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ABSTRACT

Three dimensional dynamic soil-pile group interaction has been a subject of
significant research interest over the past several decades, and remains an active and
challenging topic in geotechnical engineering. A variety of dynamic excitation sources may
potentially induce instabilities or even failures of pile groups. Employing modern
experimental and numerical techniques, the dynamics of pile groups is examined in this
study by integrated physical and computational simulations. In the physical phase, full-
scale n-situ elastodynamic vibration tests were conducted on a single pile and a 2x2 pile
group. Comprehensive site investigations were conducted for obtaining critical soil
parameters for use in dynamic analyses. Broadband random excitation was applied to the
pile cap and the response of the pile and soil were measured, with the results presented in
multiple forms to reveal the dynamic characteristics of the pile-soil system. In the
computational phase, the BEM code BEASSI was extended and modified to enable
analysis of 3D dynamic pile group problems, and the new code was validated and verified
by comparison to reference cases from the literature. A new theoretical formulation for
analysis of multi-modal vibration of pile groups by accelerance functions is established
using the method of sub-structuring. Various methods for interpreting the numerical results
are presented and discussed. Case studies and further calibration of the BEM soil profiles
are conducted to optimize the match between the theoretical and experimental accelerance
functions. Parametric studies are performed to quantify the influence of the primary factors
in the soil-pile system. It 1s shown that the new 3D disturbed zone continuum models can
help improve the accuracy of dynamic soil-pile interaction analysis for pile groups in

layered soils. This study therefore helps to advance the fundamental knowledge on
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dynamic soil-pile interaction by improving the accuracy of current computational models,
and contributes additional physical tests to the experimental database in the literature. The
specific impedance functions generated herein can be immediately used in practice, and
the underlying general 3D disturbed-zone computational framework can readily be applied

to other pile group problems of interest to researchers and practitioners.



CHAPTER 1. INTRODUCTION, BACKGROUND, AND METHODOLOGY

1.1 Introduction to Soil-Pile Group Interaction Problems
1.1.1 Research Background

Dynamic soil-pile interaction is a complex subject involving the mechanics of soils and
piles interacting due to seismic soil motions or transmission of structural vibrations through a
substructure. As structural elements that are driven into the ground to transfer superstructure
loads to the soil strata, piles are often installed in groups rather than as isolated single piles to
increase overall strength, stiffness, and redundancy. For example, piles for most highway
structures are installed in groups to support massive foundation loads (Hannigan et al. 2006).
Due to their wide application in civil engineering, the safety of pile groups under dynamic
excitations has been a concern and major research focus among scholars for several decades.
Potential sources of dynamic excitations include earthquakes, blast loadings, machine
vibrations, traffic vibrations, pile driving, and wind and wave loadings, among others (Clough
and Penzien 1995). Each of these dynamic excitation sources may induce potential instabilities,
excessive motion, or even failures of pile groups.

Dynamic soil-pile group interaction became the subject of much research interest in the
late 1970's due to increasing demands of the nuclear power industry and developments in off-
shore engineering, and it has remained an active and challenging area in geotechnical
engineering to the present day. Higher demands on safety of buildings against earthquakes
(Mylonakis and Gazetas 2000) lead to more stringent design requirements for pile foundations
(e.g., CEN: Euro code-8-5), which are presently the most common type of deep foundation for
large structures. Dynamic soil-pile group interaction is also an important consideration in

design of machine foundations for vibrations to avoid resonance (Gazetas 1983). Additionally,



the pile vibration problem, known as the radiation problem in continuum wave mechanics, or
the impedance problem in soil dynamics, is a fundamental component of sub-structuring
approaches to seismic problems.

Several aspects make dynamic interaction between deep foundations such as drilled
shafts and driven piles, and the surrounding soils complicated. These include the three-
dimensional nature of the underlying wave propagation phenomena, sensitivity of the
foundation response to the in-situ and load-transfer induced spatial variation of the soil’s shear
modulus and damping profiles, influence of the relative pile and soil material properties,
mterfacial pile-soil contact conditions, and disturbance of the soil as a result of installation of
etther driven piles (e.g., Hannigan et al. 2006) or drilled shafts (Brown et al. 2010).

Past studies suggest that the dynamic response of pile groups strongly contrasts that of
the more widely studied and thus well-known case of single pile response, therefore field tests
on single piles may not be able to predict the behavior of pile groups (Kaynia and Kausel 1982).
Previous studies on dynamics of pile groups also reveal that interaction effects are frequency-
dependent and controlled by various factors, such as pile parameters including embedded and
unembedded lengths, radius, shear modulus, spacing, pile group layout, and more complicated
soil parameters such as the profiles of soil shear modulus and damping, the three-dimensional
stress field caused by soil self-weight (Chandrasekaran et al. 2010a) as well as static or
dynamic foundation loads, and the mechanical soil response within disturbed zones around the
pile group. The effects of these parameters have not yet been completely understood, and

several are further examined in this study using computational and experimental methods.



1.1.2 Literature Review
1. Methods for dynamic pile group problems

Novak (1974) proposed an approximate method for predicting the dynamic response
of single piles embedded in linear elastic soils. The method is based on Winkler’s model or so-
called ‘p-y and t-z curves’ (Poulos 1968; Matlock 1970), in which the pile is simplified as a
beam-column that is supported by the soil through predefined independent nonlinear springs
whose stiffnesses (p or t) in the horizontal (y) and vertical (z) directions are typically
empirically back-calculated from full-scale load tests (e.g., Broms 1964; API 1987). Pile
displacements and the soil resistance per unit length acting on the pile are obtained by solving
the governing equations based on Euler-Bernoulli beam theory with fixed or pinned head
conditions. It is known that the pile response is affected by the soil-to-pile mass ratio, ratio of
soil shear wave velocity to soil longitudinal wave velocity, pile slenderness ratio, ratio of static
load to Euler’s buckling load, and dimensionless frequency. Among these parameters, the wave
velocity ratio and slenderness ratios are the most critical factors. Compared with more rigorous
solutions, Novak’s approximate method yields lower stiffness and damping, which may be due
to an imperfect bond between pile and soil. Application of the approximate method was
extended to the more general case of a layered medium by Novak and Aboul-Ella (1978a,
1978b). In comparison with more rigorous solutions, the approximate method can provide

satisfactory results for the single pile case when the dimensionless frequency (a, = wr, / v, )
1s greater than 0.3. Results at lower dimensionless frequencies can be approximated as constant
and equal to those calculated at ¢, =0.3.

Group interaction factors for static analysis of vertical and horizontal deformations of

pile groups have typically been derived by superposition of interaction factors from a two-pile



arrangement consisting of a reference pile and a single adjacent pile (EI Sharnouby and Novak
1986; EI Sharnouby and Novak 1990). However, by considering only two piles, this approach
neglects the influence of the remaining piles in a group. The static interaction factors were also
applied to dynamic cases for study of the response of offshore towers under wave excitations
(El Sharnouby and Novak 1984; Novak and Mitwally 1990). For the special case when the pile
cap 1s rigid, such an interaction factor is typically referred to as a group efficiency ratio (GER).

Nogami (1983) and Nogami and Chen (1984) introduced a simplified method to
account for all piles of a group, based on the vertical displacement and force responses derived
for single piles by Nogami and Novak (1976), with the added assumption of plane strain
conditions. The displacement and vertical force acting on a given pile in a group were obtained
by superposition of the influence of all other piles in the group. The equations of motion for
pile segments interacting with soil were assembled by treating the piles as Winkler models
with uncoupled springs acting along their length. The results revealed that dynamic group
effects can be strongly frequency dependent, and are also related to the ratio of pile spacing to
shear wavelength in the soil media.

Kagawa (1983) conducted a parametric study on factors influencing the dynamic
behavior of a 2x1 pile group by modeling the soil-pile system as a beam-on-Winkler
foundation as described by Kagawa and Kraft (1981a, 1981b). The results suggest that
dimensionless frequency, pile spacing ratio, directional angle between two piles, and local pile
flexibility/compressibility are primary factors, while the slenderness ratio, pile-head fixity
condition, and soil Poisson’s ratio have minor influences. When the spacing between two piles
is less than 30 pile diameters for the lateral mode or 20 pile diameters for the vertical mode,

the effects on stiffness and damping resulting from pile-to-pile interaction are pronounced.



When the interaction effects become dominant, the frequency-dependent stiffness (or “spring
coefficient”) of a pile group can either become negative due to inertia effects increasing with
frequency, or exceed the summation of single pile stiffnesses. Pile-group effects are strongly
frequency dependent, thus simply using the theory from static cases is not appropriate in
dynamic cases. Under seismic loading conditions, piles deform due to both free-field soil
deformation and inertial loads from the superstructure. Kagawa (1983) indicated that the pile-
group effects are independent of loading conditions. In other words, the stiffness and damping
of a pile group subjected to seismic motion can also be obtained by analyzing the pile group
under pile-head loading conditions.

A simple method was developed by Dobry and Gazetas (1988) for computing dynamic
mmpedances of floating rigidly-capped pile groups with consideration of pile-soil-pile
mteraction. Their parametric studies show that groups with close pile spacing behave as if
being isolated, and the group factor exhibits a smooth variation with frequency. Specifically,
when the shear wavelength () in the soil is greater than the pile spacing (s), the soil region
within the piles tends to vibrate in phase with the piles, making the pile-soil system respond
like a block. For groups with ample spacing at low frequency with sufficiently long relevant
wavelengths, the group stiffness decreases with frequency. Beyond a limiting frequency, wave
mterference phenomena begin to dominate the group response.

For axial vibration, Gazetas and Makris (1991) derived the displacement of a given pile
in a group with soil modeled as a series of springs and dashpots (i.e., a Winkler model). The
radiation condition was determined based on the amplitude of pile-head displacement as well

as wave attenuation. For the lateral seismic response, Makris and Gazetas (1992) similarly



accounted for pile-soil interaction through a dynamic Winkler model with frequency-
dependent springs and dashpots.

A three-dimensional continuum-based numerical approach developed by Kaynia and
colleagues for dynamic pile problems (Kaynia 1982; Kaynia and Kausel 1982; Kaynia 1988;
Kaynia and Kausel 1991; Kaynia and Mahzooni 1994) is based on Green’s functions for buried
dynamic barrel loads and disk loads (see Andersen 2006; Kausel 2006). Analyses of the
dynamic response of a 4x4 pile group with various spacing ratios (Kaynia and Kausel 1982)
suggested that for close spacing, inertia effects and interaction effects dominate group response
when frequency is beyond a certain limit. The analyses also demonstrated that significant
mteraction effects are essentially due to out-of-phase interactions for the horizontal and vertical
vibration modes, but are due to in-phase vibration in the rocking and torsional modes. In order
to describe dynamic interaction, a new dynamic interaction factor similar to Poulos’ static one
was defined. The numerical results demonstrated that while the response of a single pile 1s
mainly affected by the near-surface soil profiles, the response of a pile group is influenced
greatly by characteristics of deeper layers.

Methods developed to compute the dynamic response of pile groups with consideration
of pile-soil-pile interaction can be categorized mainly into two widely-used types: 1) dynamic
Winkler-foundation type models; and 2) 3D elastic continuum models, including the Finite
Element Method (FEM) and Boundary Element Method (BEM). Due to the nature of the
Winkler-foundation, the focus in the pile-soil system is the 2-dimensional pile response while
the Poisson’s effect in the soil as well as coupling between soil layers are typically neglected.
Analytical solutions for stiffness of ‘soil springs’ for a half-space soil medium (e.g., Bycroft

1956; Baranov 1967; Novak and Beredugo 1972; Veletsos and Verbic 1973; Luco 1974) as



employed in Novak’s method cannot account for coupling along soil-pile interfaces. For
mstance, Baranov’s solution (1967) regards the lateral resistance of each soil layer as vertically
1solated without considering the coupled shear deformation of adjacent soil layers.
Furthermore, the stiffness at the pile toe in the aforementioned studies is typically treated as
that of a ring or disk on the surface of an elastic half-space, or taken as rigidly supported by
rock, 1gnoring the effect of the pile toe’s embedment and flexibility within the soil profile.
Additionally, the piles in the aforementioned studies are commonly simplified as prismatic
bars, and information about the actual cross-sectional geometry is consequently ignored. This
could result in erroneous identical surface tractions on piles having different cross-sections.
Dobry and Gazetas (1988) suggested that use of Winkler model methods for computing
the dynamic vertical response of pile groups is only valid for relatively short and/or stiff piles
that behave as ‘rigid’ piles, and provided only a rough estimation for long and flexible piles.
Specifically, the displacement at the pile toe is required to be at least 80% of that at top for a
pile to be classified as rigid. An additional shortcoming of such methods is that inhomogeneity
1s only considered in the vertical direction, whereas the soil around piles is horizontally
heterogeneous due to effects of pile installation and local increases in stress and strain due to
load transfer from the piles. Ultimately, it is recognized that spring stiffnesses and dashpot
coefficients are evaluated in an approximate rather than rigorous way. In analyzing lateral
response, the method only applies to horizontally homogeneous soil since waves are assumed
to spread out horizontally. In addition, the rocking deformation mode of each individual pile
1s assumed to cause no deformation of other piles, which may not be the actual case.
Three-dimensional continuum models can provide relatively more rigorous solutions,

and are thus often used as benchmarks. For example, impedance functions and dynamic



mteraction factors derived by Kaynia and Kausel (1982, 1991) using continuum-based
analytical and numerical approaches have been widely used as benchmark solutions (e.g.,
Novak and Mitwally 1990; Makris and Gazetas 1992; Klar and Frydman 2002; Ghasemzadeh
and Alibeikloo 2011). They are also generally capable of providing a complete study on pile
groups under all vibration modes in a vertically inhomogeneous soil medium. More
importantly, continuum models can account for coupled compatibility conditions between soil
and piles as well as shear transfer between soil layers, and enable an accurate estimation of
stress and stramn fields in the soil region surrounding the piles. This capability creates the
potential for incorporating nonlinear material behavior, which for soils is strongly dependent
on both the stress and strain fields. On the other hand, continuum models require significantly
greater computational capability and time than the commonly used simplified methods,
especially when the number of piles increases and closed-form theoretical fundamental
solutions are not applicable to the problem at hand.

For pile groups with more than two piles, superposition of interaction factors is
commonly used (Gazetas et al. 1991; Gazetas et al. 1993). This is based on the assumption that
the presence of the second free-head pile does not affect the displacements of the first loaded
pile (Kaynia and Kausel 1982). However, the interaction factor is mathematically accurate only
when it is calculated with an account of all piles present in the system (Novak 1991). A
benchmark studied by Dobry and Gazetas (1988) suggests the simplified method provides
good predictions of group interaction factors for small pile groups (such as 2x1, 2x2, 3x3) at
low frequencies for which the relevant wavelength in the soil 1s greater than six times the pile
diameter, but overestimates the resonant peaks of larger groups (e.g., 4x4). This is because

mteraction between two piles is reduced due to scattering of waves and shadow-forming among



other piles. Kaynia (1988) performed a study on dynamic response of pile groups embedded
in homogeneous and nonhomogeneous soil media, concluding that for very close pile spacings
(e.g., S=2.5d, where d 1s pile diameter) the superposition of interaction factors may not provide
accurate solutions. EI-Marsafawi et al. (1992) suggested that the superposition method works
well in general, except for the cases of vertical response of stiff end-bearing piles, or at high
frequencies for nonhomogeneous soils.
2. Disturbed-zone models

To simplify analyses, soils are often idealized as consisting of horizontally uniform
layers. But soil properties can vary with distance from a pile or pile group due to 1) perturbation
caused by forcing a pile into the soil during driving (O’Neil et al. 1982; Tomlinson 1994),
2) the dependence of soil properties on the state of stress at a point (Seed and Idriss 1970;
Duncan and Chang 1970), and 3) the nonlinear dependence of shear modulus and damping on
shear strain (e.g., Hardin and Dmevich 1972a 1972b; Kokusho et al. 1982; Vucetic and Dobry
1991; Borden et al. 1996; Stokoe et al. 1999). For instance, soils in the vicinity of a pile
subjected lateral loads can have a lower shear modulus and higher damping ratio than soils
farther away, due to the larger shear strains imposed in the soil near the pile. To account for
such effects in their approximate methods, Novak and Sheta (1980) proposed a simple 2D
disturbed boundary zone surrounding a pile, in which the soil has a lower shear modulus and
larger material damping than that in the outer region. In their plane strain solution, the mass of
the boundary zone was neglected to prevent wave reflections from the interface of the two
zones. Otherwise, such reflections would cause false undulations in impedances, making them

impractical in application.
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However, Veletsos and Dotson (1986, 1988) demonstrated that the effects of inertia in
the boundary zone cannot be ignored, and therefore presented new analyses, limited to vertical
and torsional modes, of a similar radially imhomogeneous model consisting of two concentric
zones — a thin, annular inner zone of disturbed material and an outer zone of undisturbed
materials — with the same mass density in both zones. Continuous and discontinuous radial
variations in shear modulus were examined and compared to the homogeneous case. The
results for zero material damping showed that undulations appear in the vertical and torsional
impedances and increase as the size of the boundary zone increases, due to the discontinuous
shear modulus at the interface. A higher ratio of shear modulus in the outer zone relative to the
mner zone leads to higher stiffness and radiation-damping factors for small boundary zones,
but at higher frequencies this behavior can reverse and undulate as the boundary zone grows
larger. For torsional excitation, the damping factor usually decreases with increasing modulus
ratio unless the boundary zone is very large, because torsionally excited layers are less affected
by the outer zone. After adding material damping to both zones, the torsional mode is affected
more due to its lower radiation damping than the vertical mode. When shear modulus is
assumed to continuously increase with radial distance in the form of a power function, the
corresponding stiffness and damping curves vary monotonically and are no longer oscillatory,
as expected.

El Naggar and Novak (1994) applied the disturbed-zone model to account for gapping
and nonlinear behavior of soil in the inner zone and elastic behavior in the outer (far field) zone
for axial pile vibration. A Winkler model was developed for both zones by employing springs
using Kelvin’s viscoelastic model, with additional frictional sliders in the nonlinear, disturbed

mner zone. In addition, plastic sliders were used between the pile surface and the inner zone
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so that slippage could be modeled once the soil stress exceeded its ultimate strength.
Displacement and stress in the inner zone were analyzed as a plane-strain problem and the soil
was assumed to follow a hyperbolic constitutive law (Kondner 1963a 1963b) when loaded and
behave elastically when unloaded. Upon analyzing the pile driving process, Statnamic loading
tests, and harmonic vibrations, the proposed model predicted the responses of single piles and
pile groups satisfactorily.

Han (1997) proposed a model for vertical vibration of single piles in which the soil
shear modulus varied parabolically from the pile surface to the boundary zone’s outer surface.
The shear modulus also varied smoothly across the boundary interface, so no artificially
reflected waves were induced. Han’s study suggested that when excitation intensities increase,
the stiffness and damping factors as well as resonant frequencies decrease, while resonant
amplitudes increase. Solutions from a model without the inner boundary zone overestimated
the stiffness and damping of the soil-pile system, leading to a higher resonant frequency and a
lower resonant amplitude.

Yang et al. (2009) established a multiple concentric disturbed-zone model for vertical
vibration of a single pile. In their 3D axisymmetric model, it was assumed that soil in each
annular disturbed zone was a homogeneous, isotropic linear viscoelastic medium, and the pile
had a circular cross-section. The support at the bottom of the pile and soil zones was simplified
as elastic springs. In addition, only vertical displacement of the soil was considered while the
radial displacement was ignored. Theoretical solutions in the frequency domain and semi-
analytical solutions in the time domain revealed that when the soil strength increased from the
outer zone to the inner zone (i.e., soil strengthening around the pile), both real and imaginary

parts of the impedance functions were smooth. When the soil around the pile was weakened in



12

the radial direction from the outer to the inner zone, significant oscillations appeared in both
the impedance functions and the velocity admittance curves (which are frequency response
functions of displacement per unit force), as the reflected waves decayed less rapidly. As the
thickness (or “step size”) of the annular disturbed zones increased, the reflected waves decayed
more rapidly if soil near the pile was strengthened and more slowly if soil near the pile was
weakened. Wu et al. (2013) applied a similar concentric disturbed-zone model to a tapered pile
i layered soils to study effects of soil compaction around jacked piles. The support at bottom
of the pile and the disturbed zones were modeled by viscoelastic springs, and it was determined
that the compaction had a beneficial effect on tapered piles at low frequencies, but a detrimental
effect at high frequencies.

The disturbed-zone models proposed in the existing literature have been applied for
calibration of theoretical predictions using results of physical tests. For example, Kim et al.
(1987) established a weak zone which had an outside radius of 1.5 times the pile radius and
0.78 times the pile length. The soil shear modulus within the weak zone was 80% of that for
the undisturbed soil. Vaziri and Han (1991) established a cylindrical weakened zone around
the pile to approximately account for effects of soil nonlinearity due to frozen soil layers,
slippage, and lack of bonding between the pile and soil. The experimental case of unfrozen soil
was analyzed with the boundary zone, and close agreement was observed between the
theoretical and experimental results at all excitation magnitudes. The boundary zone
parameters included shear modulus, damping ratio, and thickness, and had appreciable impacts
on the overall response of pile-soil system.

Biswas et al. (2013) conducted a series of small-scale vibration tests on a 2x2 pile group

in clay soils. The pile cap was excited by a harmonic horizontal force using a mechanical Lazan
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(eccentric mass type) oscillator which induced coupled horizontal and rocking motions. The
effects of nonlinearity and slippage were accounted for by an inner boundary zone containing
soils with reduced shear modulus and increased damping relative to the semi-infinite outer
region, using the methods of Novak and Sheta (1980) and Han (1997). Test results showed that
by an appropriate estimation of nonlinear parameters such as the modulus reduction factor,
damping in the weak zone, and separation length, Novak and Sheta’s method provided
satisfactory predictions in terms of the horizontal and rocking stiffnesses of the pile group,
while Han’s method did not. Both stiffness and damping of the pile group were found to
decrease with increasing excitation intensity for the coupled horizontal-rocking vibration mode
studied. This was reasoned to result from development of a weak boundary zone around the
piles under high intensity force, in addition to separation from the soil.

Manna et al. (2013) conducted dynamic model-scale tests on a single pile and a 2x2
pile group. The experimental results were compared to two analytical approaches; a linear
analysis using Novak’s plane strain theory with static interaction factors, and nonlinear
analysis using Novak’s model with dynamic interaction factors. To approximately account for
effects of slippage and nonlinearity, the piles were modeled as being surrounded by two
concentric cylindrical zones; an outer infinite region and an inner weak zone. The gapping was
accounted for by specifying zero soil shear modulus in the topmost layer within the inner zone.
Nonlinearity was incorporated by increasing the damping ratio and thickness of the inner zone
with excitation frequency, while shear modulus was decreased. After incorporation of the weak
cylindrical zone, the predicted resonant frequencies decreased greatly and became very close

to the observed values for both horizontal and rocking motions. It was also pointed out that the
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accuracy of nonlinear dynamic responses depend on the boundary zone parameters and soil-
pile separation, which require more theoretical and experimental research.

Similar analytical approaches were applied by Elkasabgy and Naggar (2013) for
analyzing the vertical dynamic responses of a helical pile and a steel driven pipe pile. The
boundary zone had a thickness of 1.2 times radius of the pile. The theoretical solution from the
linear analysis highly overestimated both the stiffness and damping of the piles due to the
assumed perfect bonding, which resulted in much higher resonant frequencies and lower
vibration amplitudes. On the other hand, with soil parameters in the boundary obtained by trial-
and-error, the nonlinear approach provided reasonable estimations for both impedance
functions and response curves. The improved agreement verified that soil disturbance
generated during installation and driving of helical and pipe piles can significantly affect their
dynamic response.

A fully three-dimensional viscoelastic disturbed-zone concept in layered soils has also
been established by Ashlock (2006) based on boundary element models calibrated to results of
scaled-model centrifuge vibration tests of single piles. With the aid of the centrifuge data and
the BEM program BEASSI, Ashlock demonstrated that even for the ideal case of laboratory-
prepared uniform clean, dry sands, both the homogeneous and the theoretically more
appropriate pure square-root half-space model provide poor agreement with multi-modal
experimental results. He therefore proposed a continuum model with consideration of pile
mstallation and load-transfer effects, as well as the in-situ inhomogeneous soil profile. After
calibrating the model against centrifuge test data of solid piles, the model was shown to predict
the observed behavior of hollow piles at various centrifugal g-levels with high accuracy. The

study thus demonstrated that incorporation of mechanics-based local perturbations of the soil’s
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far-field shear modulus and damping within a 3D disturbed zone around the piles can improve
accuracy of prediction for the boundary element models. The disturbed-zone model was also
applied to full-scale vibration tests on a single pile in significantly more complicated natural
soil conditions by Fotouhi (2014), as well as surface footings at various centrifuge scales
(Ashlock and Pak 2009), and reduced field scale (Ashlock and Phipps 2011). A selection of

disturbed-zone models from the previous studies are illustrated in Figurel.1.
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Figure 1.1 Previous disturbed zone models proposed for piles.
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Figurel.l (continued)

Disturbed-zone models have thus been proven capable of improving accuracy for
various analytical and computational methods, and are being applied on more complex
dynamic SSI problems. As detailed above, the disturbed-zone model was originally developed

based on axisymmetric plane-strain assumptions, but there are several shortcomings of such
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models that can be improved. First, the plane-strain assumption limits application of the models
to only single long, circular piles. For short piles, errors caused by the plane-strain assumption
at the pile toe can be significant, and the disturbed zone should be extended below the pile toe
as a semi-circular region in 2D or a hemispherical cap in 3D. Otherwise the perturbed soils
below the pile toe would not be considered in the vertical vibration mode. Second, the soil in
each of the two zones was assumed to be homogeneous or radially inhomogeneous in some
studies, but not typically layered. In other words, horizontal inhomogeneity was considered
but not vertical inhomogeneity. Additionally, the excitation force was typically limited to
vertical and torsional cases, for which the plane-strain assumption is valid. For the coupled
horizontal-rocking mode of vibration, the theoretical solutions could not be derived. The above
limitations can be overcome with the help of more general 3D numerical models, as developed
in this study.

Finally, disturbed-zone models have yet to be rigorously studied in dynamic pile group
cases. The infinite number of possible combinations of layout and number of piles in a group,
vibration amplitudes, loading directions and their combinations, and layered in-situ soil
profiles make 1t difficult to establish an appropriate disturbed zone that will work well in all
cases. A rigorous study of 3D disturbed-zone continuum models for pile groups is proposed
herein, with layered soil profiles inside and outside the disturbed zone, and parametric
variations in modulus, damping, and shape and size of the disturbed zone.

3. Full-scale and small-scale experimental studies

Novak and Grigg (1976) conducted small-scale tests on a single pile and a 2x2 pile

group in fine silty sand and began investigating group effects experimentally. In the pile group

tests, each pile had a diameter of 2.4 in. and a length of 82 in., with a slenderness ratio (length
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over radius) of 69.1. Shear wave velocities at different depths were measured by the steady
state vibration technique (Richart et al. 1970). Group parameters, such as group stiffness, group
damping, natural frequency, and first resonant amplitude were calculated by superposition of
mteraction factors. The results suggested that further effort was needed to improve the
accuracy of theoretical group interaction factors.

El Sharnouby and Novak (1984) performed a more detailed small-scale experimental
study on a massive group of 102 steel pipes having 26.7 mm diameter and 1.06 m length, with
a rigid pile cap 6 cm above the ground. Shear wave velocities were measured by cross-hole
and steady-state vibration techniques. Forced vibration experiments were conducted under
various excitation amplitudes controlled by adjusting the number of masses on an eccentric
mass oscillator. The measured responses were validated to be linear at low amplitudes and
even at large displacement amplitudes of 0.2 mm. In a companion paper (Novak and El
Sharnouby 1984), three main methods were compared with the experimental results - the static
interaction approach, dynamic interaction factor approach, and direct dynamic analysis
approach. In order to fit the static interaction approach to the test data for vertical and
horizontal vibration modes, the static interaction factor needed to be adjusted and an arbitrary
damping interaction factor included. The equivalent pier concept was employed, which regards
the pile and adjacent soils as a composite body, and can match the peak of response curves at
low frequencies but not at high frequencies. The dynamic interaction factors from Kaynia and
Kausel (1982) tended to overestimate damping for the vertical mode, but gave reasonable
agreement for the horizontal response. It was reported that including an ad-hoc apparent mass
as well as an arbitrary damping interaction factor or a weak zone around the piles can improve

the fit by dynamic pile group analyses, which by themselves tended to overestimate damping.
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Vaziri and Han performed full-scale field studies of dynamic response of piles under
lateral excitations in frozen and unfrozen soils. In the single pile tests (Vaziri and Han 1991),
dynamic soil properties were measured by the in-situ cross-hole technique and laboratory tests
such as the triaxial test. The reinforced concrete pile had a diameter of 0.32 m and a length of
7.5 m, and was cast in silty clays with lenses of a sandy clay mixture. A 0.3m-thick concrete
pile cap was cast with a minimum clearance of 0.02 m from the ground surface. An exciter was
placed on top of the pile cap to apply harmonic force, and two horizontal displacement
transducers measured the horizontal vibration while another two measured the rotational
motion. Theoretical solutions were calculated using Novak’s DYNA model. The tests showed
that the frozen top layer had a profound influence on the pile response by providing a
substantial increase in the horizontal stiffness. The vibration in unfrozen soils showed strong
nonlinearity due to soil yielding and possible pile separation. In subsequent tests at the same
site (Han and Vaziri 1992), a 2x3 group of piles having the same properties as the single pile
was used. The reinforced concrete pile cap had dimensions of 2.5 m x 1.6 m x 0.5 m, and a
clearance of 0.25 m above the ground. Excitation and measurement were similar to the single
pile case. The test results were interpreted in forms of displacement magnitude, pile group
immpedance, and group efficiency ratio. It was concluded that the pile-soil-pile interaction
resulted in a reduction in stiffness and increase in damping for the soil. As frequency increased,
the group efficiency ratio for stiffness decreased while that for damping increased. The
presence of a frozen soil layer resulted in a reduction in displacement magnitude and increase
in resonant frequency.

