancing procedure
by making changes near where P2 and P3 are adjacent
in bd(T ), we reach a balanced partition.
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let N(v) be all neighbors of vertex v in G∆, and note
N(v) is always a cycle of length 6. For i ∈ {1, 2, 3}, we
say v’s i-neighborhood is N(v)∩ Pi, that is, all vertices
in Pi that are adjacent to v. This i-neighborhood is con-
nected if N(v)∩ Pi has only one connected component.
While our overall proof is about recombination Markov
chains, flip moves (where one vertex is assigned to a new
district) are a subset of recombination moves, and we
will often focus on flip moves because it makes our argu-
ments easier. The following flip lemma describes when
flip moves are possible. The simplicity of this flip lemma
is a large reason why it is convenient to be working in
the triangular lattice.

Lemma 1. (Flip Lemma, informal) If P is a par-
tition of T into three simply connected districts, and
v ∈ Pi has a connected i-neighborhood and a connected,
nonempty j-neighborhood for j ∈ {1, 2, 3}, j ̸= i, then
removing v from Pi and adding it to Pj produces another
partition of T into three simply connected districts.

The following lemma suggests in most cases, when a
vertex can be removed from Pi, it can always be added
to one of the two other districts, Pj or Pl with j, l ∈
{1, 2, 3} and i, j, l all distinct.

Lemma 2. (Alternation Lemma, informal) Let P
be a partition of T into three simply connected districts,
and suppose v ∈ Pi has a connected i-neighborhood, is
not in bd(T ), and is adjacent to at least one vertex
in a different district. Then v’s j-neighborhood or l-
neighborhood is connected and nonempty, for j ̸= l.

This is called the Alternation Lemma because its proof
involves showing districts j and l cannot alternate too
much in N(v): having an ordered sequence of four
vertices a, b, c, d in N(v) with a, c ∈ Pj and b, d ∈ Pl

is impossible because then Pj and Pl cannot both be
connected.

Not every vertex can be removed from one district
and added to another while maintaining simple connec-
tivity of all districts. We say a simply connected sub-
graph S ⊂ Pi is shrinkable if it contains a vertex that
can be removed from Pi and added to a different dis-
trict. Most sets will be shrinkable, but there are two
notable exceptions: If S does not contain any vertices
adjacent to other districts, or if S is a path ending with
a single vertex in bd(T ). Figure 3 gives an example of
each.

The following lemma gives sufficient conditions for
S ⊆ Pi to be shrinkable, and was crafted exactly to
avoid the two non-shrinkable examples of Figure 3.
Note we only consider the S that can be produced by
removing a simply connected subset of Pi; this ensures,

(a)

(b)

Figure 3: Two examples of simply connected subsets
S (grey) of P1 (red) that are not shrinkable. In (a),
S is not shrinkable because no vertex of S is adjacent
to any district besides Pi. In (b), S is not shrinkable
because the removal of any vertex except the rightmost
will disconnect P1, and while the rightmost vertex of S
can be removed from P1, adding it to P2 (blue) produces
something not connected and adding it to P3 (yellow)
produces something that is not simply connected.
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for example, that S is not entirely contained in the
interior of Pi.

Lemma 3. (Shrinkability Lemma, informal) If
S ⊆ Pi is simply connected and Pi \ S is simply con-
nected, the following two conditions are each sufficient
for S to be shrinkable:

(I) S ∩ bd(T ) = ∅.

(II) S is adjacent to a different district, and Pi contains
at least two vertices in bd(T ).

While the Shrinkability Lemma allows us to find
a single vertex to remove, we cannot repeatedly remove
vertices from the same district because this will produce
partitions that are not balanced or nearly balanced.
Instead, if we wish to remove multiple vertices from a
particular district, we must alternate with adding new
vertices to that district somewhere else. It is important
the vertices we are adding are not adjacent to the
vertices we are removing, otherwise we can’t know any
real progress is being made. The following Unwinding
Lemma gets at this idea, where we have S1 ⊆ P1 that
we want to add to P2 and S2 ⊆ P2 that we want to
add to P1. This lemma is only applied in the case
where |P3| = k3 − 1, so adding a vertex to P3 to bring
it up to its ideal size is also considered a successful
outcome. It is called the Unwinding Lemma because S1

and S2 are frequently long, winding arms of P1 and P2,
respectively, that we wish to contract so our partition
is less intertwined.

Lemma 4. (Unwinding Lemma, informal) Let
S1 ⊆ P1 and S2 ⊆ P2 be shrinkable and not adjacent.
There exists a sequence of moves after which (1) a
vertex has been added to P3, (2) all vertices in S1 have
been added to P2, or (3) all vertices in S2 have been
added to P1.