El-Marsafawi et al. (1992) conducted model tests on a group of six steel pipe piles. The

soil consisted of silty fine sand with a gravel seam, resting on dense silty till. The soil shear
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wave velocity profile was measured using the cross-hole and steady state vibration techniques.
The pipe piles had an outer diameter of 101.6 mm, thickness of 6.35 mm and were driven to a
depth of 2.75 m with closed ends. A hexagonal reinforced concrete cap of 0.2 m thickness was
seated on the piles, 0.15 m above the ground. The system was excited harmonically by a
mechanical oscillator in vertical and horizontal directions. For vertical vibration, four velocity
transducers were mounted vertically on top of pile cap at equidistant locations from the
foundation center on two axes of symmetry, and the measurements were averaged to eliminate
rocking components. For horizontal and rocking vibration, two velocity transducers were
mstalled on either side of the foundation at the centroid level and another two velocity
transducers were mounted vertically on top. A dual-beam oscilloscope was used to monitor the
phase shift between different velocity measurements. The vibration of the pile group exhibited
moderate nonlinearity. Theoretical results were calculated by Novak’s method and compared
to the experimental data for both the pile group and single pile. The results suggested that
stiffnesses for small displacements were well estimated but damping values were over-
estimated. Two weak-zone models were established to account for separation and pile
mstallation effects.

Chandrasekaran et al. (2010b, 2013) studied the dynamic and cyclic lateral and bending
behavior of small-scale pile groups in clay. The experimental soil was classified as CH with
shear wave velocity measured by the cross-hole technique. Small aluminum tubes having an
outer diameter of 25.6 mm and inner diameter of 18.6 mm were used, with the length to
diameter ratio varied from 15 to 40 and spacing to diameter ratio varied from 3 to 9. The pile
cap was an aluminum plate 150 mm above the ground surface. Cyclic loads were applied by

an electrodynamic exciter with a power amplifier. For the lateral response, test results of a 2x2



21

pile group exhibited larger hysteresis loops at higher frequencies and pore water pressures
reached maximum values at the resonant frequency. The resonant frequency decreased as
loading amplitude increased, which was due to the decrease in modulus and increase in
hysteretic damping when shear strain increases. Normalized pile-head displacement curves
under different loading amplitudes did not overlap, and exhibited nonlinear behavior such that
the resonant peak frequency reduced with increasing load amplitude, while the resonant peak
leaned towards the left due to the well-known snap-through effect. Compared to the static case,
the peak dynamic displacement was amplified by a factor greater than 2. The resonant
frequency decreased and peak amplitude increased as the pile spacing decreased or the number
of piles increased, because of interaction effects and nonlinearity of the soil-pile system. An
equivalent damping ratio and stiffness constant were calculated by modeling the system as a
single degree of freedom (SDOF) system. The bending response was shown to be strongly
frequency-dependent. In a 3x3 pile group, the corner piles had much higher bending moments
at the pile cap than the central pile. The group interaction effects also resulted in higher forces
acting on a pile in a group than when isolated.

Elkasabgy and El Naggar (2011, 2013) conducted full-scale tests on a single helical
pile and a driven steel pipe pile. Subsurface conditions were obtained by CPT and SPT tests
and soil behavior types included silt, clay, silty clay, silty sand and, sandy silt. Both piles had
outer diameters of 0.324 m, inner diameters of 0.305 m, and lengths of 9 m, and were driven
closed-ended. A superstructure was simulated by a rectangular steel plate 0.6 m off the ground
with test body plates stacked above. The excitation force was generated by a Lazan mechanical
oscillator and the magnitude of excitation was adjusted by degree of eccentricity of the rotating

masses. Two uniaxial accelerometers were mounted on top of the test body equidistant from
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the central axis, and a triaxial accelerometer was mounted on one side of the test body at the
centroid elevation. The helical pile and the driven pile were tested two weeks after installation
and the helical pile was tested again 9 months after installation. Vertical displacement
amplitude was calculated from the acceleration measurement, and showed slight to moderate
nonlinearity for the helical pile, with significant recovery in shear modulus between the two
tests. The driven pile showed similar performance characteristic to the helical pile.
Experimental bending moments measured by strain gauges suggested an insignificant

influence on the load transfer mechanism for the helical pile.

(c) ElI-Marsafawi et al. (1992) (d) McVay et al. (1994)

Figure 1.2 Selected previous experimental pile studies.
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Table 1.1 summarizes previous experimental studies on the dynamic response of single
piles and tests on pile groups. Due to the relatively limited number of studies on the dynamics
of pile groups, static pile-group tests were also included for reference. Small-scale and even
full-scale experiments have become a main methodology in dynamic soil-pile interaction since
the 1980s, however the volume of full-scale experimental studies in the literature has remained
much smaller than theoretical and numerical ones. Although challenging to carry out, physical
simulations make it possible to observe how a pile group actually responds under dynamic
excitation by measuring the natural frequencies and pile cap accelerations and displacement
amplitudes. From the literature review, it is clear that the available data on in-situ full-scale
tests 1s still insufficient in terms of the range of force and excitation frequency, and the spacing
and layout of pile groups. The limited collection of full-scale vibration tests makes it
worthwhile to contribute further to such a database, to help build a foundation for further
studies. In addition, when apparent discrepancies are found between the observed and
predicted responses, opportunities are presented to improve both the experimental methods as
well as the analytical or computational models. To this end, the proposed study will involve
performance of new full-scale vibration and cyclic tests on a single pile and a 2x2 pile group,
and development of new computational models for dynamic soil pile-group interaction

analyses.



Table 1.1 Summary of previous experimental studies on dynamic response of single piles and pile groups.

Outer

Driven

Loading

Author (year) #il(:g Pile type diameter/  depth/length 12;;(].10 Soil type type — L{;}:‘gﬂg
P width (m) (m) direction”
Novak and Grigg 2x2, . 7.5, silty sand, Lazan
= . : : .08~2.35 ’ o - :
(1976) single steel pipe 0061, 0.089 2.08-2.3 11.25  gravel, till D-HV oscillator
saturated
Scott et al. (1982) single  Open-ended 0.61 9.8 Na 2 Juedum D-H vibration
steel pipe dense silty generator
sand
El Sharnouby and artificial Lazan
Novak 102 steel pipe 0.0267 1.06 3 o D-HVT . ]
mixture oscillator
(1984)
- closed- . . )
Blaney and O"Neil single  ended steel 0.273 13.4 N.A. OC clay D-H linear 1_ne11la‘
(1986) . mass vibrator
pipe
electro-
. magnetic
Hassini and Woods 22 el pipe 0.06 1.98 2~10 SP D-HV exciter;
(1989) 2x1 :
rotating-mass
shaker
closed- linear inertia
Blaney et al. (1987) 3x3 ended steel 0.273 13.1 3 OC clay D-V . )
. mass vibrator
pipe
sand, silty
] concrete- 41, ’
Crouse and Cheang 4x4, encases 0.32,0.324 12.2 2.8;5, §and, D-H quick-release
(1987) 3x2 . gravelly
steel pile 4.7 =
sand
Finn and Gohl (1987) 2L Greeltube  0.00952 02095 246 Jdemseand g centrifuge
single loose sand
cast-in- electro-
Kim et al. (1987) single place RC 0.15 15233 N.A. SP D-V magnetic
pile vibrator

4



Table 1.1 (continued)

- closed- . . )
Blaney and ONeil. 33 endedsteel 0273 13.7 NA. OCclay  D-H  luearinemtia
(1989) . mass vibrator
pipe
. silty clay w/
Vaziri and Han 3><2, cast. RC 0.32 7.5 2.81 lenses of D-H LEII.ZEIH ]
(1991) single pile oscillator
sandy clay
El-Marsafawi et al ) silty sand, mechanical
(1992) 6 steel pipe 0.102 3.05 34 silty till D-HV oscillator
2x2, aluminum dense and
Finn and Gohl (1992) 2x1, 0.00635 0.61 N.A. D-H shaking table
} tube loose sand
single
cast-in- sand/eravel electro-
Sy and Siu (1992) single place RC 0.51 8.5 N.A. e D-HV magnetic
) fill, silt, sand =
pile shaker
) aluminum saturated
Yao an(c: ;gl;ayashl 4 rectangular 0.025 1.75 21 siliceous D-H shaking table
hollow pile sand No.6
silty clay,
Zhu et al. (1992) 40, RC pile 0.5 18.22.28 NaA, Gavsily 5 gy vibrator
single sand, hard
sand
McVay et al. (1995) 33, aluminum - o0, 0.235 3.5 SP S-H centrifuge
’ single tube ) ’ ”
stiff
cohesive
0.0254,0.03 2.25~ volcanic- .
Buir et al. (1997) 2x2 steel tube 81.0.051 N.A. 150 ash: soft D-H vibrator
saturated
clay
2x2, aluminum
Wilson et al. (1997) 3x3, 0.022 0.559 4 Nevada sand D-H cenfrifuge

single

model pile

9¢



Table 1.1 (continued)

closed-
. 3x%3, ML,CL,SP, L
Rollins et al. (1998) single ende_d steel 0.324 9.1 3 CH.SM S—-H hydraulic jack
pipe
organic clay, hydraulic
] 3x3, . alluvial jack:
Brown et al. (2001) 324 steel pipe 0.273 12 34 sand: SD-H Statnamic
CL.ML.SM device
closed- .
) 2.8, ML.CL.SP, Statnamic
Rollins et al. (2003b) 3x3 ende_d steel 0.324 9.1 565 CH.SM D-H device
pipe
33, closed
. 3x4, A 3.3.4. CH,SM.CL, .
Rollins et al. (2006) 35, ende.d steel 0.324 11.9 4.5.65 SM S-H hydraulic jack
single pipe
33 cast-in- silty clay,
Stewart et al. (2007) sin lne place RC 0.61 7.62 3 silty sand, S-H actuator
& pile sandy silt
tubular and
Ashlock and Pak . solid 0.00914.,0.0 silica F-75 .
(2009) single aluminum 094 0.122,0.127 N.A. Ottawa sand D-HV cenfrifuge
pile
) cast-in- hydraulic
Manna and Baidya single  place RC 0.45 22 Na  SMCHCLoh ¢ jack Lazan
(2009) . ML.SM g
pile oscillator
. cast-in-
Manna and Baidya 22, lace RC 0.1 1152 234 CLCICH D-V Lazan
(2010) single pile oscillator
1x2 .
Chandrasekaran et al. ’ aluminum 3,57, slotted
(2010a) 2x2, tube 0.026 0.39~1.04 9 fat clay S-H weights

1x4,3%3

LT



Table 1.1 (continued)

1x2, . pneumatic
Chandrasekaran et al. ’ aluminum )
(2010b, 2013) 2x2, tube 0.026 0.39~1.04 3,57 fat clay D-H power
3x3 cylinders
1x2, cast-in- clay, silt, silt
. 2x2, mixed with .
Dai et al. (2012) 33, plac;elj{C 0.4 20,24 253 silty sand, S-V hydraulic jack
single P soft clay
lean clay Servo-
Fotouhi and Ashlock single steel H pile 0.256 6 N.A. WlTh gravel, D-HV hydraulic
(2012) silt-clay, ..
] inertial shaker
sandy gravel
silt, silty
Elkasabgy and El . helical and clay, silty Lazan
Naggar (2013) single pipe piles 0.324 ? N-A. sand, sandy D-V oscillator
silt, clay
Kong et al. (2015) 3x3 steel tube 0.114 5.95 6,11 saturatedsilt  S-H hydraulic
actuator
. 2x2, (0.29 min (16 min OC clay, )
Taghavi et al. (2016) single steel tube prototype) prototype) 3.7 dense sand S-H cenfrifuge
closed- silica F-55
Choi et al. (2017) 2x2 ended steel 0.03 1.2 3 o S—HYV  hydraulic jack
. sand (SP)
pipe
closed- Stiff sil sledge
Pender et al. (2018) single  ended steel 0.220 7.75 N.A. cla ty D-H hammer; pull-
pipe y release

Scale®: F — full-scale; S — small-scale; L — large-scale.

Loading type — direction®: S — static loading; D — dynamic loading; H — horizontal; V — vertical; T — torsional.

N.A. =not applicable.

8¢
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1.2 Statement of Problem and Methodology

The problem studied in the thesis is the dynamic response of a single floating pipe pile
and a 2x2 pile group, as part of a research project supported by the National Science
Foundation (Grant No. 1351828). The problem is studied in integrated computational and
experimental phases.

For the experimental phase, pipe piles with an outer diameter of 0.219 m (8.625 in.)
and length of 7.62 m (25 ft) were driven open-ended at the former Spangler Geotechnical
Laboratory site at Iowa State University. Small strain elastodynamic vibration tests on the
single pile and 2x2 pile group were performed using a servo-hydraulic inertial shaker
developed in a previous NSF Network for Earthquake Engineering Simulation (NEES) project.
First, the vertical vibration mode was tested using vertical centric (VC) excitation, and then
the coupled horizontal-rocking mode was tested using horizontal centric (HC) excitation. More
realistic multi-modal (vertical plus horizontal-rocking) tests were then performed by applying
vertical eccentric (VE) excitation. By comparing test results, the hypothesis that a single multi-
modal VE test on a pile group can more efficiently replace sequential VC and HC tests was
examined, thereby eliminating the problem of differing soil stress histories and contact
conditions when the modes are measured in separate sequential tests as in most experimental
studies. Similar to the previous NEES study on single piles (Fotouhi and Ashlock 2012), the
vibration tests were performed with successively increasing excitation levels for each of three
broadband excitation types: random (R), swept-sine (S), and chaotic impulse (C). Following
the vibration tests, the piles will be tested under quasi-static cyclic horizontal forcing using a
large hydraulic actuator to apply progressively larger displacements until failure for a separate

study.
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In the computational phase of this study, the 3D BEM disturbed-zone models were used
to calculate impedance functions at the ground-surface elevation for the single pile and pile
group in the frequency domain. The impedances are complex-valued force/displacement and
moment/rotation ratios. The theoretical accelerance functions (frequency-dependent ratios of
linear or angular acceleration to force) at the pile cap centroid are formulated and calculated in
Section 3.5.2, using the method of sub-structuring with the BEM impedance functions as inputs.
For the calibration process, the soil property profiles inside and outside the disturbed zone were
varied parametrically based on mechanics considerations, to minimize the misfit between the
theoretical and measured experimental accelerance functions. Parametric studies were also
conducted to study effects of the discretization of soil layers, pile group gapping, pile spacing,
disturbed zone dimensions and shape, and superstructure properties.

This study aims to advance fundamental knowledge on dynamic pile-soil interaction,
to ultimately improve the accuracy with which current computational models can simulate and
predict the true multi-modal viscoelastic vibration responses. It also contributes an additional
experimental database on full-scale single and pile group tests, enabling further studies on

viscoelastic and nonlinear pile group responses.
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CHAPTER 2. FULL-SCALE IN-SITU DYNAMIC VIBRATION TESTS

2.1 Site Investigation

Site investigation is the process whereby all relevant information concerning the site of
a proposed civil engineering or building development and its surrounding area is gathered.
Techniques used in some previous in-situ pile experiments are summarized in Table 2.1. The
cone penetration test (CPT) appears to be the most frequently used technique, followed by the

standard penetration test (SPT) and the cross-hole seismic test.

Table 2.1 Site investigation techniques applied in previous in-situ pile experiments.

Author (vear) Site investigation technique
Novak and Grigg (1976) Rubber balloon method, steady-state vibration
Scott et al. (1982) CPT
El Sharnouby and Novak (1984) cross-hole, steady-state vibration
Blaney et al. (1986) CPT, cross-hole
Crouse and Cheang (1987) CPT, downhole
Kim et al. (1987) cross-hole
Vaziri and Han (1991) cross-hole
El-Marsafawi et al (1992) cross-hole, steady-state vibration
Sy and Siu (1992) SCPT, CPT, SPT
Rollins et al. (1998) SPT, CPT, DMT, PMT, VST
Stewart et al. (2007) SCPT, CPT, PMT, downhole
Manna and Baidya (2009) SPT
Manna and Baidya (2010) SPT, cross-hole
Dai et al. (2012) CPT
Fotouhi and Ashlock (2012) CPT
Elkasabgy and El Naggar (2013) CPT, SCPT, SPT
Kong et al. (2015) CPT
Pender et al. (2018) CPT
Bharathi (2019) CPT, SPT

To acquire accurate soil profiles for the present study, comprehensive site investigation
was conducted by in-situ tests and laboratory tests. In-situ tests were conducted on March 28,

2017, mcluding standard penetration tests (SPT), cone penetration tests (CPT), and seismic
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cone penetration tests (SCPT). In addition to the disturbed soil samples obtained from SPT
tests, several thin-walled tube samples were retrieved for laboratory testing. Soil classification
tests were performed on the SPT samples, and cyclic triaxial tests are currently being
performed for use in the related study on cyclic lateral pile tests and FEM analysis.
2.1.1 SPT Tests

The SPT test was introduced by the Raymond Pile Company in 1902 and remains one
of the most common in-situ tests worldwide. It is conducted during the advancement of a soil
boring to obtain an approximate measure of the dynamic soil resistance and to collect disturbed
soil samples (ASTM D1586). In this study, SPT tests (Figure 2.1(a)) were conducted in
boreholes at two locations: 1.524 m from the center of the pile group (labeled as SPT-1) and
1.524 m away from the center of the single pile (labeled SPT-2). Soil samples retrieved by the
SPT split-barrel sampler (Figure 2.1(b)) were preliminarily classified as glacial till clays with
some small sand lenses, and further confirmed to have USCS classifications of lean clay (CL)
up to a depth of 15.24 m, with clayey sand (SC) from 8.69 m to 9.144 m depth. Energy-

corrected SPT blowcounts (Nso) were calculated based on the formula

N I
N, = ??Hgg IsTr 2.1)

where N 1s the uncorrected blow count, 77, 1s the hammer efficiency (%), 7,1s a correction
for borehole diameter, 75 1s a sampler correction, and 7, 1s a correction for rod length (Das
2014). Raw N-values, along with the applied correction factors and energy-corrected N,

values are summarized in Table 2.2. Refusal was reached at depths of 16.5 m and 18 m in

Boreholes SPT-1 and SPT-2, respectively.
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Table 2.2 Summary of SPT results.

. (b')& spﬁtbarrel sampléf .
Figure 2.1 Standard penetration tests performed at the test site.

Average depth (m) N M Mg Ns Mk Neo
1.30 11 80 1 1 0.75 11
2.82 12 80 1 1 0.75 12
4.34 15 80 1 1 0.85 17
5.87 13 80 1 1 0.95 16
7.39 21 80 1 1 0.95 27
8.92 15 80 1 1 0.95 19
SPT-1 10.44 48 80 1 1 1 64
11.96 34 80 1 1 1 45
13.49 24 80 1 1 1 32
15.01 26 80 1 1 1 35
16.54 97 / / / / /
18.06 100 / / / / /
1.30 8 80 1 1 0.75 8
SPT-2 2.82 10 80 1 1 0.75 10
434 13 80 1 1 0.85 15
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Table 2.2 (continued)

5.87 10 80 1 1 0.95 13
7.39 19 80 1 1 0.95 24
8.92 19 80 1 1 0.95 24
10.44 27 80 1 1 1 36
11.96 28 80 1 1 1 37
13.49 21 80 1 1 1 28
15.01 25 80 1 1 1 33
16.54 48 80 1 1 1 64
18.06 99 / / / / /

2.1.2 CPT Tests

Cone penetration testing is a modern and expedient approach for site investigation that
mvolves pushing an instrumented electronic penetrometer into the soil and recording
measurements of tip resistance, sleeve friction, and optionally pore water pressure every few
centimeters of depth. In this study, CPT soundings were conducted at three locations: the center
of the pile group (denoted CPT-1), 1.53 m west of the single pile (denoted CPT-2) and 4.42 m

south from the approximate center of the single pile and the pile group (denoted CPT-3c¢), with

data recorded every 5 cm. The resulting measured tip resistance ¢, , sleeve friction £, and pore

pressure u, are shown in Figure 2.2. CPT-1 indicated a stiff layer at depth of 11 m. CPT-2 and

CPT-3c showed a hard layer at depth about 9 m. All three tests show general consistency,
especially for the top 8 m depth, suggesting a favorable horizontal homogeneity. The depths
to the water table at the time of site investigation were 5.21 m, 3.66 m, and 2.26 m for the three
CPT soundings. Ground water table within piles was also measured immediately after the
experiments had been completed. The results suggest an average water table at 3.53 m for the

pile group and 3.61 m for the single pile.
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Figure 2.2 CPT test data from the project site.
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2.1.3 SCPT Tests

Although the CPT is regarded as an appropriate test for determining the stratigraphy
and shear strength of soil, its prediction for soil modulus can be poor, especially for
overconsolidated soils (Robertson et al. 1986). The use of geophones incorporated into the
cone penetrometer enables the shear wave velocity to be measured in seismic CPT tests (SCPT),
from which the small-strain shear modulus can be more accurately obtained. For the current
study, SCPT tests were performed at the three sounding locations, termed SCPT-1, SCPT-2,
and SCPT-3c¢. Seismic primary (P, or compressional) and secondary (S, or shear) waves were
recorded at approximately 1 m depth intervals using a sampling frequency of 25,625 Hz and
recording period of 100 ms (Figure 2.3). A spring-loaded mechanical impactor was placed
under one of the CPT rig’s footplates to provide a repeatable impact source for S waves, and a
sledgehammer with trigger was used to impact a steel plate bolted to three plywood layers to
generate P waves. Since only a single seismic receiver was used each time, such measurements
are referred as pseudo-interval measurements. Previous studies have shown that the standard
deviation of such measurements is less than 1.5% of the mean value for both pseudo- and true
time-interval measurements, with the latter obtained simultaneously using a pair of
accelerometers (Rice 1984). This suggests low deviations in multiple pseudo-interval
measurements. To increase the signal to noise ratio of the data, several impacts were applied
at each measurement depth and the resulting signals were stacked.

The seismic wave signals are susceptible to environmental vibrations and high-
frequency electrical noise especially at great depths, as well as low-frequency noise below 1
Hz due to DC drift. Campanella and Stewart (1992) suggested that the bulk of the signal energy

occurs below 200 Hz. Transforming the signals into the frequency domain confirmed that the



39

energy in the current study is mainly below 210 Hz. Therefore, the data was band-pass filtered

between 1 and 210 Hz.
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(a) SCPT setup (b) SCPT equipment used

Figure 2.3 Schematic and photo of seismic CPT test.

2.2 Interpretation of Site Investigation Data

Among all the parameters characterizing soil properties, four of them are crucial in soil
dynamics — shear modulus, material damping ratio, Poisson’s ratio, and density (Kramer 1996).
The soil small-strain shear modulus, minimum material damping ratio, and Poisson’s ratio are
determined from the SCPT test data in this section.

2.2.1 In-Situ Small-Strain Shear Modulus Profiles of Soil

In general, using measured in-situ shear wave velocities is the most reliable means to

evaluate the in-situ shear modulus profile of a particular soil deposit (Kramer 1996). Small-
strain shear modulus of soil G, can be calculated as:

G, =p,v; @2
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where p, 1s soil density and v, is soil shear wave velocity. Three common methods for

analyzing shear wave velocity profiles in SCPT tests are the arrival time method, cross-over
method, and cross-correlation method (Robertson et al. 1986; Campanella and Stewart 1992).

In the arrival time method, the shear wave velocity is calculated as

L—L
v =—
Sl 2.3)

where L,, L,and {, ¢, are travel distances and corresponding travel times from the excitation

location to two neighboring observation points. However, determination of the arrival times
requires subjective judgement between different potential instances of the wave arrival, such
as the first significant increase in acceleration amplitude. Also, the accuracy of the arrival time
1s affected by reading errors, especially as the signal-to-noise ratio decreases as the depth of
observation points increases.

To overcome these shortcomings, the cross-over method was proposed. It assumes that
a signal with identical amplitude and shape but opposite vibration direction will be obtained if
the initial excitation direction is reversed. When two signals intersect after their first peaks, the
time is recorded as the cross-over time and differences in such times between adjacent
observation points result in an average shear wave velocity. An example of applying the cross-
over method on SCPT-2 test data and the resulting cross-over times are shown in Figure 2.4.
The cross-over time, however, may be shifted if the signal is perturbed near the cross-over
point (e.g., at depth of 12.45 m and 14.45 m in the data shown), which can occur due to

mterference by the arrivals of direct and reflected primary and shear waves in layered soils.
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Figure 2.4 Application of the cross-over method on SCPT-2 data with marked cross-over
points.
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The cross-correlation method, which utilizes the entire records of the velocity or
acceleration signals, was employed by Campanella and Stewart (1992). Its physical meaning
1s the determination of a time shift by which two signals have the best overall agreement. The
method can be implemented in either the frequency domain or the time domain. When
immplemented in the time domain, the correlation coefficient decreases as the time shift
approaches +1 recording period. When implemented in the frequency domain, use of the fast
Fourter transform (FFT) procedure inherently assumes the finite sample record to be periodic.
As a result, an unreasonable negative time shift instead of a normal positive time shift can
sometimes be identified. To avoid this problem, the original signals can be processed by zero
padding, 1.e., adding a long series of zeros at the beginning and the end of the signals. Then
the cross-correlation in the frequency-domain approach has a period longer than the recording
period, and yields almost the same results as the time-domain approach. Additionally, a
windowing function is required to avoid discontinuities at the beginning and end of the record.
Both the time- and frequency-domain approaches were used with the SCPT data, and the
resulting differences in peak time shifts were found to be negligible. Therefore, the frequency
domain cross-correlation approach is adopted herein. An example of applying the cross-
correlation method to the SCPT-2 data in both the time and frequency domains is shown in
Figure 2.5. For each pair of receiver depths, the actual time shift is identified as the one having
the peak cross-correlation coefficient.

Shear wave velocity profiles determined by the arrival time, cross-over, and cross-
correlation methods are compared in Figure 2.6(a), demonstrating a reasonable agreement for
depths up to a few meters. At greater depths, the results by the arrival time method deviate

from the other two methods and exhibit greater variations. This can be attributed to the
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previously discussed errors in estimating the pseudo-interval arrival time, which at any
observation point would affect both the upper and lower neighboring layers, underestimating
the velocity of one layer while overestimating the velocity of the other. All three methods show
divergence with increasing depth. The increasing perturbation of the signals due to dispersion,
as well as decreasing signal-to-noise ratios with depth affects not only the arrival times and
cross-over times, but also leads to very low normalized cross-correlation coefficients as shown
m Figure 2.5. It should be noted that the shear wave velocity for the soil layer between ground
level and the first observation points cannot be determined by either the cross-correlation
method or cross-over method, and thus the shear wave velocity was linearly extrapolated for
this layer. The arrival time method led to a much higher shear wave velocity value for this
layer because the sensitivity to reading errors is high when the travelling time 1s short.

In the absence of SCPT data, empirical correlations to corrected CPT tip resistance and
sleeve friction measurements are alternative options used to obtain shear wave velocities,
although the data points from which these correlations were determined exhibit significant
scatter. For comparison with the SCPT results, correlations by Hegazy and Mayne (1995) for
all soil types and Mayne and Rix (1995) for clay soils are shown in Figure 2.6(b), which reveal
that both correlations conform fairly well to the SCPT results in general, although that of
Mayne and Rix (1995) appears to overestimate the influence of tip resistance. Empirical
correlations by Wair et al. (2012) employing SPT blow counts were also studied to estimate
shear wave velocity for all soil types and for clays and silts. The results shown in Figure 2.6(b)
suggest that both of the correlations follow the overall increasing trend with depth, but
underestimate the velocities for the soils in this study.

Hegazy and Mayne (1995),
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All soils: V, =[10.1-logq, —11.41"°[ 1. / g,-100]** 2.4
Mayne and Rix (1995),
Clays: V, =1.75(¢g,)**” (2.5)
Wair et al. (2012),

Quaternary soils: V, =30N, "o %" (2.6)

Quaternary clays and silts: 7, = 26N> o, % 2.7

In summary, the empirical correlations between shear wave velocity and CPT tip

resistance and sleeve friction fit the SCPT results well and are able to capture sharp variations.

The SPT correlations to effective stress and corrected N, underestimated the velocities and

provided limited resolution, because SPT tests are typically performed at 5 ft intervals. The
soil density was assumed to be 1936.8 kg/cm® (120 1b/ft?) for all soil layers. Using this soil
density with the SCPT shear wave velocity profiles determined by the cross-correlation method
gives the in-situ small-strain shear modulus profiles for the location of the pile group (SCPT-
1) and the single pile (SCPT-2) presented in Figure 2.7.

2.2.2 In-Situ Minimum Material Damping Profiles of Soil

Although no hysteretic dissipation of energy occurs at small strain levels in the ideal
case, experiments have suggested a minimum damping ratio at small strains (e.g., Stokoe et al.
1999; Drnevich 2017). Efforts have been made to obtain soil damping ratios from SCPT tests

(e.g. Stewart 1992; Karl et al. 2006). Due to the very small vibration amplitudes in SCPT tests,
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methods for estimating velocities , (b) comparison of cross-correlation method to empirical
CPT and SPT correlations.



47

Small-strain shear modulus [GPa]

0 0.1 0.2 0.3 0.4 0.5
0 I I I I

e SCPT-1
= SCPT-2

m— |

Depth [m]
oo
T
|

12 -

14 - —

16 | | | |

Figure 2.7 In-situ small-strain shear modulus profiles of soil at the test pile locations.
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for which shear strain is assumed to be less than 102%, such material damping values are
considered to be the small-strain minimum damping.

Stewart (1992) studied six methods and concluded that the spectral ratio slope (SRS)
method is capable of avoiding effects of radiation damping and is believed to be a reliable
method for estimating material damping from SCPT data. For simplicity, the calculation can

be summarized by the two equations below:

2 AR
o (-ln—=
(ﬂ[)

I (2.8)
~ (9fOR)
D= 2.9)

where A, 1s the FFT amplitude (m) of the sensor’s signal at depth R (m), 4,1s the FFT

amplitude (m) of a reference signal at a typical depth of 3-5 m or within a shallow surficial
layer, 7 is frequency (Hz), V, (m/s) is shear wave velocity of the corresponding layer, £ is
the slope of the spectral ratio (s/m), and D, is the material damping ratio. Shear wave signals
must first be windowed with a length of one cycle to obtain smooth spectral curves.

In the present study, the signal at a depth of 0.6 m was selected as the reference, and
peak FFT frequencies were around 80 Hz for all measurement depths. After performing trials
on several potential frequency ranges, the optimum frequency range for analysis was
considered to be 60—100 Hz (Figure 2.8), which covers most of the frequencies over which the

peaks have relatively flat logarithmic ratios. The CPT tip resistance and sleeve friction suggest

that there is a stiff layer between 7.05 and 8.1 m, but it is too thin to be captured by the 1-m

sampling interval of the seismic tests. Points denoting 6(—In 4, / 4,)/ &f from depths of 0.6 m

to 9.55 m appear to be fitted by a straight line and thus the soils are idealized as a single layer.
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Averaging the piecewise material damping ratios leads to an average value of 3.4% and 2.6%

for SCPT-1 and SCPT-2, respectively (Jiang and Ashlock 2018).

% 0.08
g . 1 1 1 1 1 1 1 I 1 1 —_— 0.6m
. — 1.6m
=¥
g 0.06 - ——2.55m
: —3.5m
£ 0.04 p— 4.4m
E — 5.3m
@ 0.02 6.3m
5 7.3m
= 8.35m
A 00— ' ' ' ——9.35m
20 40 60 80 100 120 140 160 180 200
Frequency [Hz]
(a) SCPT-1
§ 0.08 T T T T T T T T T T 0.35m
= ——1.05m
"2 0.06 4 |[——1.75m
£ ——2.45m
R e
= / 5.45
.2 451N
2 0.02 / . 6.45m
QEJ 7.45m
— ) 8.45m
/) 0 9.45m
20 40 60 80 100 120 140 160 180 200

Frequency [Hz]

(b) SCPT-2

Figure 2.8. FFT spectra of shear wave responses from SCPI-1 and SCPT-2 data.

2.2.3 Poisson's Ratio Profiles of Soil
The soil Poisson’s ratio can be back-calculated from three-dimensional S- and P-wave

velocities measured in in-situ tests, using to the following relations from elasticity theory:

v,=Julp (2.10)
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vp:,[(i+2,u)fp (2.11)
where v, and v are secondary (shear) wave and primary (compressional) wave velocities in

soil, p1is soil density, and 4 and g are Lamé constants. The Poisson’s ratio v can thus be
determined as:

O.S(Vi - 2vf)

V= —"'i 7 (2.12)
Due to insufficient P-wave velocity data in sounding SCPT-1, shear and primary wave
profiles measured in SCPT-2 were used to estimate the Poisson’s ratio profile of the clayey
soil (Table 2.3). The resulting Poisson’s ratio profile was relatively constant with depth and

had an average value of 0.42 for the depth range 0 to 10.45 m, and did not vary sharply across

the groundwater table.

Table 2.3 Determination of Poisson’s ratio.

Depth range (m) S-wave velocity (1n/s) P-wave velocity (m/s) Poisson’s ratio
1.05-1.75 173.1 438.0 0.41
1.75-2.45 167.3 340.2 0.34
2.45-3.45 276.7 896.0 0.45
3.45-4.45 2934 826.6 0.43
4.45-5.45 3234 1243.6 0.46
5.45-6.45 290.6 8304 0.43
6.45-7.45 3654 1246.8 0.45
7.45-8.45 360.4 998.0 0.43
8.45-9.45 3554 768.0 0.36

9.45-10.45 281.2 907.9 0.45

2.3 Piles and Pile Caps: Design, Construction and Installation

Both the 2x2 pile group and the single pile consisted of steel pipe piles having the

properties shown in Table 2.4.
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All five piles were driven open-ended by a DELMAG D12 diesel hammer to a depth
of 7.62 m, and the pile segments above ground were trimmed after construction of the pile caps.

The embedded pile segments were sufficiently long to capture horizontal characteristics of the

Table 2.4 Summary of pile properties.

Outer diameter (m) 0.219
Thickness (cm) 0.818
Embedded length (m) 7.62
Unembedded length (m) 0.965
Young’s modulus (GPa) 200
Poisson’s ratio 0.26
Ultimate compressive strength (MPa) 374
Ultimate tensile strength (MPa) 498

pile-soil interaction, and ensure a “long-pile” failure in the planned cyclic lateral tests. The
Canadian Foundation Engineering Manual (2006) categorizes driven piles into displacement
piles, small displacement piles, and non-displacement piles. Steel pipe piles driven with closed
end are displacement piles, in which case the soils are completely displaced by the driven piles.
Piles driven with open ends are small displacement piles, which allows a partial plug of soil
mto the pipes.

To quantify the degree of soil disturbance, the soil plug length was measured during
pile driving in this study. A small hole was created on each pile before driving at a location
10.668 m from the pile toe, where the hole would not affect either driving or integrity of piles
in vibration tests, as it was above the pile cutoff elevation. A tape measure with weight attached
at 1ts end was used to measure the total distance from the surface of the plugged soil inside the
pile, through the hole and back to the ground level. The actual soil plugging distance can be
calculated as:

L,=c—[M—(c—D)]=2c-M-D (2.13)
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where L is the soil plug length (m), ¢ is the distance from the hole to the pile toe (10.668 m),

M 1s the tape measure reading (m), and D is the penetration depth of the pile (m) (see Figure

2.10).

<« hammer

.— pile
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measure
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D
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Figure 2.10 Measurement of instantaneous soil plug length during pile driving.

The relation of the measured L, and D data is plotted in (Figure 2.11a). Despite a few

irregular data points likely resulting from measurement error, both the pile group and single
pile show fair consistency in their soil plug length, which suggests that the presence of nearby
piles or driving sequence has negligible effects on soil plugging for this soil profile and pile
type. Soil plugging 1s commonly quantified by the plug length ratio (PLR) and the incremental
filling ratio (IFR). The PLR is defined as ratio of soil plug length to pile penetration depth at

the end of pile installation:

L
PLR =— (2.14)

P
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A PLR of zero or one indicates a displacement or non-displacement pile, respectively. In this
study, the average plugging length is approximately 3.0 m, giving a PLR of 40% which
corresponds to small-displacement piles. However, PLR only represents soil plugging in an
average sense, and does not reveal the trend of soil plugging during pile installation. To this
end, the IFR was also calculated, which is defined as the ratio of incremental plug length to

incremental pile penetration depth:

IFR = fé <100% (2.15)

P
It is difficult to calculate IFR directly based on discrete measurements of soil plug length. One
reason is that piles were driven continuously by the diesel hammer and it is impractical to take
readings at an interval smaller than 0.305 m (1 ft). In addition, the plug length measurement is
sensitive to uneven soil plugging and reading errors, which may result in sharp variations and
even negative values for IFR at some points.

As a solution, the soil plug length vs. depth data was first fitted by a monotonically
increasing function. Among the common curve fitting functions, a power function was
observed to give the best agreement with the highest R? values. In addition, the power function
has an intercept of zero, conforming to the fact that soil plug length must be zero before piles

are driven. The curve fitting results are shown in Table 2.5.

Table 2.5 Parameters for fitting measured soil plug lengths with power function.

Power function L =a D” (L and D are in meters)

Pile
a b R?
Group-NE 1.0729 0.6779 0.9867
Group-SE 0.8195 0.7904 0.9812
Group-SW 1.1976 0.6579 0.9615
Group-NW 2.3140 0.4450 0.8023

Single pile 1.4908 0.5667 0.9878
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Once coefficients of the curve fitting function are determined, it is easy to calculate IFR by
taking the 1! order derivative of the function. The resulting IFR is shown in Figure 2.11(b),
indicating a quickly decreasing trend at depths above 1.52 m and a gradual reduction below
this depth.

Blow counts per 0.3048 m (1 ft) of pile penetration were recorded and are shown in .
The blows counts increase steadily with penetration depth and reach a maximum value of 29
blows at a depth of 5.5 m, and a general consistency is observed among all the piles. The
southeast (SE) group pile exhibits a deviation from the others due to a malfunction of the diesel
hammer, which resulted in uneven hammer energy delivered per blow. Blow counts were also
compared to pile drivability analyses to ensure pile integrity during installation.

Pile caps are often included in dynamic pile testing to incorporate inertial effects of the
superstructure reality so that the physical behavior of actual structures can be well simulated
i the vibration tests. In previous studies involving pile tests, the pile caps were typically
assembled using steel or wooden weights (e.g., Manna and Baidya 2010; Elkasabgy and El
Naggar 2013; Pender 2018), or cast as concrete blocks (e.g., Blaney and O’Neil 1989; Sy and
Stu 1992; Fotouhi 2014). For the present study, two reinforced concrete pile caps (Figure 2.13)
were constructed and their properties are listed in . Due to limitations on construction at the
test site, the pile caps were precast in the laboratory with corrugated oversized steel pipes
blocking out the pile locations, then the pile caps were grouted to the piles in the field. The
quality of grouting is important, since the grout is susceptible to the water-grout ratio,
temperature, and the mixing procedure. Therefore the 28-day compressive strength of nine

grout cubes (5.08 cm on a side) was measured, and the values varied from 39 to 59 MPa with



56

a mean value of 49 MPa. To create flat contact surfaces at the shaker mounting locations on

top of the pile caps, a 1.25 cm (0.5 in.) thick hydrostone layer was formed on the two pile caps.
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Figure 2.11 Results of soil plugging measurements during pile driving.
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Figure 2.12 Pile blow count per 0.3048 m (1 ft) of penetration versus total penetration depth.
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(a) For single pile (b) For pile group

Figure 2.13 Construction of the pile caps.

Table 2.6 Properties of the concrete pile caps.

Pile cap for single pile Pile cap for pile group
Length (m) 0.914 1.600
Width (m) 0914 1.600
Height (m) 0.762 0.762
Mass (kg) 1,474.0 4,272.8

2.4 Loading System and Load Cases

Full-scale tests require using versatile excitation devices such as hydraulic actuators,
mechanical oscillators, Statnamic devices, and cables for pull-and-release tests. In this study
the pile caps were loaded by a servo-hydraulic inertial shaker. It consisted of a static frame that
was bolted to the pile cap, and a moving part that was driven by a hydraulic actuator to provide
uniaxial dynamic force. The moving part was made up of a carriage to which up to 14 steel
plates could be fastened to increase the iertial force. When fully loaded, the shaker could
deliver a maximum dynamic force of 8,900 N. Depending on the mounting location of the
shaker, tests were categorized as vertical-centric (VC), vertical- eccentric (VE), or horizontal-

centric (HC) tests. In the VC tests, the shaker was mounted on the top of the pile cap at the
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center position, inducing only the vertical mode of vibration. In the HC tests, the shaker was
mounted on the side of the pile cap at the mid-height to induce the coupled lateral-rocking
modes. In the VE tests, the shaker was mounted on the top of the pile cap but offset towards
either the east or west side, inducing a combination of the vertical and coupled lateral-rocking
modes simultaneously.

Compared to hydraulic actuators, an inertial shaker can more easily provide either
horizontal or vertical force simply by being mounted on different faces of the pile cap. No
reaction frames or walls are required, which reduces test space and saves cost and time. Lazan
mechanical oscillators (a type of compact eccentric mass shaker with adjustable eccentricity)
have proven to be useful in past tests of single piles with excitation frequencies typically below
60 Hz. However, they are limited to harmonic motion and thus cannot deliver excitation over
a wide frequency range simultaneously, which would enable faster transfer function based
testing approaches. Pile group testing may also require a wider excitation range to capture
higher resonant frequencies due to much higher vertical and rocking stiffnesses compared to
single piles. For instance, Novak and Grigg (1976) stated that the vertical resonant peak for a
group of four piles was beyond the working frequency of the oscillator and could not be
observed. Blaney et al. (1987) captured a resonant peak at 70 Hz for a 3x3 pile group.

Compared to both hydraulic actuators and Lazan oscillators, the inertial shaker covers
a wider range of excitation frequencies, and can deliver arbitrary broadband excitation types
such as random (white noise) and swept sine forcing. The frequency response curves plotted
based on data provided by the manufacturer (Figure 2.14) show that the maximum force can
be generally achieved at 8 Hz or 16 Hz, depending on the load condition, and maintain at a

constant magnitude up to a frequency of 256 Hz. Below a frequency of 8 Hz down to the
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minimum operational frequency of 1 Hz, the maximum dynamic force gradually decreases due
to the actuator’s maximum displacement of +/—12.7 mm (0.5 in.). The inertial shaker can be
controlled in real time by either force or displacement feedback, although displacement control
1s more robust as it 1s the industry standard. The shaker system includes a servo-controller unit
with imternal PID feedback control, which accepts a user-generated voltage (=5 V for
displacement control or £10 V for force control) as the input control signal.

Based on its merits, the broadband random excitation technique was implemented in
the tests. Specifically, the inertial shaker was used in displacement-control mode using three
types of control signals; random noise (R), swept-sine signal (S), and chaotic impulse (C). The
random noise signal was uniform white noise with a user-specified amplitude. Statistically, it
had a uniform distribution of amplitude in the time domain and a constant amplitude in the
frequency domain. The swept-sine signal was a sinusoidal signal with its instantaneous
frequency varying linearly with time. Within a short period, the signal swept through a broad
frequency range instead of focusing at a single frequency as in the harmonic vibration tests.
The chaotic impulse signal was a combination of repetitive short impulses and rest times,
which resulted in a mix of forced vibration and free vibration responses. The rest times between
two adjacent impulses was controlled so that the free vibration would remain active until a new
impulse was applied. Several different methods of implementing the chaotic impulse signals
were examined, as will be discussed in a later section. Each of the three excitation types were
applied to the pile cap using at least four sequentially increasing excitation levels in different
tests. The naming convention for the tests is as follows:

“single pile (S)/pile group (G) — test type (VC/HC/VE) — (direction for VE offset (W/E)) -

excitation type (R/C/S) and excitation level (1-4)”
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For example, S-VC-R1 refers to a vertical centric test on the single pile with random forcing
at excitation level 1. Similarly, G-VE-W-C4 refers to a vertical eccentric test on the pile group
with the shaker on the west side of the pile cap, with chaotic impulse forcing at excitation level
4. After trying several different sampling frequencies, a value of 512 Hz was chosen for a
tradeoff between resolution and efficiency, corresponding to a sampling period of 4 s using
2,048 samples per window in the time domain. To reduce effects of random noise on the data,
30 spectral averages were used in each test. Fotouhi and Ashlock (2012) validated that the
mertial shaker system used in this study could successfully be employed for vibration tests of

single piles using broadband excitation. The same question will be explored for pile groups in

this study.
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Figure 2.14 Spectral performance curves of the hydraulic inertial shaker.
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2.5 Measurement and Data Acquisition

The primary measurements in the vibration tests were the directional accelerations at
several points on the surfaces of the pile caps. Two accelerometers were mounted on the
moving mass of the shaker to measure its instantaneous acceleration in the shaking direction
and the perpendicular direction. On each pile cap, four accelerometers were mounted in the
central plane of motion, 2.54 cm away from the edges on the top and two side surfaces. For
the single pile, eight strain gauges were adhered to the pile at two elevations (5.1 cm and 88.9
cm from the bottom of the pile cap). For each pile in the pile group, one or two strain gauges
were also installed at these same elevations. The output of typical accelerometers exhibits a
decrease in magnitude and increase in phase as frequency approaches zero. To properly capture
the low-frequency responses including the lateral mode’s peak, string potentiometers
(stringpots) were therefore used to measure lateral displacements of the pile caps and
unembedded pile segments. Additionally, it is useful to measure the soil motion and wave
attenuation at the ground level, and calculate transfer functions relating the pile cap motion to
that of the soil. Such measurements will allow additional constraints for calibration of the
computational models in future studies. For this purpose, six accelerometers were embedded
5.1 to 10.2 cm within the soil in two horizontal directions to measure vertical accelerations.
Detailed instrumentation plans tests are shown in Figure 2.15 and Figure 2.16, respectively,
with the shaker position corresponding to S-HC and G-HC tests. Actual instrumentations are

showed in Figure 2.17 and Figure 2.18.
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Figure 2.18 Actual instrumentation for G-HC tests.
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A multi-channel dynamic signal analyzer (Figure 2.19) was developed by expanding

and improving a previous LabVIEW program. The analyzer was designed for the following

purposes: 1) configuring and generating the excitation signal for input to the shaker servo-

controller; 2) recording, analyzing, and displaying the near real-time response in time and

frequency domains; and 3) storing the test data. Accordingly, a hardware system was

developed consisting of one National Instruments (NI) 9263 analog voltage output module, six

9234 sound and vibration input modules, two 9237 strain/bridge input modules, and two

cDAQ-9172 compact data acquisition chassis (Figure 2.20). All input modules were put on

the same chassis to ensure rigorous synchronization of sampling and the other chassis was used

for the only output module.
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2.19 User interface of the portable NI dynamic signal analyzer.



Figure 2.20 Hardware system consisting of NI modules and chassis.

The acceleration time-domain data was processed and interpreted as five frequency
domain functions — the fast Fourier transform (FFT) spectrum, power spectrum (PS), power
spectral density (PSD), coherence function (COH), and acceleration transfer functions. The
FFT spectrum presents the complex-valued magnitude and phase angle of a single dynamic
signal in the frequency domain. Similarly, the real-valued power spectral density describes the
energy distribution of a single signal over the frequency spectrum. For the coherence and
transfer functions, the acceleration of the shaker’s moving mass was taken as the reference
signal. Thus the coherence function indicates the correlation between the output acceleration
responses and the input excitation (which 1s the acceleration of the moving inertial mass). A
perfect linear system with zero noise, time-invariant properties, zero measurement error, and
all output energy caused only by the measured input energy leads to a coherence value of unity

at all frequencies. Deviations from any of these conditions, such as nonlinearities, time-
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dependent material properties, or external noise in the output signals decreases the coherence
towards zero. Thus coherence values closer to unity suggest better data quality for
elastodynamic vibration measurements.

The accelerance function is the frequency-domain transfer function of directional
acceleration at any desired point on the pile cap to the force applied to the pile cap. To enable
comparison with the theoretical transfer functions (acceleration/force ratios), the experimental
transfer functions (acceleration/acceleration ratios) are divided by the value of the shaker’s
moving mass. In other words, the applied force is taken as the value of the inertial mass times
its measured acceleration. Compared to normalization of dynamic response by force in the time
domain, the accelerance describes not only the amplitude of the acceleration/force ratio in the
frequency domain, but also the phase shift due to radiation damping and material damping.

To minimize effects of experimental noise, the dynamic signal analyzer programmed
m LabVIEW makes use of averaging of all spectral quantities by measuring over a selected
number of sequential time windows. The statistically averaged versions of the spectral

quantities described above are calculated as follows for the one-sided auto-spectral density:

— 2 g .
Gy = Y Y(f.,), k=01,..N-1 2.16
w(fe) ndeZl: ; (FIY(S). _ (2.16)
the one-sided cross-spectral density:
Go(f)=—2 niX'(f)Y(f) k=0,1,.N-1 (2.17)
Tk ?’.-'arNAf n=1 i R | T -
the one-sided auto-power spectrum:
BTl fy B
PJ’J’(.f:k):GJT(.f}r)X}: k=0,1,.N-1 (2.18)

the coherence function:
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[Go ()
2 (fi)==————="—, k=0,1_.N-1 (2.19)
">V = G 0o
and finally the transfer function:
_Gao(f)
A(f) = Gull) (2.20)

where subscripts x and y denote the acceleration of the moving mass and observation point,
respectively; X and Y denote corresponding fast Fourier transforms; superscript * denotes the

complex conjugate; N denotes the number of discrete sample points; Az denotes the sampling

time interval; F 1s sampling frequency; and nq 1s the number of spectral averages.

The sampling frequency for output excitation signals was 512 Hz. The measurement
frequency range of the imput signals was set to 1-200 Hz. The corresponding sampling
frequency for input was roughly 512 Hz, making the Nyquist frequency higher than 200 Hz
and the resulting signals alias-free. A common issue in digital signal processing is spectral
leakage when the captured signals are not exactly periodic. Thus Hanning windowing was used
to minimize the influence of spectral leakage. Another issue for dynamic testing is random
ambient noise, which can be reduced by increasing the number of spectral averages (Bendat
and Piersol 1986). To minimize the influence of random noise, the sampling processes were
continuously repeated over sequential time windows as mentioned previously, and the
frequency response functions were averaged using the root-mean-square (RMS) method.

Practice suggested that the spectral measurements converged quickly with nz =30 averages.
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2.6 Test Results and Discussion
2.6.1 Excitation of the Moving Mass

To further elaborate upon the broadband random excitation technique, actual
acceleration records and FFTs for the moving mass recorded during the tests are presented.
The instantaneous force applied to the pile cap (and stationary part of the shaker) is the product
of the moving mass and its instantaneous acceleration. In this section, representative data from
G-VE-W tests are presented. Examples of time histories and RMS-averaged FFT spectra of
acceleration for the moving mass at various excitation levels for random, swept-sine, and,
chaotic impulse signals are shown in Figure 2.21 to Figure 2.23. As expected, higher excitation
levels result in higher instantaneous amplitudes of acceleration and FFT magnitudes. For
random and swept-sine signals, the maximum acceleration exceeds 20 m/s?, indicating an
excitation force of at least 7.1 kN. As the excitation intensity is increased, the FFT spectra
suggest that peak frequencies decrease from 18 Hz to 12 Hz for the random signals, from 16
Hz to 13 Hz for the swept-sine signals, and from 16 Hz to 15 Hz for the chaotic impulses. The
chaotic impulse excitation type induced relatively lower forces, and exhibited less change in

frequency for different amplitudes.
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Figure 2.21 Acceleration records and FFTs of the moving mass due to random excitation (R)
in G-VE-W tests.
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2.6.2 Power Spectral Density

Since multiple accelerometers were used in the tests, for simplicity, power spectral
density is reported herein only for accelerometers Az and Ax; in S-VC, S-VE-W, S-HC, G-
VC, G-VE-W, and G-HC tests (Figure 2.24 and Figure 2.25). For these two accelerometers
attached to the pile caps, the PSD amplitude generally increased with excitation intensity as
expected. The random excitation signals induced the strongest energy, followed by swept-sine
and finally chaotic impulse signals. For a given excitation type, the PSD curves follow similar
trends at the different excitation levels, except for the lowest excitation intensity in a few cases.
For example in S-HC tests, the ambient noise was more predominant than the applied
excitation. Another interesting finding is that when the input buffer (number of sample points
for each measurement) was set to 512 samples in the first few S-VC tests, the PSD curves
appear to be smooth with a frequency domain resolution of 0.983 data points per Hz. In order
to better capture potential sharp peaks in the subsequent tests, the input buffer was increased
to 2,048 samples with a resolution of 3.93 points per Hz. However, when this was done all
PSD curves became noisy, regardless of excitation type and intensity. Generally, the pile cap
responses to random forcing were least influenced and those for chaotic impulse forcing
appeared to be most susceptible. As the excitation level increases, the PSD curves become
even nosier. This phenomenon will require further study, and may be related to the digital

sampling parameters.

2.6.3 Coherence Functions

To be consistent with the previous section, coherence functions are presented only for
accelerometers Az and Axi in Figure 2.26 and Figure 2.27. For a given excitation type, the

coherence 1s typically far below unity over a wide frequency range at the lowest excitation
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levels. As excitation level increases, the coherence functions quickly approach unity,
especially at low and high frequencies. At the highest excitation level 4, most excitation types
generally resulted in reasonable quality coherences near unity over the entire frequency range
m VC tests. As shown by the spectral performance of the inertial shaker in Figure 2.14, the
excitation force degrades quickly below 8 Hz, which is also confirmed by the coherence
functions quickly dropping to zero below 9 Hz. Additionally, reduced coherence can be also
observed at other frequencies for a few of the VE and HC tests. For instance, the coherence for
accelerometer Ax; in VE tests for the pile group all present substantial drops around 33 Hz. A
strong excitation level may induce large deformations of the soil, exhibiting a nonlinear
response from the pile-soil system and consequently decreasing the coherence. This
phenomenon can be seen in the S-HC-R tests, for which coherence decreases between 40 and
120 Hz as excitation intensity increases from R2 to R4. This same phenomenon is not observed
in the G-HC-R tests, likely due to a much higher lateral stiffness. Overall, the data quality are
satisfactory in terms of coherence and most of the tests remained in the linear range for all
exciftation levels.

2.6.4 Accelerance Functions

For dynamic tests of the pile-soil system, it is desirable to present the experimental
accelerance functions in a concise way at representative points. In this study, the experimental
accelerance functions are translated to the centroid of the pile cap, under the assumption that
the pile cap behaves as a rigid body over the frequency range of interest. As will be discussed

in Section 3.5.2, displacement at the centroid of the pile cap U(C) can be expressed as

U(C) =T, U(P) 221
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where T, 1s the kinematic transformation matrix,

0

1 h (2.22)
0

and U(P) = [Uy(xp,vp) Ux(xp.vp) Oxp,3p)]" is the Fourier-transformed displacement vector at
any point P on the pile cap. Converting the Fourier-transformed displacement vectors to
acceleration by multiplying (i®)’on both sides, and dividing by the applied force gives the
relation

A(C)=T,A(P) (2.23)
where A(C) is the accelerance vector at the centroid, and A(P) is the accelerance at any point

on the pile cap (defined in Eq. 3.69). For simplicity, the notation

A'.Vf:
AO)=| 4, (2.24)
A

will be used to denote the wvertical, horizontal, and rotational components of centroidal
accelerance. Considering the VC, VE, and HC excitation force types described previously, a

total of nine unique centroidal accelerances exist for planar motion of the pile cap (Table 2.7).