Finally, at times we will need to work with S1 ⊆ P1

and S2 ⊆ P2 that are adjacent. This arises when S1 and
S2 are both inside some cycle C, where all vertices of C
are in P1 except for one, x, which is in P2. If y is one
of the vertices in C adjacent to x and y is a cut vertex
of P1, the case where other approaches fail is when one
component of P1 \ y is inside C. We would like y’s 1-
neighborhood to be connected but the component S1 of
P1 \ y that is inside C prevents that from happening;
see Figure 4(a) for an example. Instead of removing
vertices from S1 one at a time, we rearrange the entire
interior of C with a single recombination step.

Lemma 5. (Cycle Recombination Lem., informal)
Let C be a cycle of vertices in P1 with one vertex, x,

(a)

(b)

(c)

Figure 4: An example application of the Cycle Recombi-
nation Lemma. (a) An example satisfying the hypothe-
ses of the lemma: A cycle C of vertices in P1 (red) plus
one vertex x in P2 (blue), such that x’s neighbor y in
C is a cut vertex of P1 and P1 \ y has a component S1

(grey) within C. The district assignments of vertices
outside C are not shown. (b) All district assignments
within C are erased, and we build a breadth first search
tree of the vertices within C. (c) If initially there were
m vertices of P1 within C, the last m vertices added
to the BFS tree are added to P1 while the remaining
vertices are added to P2. After this process y will have
a connected 1-neighborhood.
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in P2. Suppose no vertices of P3 are inside C. There
exists a single recombination step, changing only
district assignments within C, after which x’s neighbor
y in C has a connected 1-neighborhood (at least when
looking in or inside C).

The main idea of this recombination step is to erase all
district assignments within C and build a breadth first
search tree of the interior of C. If initially there were m
vertices of P1 within C, the last m vertices added to the
BFS tree are added to P1 while the remaining vertices
are added to P2. An example of this process is shown in
Figure 4. Because the vertices in N(y) that are inside
C monotonically increase in their distance from x, after
this recombination step N(y) will consist of x, followed
by some vertices in P2, followed by some vertices in P1,
followed by y’s other neighbor in C. While the lemma
does not say anything about the parts of N(y) that are
outside C, we will apply it in cases where knowing y’s
1-neighborhood in or inside C is connected implies y’s
entire 1-neighborhood is connected.

2.3 Advancing toward Ground State: Towers.
In our sweep line procedure, the two main steps are (1)
increase the number of vertices in Ci ∩ P1 and (2) if
necessary, transform the result from a nearly balanced
to a balanced partition without decreasing Ci ∩P1. The
way we achieve (1) is using towers. For a particular
vertex in Ci, we may want to add it to P1 but be
unable to because doing so produces a partition with
districts that are not simply connected. Let v1 be a
vertex in Ci that is not in P1 but adjacent to a vertex
of P1 ∩ Ci, and suppose without loss of generality that
v1 ∈ P2; see Figure 5(a) for an example. This means
v1 has three neighbors in P1, and it’s the middle of
its other three neighbors that is crucial for determining
whether v1 can be added to P1 or not. If it can’t, we
then examine this middle neighbor, which must have a
similar neighborhood structure to v1. This process is
repeated and must eventually end at a vertex that can
be added to the district of the vertex before it in the
tower. Flip moves are then made all the way back up the
tower, ultimately producing a configuration in which v1
can be added to P1. We do not state our tower lemma,
or even formally define a tower, because of the technical
details involved, but depict a sample application of the
tower procedure in Figure 5.

2.4 Rebalancing: Cases. Performing a tower move
as described in the previous section increases the num-
ber of vertices of P1 in Ci, but can also move us from
a balanced partition to a nearly balanced partition, be-
cause the number of vertices in P1 has increased by one.
Before proceeding further, we must return to a balanced

(a) (b)

(c) (d)

(e) (f)

Figure 5: An example where we wish to add v1 ∈ P2

(blue) to P1 (red), but cannot because this would
disconnect P2. Instead we look at the middle of v1’s
three neighbors not in P1, which we call v2, and see if
it can be added to P2; in this example, it can’t because
doing so would create a cycle in P2. We continue along
the line spanned by v1 and v2 until we find a vertex
that can be added to the district of the vertex before
it, which we prove must eventually happen. (a) In this
example, vertex v5 can be added to the district of v4,
and the result of this move is shown in (b). Now v4 can
be added to the district of v3, and the result is (c). The
same procedure for v3, v2, and v1 gives the results shown
in (d), (e), and (f), respectively. The end result is that
there is one additional vertex of P1 (v1) in column i.
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partition, and do so without decreasing the number of
vertices in P1 ∩ Ci. This is the most challenging part of
the proof.

Without loss of generality, we suppose we have
|P2| = k2 and |P3| = k3−1. We can use the Shrinkability
Lemma to always find a vertex of P1 that can be
removed from P1 and added to a different district;
however, it may be that all such vertices can only be
added to P2, not P3, and additionally all vertices that
can be removed from P2 can only be added to P1. In
these cases we need to do some rearranging with P1 (in
columns i+1 and greater) and P2 before finding a vertex
that can be added to P3 to reach a balanced partition.
It is in this rearranging that the Unwinding Lemma and
the Cycle Recombination Lemma play crucial roles.