Table 2.7 Summary of centroidal accelerance functions for the three test types

Directional Excitation force type
et e nc
A, A, /NC A,/ VE A, /HC
A, A, /VC A,/ VE A, /HC

A, 4,/VC 4. /VE 4, /HC




80

Example calculations for determining centroidal 4, /VC and 4 /HC accelerances from those

measured on the pile-cap surface in S-VC tests are presented below. The vertical centroidal
accelerance can be determined using accelerations 4y1, 4y», or their average. Using either 4y
or Ay gives

A, =4, —e,4.(y1) (2.25)
or

A, =4,—-e,4(y2) (2.26)

Due to symmetry of the locations of 4, and 4 ,,

e,+e,=0 (2.27)
and assuming the pile cap is rigid,
A4.(yD)=A4.(y2) (2.28)
Therefore adding equation ((2.25) and (2.26) provides the averaged vertical accelerance as
simply

_AatAn

=2 (229)

Similarly, in S-HC tests, assume P is at accelerometers 41 and 4y, respectively. By symmetry,
h,+h,=0 (2.30)

Then the horizontal centroidal accelerance can be calculated as

A,+A4
A, =—=1—2 (2.31)
2
As for rocking acceleration, it can be determined from the vertical accelerances as
A,—4,
4, =t .t (2.32)

e

o
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or from the horizontal accelerances as
A, =—2— (2.33)

where e =0.8636 mis the horizontal distance between accelerometers 4y; and Ay, and

h,=0.7112 m 1s the vertical distance between accelerometers A4y; and Ax. It can be shown

that (2.32) and (2.33) provide consistent results (Figure 2.28) and thus A4, is averaged as:

A, =1(A21_A32 + szh_Axl)

: (2.34)

(] (]

In the general case for which the centroid of the pile cap and shaker’s stationary mass are not
at the geometric center of the pile cap, as is the case for VE tests, Eqns. (2.27) and (2.30) no
longer hold. The vertical centroidal accelerance can be determined more generally for such

cases by substituting Eqn. (2.33) into the average of Eqns. (2.25) and (2.26), to give

1 2
A, = Aﬂe—"’)—Aﬂe—z (2.35)

which simplifies to Eqn. (2.29) when the centroid is at the geometric center, as

e, =—e, =e¢,/2. Similarly, the horizontal centroidal accelerance for such cases can be

expressed as

-4 (2.36)

Similar equations can be derived for the pile group with attention to the sign convention. For

example, due to the new layout for accelerometers, rocking acceleration can be taken as:

4,4, _
A_/VE = ! 2 n | A Aﬂ) (2.37)

20, e h

(] o
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Figure 2.28 Agreement of rocking accelerance calculated using pairs of vertical or
horizontal accelerometers for test S-VE-R2.
Among the nine accelerances in Table 2.7, six of them are regarded as primary, as they are
necessary for characterizing the vertical and lateral-rocking modes; 4,./VC, 4,//HC and 4,./HC
if combining separate VC and HC tests, or 4y./VE, 4x/VE and 4,./VE if using a single VE test.

The remaining four accelerances are either minor or theoretically zero, and not presented

herein.
1. Single pile tests

The A4, /VC accelerances are highly consistent for all excitation types (Figure 2.29).

A unique resonant peak for the imaginary part is found at 72 Hz. For random eXcitation,
accelerance at level R1 slightly deviates from higher level excitations at frequencies below 20
Hz and above 70 Hz. This is due to the low signal-to-noise ratio, which was already illustrated
by the coherence function. Accelerances for S1 and C1 differ even more from higher excitation
levels and no unique peaks can be observed. With an increasing excitation force, the resonant
peaks by random and chaotic signals show slight shifts towards the left, indicting minor

degrees of nonlinearity. The resonant peaks are more consistent for swept-sine excitation.
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Theoretically, the lateral stiffness of a single pile 1s significantly lower than the vertical
stiffness. Thus the horizontal accelerations for horizontal excitation were expected to be larger
than for the vertical mode. For HC tests (Figure 2.30), none of the lowest excitation levels R1,
S1, and C1 were large enough to induce the intended resonance. This phenomenon is attributed
to the friction of the rails of the shaker’s moving mass, and the lower excitation levels being
not much stronger than the ambient vibration sources. At the higher excitation levels, the
resonant peaks were captured as expected. The strongest resonant 4x./HC peaks occurred at
around 4.5 Hz and 15.5 Hz, respectively. In addition, a weak third peak can be observed near
51 Hz. The first peak is attributed to the horizontal resonance of the pile-cap-soil system, which
typically occurs at a frequency below 10 Hz. The third peak is due to coupled lateral and
rocking motion. The second resonant peak, however, 1s unintended. Its resonant peak at 15 Hz
1s obviously beyond the range of the horizontal mode and far below the resonant peak for the
rocking mode. Possible explanations are (1) that the moving masses, though seated on a pair
of guide rails, had a degree of freedom not only in the excitation direction, but also in the
vertical direction due to the rotation of the pile cap. Including this effect in the equation of
motion for the isolated free body diagram of the moving masses renders the governing system
of differential equations nonlinear and significantly more complicated, and this secondary
effect was neglected for simplicity, (2) the legs of the shaker’s base were not truly rigid and
therefore introduced an additional cantilever-type vibration mode of the shaker itself, or (3) a
slight rotational degree of freedom (independent of the pile cap’s rotation) that was observed
for the shaker’s moving masses as they accelerated along the loading direction. These
hypothesis all relate to additional unintended motion of the moving masses, and are supported

by the transfer function of Ay, which suggests a substantial amplification effect transverse to
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the direction of shaking at around 15 Hz. Another noticeable finding is that the resonant
amplitude for the horizontal mode varies significantly for all excitation types and levels. One
reason 1s that the amplitude is sensitive to soil damping near the ground level, which depends
on the dynamic strain level. The low horizontal stiffness allows for relatively large soil
deformations, and thus a larger variation in damping ratio with excitation intensity. Another
possible reason for the variation in resonant amplitude is the sampling resolution. The buffer
size of 4,096 samples and approximate sampling frequency of 512 Hz resulted in a resolution
of 0.254 Hz in the frequency domain. This may not have been sufficient to fully capture the
sharp horizontal resonant peak.

The A4, /VE accelerance functions exhibit consistent trends regardless of excitation
signal type (Figure 2.32), and are very similar to the 4, /VC ones. Excluding the lowest

excitation levels, the imaginary part exhibits a peak at 62 Hz. The different locations of the
external force and centroid compared to VC tests results in an additional influence from the
rocking mode, which decreases the amplitudes of the curves at around 50 Hz.

The A_ / VEaccelerance functions (Figure 2.33) also show the three resonant peaks
observed in 4 /HC accelerances, but with much lower amplitudes for the horizontal mode.

The fundamental frequency also shows a minor decrease from 4.58 Hz to 4.07 Hz, likely due
to the higher moment of inertia resulting from moving the shaker to the HC position. The
second resonant peak due to resonance of the moving mass exhibits the opposite trend; with
the excitation force offset from the centroid of the pile cap, this unintended rocking mode

becomes more significant.

A single sharp resonant peak is found for the 4,/ VE accelerance (Figure 2.34).

Higher excitation levels leads to slightly lower resonant peak frequencies.
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2. Pile group tests
Results for the G-VC, G-VE-W, and G-HC tests are shown in Figure 2.35 - Figure 2.40.

For 4, /VC, the single resonant frequency is found near 90 Hz, which is higher than for the

single pile tests. The maximum amplitude for the imaginary part also greatly drops from
2.9x103 m/(s>N) to 1.3x10> m/(s>2N). This is due to the substantial increase in vertical
stiffness for the pile group. Random excitations provided the cleanest responses, especially at
frequencies beyond 100 Hz.

The A4 _ /HC accelerance for the pile group presents a strong resonant peak at 12 Hz,

which is approximately four times higher than the frequency for the single pile. A very small
peak also appears near 18 Hz. The resonant amplitude is less susceptible to the excitation type
due to the greater pile cap mass and resulting smaller strains in the soil. The increasing random
excitation levels only slightly decrease the resonant peak amplitude. Compared to the single
pile case, the second unintended resonant peaks almost disappear, except for the lowest
excitation level, while the coupled rocking mode 1s completely eliminated. These differences
are attributed to the massive pile cap, and the axial resistance of the piles against rotation. With
the same excitation as in the S-HC tests, less rocking motion and coupled horizontal motion

were induced. The resonance due to the moving mass then became less significant.
The 4, /VE accelerance shows not only a resonant peak for the vertical mode around
95 Hz, but also a small additional ‘hump’ at around 75 Hz caused by interaction with the

rocking mode. As the excitation increases, the amplitude of the vertical mode decreases while

that of the rocking mode becomes more dominant.
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For A _/VE, both the horizontal mode and the rocking mode were well captured.
Similar to 4 _/HC, the additional unintended resonance due to the moving mass becomes

almost negligible.

The rocking mode 4, /VE is also well characterized with a peak at 80 Hz, which 1s

higher than the corresponding value of 50 Hz in the single pile case. The horizontal mode at
14 Hz is also captured with a very small peak. Slight nonlinearity induced by the increasing
excitation force can be clearly seen for all excitation types.

Accelerance functions for soil accelerometers in S-VC tests are analyzed herein.
According to the instrumentation plan, Ag; and Ags, as well as Ay and Ags had the same
distance to the pile. If the soil profile is assumed to be axisymmetric, wave propagation induced
by a single pile in VC tests is supposed to be axisymmetric as well. This assumption is verified
by comparing magnitude of transfer functions of Ag; to Ags, and Ay to Ags. Accelerometer Agg
malfunctioned during the test and thus is not reported herein. Accelerance functions for the
remaining five accelerometers due to all excitation types at intensity level 2 to 4 are shown in
Figure 2.41(a). For a radiation problem as in this study, the closest observation point should
have the highest vibration magnitude due to energy dissipation when waves propagate in soil,
and the farthest observation point should have the lowest magnitude. This is verified by the
distinguishable resonant peaks that are differentiated by the distance from accelerometers to
the pile. In addition, excitation type and intensity didn’t result in significant difference in either
resonant frequency or amplitude. The peak magnitude versus distance for all excitations is
plotted in Figure 2.41(b) to examine wave attenuation at the ground level. A drastic decrease
in the peak magnitude with increasing distance is observed. Wave attenuation is well

demonstrated by fitting the data using power function.
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2.6.5 Transfer Functions for Pile Strain Gauges

The resonance of the pile cap-shaker system can also be demonstrated by the axial
deformation of the unembedded pile segment, which was measured by strain gauges in this
study. Theoretically, for S-VC tests the pile should only show compression-tension behavior.
Transfer function for strain gauges is defined as

S
S/VC=— (2.38)

V
where S 1is the strain gauge reading. The results suggest general consistency for the four strain
gauges at each of the two elevations. However, the transfer functions for strain gauges near the
pile cap show more deviations than those at low elevation. A possible reason is the
perturbations on the pile cap, which had greater impact on the closer strain gauges. Magnitude
of transfer functions for the bottom four strain gauges due to excitations R4, S4, and C4 are
shown in Figure 2.42. A unique resonant peak is identified at round 63 Hz, which is consistent

with the resonant peaks in accelerance functions for pile ans soil accelerometers. All four strain
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gauges exhibit similar trends, although strain gauges S, and Se present relatively greater
undulations and lower peak amplitudes. Among the three excitation types, the random signals
elicited the smoothest responses, followed by the swept-sine signals. The chaotic signals
induced greatest deviated signals. In general, transfer functions for strain gauges present
similar outcome for all random, swept-sine and chaotic signals and validate the effectiveness

of the broadband excitation technique.
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Figure 2.42 Magnitude of accelerance functions for strain gauges by excitation level 4.
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2.7 Appendix
2.7.1 Calculation of Mass and Moment of Inertia of the Pile Caps

1. Theoretical derivations for pile cap of the single pile
a. Mass

The concrete and the embedded pile segments constitute total mass. The grout is assumed to

be part of the concrete block.

M, =Wyose — Vo) 2. = (2_5x3x3—%0.71882 x2.5) fi* x143.961b/ fi* =3093.0lb =1404.2kg

M

tube —

M, =M, _+M,, =1404.2+32.5=1436.Tkg

%(0.71882 —0.665%)x2.5f* x490Ib / ft’ =71.61b = 32.5kg

b. Position of the centroid

Due to geometric symmetry and homogeneity, the centroid of the pile cap is at its geometric
center. With the origin for the superstructure at the ground level,
centroid height =317 ft +2.5/2ft =4.42 ft =1.347m
c. Polar moment of inertia with respect to rocking axis (z’-z")
Similar to calculation of mass, the polar moment of inertia can be calculated by

superposition of the concrete block and the embedded pile segment.

y
4
% e
X oo R _,_._._._§.¢.§_ ....... ] » X
195 i cetﬁt:rdid (through centroid)
i : : :
“Os5& | 1s5f
y

Figure 2.43 Front view of the pile cap for the single pile.
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For the concrete block,
concrete __ ¢ yhlock cylinder block cylinder
[egrerte = (2lock _ pqimder | (pblock _ painier

where,
125
1ok = j 3x3y%dy =11.719 f#°
-125
) 125 T
) j 12 x(5-x0.7188%)dy = 0.528 /i
-125 4
15

18 = j ¥? x2.5%3dx =16.875 f°

-15

[ = [x*x(2Rsin@x2.5)dx  (see Figure 2.44)

note that x = Rcos@,R=0.7188ft/2=0.3594 ft and € [0, 7]. Then,
0
I5me = I (Rcos6)?x2Rsin @x2.5x (—Rsin 8)d6=0.03276 1

Thus, 7% = (11.719—0.528) +(16.875—0.03276) = 28.03324 /i

Figure 2.44 Top view of the pile cap for the single pile.

For the embedded pile segment,

1.25
= | yx (%x 0.665%)dy = 0.45228 fi°

-1.25
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1'% = f x> x (2R sin Ox 2.5)dx

note that x = Rcos@, R=0.665/2=0.3325ftand 6 €[0, ]. Thus,
If;f“ = I(R cos8)* x2Rsin 8 x 2.5 x Rsin d 6= 0.02400 f1°
0

Then
IPP° = (T2 — L)+ (T2 — I71%) = (0.528 —0.45228) +(0.03276 - 0.02400) = 0.08448 fi°
Incorporating densities of concrete and steel pipe piles,

Ly =TI x p + 177 x p, =28.03324x143.96+0.08448 x 490
=4077.061b.fr> =171.81kg.m’

2. Theoretical derivation for pile cap of the pile group

a. Mass

Mc = (I/E)fock _4V?rofe)pc =

2.5 ><5.25><5.25—4><£0.?'1882 x2.5) ft* x143.961b/ f* =9335.61b =4238 3kg
4

M, = 4x%(0.71882 —0.6650*)x2.5 /7 x4901b/ f7* = 286.511b=130.0kg

M., =M, +M,,, =42383+130.0 = 4368 3kg

b. Position of centroid

centroid height =317 ft +2.5/2ft =4.42 ft =1.347m

c¢. Polar moment of inertia (see Figure 2.45)
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Figure 2.45 Front view of the pile cap for the pile group.

concrete __ ¢ yblock __ ycylinder block _ ycylinder
[emerte = (2lock _ pqimdery | (pblock _ painier

where,
125
2o = [ 525x5.25y%dy =35.889 f°
-125
) 125 T
[0 — 4% j 3 x(=x0.7188%)dy =2.113 f#°
-125 4
2625
[0k = j x> x2.5%x5.25dx =158.26 fi°
—-2.625

12 = 4% J'f x(2RsinOx2.5)dx  (see Figure 2.46)

note that x=1.5—-Rcos@,R=0.7188/2=0.3594 f¢ and 6 [0, r].
Thus 27" = 4><I(1.5—R0059)2 x2Rsin @x2.5x Rsin 0d0=9.256 f°
0

Then,

I = (T2 — T8y 4 (I — 12y = (35.889 - 2.113) +(158.26 —9.256) =182.78 fi°
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z

Figure 2.46 Top view of the pile cap for the pile group.

For embedded pile segments,

125
2 =ax | yx (% x0.665%)dy =1.809 fi°

-1.25

I'ete = 4xjx2 x (2Rsin @x2.5)dx

where x=1.5-Rcos0,R=0.665ft/2=0.3325ft and & [0, 7]. Thus
I =4x I(I.S—Rcosﬁ)z x2Rsin @x2.5x Rsin d@=7.9108 f’
0

Then

T2 = (T2 — I02) + (12 — 1) = (2.113-1.809) +(9.256 - 7.9108) =1.6492 fi°
Incorporating densities of concrete and piles,

I, =I"" x p +I7F x p, =182.78x143.96+1.6492x490 = 27121.1 171b.f1* =1142.887kg.m’

3. Comparison with numerical results
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The pile cap inertial properties were also analyzed using computer-aided design (CAD)

software (Figure 2.47) and the results are compared to the theoretical calculations in Table 2.8.

The theoretical results conform fairly well to the numerical ones with a maximum relative error

of 4.1%. Since the CAD models are more precise by including rebars, differentiating grout

from concrete, and excluding PVC corridors, the numerical results are adopted in this study.

(a) Single pile

(b) Pile group

Figure 2.47 CAD models for the pile caps.

Table 2.8 Comparison of analytical and numerical results of geometric properties

Parameter Theoret{cal CAD model Relative

calculation error

mass 1436.7 kg 1482.0 kg -3.1%
Cap of centroid x 0 2.54 x10° m /
single pile centroid y 0 7.62 x10° m /
centroid z 1.347m (1.34742.54 x10°) m /

Lz 171.81 kg.m? 179.24 kg.m? 4.1%

mass 4368.3 kg 4303.7 kg 1.5%
Cap of centroid x 0 5.08 x10° m /
. centroid y 0 4.83 x10*m /
pile group centroid z 1347 m (1.34742.54 x10%) m /

Lz 1142.89 kg.m? 1125.08 kg.m? 1.6 %
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2.7.2 Approach of the Cross-correlation Method in the Frequency Domain (Campanella
and Stewart 1992)

1. Transforming from time domain to frequency domain

F1 =FFT of signal / (¢) at observation point 1;
F2 =FFT of signal £, (#) at observation point 2;

C1 = complex conjugate of F1;

C2 = complex conjugate of F2;
2. cross-correlation

CIF2=C1 x F2;

corr = inverse FFT of C1F2;

3. Normalization

FIC1 =FI1xCl1; F2C2 =F2xC2;
1 FIC1 =1inverse FFT of F1C1; 1 F2C2 = inverse FFT of F2C2;
4, = maximum value of 1 FICI; A, = maximum value of 1 F2C2;

corr

N (2.39)

2.7.3 Approach of the Cross-Correlation Method in the Time Domain

normalized corr =

1. Calculating cross-correlation value in time domain
T
corr(z) = [ (O £t +7)dr (2.40)

where 7 € (-7, T) is time shift of by signal f£,(f) and I is total sampling period.

2. Normalization

corr

4.4,

normalized corr =
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2.7.4 Raw and Filtered SCPT Signals

The raw and filtered SCPT signals at each observation point are presented in Figure
2.48. Grey lines denote raw signals and black lines denote filter signals, which was band-pass

filtered between 1 and 210 Hz.
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(a) SCPT-1 S-wave response

Figure 2.48 SCPT S-wave response.
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(b) SCPT-2 S-wave response

Figure 2.48 (continued)
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CHAPTER 3. COMPUTATIONAL SIMULATION OF SOIL-PILE GROUP
INTERACTION

3.1 Fundamentals of BEM

The finite difference method (FDM), finite element method (FEM), and boundary
element method (BEM) are three numerical techniques for solving complex engineering
mechanics problems that cannot be solved in closed form. Compared to the other two methods,
BEM is particularly useful for solving geotechnical problems involving wave propagation in a
half-space. The most important feature of BEM 1is that the dimensions of the problem are
reduced by one, either from three dimensions to two or from two dimensions to one.
Correspondingly, for 3D problems only 2D surfaces of boundaries rather than entire volume
are discretized. Another advantage of BEM is its high accuracy in stress concentration
problems (such as re-entrant corners), using relatively fewer elements. For pile-soil interaction
problems, stress concentrations can occur at the pile head and pile toe, and need to be properly
handled. Additionally, BEM is able to rigorously handle infinite or semi-infinite domains in
wave-propagation problems, without suffering from undesirable boundary effects like wave
reflection from artificially truncated boundaries (Brebbia et al. 1984; Brebbia and Dominguez
1989). As a pioneer in the application of BEM, Dominguez (1978a, 1978b) was the first to
apply the method to foundation mechanics problems to obtain impedances of rectangular
foundations embedded in an elastic half-space, as noted by Kausel (2010). Around the same
time, Banerjee (1978) developed boundary element approaches for axially loaded single piles.
Since that time, significant advances have been made in the application of BEM to dynamic
problems for shallow and deep foundations. The fundamentals of BEM are elaborated in this

section.
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Consider a 3D steady-state linear elastodynamic problem within an isotropic and

homogeneous medium. The dynamic response in the time domain at any point with Cartesian

coordinates ¢ =(&,&,,4&,) 1n an elastic domain €2 is governed by the following equations:

. . 0%u,
equations of motion: o, , + f,— p (9 1;’ =0 3.1
s ot
-disol . 1
strain-displacement equations: ¢, = E(Hf‘ jHug) (3.2)
material constitutive model: o; = Cyty , (3.3)

where o, (&,7)1s the Cauchy stress tensor; f£;(&,7)1s the body force per unit volume in the
i -direction; o is mass density; u,(&,7)1s the displacement field in the i -direction; Ciu is the

4™ rapk elasticity tensor. The above equations can also be applied to linear viscoelastic
dynamic problems by means of the correspondence principle (Christensen 1971) by
mtroducing the complex-valued shear modulus:

G*=G(1+2iD) 3.4
where G is the elastic shear modulus and D is the material damping ratio.

Combining Equations (3.1) to (3.3) leads to the Navier equations of motion:

O%u (&t Fu(E,t) . Pu(é.t
(e TS0 THED Tl G35)
E}xfoxj oxj(?xj ot

where u(&,7)1s the unknown displacement field.

Equation (3.5) can be converted to boundary integral equations, either through
reciprocal theorems (e.g., Green’s third identity, Betti’s theorem, or the principle of virtual
work) or weighted residual techniques. Reciprocal theorems have physical interpretations,

whereas the weighted residual technique is a general mathematics approach for more complex
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equations. The dynamic Betti reciprocal theorem approach, also known as the Betti-Rayleigh

theorem (Achenbach 1973), is adopted herein:

[ 1P 0uP@En)dT +[ [ 2@.0)-pi®@E.0) Jul (&,1)d 2=

3.6
[0 @E P& n)dl + [ [ [0 ) - pil (&.1) [uP (& 1,)d 2 0

where #,(&,1) = 0,;(£,0)n,;(£)1s defined as the surface traction in the i-direction; 7,(¢) is the
outward normal vector of the boundary; superscripts (1) and (2) refer to states at times 7 =1,

and ¢ =t,, respectively; and /7~ 1s the boundary of domain (2.

A fundamental-solution state is defined such that it corresponds to the domain response

due to a unit magnitude load acting at the source point & = x and emission time 7 . Typically
the load is a concentrated force represented by &(& —x)o(z—7), where ¢ is the Dirac delta

function. The resulting traction and displacement at observation point¢ are denoted as the

fundamental solutions #(¢&, 7, x) and (&, 7,x). Fundamental solutions that satisfy a given set

of boundary conditions are called Green’s functions. For convenience, State (1) is taken to be
the fundamental-solution state for a point source, and State (2) is regarded as the unknown
physical state for which a solution is sought. While the fundamental solutions for a full-space
in the time-space domain are relatively easy to derive, those for layered half-space media, as
typically assumed for soil profiles, can only be derived in the frequency domain (Andersen
2006). For this reason, (3.6) 1s converted from the time-space domain to the time-frequency

domain by taking Fourier transforms of both sides;

[ TUdr+[ FUdQ=| TUdl +[ FUdQ (3.7
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where it can be shown that the inertia terms cancel each other in the frequency domain. The

A

point source F Zﬁf (k=1,2,3) denotes a body force at x € €2 in the k -direction in the

1

frequency domain, which has the following properties:

{ﬁ:* (&, 0,x) = 5,5(x &)
(3.8)

[ E € oxd=]

where §,1s the Kronecker delta function. Equation (3.7) can be simplified to the following

fundamental mtegral statement (Guzina 1996):

DU, (x,0) = [ T(& 0} & 0.x)dT -| T o,x)U,(&o)dT
+[ EE o) ¢ 0,x)d02

?

0, x

?

D) el
(x)= ¢ 0 (3.9

The above formulation is derived for interior problems (Figure 3.1(a)), in which a finite
domain without any cavity (2 is enclosed by a boundary surface /. To derive the formulation
for extertor problems (Figure 3.1(b)), in which a multiply-connected domain extends to infinity
and encloses a cavity defined by the boundary 7, the domain can be treated as a special case
of an interior domain, in the sense that the domain 1s enclosed by two separate boundaries, /7~

and /7, . The additional boundary /7, can be treated as a surface having center at x and an

mfinite radius ¥ — oo . Applying these changes, Equation (3.9) becomes

DUy (x,0) = | T(& o) (& o,x)dl - [ THE o, x)U, (& 0)dT

o] [Teaticon-Teosv ol o

. LxeQ
+ ,[g ‘F; (é:, Cc))Uf (fo o, x)dg D(X) B { }

0,xg 0

The Sommerfeld radiation condition is applied at I, i.e.,

lm [, [7,¢.0)0F ¢.0.0) I (€.0.0U,¢.0) |dI =0 G.11)
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Its physical meaning is that the response of divergent waves decays to zero as (&—x)

approaches infinity. Then Equation (3.10) reduces to (3.9).

(a) Interior problem (b) Exterior problem

Figure 3.1 Two basic boundary value problem types.

To derive the boundary integral equation, assume the observation point y is on / and

take the limit as the source point x goes to the boundary. When x approaches y on the
boundary (Figure 3.2), the displacement fundamental solution L}f 1s weakly singular and the

traction fundamental solution Zﬁ." 1s strongly singular. Thus the second term on the right hand

side of Equation (3.9) is not integrable.

Figure 3.2 Source point x approaches point 'y on boundary.
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The traditional method for addressing the strongly singular traction is to assume that
point y 1s surrounded by a circular infinitesimal area /°, and consider the limit as the radius

& approaches zero. Equation (3.10) is therefore decomposed as

Uy(x.0)=[ Lol . 0.x)dl - [ THE0.x)0,E o)l

- . (3.12)
[ T 0. X0, 0)dT + [ FE o), 0.x)d0Q
As the source point x approaches point y,
1jml U(x,®) =lim LI}(&, co)(?f (&, 0,x)dl" —lim Lﬁ_f ﬁk(f, o, x)U, (¢, 0)dI"
x>y X—>y Xy . (313)

~lim Lz TH(E 0, x)U, (&, 0)dI + lim jﬂﬁ.(f, o), (€. 0,x)dQ

Note that over the surface /"—/_, the mtegral involving Zﬁ." 1s nonsingular. It 1s reasonable to

assume that the displacement fields [}f and U, satisfy the Holder continuity condition:
U&.0) =U(y.0)+0(é -y ). 0<a<l (3.14)

which indicates that the displacement field is C' continuous. Taking the limit of Equation (3.13)

as € — 0, the second integral on the right hand side exists in the sense of the Cauchy principle

value, 1.e.,

|, € o @)dl =—limlim [ T* (& 0. XU @)dT (3.15)

r-r,

and the third term on right hand side can be rewritten as
~lim [ 75(¢.0.9)[U,¢.0)-U(y.0)]dI" ~U(y.0)limlim [_T*(&.0.x)dI 316

. . 1
where the first term 1s — lslilg LE O(——)O(

€y

- y‘a)a' I, which 1s weakly singular and thus

mtegrable. In the limit £ — 0, this term vanishes. Substitution of Equations (3.15) and (3.16)

mto Equation (3.13) leads to boundary integral equation:



117

MU (@) = [ (& (& 0, p)dl
“limlim [ 75(& 0,50, @)l + [ F (&)U, o, y)d2

g0 x—yJ -

(3.17)

where the geometry constant ¢, (y) =07, + lirr& lim L I'zk (&,m,x)d I . For a smooth surface, it
e—=0 x—ydI

can be shown that ¢, (y)=1/2.

However, using Equation (3.17) directly presents two difficulties: 1) evaluation of the
Cauchy principle values; and 2) calculation of the geometry constants. To avoid such
difficulties, an alternative regularization technique was applied by Guzina (1996), resulting in
the regularized direct boundary integral equation (BIE) for both interior and exterior domain
problems;

0 (interior problem)

U (. w)[ ]zjfz(e,wﬁf(cf,w, ydr

1 (exterior problem)
-[ | on][UEo)-Uwe)dr (3.18)

-[ [T 0.0 | U0l +[ FE o) ¢ oyd0

where [fzk (¢, o, .V)l and [fk (¢, 0, y)L are the singular and regular parts, respectively, of the

traction fundamental solutions.

To solve (3.18) numerically for the unknown tractions and displacements, the actual
boundaries of the pile and soil domains are discretized into elements over which the geometry,
displacement, and traction are interpolated by assumed shape functions. The integration over

each element’s 3D surface is performed numerically by Gauss quadrature in an auxiliary 2D

local domain such that global coordinates ¢ =(¢;,¢,,4;) are mapped to local coordinates

5y =(n,.1,) . The method of collocation 1s then applied, m which the point load n the

fundamental solution is assumed to act in each of the three coordinate directions at one node
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of the mesh, and the entire regularized BIE (3.18) is evaluated numerically to give three
equations (one for each direction of the point load) in terms of all nodal tractions and
displacements. Similarly, the collocation node is then taken to act at the second node of the
mesh giving three more equations, and so on. Assuming a total of N nodes for collocation on
the boundary mesh, looping over all collocation nodes in each direction generates 3N
equations. The equations are then rearranged by separating the coefficients of the nodal
displacements and tractions (the coefficients are integrals of the product of fundamental
solutions and shape functions), providing a system of equations in the form

HU=GT (3.19)
where U is the nodal displacement vector; T is the nodal traction vector; and H and G are
coefficient matrices. For a well-posed problem, either displacement or traction at each node

must be given as boundary conditions,

{U(y,(o)=U (vely) (Ul =T) (3.20)

T(y,0)=T (yely)
where U and T are known displacements and tractions, or else compatibility conditions of
equal displacement and equal and opposite tractions are applied over elements at the interface
of two domains (i.e., all embedded surfaces of piles and disturbed zones herein). Equation
(3.19) is then rearranged into a system of equations,

Ax=b (3.21)
where A is a dense complex matrix and X is a matrix containing all unknown tractions and
displacements.

The computational simulations in this study are implemented using the 3D boundary

element code BEASSI (Pak and Guzina 1999, 2002). BEASSI is able to handle soil layering,
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multiple pile and soil domains, and singular contact tractions inherent to mixed boundary value
problems by employing multi-layered Green’s functions, a multi-domain formulation, and
singular elements (Pak and Guzina 1999) or adaptive-gradient elements (Pak and Ashlock
2007). BEASSI was demonstrated to be accurate in solving dynamic soil-foundation
mteraction problems for single piles (Ashlock 2006; Fotouhi 2014) and surface footings (Pak
and Ashlock 2011), and is further programmed and extended herein to enable the case of

dynamic soil-foundation interaction problems for pile groups.

3.2 Framework of Computational Simulation

Computational simulation comprises three parts — preprocessing, computation, and
postprocessing (Figure 3.3). Preprocessing aims at preparing all mput files that contain
mformation about the problem type, meshing, boundary conditions, and material properties. In
this study, the presence of a 2x2 pile group and the surrounding soils are modeled such that
the piles are solid cylinders and the soil is a layered linearly viscoelastic medium. For pipe
piles and H piles, they can be idealized using equivalent axial and bending stiffness of the
actual piles and handled by so-called structural Green’s functions in BEASSI, which are
mechanics-of-materials solutions for an Euler-Bernoulli beam-column converted to a BEM
compatible format. A new mesh generator was also created to discretize the boundaries of the
pile group and soil domain. Previous mesh generators for single pile problems were
programmed in FORTRAN and MATLAB using structured meshing algorithms. For pile
group problems, however, it is difficult to handle the wide variety of possible shapes,
dimensions, number and spacings of the piles using a structured meshing algorithm for the
traction-free soil surface around the piles. Therefore, the commercial pre/post-processing

program GiD (www.gidhome.com) was adopted. Nodal coordinates, element connectivities,
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boundary conditions, and general input information such as the boundary value problem type,
domain numbers, and domain types were generated and assigned in GiD and collected in the
mput file inp.dat by creating a customized template. Pile properties are specified in the input
file rod.dat, including the cross-sectional area, moment of inertia about the x and y axes, polar
moment of inertia with respect to z axis, perimeter to area ratio, perimeter to moment of inertia
ratio, and pile length. Soil profiles for each layered soil domain are specified in the input files
layerscoordN.dat, where N 1s the domain number. These files contain the complex valued shear
modulus, Poisson’s ratio, density, and depth of the layer’s bottom surface. The thickness of
each soil layer was determined using MATLAB code such that it was compatible with the pile
and disturbed-zone meshes.

In the input files, the actual dimensions and material parameters are specified as

normalized dimensionless numbers for more efficient computation of the Green’s functions in

BEASSIL;
. . dimension,_,
dimension . 4 = ——5 (3.22)
Aref

Gacmaf 3 23
normalized Gr@r ( . )
p normalized pﬂcmaf (324)

prq,f

~__ @4y

T (3.25)
o /Gmf ! Prey

where a,, is areference length, G, 1s the complex shear modulus defined by Equation (3.4);

Lo 15 the actual density; and o denotes the actual circular frequency. The units of the

reference parameters (and therefore all other parameters) can be chosen by the user, as long as



121
they produce a dimensionless result in Equation (3.25). The reference length is arbitrary, but
1s normally taken to be the pile radius. The reference shear modulus G, and density p,, are
typically chosen to be the shear modulus and density of the soil at a reference point. The
normalized numerical output of BEASSI, including the impedances (Ez ,Zm},x ,Emyry , Em,z )

nodal displacements (;x) and nodal tractions (;x ), can be converted to actual dimensional

values in the postprocessing as follows,

ke, =0,y G,y k= (3.26)
ke = a,;G,y ks (3.27)
ke = Oy Gy (3.28)
ko, =Gy kimy, (3.29)
by, = g Groghy . (3.30)
Uy = Ayl (3.31)

t, =y, G, 1, (3.32)

In the computational phase of this study, the BEM analyses were performed on high
performance supercomputing clusters at lowa State University due to their speed and capability
to handle parallel computations. The coefficient matrices H and G were written to files
DomN.dat (where N is the domain number) to save time in later reanalyses in which the
properties of the other domains were altered. Log files, including log.dat, Qgphist.dat,
Tgphist.dat, were also saved during computation for troubleshooting purposes. The first of
these files displays the completion percentage and final relative solution error, while the other

two contain the converged Gauss integration rules from the adaptive integration scheme for
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quadrilateral and triangular elements, respectively.The nodal displacements, as well as
displacements at optional internal points are stored in the output files ux.dat, uy.dat, and uz.dat.
Results of nodal tractions are stored in the output files 7x.dat, tv.dat, and tz.dat. General
mformation such as the resultant forces obtained by integrating the tractions over the pile head
free surfaces, as well as the completion time and other problem parameters are stored in the
file out.dat. The majority of the analyses were performed on the CyEnce supercomputing

cluster. Detailed specifications of the CyEnce cluster are listed in Table 3.1.

Table 3.1 Configuration of CyEnce cluster (http://www.hpc.iastate.edu/guides/cyence).

Number Processors COH:S M(‘]Il(.)l'y . Local Accelerator
of Nodes per Node pel pel Interconnect STMPDIR Card
) ) Node Node Disk
240 2 I;;iIOES 16 128 GB 40GbIB 257TB N/A
2 Intel ES Two Nvidia
24 2650 16 128 GB 40GbIB 257TB K20
Two 60 core
24 2 I;;iIOES 16 128 GB 40GbIB 257TB Intel Phi
l 5110P
1 2 I;;iIOES 32 1TB 40GbIB 257TB N/A

GB=Gigabyte, TB=Terabyte, Gb=Gigabit, IB=Infiniband

In the postprocessing phase of the BEASSI analyses, the results of the nodal
displacement and traction solutions are thoroughly interpreted. Nodal displacements on the
boundaries and displacements at internal points of the domains are analyzed by the MATLAB
code fieldp4.m, which was written in this study to numerically approximate strains from the
mternal displacement fields of the soil domains. The nodal displacements on pile boundaries
were also used for analyzing pile deformations and internal force resultants. The resultant
forces at the free surfaces of the pile heads, which are equal to the impedances due to the

various prescribed unit displacements and rotations, are recorded in the file our.dar and
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extracted by the post-processing Fortran 90 codes cpostr.f90 and cpostr4.f90 to create files of
mmpedance functions. The impedance functions are plotted by the new MATLAB code
impedancep.m. An overview of the computational simulation framework i1s shown in Figure
3.3, including the aforementioned pre- and post-processing routines as well as a few others.
Incorporating the impedance functions into the substructuring formulation leads to theoretical

multi-directional accelerance functions, as discussed in Section 3.5.

[
Site
investigation
 —— s o N Soil displacement e deforrmation Bendmng moment
v - Coefficient }‘\.:1. strain fields File deformation and shear force
Actual soil matrices displacement
profile (Dom dat) Rl t
—=T A-’ uy.dat }
| reuse | | = daf) ) (fieldpd m) (pilesym m)
- - ~ ! 1
Input file !
L (Tap. dat) - :
L L Impedance for pile gro
lbas template & / 1]-’&1 - »d‘_.: >
k | — General 3 (loex dat cxox dat
rw reshine ) i outcome info =
mr——— (out.dat) Impedance for single pile
sirfimesh dat) R b’ S mpedance for single
R (loxx dat, cax dat)
' R
[-P_l — Nodal traction
ile properties (e dat
\__ (roddat) | ~ ~ - ty.dat
T tz.dat) (tplotinterpl9.m) | (Impedancep.m) (pileaccd.m)
| N
Actual pile L T y Pile group
properties traction plot impedance plot accelerance
k - - / functions

Preprocessing

Figure 3.3 Framework of computational simulation.

3.3 Modification of BEASSI

At the beginning of the project, the BEASSI code was capable of handling surface and
embedded footings and single pile problems. The program was therefore modified to allow
additional piles treated as new domains, provided that a new mesh generator was created to
properly handle the domain connectivity of the interface elements and specify element node

numbering sequences to coordinate the outward normal vectors of each domain. Additionally,
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the following major modifications were made to the code in order to expand BEASSI to handle
pile group problems:
3.3.1 Definition of a New Boundary Value Problem Type

The predefined boundary conditions for 3D foundation radiation problems in the
previous version of BEASSI applied the unit displacements or tractions to the top of every pile
m the group simultaneously. Applying such boundary conditions to a pile group would
physically correspond to unit displacements or rotations (with respect to the origin) of a rigid
pile cap that is connected to the piles at ground level. However, for the field tests in this study,
the pile cap is elevated above ground level to eliminate its interaction with the soil surface. The
present analysis approach for pile groups requires a load or displacement to be prescribed to
the head of one pile (which 1s at ground level in the BEASSI impedance analysis) while the
rest of the pile heads remain fixed. The above ground lengths of the piles are then treated
analytically as beam-columns. Therefore, a new predefined ‘pile group’ boundary value
problem type was defined and programmed into BEASSI. In the new problem type, moments
and rotations are applied with respect to the center of the individual loaded pile rather than the
origin.
3.3.2 Separation of Forces and Moments in Output

For the formulation of the dynamic pile group accelerance problem used herein, it is
necessary to differentiate between the forces and moments acting on each pile individually
rather than just the resultant of the whole group. A new post-processing code cpostr4.f90 was
therefore written to extract this information from the output file out.dat.

3.3.3 Increasing the Upper Limit of Parallel Processes for Computation

The existing parallelized version of BEASSI (version P25r) was modified in 2007 to

make it capable of using a maximum of 100 processors/cores (i.e., rank numbers 0 to 99) for
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problems involving single piles. With an increase in the problem size required by pile groups,
and the accessibility to more powerful computing clusters at present, it was essential to expand
the maximum number of processors/cores to at least 1,000. The parallel computation was
organized in a reliable way by formalizing log files and temporary output files for each core.

3.3.4 Integration of a Load Balancing Algorithm

An essential part of BEM analysis is the method of collocation to numerically evaluate
the boundary integral equation. Collocation is the process of calculating the rows of the H and
G coefficient matrices in the global system of equations HU=GT for a point load applied in
the x, y, and = directions at a given node. In general, each node corresponds to three rows of H
and G, one row for each direction of point load, and the columns correspond to numerical
surface integrals of the product of a Green’s function times a shape function over the element
areas. For parallel computation, the previous BEASSI version P25r distributed all collocation
nodes evenly across the available number of processors (nprocs). A total of n collocation nodes
were therefore distributed across all CPU processors with each processor getting the integer
part of the quotient n/nprocs. Then the remaining nodes were distributed to processors starting
from the rank 0 until all the remaining nodes were distributed. This 1s the most common method
for data distribution in application of the MPI (MPI Standard 2009) for parallel computation.

A critical issue in parallel computing is load balancing. For the aforementioned method
for data distribution, however, assigning the same amount of collocation nodes for each
processor does not guarantee the same completion time on each processor. After solving
several problems of pile groups in layered disturbed zones, it was observed that a great
variation in completion time existed among the different processors. In assembling H and G
matrices for the disturbed zone, the variation of completion time among processors can exceed

24 hours, causing low computational efficiency as well as a waste of computational resources
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when some processors complete their assigned collocation tasks early and remain unused while
the other processors continue working on their tasks.

For example, Figure 3.4 contains a screenshot from the CyEnce cluster taken during an
analysis. The log file Qgphist04.dat, which corresponds to the rank 4 processor, was last
updated at 17:40, April 18 when this processor’s collocation tasks had been completed and
the processor became idle. Processors 3, 6, 7, 8, and 9 also stopped being updated by noon,
April 19®, while processors 0, 1, 2, and 5, were still working. It can be seen that the collocation
nodes assigned to processor 4 happened to result in the shortest workloads, and those assigned
to processors 0, 1, 2, and 5 resulted in the longest workloads. Upon closer analysis, it was

found that when the multi-layered Green’s functions were applied to weak layers of interior

domains such as the disturbed zones at high frequencies (e.g., @ =1), collocation nodes on the
traction-free surface created slow convergence in numerical integration on adaptive-gradient
elements. With an increasing problem size and number of collocation nodes, the overall

computational performance would further deteriorate.

[user info

redacted]

Figure 3.4 4 screenshot taken on the CyEnce cluster for log files during a running analysis.

To solve this problem, a new parallel version of BEASSI (P29r]) featuring parallel load
balancing was created (Figure 3.5). The principle was to create a way to distribute tasks

dynamically at least twice, based on the runtime progress on each processor. If a processor
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completes working on its initial collocation task ahead of others, it is given additional
collocation nodes to work on in the second round. In this manner, all processors are kept
occupied until all collocation nodes are distributed, thus reducing idle time and total runtime.
The processor with rank 0 acts as the root processor. In version P29r1l, the root processor is
only responsible for distributing and collecting local H and G matrices to and from all other
non-root processors, and no longer performs collocation computations as in previous versions.

Two new parameters LB and init nlocal were introduced for load balancing. The
parameter LB 1s a load-balancing parameter for specifying the fraction of collocation nodes for
which load balancing will not be performed, and its value is a real number between 0 and 1. A
value of LB=0 means load balancing is applied for all collocation nodes, while ZB=1.0 means
load balancing is turned off completely and nodes are distributed evenly as in previous versions
of the program. In the first round of data distribution, LB *100% of the collocation nodes are
evenly distributed across nprocs—1 processors. This leaves the remaining (1-LB) *100% of the
collocation nodes available for distribution with load balancing in the second round.

After a job assigned in the first round is completed by any process, it sends a message
along with the assembled local H and G matrices back to the root process, requesting a new
job. The new job in the second (load balancing) round of data distribution will contain another
init_nlocal collocation nodes to work on. If the number of remaining collocation nodes is less
than init_nlocal, indicating that collocation is nearly complete, then the remaining collocation
nodes are distributed in small batches , such as 1 or 2, for each new request from that point on.
When all collocation nodes have been distributed and the corresponding locally assembled H
and G matrices are collected by the root processor, BEASSI finishes collocation for the current

material domain and enters into a new loop for the next domain until H and G matrices for all
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domains are assembled. The total computation time and corresponding speedup depend on

several problem-specific parameters including the number of collocation nodes and their

geometry (i.e., the boundary mesh), the normalized frequency, soil layer thicknesses and

profiles, and the relative speeds of collocation calculations vs. additional time required for each

new data transfer as well as the associated overhead communication time for initiating the data

transfers. To diminish potential bottlenecks caused by “problematic™ collocation nodes which

require much longer computation time, it i1s beneficial to handle them in the first round and

deal with the others in the second round if possible. The new BEASSI version P29l was

verified to have satisfactory agreement with previous versions for both single piles and pile

group problems. A few example cases are listed in Table 3.2.

collocation for next domain

Step 1. Root divides initial job
evenly for each non-root process

!

Step 2. Non-roots send back results
to Toot

A
Rank 0 k
(central
manager, or Step 3
root)

Step 5. Once acknowledged by root,
non-roots quit and stand by for next
domain

Step 3. Root assigns new job as
return

< Step4

/

./. .

Step 6. Once all non-roots are
Step 6 Step 5 acknowledged, root enters
collocation for next domain

Figure 3.5 Load balancing algorithm implemented in BEASSI Versions P29rl through P31rl.
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Table 3.2 Accuracy verification of version P29rl vs. P25r.

Number of Dimensionless Soil Parameter Absolute
Case . .

domains frequency homogeneity  to compare error
. tractions <108
surface footing 1 0.05 homogeneous impedances <1014
_ _ tractions <10
single pile 2 0.05 homogeneous impedances ~1014
. . traction <10

single pile 3 1.00 layered -
impedances <10
. traction <10
2x2 pile group 5 0.05 homogeneous impedances 10
. traction <10
2x2 pile group 6 0.05 layered impedances <10
_ traction <10
2x2 pile group 6 0.25 layered impedances <10™

After modifying the code, a simple performance test (Table 3.3) was conducted on the

CyStorm cluster using 16 MPI processes to analyze a single pile with disturbed zone at a

relatively high frequency of @=1.00. The pile, disturbed zone, and soil domain had 626, 353,
and 289 collocation nodes, respectively. A range of values of LB and init nlocal were tested
and the variation in collocation completion time among processors was found to be significant.
The best performance was achieved with LB = 0 (i.e., load balancing for all nodes), and
init_ nlocal = 1. With a given LB, as init nlocal increased from 1 to 10, performance
deteriorated at an increasing rate even though communication time was reduced. This is
because differentiation of completion time among processors at the end of the second round
was magnified by an increasing granularity of data distribution. For example, at the time that
the last 10 collocation nodes were all distributed to the same processor, a majority of the other
processors had almost finished their tasks and could not help with these 10 nodes. This
indicates that the negative effect of reducing granularity predominated over the positive effect

of reducing communication overhead. Compared to the case of LB =0, when LB was increased
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to 0.6 the performance was slightly worse for init nlocal = 1, 2, or 5 but commensurate for
init_nlocal = 10. This may be explained by an inequality in performance among the processors.
Part of the processors with slightly better performance handled more collocation nodes. Overall,

version P29rl delivered a significant improvement in the total run time.

Table 3.3 Total run times (hrs:mins) for load balancing performance test of BEASSI P29rl
Jfor a 3-domain problem

IB init_nlocal previous version
1 2 5 10 (LB=1)
0 2:33 2:35 2:59 4:15
7:58
0.6 2:48 2:48 2:49 4:14

3.3.5 Parallelization of Linear Equation Solver and Displacement Calculations for
Internal Points

In the previous BEASSI version P25rl, the serial equation solver zgesvx from the
Linear Algebra PACKage (LAPACK) was employed on the root node for solving the complex
system of equations Ax=b for surface footing and single pile problems. Solving this system of
equations for such problems typically took no more than ten minutes, as the majority of the
run time was required for calculation of the H and G matrices due to the numerically evaluated
layered Green’s functions. For 2x2 pile group problems, however, solution of Ax=b took
nearly three hours when b had a size of 25,000x4 complex numbers (for 4 right hand sides).
Additionally, the maximum problem size that could be analyzed was limited to that which
could fit in the memory of the root node. To reduce the equation solving time and greatly
expand the maximum problem size by fully utilizing the distributed computational resources,
the serial equation solver was replaced by a parallel one. Two data distribution approaches for

employing a parallel solver were examined:
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1. Distributing matrix b to four processors
For Ax=b assembled in BEASSI, matrix b comprises four columns as

b =[b,,b,.b,,b,]denoting the four types of predefined boundary conditions. As a preliminary

attempt, the four columns were distributed to four processors so that each of these processors
only needed to solve for one RHS independently using the original serial solver zgesvx (Figure
3.6). When computation on each processor is completed, result vectors x1, X2, X3 and x4 are

collected back to the root to form complete solution x. The performance of this approach was

expected to increase by four times.

serial code parallel code

+

solver : zgesvx

+ + - +

solver : zZgesvx solver : zgesvx solver : zgesvx solver : zgesvx

¥ ¥ A ¥
\ 4 X X; X3 X4

X X

Figure 3.6 Data distribution of matrix b.

Performance tests were conducted for a single pile and a 2x2 pile problems, when four
processors either resided on the same compute node or spread across four computation nodes.
The results are shown in Table 3.4. When four processors were all on a single compute node,
improvement in performance was negligible, regardless of problem size. When four processors
were distributed across four different compute nodes, there was about 18% improvement. The

explanation is provided as follows.
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Table 3.4 Results of performance test with approach 1.

Parallel code

Case Serial code 4 processors on 1 node 4 processors on 4 nodes

small . ] . _ :
(single pile problem) 0.60 muns 0.57 mins (-5%) 0.49 mins (-18%)

large . ] R _ .
(pile group problem) 35.55 mins 35.39 mins (-0.45%) 29.53 mins (-17%)

Solver zgesvx employs LU decomposition, including three steps:
Step 1: Decomposition/factorization, A = LU . This is to transform A into a multiplication of
a lower unit triangle matrix and an upper triangle matrix. Then the original system of equations

becomes LUx, =b,. This step 1s identical on all four processors.
Step 2: Forward substitution, Ly, =b,. This i1s to solve intermediate variable y, , where

¥; = Ux,. This step is unique on each processor due to the unique right-hand-side b, .

Step 3: Back substitution, Ux, =y,. This is to solve the unknown X; on each processor.

Subsequent to Step 2, Step 3 is also unique on each processor.

Assume dimension of A is nxn and take only one RHS as an example. In Step 1, the

number of operations is about %n’. In Steps 2 and Step 3, the total number of operations is

n* +n* =2n" . The comparison is provided in . It is indicated that Step 1 dominates computation

complexity and number of columns in RHS hardly affects time. An increase in row number of

matrices y;and x,would not magnify such variation in performance.

When » is 3753 for the pile group problem in the performance test, the ratio of

(%n3 +2xn’) to (%:ﬁ +8xn”) 1s nearly unity. A problem with greater size would result in even
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less difference in the number of operations (Figure 3.7). This helps to explain that the problem

size had negligible influence on performance.

Table 3.5. Computation complexity by LU decomposition.

Number of operations on each processor

Step 1 Step2 Step 3 Total
. 2 3 2 2 2 3 2
Serial code En 4xn 4xn En +8xn
. . 2 5 2 2 2 5 2
Parallel code by approach 1 En n n En +2xn

Number of operations ratio per processor: parallel/serial

0'3 L 3 s saasl L 3 3 saaal L 3 3 saasl L s 3 3 saaal
10° 10! 10? 10° 10* 10°
Dimension of matrix (n)

Figure 3.7 Ratio of average number of operations per processor: parallel/serial.

When four processors resided on four different compute nodes, L3 caches on all the 4
CPU chips could be used instead of just one for the serial version. Each Intel Xenon ES 2650

CPU was equipped with 20MB L3 cache. When 4 processes were dispersed to four compute



134

nodes, i1deally a total of 80 MB L3 caches were available. This explains why the corresponding
performance was improved by around 18%.
2. Distributing both matrices A and b

Another approach is replacing the serial equation solver by its parallel counterpart
pzgesv in the Scalable Linear Algebra PACKage (ScaLAPACK). Expert solver routine pzgesv
was called as:

call subroutine PZGESV (N, NRHS, A, IA, JA, DESCA, IP1V, B, IB, IB, DESCB, INFO)

The meaning of each argument is listed in Table 3.6. Among the 12 dummy arguments required,
only four vary across processors and need to be individually specified. The remaining input

arguments are 1dentical on each processor.

Table 3.6 Parameter description of parallel solver pzgesv.

Vary among

Argument Description processors? (Y/N)
N number of rows/columns of matrix A N
NRHS number of RHS, i.e., number of columns in matrix b N
A blocked local submatrix on each processor Y
the row and column indices indicating the first row and column
IA,JA . N
of matrix A
DESCA array descriptor for submatrix A, indicating how A is blocked Y
ipiv output indicating pivoting information N
B blocked local submatrix b on each processor Y
the row and column indices indicating the first row and column
IB,JB . N
of matrix b
DESCB array descriptor for matrix b, indicating how b is blocked Y
INFO output containing error message N

To apply the parallel solver, A and b need to be cyclically blocked for data distribution.
Cyclic blocking can be either one-dimensional (i.e., column or row blocking), or two-
dimensional. An example of 2D blocking is demonstrated in Figure 3.8(a). A block size of 2x2
(highlightened by the same color) and a processor grid size of 2x3 (partitioned by thick solid

lines in Figure 3.8(b)) are specified for matrix A. In the 1% dimension (row), the block on the


http://www.netlib.org/scalapack/explore-html/d5/dd7/pzgesv_8f.html#ab13bb7b25439074e1172322b229e133a
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1%, 2% rows and 1°, 2°¢ columns is mapped to processor (0,0). The block on the 3™, 4% columns
and 1%, 2" rows is mapped to processor (0,1). And the block on the 1%, 2° rows and the 5%,
6 columns is mapped to processor (0,2). Similar procedure is implemented for the 2%
dimension (column). This process i1s repeated until all blocks are mapped. Eventually, all

entries marked by the same color are mapped to the same processor as in Figure 3.8(b).

; ; 0 1 2
y t a v ‘m t |k :

g Yot A N K
Yot 2 l : t : IR I AN A0 2
-y -b W p a j —d -t 7 (_g}o_)l 7|7 (0_11) 7 {0’2) 0
Yy toa 1ih hi-t a.x TG4 x| a A %k
B B _L i A L
z t a1 Sm t k A a
y t:p w:i-a -j a d -k o o W 10 X I
bt a4 1 -4 woat ox Ty (}’0‘)' d -11(1-“12_)-'\ 11’2-} '
g -t -a 1: —m -t;k <b tf—a | ~a —lf-x -a-u

(a) 2x2 blocking of matrix A (b) mapping of matrix A to processor grid

Figure 3.8 Demonstration of 2-D Cyclic blocking.

For BEASSI, column blocking is the simplest way because of the simplicity in data
distribution because of the limited columns in matrix b. In 3D problems, each collation point
1s always assocated with 3 rows and 3 columns in H and G, which means the dimension of the
matrix A is always a multiple of 3. Thus block size is set to be 3x3 permanently to avoid
inducing any minor submatrices during mapping as the last row and column in Figure 3.8(a).
The approach of using the parallel solver is shown in Figure 3.9. MPI non-blocking routines,
such as mpi_isend and mpi ibcast were used for data distribution. The performance of the
parallel solver in solving a 25,000 x25,000 complex system of equations 1s shown in Figure

3.10(a), which indicates a favorable performance.



136

o -

solver : pzgesv - — solver : pzgesvx
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solver : pzgesv solver : pzgesvx
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X

Figure 3.9 Principle of using parallel solver.

For solving a given system of linear equations, the accuracy is related to condition
number of the left-hand-side matrix A. A higher condition number means that the solutions are
more sensitive to perturbations such as round-off errors. Since BEASSI uses normalized shear
moduli, densities, and dimensions, it is always possible to keep the condition number in a

proper range by choosing appropriate reference numbers. Computational error 1s quantified

herein by relative solution error ‘(A;— b)/b|, where x is numerical solution. The accuracy of

the parallel solver was verified by a sample calculation for a surface footing problem at

=0.05. Tractions and impedances by the serial and parallel solvers are compared in Table
3.7 and Table 3.8. In terms of traction, absolute difference between the two solvers is at
magnitude of 1071°. As for impedance, absolute error is confined within 10->. The accuracy of

the parallel solver 1s validated.
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After incorporating of the load balancing algorithm and the parallel solver, BEM
analyses for the 2x2 pile group in a layered disturbed zone surrounded by a layered half-space
required 8 - 10 hours with 96 processors. Actual scalability can be quantified by speedup R(p)
and serial fraction s . Theoretical speedup and serial fraction can be estimated by Amdahl’s

law. Assume a program employing p processors take serial execution time 7, and parallel

execution time 7', respectively. By definition,

R(p) hil (3.33)
p)=—r— :
I,+T, /' p
oL (3.34)
IL+T,
Eliminating 7, and 7, leads to
P
R(p)=
() ps—s+1 (3.35)
p—R
§=
or Rp—R (3.36)

A single pile in layered soil was analyzed at a normalized excitation frequency of

®=0.05 and the performance is shown in Figure 3.10(b). With the parallelized code and 96
processors, the computation took less than 10 minutes with a speedup of 72.3, a significant
immprovement from 715 minutes by the serial code. In practice, the speedup is not strictly
commensurate with the number of processors. This is due to the increasing latency,
communication overhead, contention of the multiple cores for shared cache and system
memories with increasing number of processors. Additionally, the root does not participate in
collocation. In this test, serial fraction of the code decreased from 11.4% to 0.3% as number of

processor decreased from 4 to 96. These drastic improvements in efficiency validated the
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scalability of the parallelized BEASSI code. Further performance improvement may be

expected using 2D cyclic blocking, optimized block size, highly-optimized mathematical

libraries, and iterative solvers.
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Figure 3.10 Improvement of performance of BEASSI with parallelization.

Table 3.7 Comparison on traction between parallel and serial solvers.

Collocation Parallel solver (pzgesv) Serial solver (zgesvx)
node ) ) ) )
real part imaginary part real part imaginary part
number
1 -1.444378 x 10° -6.646648 x 10! -1.444378 % 10° -6.646648 = 10!

2
3
4
5
6
7

-2.679455 % 102
-3.134729 x 10!
-2.704894 x 10!
-2.376813 x 10!
-1.183689 x 10!
-1.931943 x 107

-1.201007 x 10!
-1.004866 x 10°
-9.343959 = 10!
-9.115086 = 10!
-4.536136 = 10!
-8.859091 = 10

-2.679455 < 10?
-3.134729 x 10!
-2.704894 x 10!
-2.376813 x 10!
-1.183689 x 10!
-1.931782 = 1077

-1.201007 = 10!
-1.004866 x 10°
-9.343959 = 107!
-9.115086 = 10
-4.536136 = 107
-8.858053 x 10
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Table 3.8 Comparison on impedances between parallel and serial solvers.