Our proof considers four main cases for the rebal-
ancing process, depending on the type of adjacency be-
tween P2 and P3: (A) There exists a ∈ P2 ∩ bd(T ) and
b ∈ P3∩bd(T ) that are adjacent; (B) P2∩bd(T ) = ∅; (C)
P3 ∩ bd(T ) = ∅; and (D) No vertex of P2 is adjacent to
any vertex of P3. See Figure 6 for cartoonish examples
of the four cases. We prove these four cases are disjoint
and cover all possibilities, and consider each separately,
though there are certainly common elements between
their proofs. Cases (A) and (D) are the most straight-
forward because we only need to consider reassigning
vertices near bd(T ), while (B) and especially (C) are
more challenging because we must work in the interior
of T , far from bd(T ).

2.5 Reaching a Ground State. After performing
our sweep line procedure, for some i we have P1

occupying all of the first i − 1 columns, some of Ci,
and none of columns i+ 1 or greater. At this point we
describe a sequence of steps alternating recombining P2

and P3 with moving a vertex of P1 higher in column i.
The end result is a partition where the vertices of P1 in
Ci occupy all of the topmost positions in Ci, as they must
in the ground state σ123. One final recombination step
for P2 and P3 reaches the ground state σ123. Because the
ground states are all easily connected by recombination
moves, this proves there exists a sequence of moves
from any balanced partition to any other balanced
partition, moving through balanced and nearly balanced
partitions.

The proof outlined so far assumes we begin at a
balanced partition. Some additional work is required
to show any nearly balanced partition can be trans-
formed into a balanced partition. Similar lemmas and
approaches to the rebalancing step described above are
used to do so, completing the proof.

(A)

(B)

(C)

(D)

Figure 6: Cartoon representations of the relationship
between P1 (red), P2 (blue), and P3 (yellow) in the
four rebalancing cases we consider: (A) There exists
a ∈ P2 ∩ bd(T ) and b ∈ P3 ∩ bd(T ) that are adjacent;
(B) P2 ∩ bd(T ) = ∅; (C) P3 ∩ bd(T ) = ∅; and (D) No
vertex of P2 is adjacent to any vertex of P3. There
are two possibilities in Case (A), but we handle them
simultaneously.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



3 Conclusion and Next Steps

This paper gives the first proof of irreducibility for
recombination Markov chains under tight district size
constraints beyond small or trivial examples. Now that
we know such results are possible, there are several next
steps to consider. First, we believe there are ample
opportunities to simplify and shorten the nearly 65-
page proof included in the full version of this paper.
The focus of this paper was getting a complete proof
rather than getting the most concise, elegant proof, so
improvements can likely be made, though the outline
given above should give the reader some ideas of the
inherent difficulties involved. Additionally, generalizing
this proof so that it applies to flip Markov chains as well
as recombination Markov chains seems an achievable
next step; the main difficulty will be adapting the Cycle
Recombination Lemma to obtain the same result but
using only flip steps. More significant next steps include
generalizing the proof to more than three districts or
other subregions of the triangular lattice. We believe
both are possible, but significant additional work will
be required.

A major next step would be to prove a similar result
beyond the triangular lattice. The class of bounded-
degree Hamiltonian planar triangulations seems the
most likely candidate for success. Restricting our atten-
tion to triangulations is helpful because the neighbors
of any given vertex form a cycle, meaning we can easily
understand when a vertex can be removed from one dis-
trict and added to another. Triangulations are also rele-
vant to real-world redistricting applications, as the dual
graphs representing states or regions are frequently tri-
angulated or nearly triangulated. Hamiltonicity makes
the definition of a ground state straightforward, and
was also used in some of the results of [1, 2], suggest-
ing its usefulness. Several of the arguments included
here would break down in the presence of large degree
vertices, which is why we propose degree restrictions.
However, there will be significant challenges in moving
beyond the triangular lattice, as the assumption that
the underlying graph is a regular lattice pervades nearly
all of the proof.

In conclusion, this result is a major advancement
that holds promise for inspiring future results. Knowing
that recombination Markov chains are irreducible is a
necessary first step to developing the theory behind
them. For example, now that we know recombination
Markov chains are irreducible on the triangular lattice,
we know they will converge to a unique stationary
distribution. This means we can begin to consider
questions such as how long this convergence takes: a
long-term goal of this research community is to be able
to say something rigorous about the mixing and/or

relaxation times of recombination Markov chains, and
knowing the chains are irreducible is a necessary first
step. Gaining a rigorous understand of these Markov
chains and their behavior is essential so that we can have
confidence in the conclusions about gerrymandering
they are used to produce.
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