Normalized Parallel solver (pzgesv) Serial solver (zgesvx)
impedance real part imaginary part real part imaginary part
f;w 6.38321 0.30050 6.38321 0.30050
];H, 5.35903 0.18750 5.35903 0.18750
f?m 5.91598 0.00223 5.91598 0.00223
Emb 0.69066 0.02105 0.69066 0.02105
Ebm 0.67559 0.02026 0.67559 0.02026
f;ﬁ 8.51830 -0.00018 8.51830 -0.00018

3.3.6 Optimization of Memory Management

For a typical 6-domain problem, dimensions of matrix A can be as great as 25,000 x
25,000 (i.e., a total of 0.63 billion double precision complex numbers). For existing versions
of BEASSI, matrices A and matrix b were allocated on every processor, which resulted in a
considerable repetition when A only needed to be stored on one processor. A simple test was
performed on a 6-domain problem with results shown in Table 3.9. For the serial solver, its
performance should ideally be independent of number of processors when memory is sufficient
and this 1s validated by the similar performance in cases sl and s2. On CyEnce cluster, each
computation node 1s configured with two CPU sockets and two physical memory modules.
Though both memory modules are shared by the two CPUs, it is faster for a CPU to access the
memory module that is physically located closer. When number of processors increase to 8 in
case s3, node memory usage exceed 50%. This indicates the root processor had to access the
farther memory module, and explains why performance is slightly poorer than cases s1 and s2.
Duplication of matrices A and b on one more processor resulting in about 7% more memory
usage. When a total of 16 processors were employed in case s4, the actual node memory must

have exceeded 100%. Even so, no error message showed up due to the memory paging.
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Table 3.9 Test on memory usage for serial and parallel solvers.

BEASSI Case N“[I::Il;)? of Solver time Max. node

version Processors (mins) memory usage (%)

sl 2 197.25 17.4

P3011 with s2 4 196.75 29.6

serial solver s3 8 218.63 59.8

s4 16 231.73 86.0

pl 2 173.00 17.3

p2 4 87.70 19.7

P311l with p3 8 48.77 214

parallel solver p4 16 25.90 25.0

pS 32 14.27 16.9

po 64 6.70 13.0

A computer 1s capable of addressing memory beyond the amount physical installation
on the system (e.g., 128 GB each node on CyEnce cluster) by nonphysical memory. The
nonphysical memory, also called virtual memory, is a section of secondary storage (usually
hard disk) used to emulate the real memory. When memory become insufficient on a computer,
the operating system automatically backs pages of memory up on the hard disk and frees up
the corresponding RAM. This mechanism prevents operating system from running out of
memory and explains why only 86% of memory was used in case s4. However, too much
reliance on memory paging would jeopardize performance because assessing hard disk is
substantially slower than assessing memory.

As a solution, matrix A was only allocated on root processor in version P31rl. As
indicated in Table 3.9, when number of processors increases from 2 to 16, maximum memory
usage remained below 25%. More importantly, with more than 16 processors employed, the
maximum memory usage for each node decreased to only 13%, ensuring the computing

capability in handling pile group problems.
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3.4 Validation and Verification of BEASSI

The updated BEASSI code is compiled and run on a new cluster and on a new problem
type, and it is crucial to verify its accuracy on pile group problems. A series of tests were
implemented to progressively verify the program’s capabilities.
3.4.1 Validation of New Hardware and Software

Since BEASSI has never been run before on the high performance CyEnce cluster, it is
important to verify the new hardware and software as the first step, using solutions obtained
from previous versions of BEASSI on a different cluster. The software on CyEnce includes
new versions of the operating system, MPI compiler, static libraries, and mesh generator GiD.
A case of a single pile with an embedment ratio of L/« =26.586 in a square-root half-space
without a disturbed zone obtained using the parallel BEASSI version P25r (Ashlock 2006) was
used as a benchmark and reanalyzed. Using the original input files, the output of the new
BEASSI P2911 was almost identical to the previous version P25r results (Figure 3.11), which
demonstrates that the many changes to the code as well as the new operating system, MPI
compiler version, and static libraries on the CyEnce cluster are reliable. The same case was
analyzed after creating new input files using the preprocessor GiD to define and mesh the
geometry, resulting in negligible differences from the original input files (Figure 3.12). The
minor differences mainly result from slightly different discretization of the meshes producing

different round-off errors. Thus, the capability of the new version of GiD is also verified.
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Figure 3.11 Impedance functions for single pile benchmark study using BEASSI (Black lines:
benchmark results of Ashlock (2006); red markers: results using the same input files on
CyEnce cluster using BEASSI P29rl).
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Figure 3.12 Impedance functions for single pile benchmark study using benchmark case’s
input files vs. new input files created with GiD (black lines: benchmark inputs; red markers:
new inputs using GiD).



144

3.4.2 Validation on Multi-Domain Problems

The feature of regularized multi-domain formulation in BEASSI can be verified by comparing
a 6-domain model to a 5-domain model. When the two models have the same soil properties
within the disturbed zone and in the half-space, and identical pile properties, the 5-domain
model reduces to a special case of the 6-domain model. Ideally, identically impedance
functions should be expected from both models. A reference study was conducted for the two
models with homogeneous soil profiles (Figure 3.13). Dimensionless soil and pile properties
are listed in Table 3.10. The resulting impedances presented in Figure 3.14 show favorable
agreement. The relative error slightly increases with frequency and is less than 1%.

(a) 5-domain model (b) 6-domain model
Figure 3.13 Comparison of models of pile group with and without disturbed zone in
homogeneous soil.

Table 3.10 Dimensionless parameters of the 5-domain and the 6-domain models with
homogeneous soil profiles.

Radius 1
Length 25
Pile Spacing 4
Shear modulus (133.33,0)
Poisson’s ratio 0.2
Density 1.11
Shear modulus (1.0, 0)
Soil Poisson’s ratio 0.25

Density 1.0
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Figure 3.14 Comparison on impedances of a 5-domain model and a 6-domain model with the
same homogeneous soil profiles.
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In addition to the case of homogeneous soil profiles, comparison was also made for
layered soil profiles. A 5-domain model and a 6-domain model were established based on the
preliminary design of the full-scale tests. Pile and soil parameters are summarized in Table
3.11. Soil shear modulus profile was based the reported results at the same site by Shelman et
al. (2010) and are presented in Figure 3.15. The resulting impedance functions are presented
m Figure 3.16. For frequencies lower than 0.25, the impedances of the two confirm fairly well
with each other. At higher frequencies, impedance functions begin to deviate. This can be
attributed to the wave reflections at the artificial boundaries of the inclusion, and numerical
error in integration. At higher frequencies, the wave reflections have more significant impact
on piles. In general, the impedance functions for the 6-domain model match well with those

for the 5-domain model. BEASSI featuring multi-domain regularized formulation is validated.

Table 3.11 Dimensionless parameters of the 5-domain and the 6-domain models with layered

soil profiles.
Outer radius 1
Thickness 0.058
Length 66.78
Pile Spacing 8.348
Shear modulus (407.3,0)
Poisson’s ratio 0.2
Density 3.64
Shear modulus and damping see Figure 3.15
Soil Poisson’s ratio 0.25

Density 1.0




147

0 T T 0 T
40 — 40 —
s s
= =
-t o
19 2
5] ¥
a a
80 =1 — 80 —
100 — 100 —
120 — - 120
| | 140 | |
5 6 -1 -0.5 0 0.5
lm(Ca"Gmr)

140

Re(Ga"Gm)

Figure 3.15 Layered soil profile for comparison of a 5-domain and a 6-domain models.




148

200 : : . . 50
40
150
LY af 30
Q" 100 5-?
4 =20
22 g
50
10
0 : : : : 0 : : : :
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
10 T T T T 5“ T T T T
60 | e = 40}
[ ] st
50| 1 £ 3
nﬂa—. Q
540} 1 A
&) = 20}
g 30} {1 %
E =
= o5 10t
I ] <
- - 5
10 . - o <> = 0r
-
01 & =g =mn=5", : -10 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0.5
£I"mrel'/(Gre‘l'/ p ret‘)
60
40
s — Re: 5-domain model
Z 20} | = = Im: 5-domain model
<) ® Re: 6-domain model
= o— - - o .
= PR “ O Im: 6-domain model
ore s .
\ e
A -~ 0
\N,"
20 - - - -
0 0.2 0.4 0.6 0.8 1
0.5
lwlaref/((;rel'/'pﬂaf)

Figure 3.16 Comparison on impedances of a 5-domain model and a 6-domain model in
layered soils.



149

3.4.3 Validation of Structural Green’s Functions on Pile Group

In the boundary element formulation, structural Green’s functions, which are based on
Euler-Bernoulli beam theory, are applied for the pile domains. To validate its application on
pile group problems, a comparison was made between models using the structural Green’s
functions (Abedzadeh 1993) and 3D dynamic point-load Green’s functions for the viscoelastic
full-space (Dominguez and Abascal 1984).

Dimensionless pile and soil properties are listed in Table 3.12 and corresponding
impedance functions are compared in Figure 3.17. The differences ink,, and /?m are found to

be negligible. For J?M , deviation becomes noticeable when dimensionless frequency is beyond

0.5. For l;, and average of k. and /?km , structural Green’s functions resulted in a slight higher

stiffness at frequencies lower than 0.6 and lower stiffness at higher frequencies. Overall
consistency is observed for all impedance functions. The difference is attributed to the
assumption of plane cross-section in the Euler-Bernoulli beam theory such that cross-section
remains as plane during deformation. Such difference is expected to diminish with a higher
shear modulus ratio of pile to soil. Therefore, using structural Green’s functions to model piles

1s proved to be valid.

Table 3.12 Pile and soil properties in comparison of the structural and 3D dynamic point-
load Green'’s functions.

Radius 1
Length 25
Pile Complex shear modulus (133.33, 0)
Poisson’s ratio 0.2
Density 1.11
Complex shear modulus (1.0, 0)
Soil Poisson’s ratio 0.25
Density 1.00

Pile spacing 4
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3.4.4 Verification of BEASSI's Capability on Static Pile Group Problems

El Sharnouby and Novak (1990) calculated the static settlement of vertically loaded
piles by treating the piles and soil as a composite continuum and specifying conditions of
equilibrium for discrete nodes. The Poisson’s ratio of the soil was 0.5 and that of the pile was
not specified. The results were presented in the form of interaction factors as introduced by
Poulos (1968), defined as:

o settlement of one pile owing to adjacent pile load

pile settlement under its own load (3-37)

A corresponding case of two floating piles in a homogenous half-space was analyzed
by BEASSI for various spacing and elastic modulus ratios. The length-to-diameter ratio of the

piles was L/d =25 and the soil Poisson’s ratio was set to v, =0.49 to avoid numerical
mstabilities. Pile Poisson’s ratios of v, =0.2 and v, = 0.49 were analyzed, which had little

effect on the results. The results from the rigorous three-dimensional BEASSI analysis follow
similar trends as El Sharnouby and Novak (1990), with interaction factors decreasing with
increasing pile spacing (s), as shown in Figure 3.18. For the lowest modulus ratio, the two
analyses match very well, with a maximum interaction difference of 0.036 which diminishes
with increasing spacing. For higher modulus ratios, the differences are slightly greater but
similar trends are observed. For the case £,/Es=10,000 at a spacing of S/d=2 for example, the
mteraction factors from BEASSI and the reference study are 0.638 and 0.706, respectively. In
the reference study, piles were discretized into a limited number of elements with identical
vertical shear stresses assumed. Additionally, surface loads as well as axial loads were reduced
to point loads. These simplifications, which were not applied in BEASSI, increase the stiffness

of the soil-pile system and lead to the slightly higher interaction factors.
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Figure 3.18 Comparison of interaction factors from BEASSI and El Sharnouby and Novak
(1990) for floating pile with Poisson’s ratio of 0.2 in homogeneous soil (Ashlock and
Jiang 2017).

3.4.5 Verification on Dynamic Pile Group Problems
To verify the program’s capabilities for dynamic problems, the impedance functions of

a 2x2 pile group in a homogeneous half-space were calculated and compared to those of

Kaynia and Kausel (1982). The pile and soil parameters for this case were £, / E, =10%,
v,=040,v,=025, L/d =15, and S/d =5, with a mass density ratio of p, /p,=0.70,

where subscript p refers to the pile and subscript s to the soil, £ 1s Young’s modulus, v is
Poisson’s ratio, p i1s mass density, and L, d and S are the pile embedded length, diameter, and
spacing, respectively. In BEASSI, the vertical, horizontal, rocking, coupling (horizontal-

rocking), and torsional impedances at the specified frequency were obtained using BEASSI by
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prescribing unit displacements or rotations at the pile head in the corresponding directions and
appropriately integrating the resulting tractions to obtain the resultant forces and/or moments.

The real and imaginary parts of the impedances for the 2x2 pile group are presented in
Figure 3.19. The equivalent dashpot coefficients reported in the reference solutions were
converted to corresponding imaginary parts of the impedance functions for comparison with

BEASSI. For consistency with the reference case, the vertical impedance £, (a,) and rocking
impedance k_ (a,) were also normalized by the static values Nk’ (0) and > %k (0).

respectively, while the horizontal impedance &, (a,) and torsional impedance k,(a,) were

normalized by Nky (0) and » r’k; (0), where N =4 refers to the number of piles, x, is the

distance between the pile center and the rocking axis, 7, is the distance between the pile center
and the center of rotation for torsion, and superscript S refers to the single pile’s stiffness. The
dimensionless frequency is defined as a, =ad / C, where C, is the shear wave velocity of the
soil and w=2xf is the circular frequency of excitation. The results from BEASSI match the
reference solution well, especially at low frequencies. As the normalized frequency approaches
zero, both methods tend towards a similar value of static stiffness. When a, exceeds 0.6, the
stiffness (real part of impedance) obtained by BEASSI is generally slightly lower than the
reference solutions and the damping (imaginary part of impedance) diverges slightly from the

reference solutions. From these benchmark comparisons, the modified BEASSI program are

considered to be verified for solving pile group problems.
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3.4.6 Validation of 3D Disturbed-Zone Model

Impedance functions for the case of a pile group within a single disturbed zone are very
limited in the existing literature. Instead, pile group analyses with disturbed zones are typically
based on superposition of single pile analyses and dynamic soil-pile interaction factors, with
the assumption that the presence of a second (free-headed) pile does not affect the
displacements of the first (loaded) pile. For example, a dynamic vibration case study of a single
floating pile and a single rigidly supported pile in horizontally inhomogeneous soils was

reported by Veletsos and Dotson (1988). The relative pile and soil parameters used were
G,/ G;=1,094,v,=1/3,v,=1/6,and L/ d =20, with the ratio of G? toG! varied from 1 to

4, in which G denotes shear modulus, v 1s Poisson’s ratio, and L/d is the pile’s length to
diameter ratio. Subscripts p and s refer to the pile and soil, and i and o refer to the inner and
outer soil zones, respectively. The case corresponding to zero material damping for both pile
and soil domains is considered herein, and the thickness of the cylindrical disturbed zone was
0.25d .

A 3D BEM model was established with BEASSI to reanalyze the case study using a
disturbed zone consisting of a cylindrical part with a hemispherical cap beneath, consistent
with the proposed pile group model shown in Figure 3.20. By setting the soil properties within
the hemispherical cap to be identical to those in the surrounding half-space, the established
BEM model becomes a 3D equivalent to the 2D model in the literature. The rigidly supported
3D pile case can then be approximated by simply increasing the soil shear modulus below the

pile tip until the impedances show negligible changes with further increases in modulus.
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The impedance results in Veletsos and Dotson (1988) are expressed in the form:
K, =(K,).(@,+iap,) (338)
where K is vertical impedance, (K ), is the static vertical stiffness of a floating pile in a

homogeneous half space, &, and f?w are dimensionless factors that depend on the relative pile
and soil properties, and (K ,),, is taken from Poulos and Davis (1980) as

(K,), =30.1Gd (3.39)

Because the dynamic multilayered Green’s functions in BEASSI are undefined at a

zero frequency, the static stiffnesses were evaluated asymptotically by setting the

dimensionless frequency to a suitably small value of 0.03. The resulting error in (K,), from

BEASSI relative to the value in Eqn. (3.39) was only 4%. The impedances from the 3D

BEASSI analysis are compared to the 2D results of Veletsos and Dotson (1988) in Figure 3.21,

in which a; denotes dimensionless frequency. A nearly perfect agreement can be seen over the

range of modulus ratios analyzed, with the only exception being the values of fi’w at low

frequency for the rigidly supported pile case. This is due to the cut-off frequency effect
(Gazetas and Makris 1991), which 1s captured in BEASSI. The results of this case study thus
provide a validation of BEASSI’s capabilities for handling horizontal inhomogeneity with the

proposed 3D disturbed zone models.
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Figure 3.20 The BEM model for reanalyzing case study by Veletsos and Dotson (1988).
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3.5 Sub-structuring Formulation for Dynamic Pile Group Problems

To analyze the full-scale tests in Chapter 2, theoretical accelerance functions must be
derived. A general formulation for the dynamic response of a pile group in terms of transfer
functions of directional pile-cap acceleration per unit applied force was developed by the
method of sub-structuring (Ashlock and Jiang 2017). In the current study, the embedded pile
segments and surrounding layered soil domains are modeled as substructure components and
BEASSI is used to determine their impedance functions, while the superstructure components
consist of unembedded pile segments which are analyzed as Euler-Bernoulli beam-column,
and the pile cap-shaker system which 1s analyzed as a rigid body (the moving mass of the
shaker is treated as a separate rigid body) (Figure 3.22). Once the pile impedance functions at
the soil surface elevation are obtained from BEASSI, they are input to the mathematical
formulation to determine the theoretical acceleration-over-force transfer functions of the soil-
pile-cap system. Numerical analyses of substructure are time-consuming while analytical
analyses of superstructure are fast. Therefore, instead of modeling the entire system
numerically, application of method of sub-structuring can reduce scale of numerical models,
and adapt impedance functions for diverse superstructures.

3.5.1 Substructure Formulation

In the frequency domain, a general elementary submatrix relating the force and moment
resultants at the elevation of the ground-surface at a fixed Pile i due to 3D displacements and

rotations of Pile j can be expressed as:
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where the first subscript refers to force or moment with respect to x, y, or z axes of the

observed Pile i, and the second subscript refers to translation or rotation with respect to the x,

y, or z axes of the loaded Pile j. In this equation, all values are considered to be frequency-

dependent Fourier transforms of their corresponding time-domain variables, and four local

Cartesian coordinate system are considered at the top center of each individual pile. The entries

of the stiffness matrix are the complex-valued impedance functions related to the particular

combination of observed and loaded piles. For linear viscoelastic analysis of the soil-pile

system, the pile group impedance may be obtained by linear superposition of the contributions
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of the individual piles, by assembling the individual pile impedance submatrices into a global

stiffness matrix as follows:

- or FF =K'/U’ (3.41)

where each of the 6x1 F' vectors contains the forces and moments at the ground surface
elevation for Pile 7, and U’ contains the corresponding displacements and rotations for Pile ;.
The global stiffness matrix comprises 16 of the 6x6 elementary stiffness matrices K'”relating
force and moment resultants at Pile i to the displacements and rotations of Pile 7, which
accounts for effects of pile-soil-pile interaction. The inverse of the global stiffness matrix is
the global compliance matrix, which can be used to calculate displacements and rotations of
each pile head for given applied forces and moments.

The global matrix in Equation (3.41) has 24x24 entries, making it massive for practical
analyses. However, by taking advantage of the pile group symmetries, BEM mesh, and Green’s
functions for the soil and piles, the global matrix can be condensed such that displacements
need to be specified at only one of the piles in the BEM analysis. In this study, all piles have
identical properties, and the soil profile is axisymmetric in the half-space and has two planes
of symmetry in the disturbed zone. By Betti’s reciprocal theorem, the global stiffness matrix
1s symmetric for a linear system. Thus the elementary stiffness matrices above the main
diagonal of the global matrix can be determined from their counterparts in the lower triangular

part. Derivation of submatrices in lower triangle is discussed below in details. Additionally,

the elementary matrices K>, K’ , and K** on the main diagonal can be inferred from K"
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with proper sign changes to account for the relative positions of the local Cartesian coordinate

systems at each pile head.
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Within each elementary matrix, number of independent entries can be further reduced

by considering the symmetry of the pile group. For example, with uniform spacing in the
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horizontal directions, the influence of Pile 3 on Pile 1 is symmetric to that of Pile 2 on Pile 1.
Thus K’ can be inferred from K*' by applying an appropriate coordinate transformation
matrix. Similarly, K*?is associated with K*' by mirroring with respect to the vertical x-z
plane of the substructure coordinate system. Finally, K*?is equivalent to K> and K*?is
equivalent to K*"' by mirroring with respect to the x-z and y-z, respectively. In theory, the
entries of four columns in the global matrix (a total of 96 elements) are sufficient to derive the
remaining entries. However, the actual numerical results may not strictly satisfy such
symmetry due to discretization and interpolation errors and accumulation of round-off errors
m the BEM, which are amplified by increasing frequency. 6-domain models show greater

deviations than 5-domain models.
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To validate the above derivations, a global stiffness matrix for a 5-domain model was

assembled by displacing each individual pile. Pile and soil properties listed in Table 3.10 and
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@ = 0.05 were used. The numerical results conform to the above theoretical derivation in good
sense (Figure 3.23)

As an alternative, the validation was implemented by comparing the impedance of a
2x2 pile group with a fictitious rigid pile cap at ground level by the derivations and direct
analysis. The assembled global impedance matrix was multiplied by a displacement vector to
obtain resultant forces at each pile head. For horizontal vibration of the pile cap, the

displacement vectors for each pile are:
U=0=U=U*=[1 0 0 0 0 O (3.52)
Adding up horizontal resultant forces at head of all piles - F', F*, F’and F', is the

horizontal impedance of the pile group. Similar displacement vectors were applied for vertical,

rocking, and torsional vibration of the pile cap,

vertical:
U=0*=U’=U'<[0 0 1 0 0 0]
rocking:
U'=0’=[0 0 -S5,/2 0 1 0]
v'=u*=[0 0 S./2 0 1 0f
torsional:

v'=[-s,/2 §,/2 0 0 0 1]
Ul=[s,/2 §,/2 0 0 0 1]
v=[-S,/2 -5,/2 0 0 0 1]

v'=[5,/2 -s,/2 0 0 0 1]

where S, and S are pile spacings in x and y directions, respectively.
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Figure 3.23 Derived global stiffness matrix by direct analysis.
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As a comparison, reference solutions of vertical and horizontal impedances of the pile
group can be directly analyzed by BEASSI, prescribing simultaneous unit displacements or
rotation to the rigid pile cap. Then the stiffness and damping of pile group is the resultant force
or moment integrated over all pile heads. To this end, both 5-domain and 6-domain models
were analyzed, which suggests favorable agreement (Figure 3.24 and Figure 3.25). It can be

concluded that the assembly of global impedance matrix by symmetry for substructure is

reliable.
140 T T T T T T 40 T T T T T T
R .e: superposition m— Re: superposition
120 | = = Im: superposition i 35| |= = Im: superposition 4

@ Re: direct analysis : direct analysis
: direct analysis

: direct analysis

vertical impedance
horizontal impedance

e ” .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.5 0.5
wamf{(Grc(jpml') wan:ij(Grthml)
1800 2000
— Re¢: superposition
1600 b 1800 1 | o Im: superposition P
@ Re: direct analysis r

1400 J 1600 F | © 1Im: direct analysis ’ b
2 o 1400 -
= 1200 | - H
o
g g 1200 | 1
E- 1000 | e b e
= RN E 1000 | |
o L -~ =
= 800 ’ 0 7 g
= ° g so0f 1
= rd W
s 600 | 4 4 5
= °t = 600} p

400 | s 1

’ s — Re: superposition 400 1
-] = = [m: superposition
200 | ’ ’ @ Re: direct analysis | - 200 } p
_of O Im: direct analysis -
ol =™ . . . . . ol =@ . . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.5 0.5
wanff(Greijref) w“m[‘{(Grllj'owf)

Figure 3.24 Group impedances in vertical, horizontal, rocking, and torsional directions for
S-domain model by superposition and direct analysis.
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Figure 3.25 Group impedances in vertical, horizontal, rocking, and torsional directions for
6-domain model by superposition and direct analysis.
El-Marsafawi et al. (1992) applied superposition through dynamic interaction factor,
which was derived on two-pile cases. Numerical tests on a 3x3 pile group indicated
discrepancies at high frequencies between the superposition and the direct methods. In this

study, all elementary submatrices are derived with presence of all piles.
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3.5.2 Superstructure Formulation

In the present analysis, the acceleration response 1s desired at an arbitrary point P (xp,

¥p, zp) on the pile cap. For planar motion, the displacement and force vectors at P can be

simplified to:
Uy(x,9,) Fy(x,,
UP)=|U,(x,y, and F(P)=| F.(x,y,)
0.(x,7,) M.(x,y,)

where the superstructure coordinate system of Figure 3.22 is adopted for simplicity. For rigid
body motion of the pile cap, the displacement of point P can be related to that of the centroid

point C through

€

1 0
U(P) =T, U(C), where T, =T, ' =0 1 —h, (3.53)
0 0 1

In Equation (3.54), T,.is a 3x3 kinematic transformation matrix containing the horizontal
eccentricity e, =x, —x. and height 4, =y, — y. of point P with respect to the centroid of the
cap-shaker system. Elimmating U(C) by setting P equal to poimnts 7; and 7, gives the
displacement compatibility condition for rigid body motion of the pile cap as:

T UT) - T U(T) =0 (3.54)

Dynamic force and moment equilibrium for planar motion of the pile cap then give the three

equations of motion:
~Q, ~F,(I,)~F,(T,) ~F,(T,) ~F,(T,) =-ma"U,(C) (3.55)

Oy —F.(1) - F(I,) - F(L,)~ F,(I,) =—ma’U,(C) (3.56)
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—Ove, = Oyhy —[F,(1) + F,(T))le, —[F,(T) + F,(T)]er,
AF(D) + F(T)I(hy) —[F(L) + F(T)) () (3.57)
~M_ (1))~ M, (1,) - M, () -M.(I,) =—J ©°0,(C)

where m and J are the mass and centroidal polar mass moment of inertia of the pile cap; @
1s circular frequency; and U, ©, F and M denote Fourier transforms of the centroidal

displacement and rotation, and forces and moments displacement, and rotation quantities at the

pile heads. The three equations of motion can above be expressed in matrix-vector form as

Q- T [F(T) + F(T,)] - T; [F(T;) + F(T,)] = —’MU(C) (3.58)
_QV ‘F;’
where Q = (o= 1s the external forcing vector, F =| F_ | 1s the vector of forces
(_QVeV —0Oyey ) M,
m 0 0
and moments at the pile head, and M=| 0 m 0 |. By symmetry, F(7})=F(7,) and
0 0 J

F(7,)=F(7,) and the equations of motion can therefore be simplified to
—a)ZMTmI U(n)+ 2T§CF(1’1)+2T£CF(?;) =Q (3.59)

The governing differential equations of motion for the axial and bending deformation of the

unembedded pile segments can be expressed in the frequency domain as:

U, (3,0)
&

dU,(y, )
Ad

2
@
[C_J U,(y,»)=0, where F,(v,®) = E, 4, (3.60)

P
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_ du (y,w)
Fy(y,0) = Epdy——=— (3.61)
dy
and
d*U
—’f('f’m) -BU,(y,0)=0 (3.62)
dy
where C, =, fE »/ p, 1s one-dimensional primary wave velocity of the pile and
p, A
4 _ 27
s —Ep 7 (3.63)

The general solutions to the wave equations (3.62) and (3.62) can be obtained in terms of six

undetermined coefficients C=[C,,...,C,]" as in Ashlock (2006)

(3.64)

U,(y,w)=¢ sin(ay)+c, cos(ay)
F,(y,w)=E,4,a|c cos(ay)—c,sin(ay)]

(U_(y,w) = ¢;sin(By) + ¢, cos(By) +c.e™™ +c e’

O(y,w) =—pPe, cos(By) + Be, sin( By) + Bee ™ — Pee’O )

M(y,w) = E I f%c,sin(By) + Epl,’c, cos(By) — Epl,BPcie™ — E I, [f%ce’ ™
F.(y,w) = Epl,fes cos(By) — Eplp e, sin(fy) + Eplp frese™ — Epl e’ ™

(3.65)

and expressed for any point P=(x,,0<y, </,) along one of the unembedded pile segments

as

v (P)} (3.66)

S(P)C = L?T .

where
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sin(ay,) cos(ay,) 0
0 0 sin(By,)
S 0 0 ~Beos(BY,)
a E, d,acos(ey,) —E,dpasmn(ay,) 0
0 0 E I, cos(By,)
0 0 E,I,B*sin(By,)
0 0 0 ] (3.67)
COS(ﬁ yp) e_ﬂyF eﬂ@p_fa)
psin(By,) pe” —pefo
0 0 0
3 s -8y 3 _B(y—L,)
—E LB si(By,) Eulppe’ —Elpe "
E,I,p* cos(f3 Y,) _Epfpﬁze_ﬂyp _Epfpﬁzeﬁ(yp_fo)

and a¢=w/C,. The coefficients ¢ can be eliminated by relating the beam-column wave

equation solutions in Equation (3.66) at the top and bottom of the un-embedded pile segments.

For Pile 1 and Pile 2, this can be written as

sty V@ | g5, VB 2 68
(1) FT) | (B) F(B,) (3.68)
Similarly, for Piles 3 and 4:
S—l T U(‘?;) _S—l B U(B3)
(%) FT) | (B3) F(B,) (3.69)

For the planar motion under consideration, the forces and moments vectors at the
ground level can be expressed in terms of the impedance functions obtained from the BEM
substructure analysis as:

F(B)=[K"(0)+K"(0) |UB)+| K (0)+K"(0) |U(B,)
F(B,) =[ K™(0)+K*?(0) |UB) +| K**(0) +K* (o) |U(By)
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where U(B,)=U(B,)and U(B;)=U(B,)by symmetry, and only the impedances relevant to

motion in the superstructure’s x-y plane are included in the 3x3 K~/ matrices. For the case of
a 2x2 pile group, the off-diagonal submatrices K>, K™, K" K>, K*?, and K** account
for pile-soil-pile interaction. In the present study, the diagonal matrices such as K"' and K**
also include the influence of the other piles on the loaded pile, which was neglected in the
dynamic interaction factor analysis of Kaynia and Kausel (1982). The effect of neglecting pile-
soil-pile interaction can be examined by replacing all off-diagonal submatrices of the global
stiffness in Equation (3.41) with zeros.

Retaining the effects of pile-soil-pile interaction, Equations (3.54), (3.59), and (3.68) -

(3.70) can be combined into a 24x24 system of simultaneous equations:

S(BJS_I(}D Oﬁxﬁ _Iﬁxﬁ
Oﬁxﬁ S(BS )S_l (TS) 06x6
~o’MT,; 2T, 0,5 2T,
{ Ti:lflj 03x3] {_T;:‘ 03x3] Vo
0 {Kl-l(amK”(w) —Iﬂ
o0 o0 K™(0)+K(0) 0.,
U@ | (o] (3.71)
0, 1| F(ZD) 0
_Iﬁxﬁ U(I;) 0
0, FT) | _|0
K= @ +K™ @ 0, ]| Lo | | @
{Ks_s(co)—i-l(p‘(a)) _Im} F(Bl) 0
JUB)| |o
| F(B;)| [0]

where the § sub-matrices are also functions of ® and each entry of the right hand side is a 3x1
vector. This system of equations can be solved numerically for the ratios of unknown

displacements and forces to the applied force (e.g., U(Z;)/ O, etc.), by first dividing both sides
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by O=0, with O, =0 for vertical forcing or O =Q, with O, =0 for horizontal forcing.
The theoretical accelerance functions for any point P on the surface of the pile cap can then be

calculated using one of the displacement vector solutions, e.g.

UP) o UT)

AP)=-w ~o'T,, 0
where
1 0 (xp—xz)
Top =TocTpe =0 1 ~(yp—yg) |- (3.72)
0 0 1

3.6 Three-dimensional BEM Disturbed-zone Model
3.6.1 BEM Model for a 2x2 Pile Groups

Smmplified disturbed-zone models have been shown effective for adequate prediction
of dynamic response of single piles (e.g., Vaziri and Han 1991; Manna and Baidya 2010).
However, research on 3D disturbed-zone models for pile groups in layered soils remains
limited. If the pile spacing§is sufficiently large such that the motion of each pile negligibly
affects the others, disturbed zones may be used around each individual pile. For typical smaller
values of pile spacing, a single disturbed zone surrounding all piles may be more efficient. For
erther scenario, the size and shape of the disturbed zone must first be defined. For example,
Blaney and O’Neil (1986, 1989) performed full-scale dynamic lateral tests on a closed-ended
single pile and pile group in stiff overconsolidated clay. They postulated inelastic soil
deformations within a horizontal distance of 1.2 m (4.4 times the pile diameter D) from the

center of the single pile, and within 1.0 m of the perimeter of the 3x3 pile group (for which
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S=3D and D=0.273 m), outside of which the soil deformation attenuated rapidly. The soil
motion beyond this zone appeared to be dominated by the propagation of elastic body and
surface waves. Because of the relatively small pile spacing of 4.17D in this study, a single
disturbed zone is adopted around the pile group.

Disturbed zones in previous studies were originally developed based on axisymmetric
plane-strain assumptions and simply surrounded the pile by a thin cylindrical body without
modeling the perturbed soils below the pile toe (e.g., Veletsos and Dotson 1986; Han and Sabin
1995), which can greatly affect the vertical vibration mode. A general disturbed-zone model is
expected to be able to capture the observed behavior of multiple vibration modes of pile groups,
including horizontal, vertical, rocking and torsional modes. To this end, a disturbed zone
having a cylindrical shape with a hemispherical cap was adopted for single piles by Ashlock
(2006), and is developed for pile groups herein. The inner and outer zones enable an
approximate account of horizontal heterogeneity, and the multilayered viscoelastic
fundamental solutions in BEASSI (Pak and Guzina 2002) enable piecewise vertical
heterogeneities of the soil’s density, Poisson’s ratio, shear modulus and damping ratio. The

length of the cylindrical disturbed zone is taken to be the same as that of the piles, and the
radius is set to (JE /2)S+2.5d (Figure 3.26). Parametric studies were also performed,

revealing that the pile group impedances have a relatively lower sensitivity to the radius of the

disturbed zone than to the modulus and damping profiles within the zone.
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Figure 3.26 Three-dimensional disturbed-zone BEM model for a 2*2 pile group.
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3.6.2 Boundary Discretization

As mentioned previously, the surfaces of the pile and soil domains were discretized
using quadratic and adaptive gradient elements. Through parametric studies, the authors
determined that the horizontal traction-free surface on the upper boundary of the disturbed
zone in Figure 3.26 does not benefit from mesh refinement, and needs only to provide a
compatible transition between the pile meshes and that of the outer embedded surface of the
disturbed zone at the ground level. Convergence studies were also performed on the meshes of
the pile and disturbed zone, with particular attention to the number of elements in the vertical
direction, as this was the most influential parameter. Convergence for dynamic problems is
related not only to the mesh itself, but also to the excitation frequency and material properties.
For example, a higher frequency or lower shear modulus lead to shorter shear wavelengths and
sharper variations in tractions and displacements, requiring a finer mesh to capture their details.
In the present study, the range of interest for the normalized circular frequency @ is from 0.01
to 0.33, which corresponds to actual linear frequencies up to 156 Hz. This range is sufficient
to cover typical frequencies of interest in seismic problems, as well as higher-frequency
applications such as machine vibration problems, and is also sufficient to capture the resonant
accelerance peaks from the field-scale pile vibration tests. A convergence study on the mesh
size 1s presented in the following, using a soil profile determined from three seismic cone

penetration soundings performed at the field test site.
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1. Effect of mesh refinement along pile length

From mesh refinement studies, it was first determined that the impedances were most
sensitive to the number of pile elements in the vertical direction, and use of 4 elements in the
radial direction with 8 in the circumferential direction was adequate for convergence. Four pile
meshes termed A, B, C, and D were then examined with 12, 24, 36, and 72 vertical elements,
respectively. BEASSI is able to handle multiple thin soil layers per element by dividing vertical
elements into corresponding sub-regions for integration, which captures the discontinuities in
the Green’s functions thus enabling convergence of the adaptive integration scheme. To keep
the soil profile fixed while varying only the number of vertical pile elements, the soil profiles
were uniformly discretized into a total of 72 layers along the pile length (with additional layers
below the piles). Therefore Meshes A, B, C, and D had 6, 3, 2, and 1 layers, respectively, per

vertical pile element within the disturbed zone.
Most of the resulting impedances in the elementary matrix K'' exhibited good

consistency, except for &' and k'™ which deviate at high frequency for the coarsest Mesh

A. These results also indicate that the horizontal impedances are the most sensitive ones to
discretization along the pile length, followed by the horizontal-rocking coupling impedances.
Similar convergence trends, although with nearly negligible impedance deviations, were also
observed in the off-diagonal elementary matrices K*', K*', and K*'. Impedances from
these matrices also quantify the forces transferred to the other piles through pile-soil-pile
mteraction which, as expected, are much smaller than those on the loaded pile. Based on the

above results, pile Mesh B 1s deemed to give the optimum balance of accuracy and efficiency.
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(b) Mesh B (¢c) Mesh C (d) Mesh D

(a) Mesh A

Figure 3.27 Mesh refinement along pile length.
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Figure 3.28 Convergence study on mesh along piles using CPT-correlation soil profile and a
6-domain model (red lines - Mesh A; blue lines — Mesh B; green lines — Mesh C; black lines
— Mesh D).
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Figure 3.28 (continued)
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Figure 3.28 (continued)
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Figure 3.29 Convergence study on mesh along piles using SCPT soil profile and a 5-domain
model (red lines - Mesh A; blue lines — Mesh B, green lines — Mesh C).
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Figure 3.30 Convergence study on mesh along piles using SCPT soil profile and a 6-domain
model (red lines - Mesh A; blue lines — Mesh B, green lines — Mesh C).
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2. Mesh along cylindrical part of the disturbed zone

The impedances were less sensitive to the number of inclusion elements in the vertical
direction. Three pile meshed termed E, F, and G were examined with 6, 12, and 24 vertical
elements for the cylindrical part of inclusion, respectively. Therefore Meshes E, F, G had 12,
6, and 3 layers, respectively, per vertical inclusion element for the cylindrical part. For a 6-

domain model with continuous CPT-correlated soil profiles, all three types of meshes suggest

favorable agreement on impedance matrices in K'' (Figure 3.32), except for k' and

Eﬁ; ,which show deviations even at low frequencies for the coarsest Mesh D. Simuilar trends

were also observed in the off-diagonal elementary matrices K>, K*>", and K*", such that
impedance functions begin to deviation when frequency is higher than 0.25. For the 6-domain
model with piecewise SCPT soil profile, Mesh F and Mesh G lead to very close results while
Mesh E still diverge when frequency is beyond 0.25 (Figure 3.33). Based on the above results,
Mesh F mesh provides the best balance between accuracy and efficiency.

In conclusion, convergence is observed by mesh refinement of pile mesh and inlcusion
mesh. As expected, converged results for impedance functions are commonly observed at low
frequencies below 0.25. When excitation frequency is higher than 0.5, impedance functions
begin to diverge, and the degree is associated with the loading direction and the force or
moment observed. For the frequency range of interest in this study, Mesh B for pile mesh and
Mesh F for inclusion mesh are adopted to balance accuracy of numerical results and time

efficiency.
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(a) Mesh E (b) Mesh F (c) Mesh G

Figure 3.31 Mesh refinement along disturbed-zone depth.
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Figure 3.32 Convergence study on mesh along disturbed zone using CPT-correlated soil
profile with a 6-domain model (red lines - Mesh E; blue lines — Mesh F,; green lines — Mesh
G).
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Figure 3.32 (continued)
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Figure 3.32 (continued)
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Figure 3.32 (continued)
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Figure 3.33 Results of convergence study on mesh along disturbed zone using SCPT soil
profile and a 6-domain model (red lines - Mesh E; blue lines — Mesh F; green lines — Mesh
G).
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3.7 Interpretation of Numerical Results

BEM analyses provide direct results of nodal displacements, nodal tractions, and
optional internal displacements. In addition to impedance functions at pile head, the results can
be interpreted for other terms to characterize pile-soil-pile interaction. These include group
efficiency ratio, pile group deformation, displacement, strain and stress fields of soil, and pile
mternal forces.

3.7.1 Group Efficiency Ratio

Group efficiency ratio is a term widely used to quantify the overall performance of pile

group. However, the exact definition appear to vary in previous studies. Gazetas and Makris
(1991) defined ‘dynamic stiffness group factor’ £ and ‘damping group factor’ D as the
ratio of dynamic pile group stiffness K" or damping " to the sum of static stiffnesses by

single pile K

—(n)

k(") — K
)
nk (3.73)
C(")
o _
D™ = nk®

where n 1s number of piles. In static and nonlinear pile problems, the efficiency ratios are
commonly defined in terms of force instead of impedance. For example, McVay et al. (1995),
Chandrasekaran et al. (2010b), and Salgado et al. (2014) referred group efficiency as the ratio
of resistance for a pile group to resistance for a single pile at the same displacement level (e.g.,
1~3 1n.) multiplied by pile number. Becker and Moore (2006) and Tomlinson and Woodward
(2008) defined similar concepts as ratio of ultimate load capacity of pile group to ultimate load
capacity of single pile multiplied by the pile number. For clarity, notation by Novak and

Mitwally (1990), Han and Vaziri (1992), Manna and Baidya (2010) is adopted 1n this study:
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GER= stiffness or damping of pile group
Nxstiffness or damping of single pile

(3.74)

where N is the number of piles in the group. This notation is more useful for elastodynamics
as 1n this study. In addition, it associates impedances (stiffnesses and dampings) of pile group
and single pile at the same frequency, which is more practical in engineering designs. A GER
equal to unity indicates either no pile-soil-pile interaction or such effect being counteracted as
if the piles were isolated. A GER different from unity indicates overall behavior of pile group
are either enhanced or reduced by pile-soil-pile interaction. The direct analysis method
discussed in Section 3.5.2 for is applied here for calculating group impedances of a 5-domain
model and a 6-domain model. The impedances of single pile as reference are obtained from a
2-domain model and a 3-domain model, which have the same soil profiles as the pile group.
The vertical and horizontal group efficiency ratios are shown in Figure 3.34 and Figure 3.35,
respectively. The two models suggest similar trends of GER for either vertical or horizontal
direction. For the 5-domain model, the vertical stiffness ratio is below unity at frequencies
below 0.15 and starts to increase quickly towards a peak before a final decrease starting at
frequency of 0.2. Damping ratio increases quickly to the highest point at frequency around
0.15, which is followed by a drastic reduction. The stiffness ratio can be as high 1.8 for vertical
vibration and 1.7 for lateral vibration. For the 6-domain model, the calculated GERs for vertical
and horizontal stiffnesses exhibit similar trends, as both are below unity at normalized
frequencies below 0.15 and increase towards a peak around a normalized frequency of 0.2. The
GERs for damping both increase quickly to a peak at an intermediate frequency between 0.15
and 0.2, followed by a sharp reduction. In general, these GER values demonstrate how the soil-
pile interaction varies with frequency and provide sights into design of pile groups for

achieving highest stiffness or lowest damping.
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Figure 3.34 Vertical and horizontal GER for a 2 %2 pile group without disturbed zone.
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Figure 3.35 Vertical and horizontal GER for a 2 %2 pile group with disturbed zone.

3.7.2 Pile Group Deformation

Pile deformation is a common interpretation for pile problems. For simplicity, three-
dimensional deformation of piles are presented using displacements along piles’ central axes
herein. Based on the plane cross-section assumption in the structural Green’s functions,

displacements along the pile central axis can be calculated by averaging nodal displacements

at the same depths in BEM models.
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Once a pile 1s loaded at head, adjacent piles deform correspondingly due to pile-soil-
pile interaction. As introduced in Section 3.3.1, the new predefined complex boundary
condition at head of Pile 1 is the translation and rotation by complex value 1+0i. In Equation
(3.71), if the external force matrix Q is substituted with real numbers, then the initial phase
angle of excitation force 1s assumed to be zero. However the actual complex displacements at
head of each pile commonly have non-zero imaginary part. This means the nodal
displacements on piles by BEASSI need to be scaled for actual pile deformation.

The physical meaning of scaling is illustrated by an example of a single pile in Figure

3.36. Assume vector x, denoting the predefined B.C. at point a, which has zero phase angle and
magnitude of unity. Vector X, denotes the corresponding displacement vector at point ¢ on pile

at the same time. Vector x, ' refers to the actual displacement of pile at ground level that 1s

obtained from the sub-structuring formulation, and the actual displacement at point c is

represented by vector x_'

a IM
77770 | A777 1
YRe () +Im’ (x,)
x,'
P
”
-
rd
”
AN
td 1
< - * RE
1 X,
/) (predefined
’ displacement
X, ; B.C.
0 !
L C f’
| 2

Figure 3.36 Displacements on pile in complex coordinate system.
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Displacement vector x_'1s derived in two steps. In the first step, consider x, rotating 6 with

constant magnitude. For steady-state forced vibrations at a given frequency, difference in phase
angle for displacement vectors at two given points remains constant. Otherwise, the two

displacement vectors would have different circular frequencies, which is unrealistic. If x, has
a rotation of O, then vector x, must follow the same way. Through transformation matrix, the

new coordinates of vector x, become:

{RE(XC') = RE(x,)cos 6 —IM(x,)sin 0 (3.75)

IM(x,") = RE(x,)sin 6+ IM(x_)cos 6
where cosO=IM(x,")/RE(x,"). In the second step, consider scaling magnitude ofx_'. For

linear viscoelastic vibration problems, relative magnitude of displacements at two points
remain constantly proportional regardless of amplitude of excitation and phase angle. This

denotes that both real and imaginary parts of vector at point C must be simultaneously scaled

by \/REZ (x,)+IM?*(x,") justas X,'. Disproportionate scaling in real part and imaginary part

would induce change of the relative phase angle. The final displacement vector at point ¢ can

be expressed as:

RE(x,") = RE*(x,) + IM*(x,") [RE(x,) cos 6~ IM(x, ) sin 6]
(3.76)

IM(x,) = \[RE*(x,) + IM*(x,") [RE(x,) sin 6 + IM(x,) cos 6]
A more concise way 1s multiplying displacement vector x_ from BEM analysis by

actual complex displacement vector Xx_':

x.'=[RE(x +IM(x, )i ] [RE(x, )+ IM(x,)i] 3.77)
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As for the physical meaning, the real part of x.' denotes the actual displacement at point ¢

when the mstantaneous phase shift of external force Q is zero. The imaginary part refers to
actual displacement when phase angle of Q is —7/2.

Superposition can be applied not only for group impedance, but also for displacements
of pile group. Displacement vectors at a given point along central axis of four piles can be

expressed as:

ul — ul_l +u1—2 +u1—3 +u1—4

u2 =u2—1 +u2—2+u2—3+u2—4

(3.78)
u3 — u3—1 +u3—2 +u3—3 +u3—4
w=u ru e u st
Each displacement vector comprises three directional components:
ui_j
i-j _ | . i-j
ul=lu, (3.79)
ui_j

In Equation (3.79), the first superscript denotes the observed pile and the second denotes the
loaded pile. And each directional component can be derived by superposition of four types of

vibrations predefined in BEASSI — vertical ( z ), horizontal ( x), rotational (r,), and torsional

(r).ie.,

4 | scaler! -u’ +scaler! -u” +scaler! -u” +scaler’ -u’’
x ¥ ¥ = T
S I J gt J gyt SIS J i
u™ =lu,7 | = scaler; -u 7 +scaler -u” +scaler] -u 7 +scaler] -u - (3.80)
i—j S o L o
u J 00 J i . J i
z scaler; -u;,” +scaler] -u;” +scaler; -u;,” +scaler; -u,;

where the first subscripts denote direction of displacement for the observed Pile i and the

second subscripts denote directional vibration of Pile ;. scaler’ ,scaler! ,scaler’ and scaler’ are
¥ =

actual directional displacements at head of Pile j. u™ is recorded as:
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57

i P i ;7| scaler i s i
u? u ou u’ z u? u? ou’
¥ z J ¥
scaler

v = W7 u ul =l WP
yz T y, S Scalerl:F yz » vy,
=7 =J =7 =J =7 =J =7

u u u u : u u u
z x o, r, Scalel}f z x o,

For planar motion of the pile group,

scaler' = scaler?

scaler® = scaler”

(3.81)

(3.82)

In BEM analyses only Pile 1 is loaded at head and the rest piles are fixed at head. Thus

1-2 1-3

displacement components u'™", w7 | u

, and u"* are considered as known, and the

remaining unknown displacement vectors can be derived by symmetry. Detailed derivations

for each pile subjected to directional vibration are given below.

. Pile 1
For vertical vibration,
-1 _ 11 1-2 21 -3 _ 31 -4 _ 41
u, =u,, U, =, U, =-Uu_, U, ="U,
I T B 4 4
w ¥z 2 - e - ¥ ¥z 2 e =
-1 _ 11 -2 _ 21 1-3 _ 31 14 _ 41
u, =u,, U, =u, , U, =U,, U, =U,
For horizontal vibration,
-1 -2 241 13 341 14 41
o Yax o T Ug s Uy FUL U, UL
-1 1-1 -2 2] -3 _ 31 1-4 _  4-1
Uy =Wy, Uy =—U, U =—U,, U =u
-1 1 -2 21 1-3 31 1-4 4-1
u,, s Uy =UL o, U =—uL o, U, =—U
For rocking vibration,
-1 _ 11 -2 _ 2-1 1-3 _ 341 14 _ 41
Uy =l s U =W, U =Ups, Uy =y,

¥



-1 _ 11 1-2 21 1-3 _ 341 14 4-1
U =Uy s Uy = Uy, U = U, Uy = Uy
-1 _ 11 -2 _ . 2-1 1-3 __ 3-1 -4 4]
g =gy s Upy” =y U™ = U, Uy = U,
For torsional vibration,
-1 1-1 1-2 21 1-3 _ 341 1-4 4-1
Uy =Wy, Ug =—Ug . U =, U =—U,
-1 1-1 -2 2-1 -3 _ 31 1-4 4-1
Uy =Uy > Uy U, U, =—U, . U, Uy,
-1 1-1 1-2 21 1-3 _ 3-1 1-4 _  4-1
U, =, , U, =—U,_ , U =—U,_, U, =U,
. Pile 2
For vertical vibration,
2-1 _ 2-1 2-2 11 2-3 LAl 2—-4 .31
u_ =u_ ., u_ =u_, u_ =—u_, U, =—U_
2-1 _ 2-1 2-2 1A 2-3 _ 41 2-4 _ 31
U, =u, U =—Ug, U =U, U = U
21 241 2-2 1-1 23 41 2-4 31
u, =u, , u, =u,, U, =u,, U, =U
For horizontal vibration,
2-1 21 2-2 11 2-3 41 24 31
U, =u, , U U, U, =i, U, =U
2-1 _ 2-1 2-2 1A 2-3 A1 2-4 _ 3-1
Uy =Uy, U=, U =—U, U =U
2-1 _ 21 2-2 141 2-3 . 4-1 2—-4 . 3-1
w_ =u_ o, U, =u, ., U =—u_, U, =—U
For rocking vibration,
21 21 2-2 11 2-3 41 24 31
ux"y _ur’y ? HXTJ' _ur’y’ ATy =u y 7 ur’:v =u Y
21 21 22 123 4 24 3
e Um0 T Tan T T T T T
2-1 2-1 2-2 1-1 2-3 4-1 2-4 3-1
u. =u U =u U =-u u_ o =-—u
¥y er' ? er' ¥y ? 2?'y Z?'y ? Z?'y ¥y
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For torsional vibration,

2-1 _ 241 22 11 23 _ 41 24 _ 31
U =y o Uy =y, U, =U, , U, =,
2-1 _ 21 2-2 11 23 41 2-4 _ 31
Uy, =Uy > Uy =U, ., Uy, =7U, . U, =7U,
2-1 _ 241 22 11 23 41 -4 _ 31
U, =U, , U, Uy , U, =—U, , U, =U,
. Pile 3
For vertical vibration,
3131 32 4 33 _ 11 34 _ 211
u_ =u_ ., U, =u_, U, =—U_, U_ =—U_
3131 32 _ 41 33 _ 1 34 _ 21
U, =i, , U, =—U_, U =U_ , U, u,
31 31 3-2 4-1 3311 34 _ 21
u =u, , u HZZ ] = =u_ , zz _uzz

31 31 32 41 33 11 34 21
uxx _uxx ] uxx _uxx ] uxx _uxr ] X _uxx
3-1 _ 341 3-2 ! 33 1 34 _ 21
Uy =Wy, Uy =—U,, U =—U, U =U
3.1 341 -2 41 33 _ 11 3-4 _ 211
w, =u_, u_ =u_, U_ u_, u_ =—u
For rocking vibration,
3-1 3-1 3-2 4-1 3-3 1-1 34 2-1
u, =u U =u u.o =u u. ' =u
¥ rr)‘ ? ¥y I?'y ? I?'y er ? rr)‘ ¥
3-1 _ 341 3-2 4 33 _ 11 34 _ 21
Uy =My, Uy = Uy, Uy =—Uy Uy =U,
3-1 _ 341 3-2 _ 41 3-3 | 3-4 421
Uy Sy U™ S Uy ==y, U = U,
For torsional vibration,
3-1 _ 341 32 _ 41 3-3 _ 1-1 34 _ 21
Uy =, Uy =, UL =U, U =
3-1 3-1 3-2 4-1 3-3 1-1 3—4 2-1
u. =u w..- =u u. - =-u =—u

Iz wr: ? Iz ;2 r w2 Iz r



3.1 341 3-2 41 3-3 1-1 34 21
o S s Uy =, U, =, U, =,
. Pile 4
For vertical vibration,
41 2 31 43 _ 241 4-4 _ 11
u_ =u_ ., u_ =u_, u_ =-u_, U_ =-uU
41 41 2 31 43 241 44 11
U, =u, , U, =—U, , U, =u,, U, =-u,
41 _ 41 42 _ 31 43 _ 241 44 _ 11
u, =u, , U, =u_, U, =uU,, U, =U_
For horizontal vibration,
41 _ 41 42 _ 31 43 _ 241 44 11
u_ =u._, U =u, o, U =u_, U_ =U_
41 _ 41 4-2 _ 341 4-3 _ 211 44 _ 11
Uy =Wy, U, =—U,, U, Uy, Uy, =U
41 _ 41 42 _ 31 4-3 _ 211 4-4 _ 11
w =u, U =u, u. =—u_, U =—U_
For rocking vibration,
41 41 42 31 43 21 4-4 1-1
uxry _urr_, k] a, _urry t] uxr_,. _urry t] m, _urry
41 _ 41 4-2 _ 31 43 _ 21 4-4 11
Uyry =Hyry > Uyry = lyrs Uyry =Ty s Uy =y,
41 4-1 4-2 _ 31 43 _ 21 44 _ 11
Uy =y Uy =Wy, U™ = Uy, Uy, ==y,
For torsional vibration,
41 41 4-2 3-1 43 241 44 11
Uy =y > Uy =y, Uy =y, Uy =1y
41 41 42 31 43 21 44 11
Uy, =Uy s Uy =Uy o Uy =TUy s Uy =7y,
41 4-1 = -1 43 21 4-4 1-1
U, =, , U, =—U, , U, =—U, , U, =,

Displacement at any point on a pile is calculated as below:
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_ -
scaler, 21
1 u‘xz
scaler, "
+| -,
scaler, »
¥ 2-1
u
scaler =
31 7| scaler; e
A XZ
scaler.
! 5 |+ —ut?
7 || scaler. ¥
3 i 4-1
|| scaler! "z
B O -
scaler, -1
u
XZ
scaler. i
+| —u
scaler! »”
¥ 1-1
u
scaler! | L™=
_ -
41 7| scaler; B
a7, 3 U
scaler,
41 S I
7 || scaler’

41 r-‘* s
7 || scaler? =
scaler’ a

: u
Xz
scaler’ 41
+|—u
scaler’ ¥
¥ .
scaler’ =
scaler’ |
1-1 . !
Y Xz
o, || scaler; "
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7. || scaler’ ¥
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—

scaler

P

L]

W

scaler

w

Ty

W

scaler’
scaler’
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scaler’
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scaler’
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1
_ _ _ _, 7| scaler, _ _ _1 7| scaler,
u; ! u; ! u; Il u; ! z ui’z ! ;1 ui’rl z
4 4-1 4-1 4,1 431 Scalerx 3-1 3-1 3-1 3 ': Scalerx
u =\wu,_ u._ u,_ U, +| - U - u,
oo T T Tom il scaler ¥ }“ o | scaler)
4-1 4-1 41 4-1 ¥ 3-1 3-1 3-1 y
uu = ou U u U,
= = T T |l scaler! = x 7 || scaler!
T ., . B (3.86)
241 241 241 21 Scalerz 1-1 1-1 1-1 1-1 Scalerz
Uy, U ux?'y Hx‘.r'x 3 Uy, Uy xr, _erx 3
2-1 2-1 2-1 2-1 Scalerx 1-1 1-1 1-1 1-1 Scalerx
+| ul -, U, —U, +| -2 U, - —U.
¥ » m 7 || scaler. oo O y 7 || scaler.
2-1 2-1 2-1 2-1 ¥ 1-1 1-1 1-1 1-1 ¥
u- —u —-u —u U —u : i
z = ary = || scaler” z = y = || scaler

3.7.3 Analysis of Displacement, Strain, and Stress Fields within Soil

The previously cited BEM studies primarily utilized stresses and displacements on the
boundary surfaces of the piles and disturbed zones. Though such analyses indicate how the
piles behave, they don’t provide details on behavior within the soil regions. Analyzing the
stress and strain fields within the soil domains may provide further useful insights not only on
contact conditions at the pile-soil interface, but also on the soil response within the disturbed
zone. Furthermore, this information could enable more rigorous analyses for determining an
appropriate size, shape, and soil profile for the disturbed zone. This section is about
implementing a finite difference scheme into BEASSI to calculate displacement, stress, and strain
fields within the material domains, as well as insights from applying such analyses to disturbed
soil zones around pile groups. The overall framework for analysis of the displacement, stress,
and strain fields is shown in Figure 3.37.

1. Obtaining displacement at internal points

Once nodal displacements and nodal tractions are solved for, they are substituted back

mnto the governing boundary integral equation to evaluate the displacements at internal points.

To derive stress and strain fields with reasonable resolution from a finite collection of internal
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- Displacement values

on grid

Figure 3.37 Framework for analysis of displacement, stress and strain fields within soil
domains.

points, the density of the internal points must be sufficiently high so that the space in
between the points can be well approximated. The ideal solution is creating a dense grid on
which displacement at every point is computed directly by BEASSI. However, this solution
requires tremendous computational time. As an alternative, a less number of representative
iternal points can be specified within the soil domain. With combination of the displacements
at the boundary nodes and those at the internal points, displacements on a fine 3D grid can be
approximated by interpolation. Figure 3.38(a) shows an example for a disturbed zone that
comprises 4634 boundary nodes and 356 internal points. With the displacements interpolated
at each point on a 3D orthogonal grid, it is easy to plot volumetric displacement field (Figure
3.38(b)). This solution makes balance among accuracy, completion time, and computational

capability.
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vibration

u field in RHS1:real

x/a

ref

Figure 3.38 Example of deriving displacement field in soil.

The displacement field by 3D interpolation is the foundation for analyses of strain and
stress fields, thus it is crucial to verify its accuracy. Ntotsios et al. (2015) modeled dynamic
responses of a single pile and interaction between two piles with various spacings in multi-

layered soils using commercial code ElastoDyanmics Toolbox (EDT), which is an extensive
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set of MATLAB functions to model wave propagation in layered media based on direct
stiffness method and the thin layer method (https://bwk kuleuven.be/bwm/edt). In the example
analysis, all piles have radii of 0.5m, lengths of 10m, elastic moduli of 50 GPa, damping loss
factor of 0.01, Poisson’s ratios of 0.3, and densities of 2,500 kg/m>®. The damping loss factor
1s defined for measuring intrinsic damping for viscoelastic materials as:

??_E”
El‘

(3.87)

where E' and E" are real (storage) and imaginary (loss) parts of a complex modulus,
respectively (see Carfagni et al. 1998). Relation between damping loss factor 7 and the user-
prescribed damping ratio ¢ in BEASSI is,
n=2¢ (3-88)
The spacings in the pile group cases are 2 m and 4 m, respectively. Depths of top three
layers are 2m, 4m and 6m, respectively, and the last layer represents the half-space. Shear wave
velocities from top to bottom are 185 m/s, 228 m/s, 260 m/s, and 309 m/s, respectively. The
corresponding compressive wave velocities are 277 m/s, 373 m/s 485 m/s, and 944 m/s. For
all soil layers, densities are 2,000 kg/m* and damping loss factors are 0.06. A harmonic force
with frequency of 50 Hz and amplitude of unity is applied on the top of a pile, either vertically
or horizontally. The second pile for the pile group cases is free at head. The resulting
displacement fields on the free surface reported in the literature are presented in Figure 3.39.
In single pile case (a), vertical excitation induces concentric circular wavefronts on x-y plane
due to axisymmetry. When the second pile is located 2 m away from the loaded pile (c),
diffraction is observed and becomes more apparent when the pile spacing increases to 4m (e).

As for horizontal excitation, wavefronts on the x-y plane appear to be elliptical instead of
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circular. With the presence of a second pile in the near region as in cases (d) and (f), no
significant diffraction is observed even with an increasing pile spacing.

The three cases were reanalyzed by BEASSI and the results are plotted in Figure 3.39.
The BEM results are in good agreement with the reference results, especially for vertical
vibration of single pile and pile group. A small difference for horizontal vibration is observed
such that the wavefronts by BEASSI are enclosed in y direction rather than open as in the
reference solutions, which may be due to different numbers of point for interpolation. In
general, the proposed solution for calculating displacement fields is validated.

Capturing curved boundaries of a 3D BEM domain using straight lines inevitably
results in dentation. A simple technique for increasing resolution is decreasing length of the
straight lines. As a trade-off, however, doubling the resolutions in all three directions leads to
a surge 1n size of the 3D matrices that are used to store the displacements, strains, and stresses
by a factor of 8. In this study, the x-y plane for the disturbed zone is discretized as 40x40. The
x-z plane for the cylindrical region is discretized by 40x80 and for the hemispherical region is
discretized by 40x20.

Components of the displacement field ux, uy, u: on the traction-free surface for a 2x2
pile group embedded in a half-space due to vertical vibrations of the rigid pile cap at the
dimensionless frequencies w=0.05, w=0.50 and w=1.00 are shown in Figure 3.41 as an
example. The deformation amplitudes can help identify size and shape of the disturbed zone

regarding specific stresses and strains.
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Figure 3.39 Displacement fields in soil by Ntotsios et al. (2015).
(a), (c), (e): u: due to vertical loading; (b), (d), (f): ux due to horizontal loading. (a),(b):
single pile case; (c),(d): two-pile case with spacing of 2m; (e), (f).: two-pile case with spacing
of 4m.
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(a), (c), (e): u: due to vertical loading ; (b), (d), (f): ux due to horizontal loading. (a),(b):
single pile case; (c),(d): two-pile case with spacing of 2m; (e), (f): two-pile case with spacing
of 4m.
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Figure 3.41 Deformation field on traction-free soil surface surrounding a 2 %2 pile group

resulting from vertical vibration of pile cap.

For better visualization of soil deformation, the deformation at ground level can be

calculated as:

xﬂew(‘x!yaz):xmpmf(xvy::)+ux(x:yaz)
ym(xay:z) :ym-jgmgf(x:ya‘:)—i_uy(x:yaz)

me(x:y: :) = zorigimi(‘xv _]J,Z) +uz(x:yaz)

(3.89)
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where X, (6 V:2) 5 Vogina (X, ¥,2) , and z,,...(x,y,z) are the original coordinates at
(x,y,z) on the 3D gnd; x_ (x,y,2).y,,,(x¥,z2), z, (x,y,z)are new coordinates due to
vibration.; u,(x,y,z), u,(x,y,z),and u,(x,y,z)are normalized displacements at (x,y,z) ;

The deformations of soil at various frequencies are shown in Figure 3.42. The
deformation of soils around piles are highly frequency-dependent. At low frequency of 0.05,
the deformation is as predictable as the static case such that soils close to the piles have greater
downward deformation than the soils in the far region. At intermediate frequency of 0.50, soils
surrounding piles generally have very small downward deformation while soils at the center
of the pile group heave rather than being dragged down. At high frequency of 1.00, soil
deformation become even more complex. Soils at the center of the pile group have downward

movement.

— _— 10 )
M e ¥,
15 1t

(a) Normalized deformation (real part) of soil at ground level at w=0.05
Figure 3.42 Visualization of normalized soil deformation at ground level for a 6-domain pile
group model due to vertical rigid pile cap motion.
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(b) Normalized deformation (real part) of soil at ground level at w=0.50

157 s

(c) Normalized deformation (real part) of soil at ground level at w=1.00

Figure 3.42 (continued)

2. Superposition of displacement field in soil

For rigid pile-cap motion, the actual displacement field in soil can be easily obtained
by multiplying the normalized displacement field from BEASSI with the actual displacement
or rotation of the rigid pile cap. However, if only one pile is loaded at head, the actual

displacement field which associates with vibrations of all piles cannot be obtained directly. As
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a solution, this displacement field in soil can be derived by symmetry as the global impedance

matrix and the deformation of pile group.

. Pile 2
For vertical excitation at head of Pile 2, displacement field in soil can be expressed as:

ul (x,y.2) = (+ Dl (x,-y.2)
Ul (x,y,2) = (+Dul™ (x,~y,2)cos(x) (3.90)

ul (x,y,2) = (+Dul" (x,~y,z2)
where subscripts of  denote directional components of soil displacements. Superscripts in
parenthesis refer to the displacement fields due to the vibration of the corresponding piles. For
example, u'*"”(x,y,z) means x component of displacement at point (x, y,z) when pile 2 is
vertically loaded at its head. (+1) and (-1) signs on the right side of the equations denote if the
loading directions need to be reversed for the derivation. Negative signs for coordinates refer
to the point at a symmetric location with respect to (x, y,z) in the soil. cos(z) means that the
component of displacement at point (x, y,z) derived for Pile 1 needs to be rotated by 180
degrees. Displacement fields due to horizontal, rotational, and torsional excitation at head of
each individual pile are derived as follows:
For horizontal excitation:

ul (x,3,2) = (DUl (x,-7,2)
ul™ (x,y,2) = (+Du{™ (x,~y,z) cos(x) (3.91)

ul® (x,y,z) = (+Dul™ (x,~y,2)



rotational excitation:

torsional excitation:

Pile 3
vertical excitation:

horizontal excitation:

rotational excitation:

torsional excitation:
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U (x,,2) = (D (x,-,2)
ul® (x,y.2) = (+Dul™ (x,~y,2)cos(7)

u® (x,y,2) = (+Dul® (x,-y,z2)

ul (x,y.2) = (~Dul™ (x,-y.z2)
ui™ (x,y,2) = (~Duy™ (x,~y,z)cos(7)

ul" (x,,2) = (-Dul™ (x,-y,2)

ul" (x,y,2) = (+Du" (=x, y, z) cos(z)
ug”(x,y,2) = (+Dug” (=x.,2)

ul” (x,y,2) = (+Du" (=, 3, 2)

O (3,3.2) = (DUl (x,9.2)cos()
8 (5,3,2) = (DUl (5,7,2)

ul? (x,y,2) = (-Dul (-x,y,2)

u (x.3.2) = (~Dul® (=x.y.2) cos(7)
U (x,3,2) = (~Dug® (-x..2)
ul® (x,y.2) = (~Dul® (-x.y.2)

P (5, ,2) = (D™ (. y,2) cos(r)
HSR’(x,y, 0) = (—l)u;“” (—x,y,2)
u®® (x.y,2) = (~D)u® (-x.y.2)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)
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. Pile 4
vertical excitation:

ui“,) (JC_»}’: Z) = (+ l)u?;’) (—I, =Y, Z)COS(?T)
u " (v, y,2) = (+Duy” (=x, =y, 2)cos() (3.:98)

ul” (x,y,2) = (+D)ul"” (-x,~y,z)
horizontal excitation:

u ™ (x,p,2) = (D™ (=x,-y,z)cos()
Uy (x,y,2) = (=D (-, -y, 2) cos() (3.99)

ul® (x,y,z) = (-Dul™ (=x,-y,z)
rotational excitation:

u™ (x.9.2) = (-Dul™ (=x,~p,z)cos(x)
1 (x,y,2) = (= Dy ™ (=x,-, z)cos(z) (3.100)

ul® (x,y,2) = (~Dul®(-x,~y,z)
torsional excitation:

uD (x,y,2) = (+Dul" (—x,—y,z) cos(7)
ug'™ (x,.2) = (+Dug” (=x.~y.z) cos(7) (3.101)
uD(x,y,2) = (+Du" (—x,-y,z)

The above displacement fields derived by application of symmetry without performing
actual computation by BEASSI can be referred as “basic fields” and visualized by volumetric
plot for better understanding. Figure 3.43 shows displacement field by direct BEM analysis
with Pile 1 subjected to vertical loading. The corresponding displacement fields when Pile 2,
Pile 3, and Pile 4 subjected to vertical loading are shown in Figure 3.44, Figure 3.45, and

Figure 3.46, respectively.
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Figure 3.43 Displacement field (real part) determined directly by BEASSI due to Pile 1
subjected to vertical loading.
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Figure 3.44 Derived displacement field (real part) due to Pile 2 subjected to vertical loading.
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Figure 3.45 Derived displacement field (real part) due to Pile 3 subjected to vertical loading.
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Figure 3.46 Derived displacement field (real part) due to pile 4 vertical vibration.
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To verify the above derivations, direct analysis was conducted in BEASSI by
displacing Pile 2. The resulting displacement fields #x, uy, and . are shown in Figure 3.47. In
comparison to the direct analysis, the derived displacement field appears to be reasonable. For

rigorous comparison, relative error by two approaches is defined as

. u, . =1
relative error = —derived "BEASST

(3.102)

Uprasst
where u,_. ,and wu,;,. denote displacement by derivation and direct analysis at pomnt (x, y,z),

respectively. The relative errors for real and imaginary parts are plotted in Figure 3.48 and
Figure 3.49, respectively.
Displacement field derived by symmetry is in favorable agreement with that by

BEASSI directly. This is suggested by nearly zero relative error in most space of the soil

domain. However, it is also noticeable that in the central region of disturbed zone relative
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Figure 3.47 Displacement field (real part) determined by BEASSI due to pile 2 vertical

vibration.
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errors can still be as high as 70% for real part, and 35% for imaginary part. Three potential
factors are discussed below:1) grid resolution 2) interpolation method; and 3) number of
internal points on z axis.

1) The default resolutions of the 3D gird in x-y and x-z planes are 40x40 and
40%(80+20), respectively. To see if a grid with higher resolutions would diminish or eliminate
the high relative errors, the resolutions were then increased to 80x80 and 80x(160+40).
However, the results suggest that the resolution has no impact on relative error.

2) The default interpolation method for displacement is ‘linear’, which guarantees C°
continuous for the data on the grid. To investigate influence of interpolation method, the
method was switched to ‘natural’, which is triangulation-based natural neighbor interpolation
and guarantees C' continuity except at sample points. The results are presented in Figure 3.50
and Figure 3.51. The maximum relative error occurs in the hemispherical region with 0.3% for
real part and 0.6% for imaginary part.

3) Since the relative errors are high only along the z axis, a possible explanation could
be the insufficient internal points for interpolation along the z axis. To verify this assumption,
10 more points on z axis were added to the internal points. The updated relative error for real
and imaginary parts of displacement field 1s shown in Figure 3.52 and Figure 3.53, respectively.
The maximum relative errors drop from 70% and 35% to 40% and 30%. The regions having
large relative errors were diminished significantly and now are mainly on y-z plane. Thus
adding a set of internal points on z-axis proves to be helpful in diminishing relative error.

Once the “basic fields” become available, and the actual displacements at head of each
pile are calculated from the substructuring formulation, actual displacement fields in soil can

be derived by superposition.
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Figure 3.52 Relative error in real part of displacement field with more internal points on
axis by linear interpolation.
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2. Strain field in soil
The geometric equations that define axial and shear strains in terms of displacements

are listed below:

( ou ou Ov
e e
Ox oy oOx
ov ov ow
& =7 V=t (3.103)
ay oz Oy
ow ow  Ou
E,=— Va=t
oz cxX cZ

where u, v, w are displacement components in x, y, = directions.

Applying of these relations to the displacement fields provides numerical estimation of the
strain tensor at each point on the grid. The established 3D grid in Cartesian coordinates also
makes it very convenient to implement the estimation of strains at each point on the grid using
finite difference formulae. For any point with all six adjacent points in the same domain, first-
order partial derivative of directional displacement can be approximated by central finite
difference formulae as Eqn (3.104). Subscript » denotes the point at which derivatives are
estimated; subscripts n+1, n—1 denote adjacent points in either x, y, or z direction. Across
the boundary between different domains, soil displacements are continuous due to the
perfectly-bonded continuity condition, but shear moduli may vary sharply. This may result in
drastic variations in soil strains, which is not C° continuous. Hence when apply the finite
difference formulae, the adjacent point that locates within a different domain cannot be used
in the interpolation. To handle the target points right next to boundaries, including the free
surface and the disturbed zone boundaries, the central FDM formulae may be replaced by the
backward or forward formulae as in Equations (3.105) and (3.106), depending on which side

of the target point approaches the boundary.
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3. Calculating stress field in soil
Since soil 1s modeled in BEASSI as linear viscoelastic medium, the stress-strain

relation follows Hooke’s Law:
O, =248, + A&y, (3.107)
where # and A are Lamé constants, which are defined as:

_E
"= 2(1+v)
a1 vE
(1+v)(1-2v)

(3.108)

The dynamic point-load Green’s functions for multilayered viscoelastic half-space

treats each soil layer as homogeneous medium with constant £ and v . For a point within a
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certain layer, ¢ and A can be determined from the soil profiles. For further analyses, the

principal stresses and maximum shear stresses can be computed by obtaining eigenvalues and
eigenvectors if necessary.

3.7.4 Bending Moment, Shear Force, and Axial Force Profiles

The bending moment and shear force profiles are commonly used due to their
fundamental importance in pile design. They are often easily calculated by 1D analytical
Winkler models, thus it is useful to explore how they can be calculated by the 3D BEASSI
solutions which are in the form of displacements and tractions at the boundary surface nodes.
For an Euler-Bernoulli beam, the bending moment M and shear force V' of the piles can be

calculated as (Novak 1974; Rollins et al. 1998):

d’u, _dM
M =—E,I, = and V== (3.109)

where £ 1s Young’s modulus, / is the second moment of area with respect to the neutral axis,
u_1s the lateral displacement on the pile axis and z is the longitudinal coordinate along the pile.
Based on the plane cross-section assumption, pile deformation does not stretch the cross-
section of the pile and thus each node at the same depth should have the same u_. Therefore,
the 2D elements at the same depth were collapsed to 1D quadratic isoparametric elements for
simplicity.

Then lateral displacement u_and depth z at any point within an element can be

mterpolated by the shape functions of the reduced element as:
u —(l 21 Y, + (1= )u +(l 2, 1 Ju (3.110)
x 2 T? 2 n x1 T? x2 2 T? 2 ?? x3 .

1 2 ]- 2 ]. 2 ]_
z=(=n"——n)z,+(1— Z,+(=n"+—=n)z 3.111
7 2!?) FA=-17)z, (2!? 2!?) 3 ( )
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where u and u_, are displacements at the corner nodes of the collapsed 1D element, u_,1s

displacement at the middle node, z, and z, are depths of the corner nodes, and Z, is depth of

the middle node.

Then the desired curvature can be obtained as

du
d(—x)/d
X _ (d..-) U_
d=? dz/dn

d’u (uy —2u,, +u)

(7= -z + (7 + )5
. (3.112)
(:1 - 2:2 + :3)[(’? - E)uxl - (2"?)1"‘12 + (’? + E)uﬂ]

[@—@a—@@a+w+§ar

The BEM meshes in this study were generated such that a middle node is always
exactly between two corners, 1.e.,

z,—2z,+7,=0 (3.113)

Therefore the second term in the above equation is zero. The bending moment can thus be

simplified to:

Uy —2U, +u,
1'?'44'1=ﬂ({2 =ﬂ({3=—4—1(Z _22)2 BEPIP (3114)
374

The 1D natural coordinate 77 has been eliminated, and the moment is constant within

each element because of the quadratic displacement interpolation. Similarly, the third-order
derivative 1s zero for quadratic elements, but the shear force can be approximated across
elements 1n a finite difference sense. In this study, the shear force 7 at corner nodes of two

adjacent elements is thus approximated as:

@ _ @
yo —yo MM (3.115)

Zgz) _ Zgl)
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where superscripts (1) and (2) denote two different elements.
Likewise, for vertical vibration of piles, axial force of piles can be calculated as

du,

ra

N=E,4,

(3.116)

where 4, is cross-section area and u, is the vertical displacement on the pile axis. u, at any

point within an element can be interpolated using shape functions as:

]' 2 ]- 2 l 2 ]_
u. =(=n"——mu_, +(1—-nHu_, +(—n" +—nu 3.117
s (2r? 2??) at=17u,, (2r? 2?:«') 23 ( )

where u,, and u_, are displacements at the corner nodes of the collapsed 1D elements, u,_, is

displacement at the middle node. Then desired axial pile strain can be obtained as

1 1
du, du /dny (n _E)uzl —2nu, + (1 +E)“23

= (3.118)
- - 1 1
A g Dyn -2z, (4 )3,
2 2
Incorporating Equation (3.113) into Equation (3.118) provides
du 2n—VDu,, —4nu_, +(2n+1u
z =( ?? ) z1 TI z2 ( TI ) z3 (3119)

dz Z; -z

Two reference studies were conducted to validate the above derivations for bending
moment, shear force, and axial force. The first reference study is about static and dynamic
response of a cantilever beam, and the second one is for dynamic response of a floating pile

embedded into homogeneous soil.
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1. Reference study on cantilever beam
Static and dynamic response of a cantilever beam was studied due to the availability of
analytical solutions. The dimensionless pile parameters for the reference study are listed in

Table 3.13:

Table 3.13 Dimensionless pile parameters of the cantilever beam.

Parameter Value
outer radius 1
inner radius 0.942
length 69.56
area 0.3538564
second moment of area 0.1669640
elastic modulus (977.5,0)
Poisson’s ratio 0.26
density 4.05
excitation circular frequency 0.01, 1.00

The boundary conditions prescribed at pile head are unit translation in X and z
directions, and unit rotation with respect to y axis, respectively. Pile toe was completely fixed.
Natural boundary condition was prescribed on the lateral side of the pile. Structural Green’s
functions were applied for the pile domain. For the static case, the analytical solutions for axial
force, shear force, and bending moment were obtained by mechanics of material. In Table 3.14,

numerical results (3™ column) and analytical results (4® column) at pile head were compared.
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Table 3.14 Comparison of numerical and analytical results on cantilever beam for the static

case.
Epﬁe =9775 Epﬁe =97750
; . Numerical Numerical
Loading case Parameters Analytical Analytical
results results
results results
(BEASSI) (BEASSI)
axial loading axial force 4.95200 4.97300 496.30000 497.30000
shear force 0.00154 0.00582 0.57600 0.58200
lateral
loadin bending
oading 0.13534 0.20240 20.10000 20.24000
moment
shear force 0.16436 0.20240 20.13000 20.24000
rotation bending
8.86472 9.38500 933.40000 938.50000
moment

The results are consistent for the axial loading case, but diverge for the other two
loading cases. A possible reason is that the dimensionless parameters may not be suitable for
such analysis on a cantilever beam. Exclusion of the soil medium substantially reduces lateral
resistance, and thus the force and moment required to displace the pile were greatly reduced.
Numerical results became more susceptible to round-off errors and integration tolerance. To
validate this assumption, the elastic modulus of pile was scaled up by 100 and the updated
results are provided in 5% and 6™ columns of Table 3.14. Good consistency is observed for all
loading cases. It is suggested that the dimensionless parameters for BEASSI analyses should
be sufficiently large to predominate influence of numerical errors. The following results are all
based on the updated pile elastic modulus, 1.e., 97750. Numerical and analytical lateral
displacement, bending moment, shear force, and axial force profiles are presented in Figure

3.54 - Figure 3.56.
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For dynamic case, the analytical solutions can be obtained by solving the general

equations for cantilever beams subjected to free vibration (Equations (3.65)). Unknown

coefficients C =[C,,...,C,]" can be determined using the following boundary conditions:

lateral loading:

rocking loading: <

axial loading: {

u =1 (z=0)

G)y =0 (z=0)
u,=0 (z=69.56)
0,=0 (z=69.56)
’ur =0 (z=0)

@y =1 (z=0)
u,=0 (z=69.56)
h®3‘ =0 (z=69.56)
u,=1 (z=0)
u,=0 (z=69.56)

Numerical and analytical lateral displacement, bending moment, and shear force

profiles are compared in Figure 3.57 - Figure 3.59. For the both static and dynamic cases,

outcome numerical results by BEASSI conform to the analytical solutions fairly well at all

depths. The only exceptions are the bending moment and shear force at depth of 1.45 when the

cantilever is subjected to static lateral translation at pile head. After a closer examination, it is

found out that when pile is laterally loaded with zero rotation at head, displacements at middle

nodes for the upmost vertical pile elements are very close to those at pile head, i.e., the upper

corner nodes. The derived bending moment for these pile elements becomes very sensitive to

the numerical error for nodal displacements

at the middle nodes. The inconsistent bending

moment further leads to greater error in calculating shear force, which may have erroneous

sign. In general, the reference study on the cantilever beam is satisfactory.
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Figure 3.54 Lateral displacement, bending moment, and shear force profiles of a cantilever
beam subjected to static lateral load at head.
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Figure 3.55 Lateral displacement, bending moment, and shear force profiles of a cantilever
beam subjected to static rocking load at head.
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Figure 3.56 Axial displacement and axial force profiles of a cantilever beam subjected to
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Figure 3.58 Lateral displacement, bending moment, and shear force profiles of a cantilever
beam subjected to dynamic (®=1.0) rotation at head.
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2. Reference study on a single floating pile embedded into homogeneous soil
Dynamic response of a floating pile embedded into homogeneous soil was studied and

compared to Abedzadeh (1993). The dimensionless parameters are listed in Table 3.15

Table 3.15 Dimensionless parameters for reference study on a floating pile.

Parameter Value
Outer radius 1
Inner radius 0.9
Length 50
Pile Density 2
Poisson’s ratio 0.25
Young’s modulus 2500, 12500, 50000
Shear modulus 1000, 5000, 20000
Density 1
. Poisson’s ratio 0.25
Soil X
Young’s modulus 1
Shear modulus 04
Dimensionless circular
0.25
frequency
Boundary conditions Lateral translation or 1

rotation at pile head

The numerical results by BEASSI are compared to the reference solutions in Figure
3.60~Figure 3.65. Favorable overall agreement is observed in displacement, bending moment,
shear force profiles for all modulus ratios. Abnormal bending moment, and shear force near
the ground level are observed again for the lateral loading, especially with an increasing
modulus ratio.

Bending moment is linearly proportional to the nodal displacement. When two types
of deformations are superposed, the overall bending moment can be calculated through
superposing the two bending moment profiles, or based on superposed displacement profile.

A test was conducted on the same floating pile with £, =2500 by superposing the two
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boundary conditions — unit lateral translation and unit rocking. The comparison shown in

Figure 3.66 validates the linearity in superposition.
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Figure 3.60 Lateral displacement, bending moment, and shear force profiles of a floating pile
subjected to dynamic lateral translation at pile head with E ,,, =2,500.
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Figure 3.62 Lateral displacement, bending moment, and shear force profiles of a floating pile
subjected to dynamic lateral translation at pile head with E,;, =50,000.
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Figure 3.63 Lateral displacement, bending moment, and shear force profiles of a floating pile
subjected to dynamic rocking at pile head with E ;, =2,500.
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Figure 3.64 Lateral displacement, bending moment, and shear force profiles of a floating pile
subjected to dynamic rocking at pile head with E;, =12,500.
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Figure 3.65 Lateral displacement, bending moment, and shear force profiles of a floating pile
subjected to dynamic rocking at pile head with E,,, =50,000.
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3.8 Case Study

The best approach to validate the computational simulation proposed in this chapter is
comparing numerical results to the experimental results reported in Chapter 2. For this purpose,
Numerical analyses were performed on the single pile and the 2x2 pile group using BEM
models with disturbed zones. The shear modulus and damping profiles for the half-space were
based on SCPT tests. Soil profiles in the disturbed zone were established based on a calibration

model developed in centrifuge tests on single pile in sands (Ashlock 2006) as a first approach.

e _; ' E 05 _E
disturbed zone (inner): G E)=Gy {,6% 6{1 1+(z/z,)* }((G} aﬂ

f‘r(z):;] ;’[1+(Zfzd)n]+§o(z) (3.120)
G°(z) =SCPT profile

half-space (outer):
£°(z) = minimum material damping by SCPT profile

where a =1.1, f=0.1,z,=5,n=3,£,=0.3, and a 1s the radus of pile.

The numerical results are presented in forms of theoretical accelerance functions —
Ay/VC, Ax/HC, Ayc IVE, Axc /VE, and 4. /VE. All accelerances are calculated at centroid of
pile cap.

3.8.1 Single Pile
1. Input parameters

The dimensionless parameters for the single pile are listed in Table 3.16. Dimensionless

soil shear modulus profiles for the disturbed zone and the half-space are presented in Figure

3.67 and Figure 3.68, respectively. Soil dimensionless density 1s 1 and Poisson’s ratio is 0.42.

Reference number were a,,, =0.1095m, G, =2.046x 10° Pa, and P, =1936.8 kg/m’.
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Table 3.16 Dimensionless parameters of the single pile.

Parameter Value
Outer radius 1
Thickness 0.075
Length 69.56
Complex shear modulus (387.9,0)
Poisson’s ratio 0.26
Density 4.05
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Figure 3.67 Layered soil shear modulus and damping ratio profiles within disturbed zone for
the single pile.
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Figure 3.68 Layered soil shear modulus and damping ratio profiles in the half-space for the
single pile.
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2. Numerical results and comparison

The experimental accelerance functions for the single pile by R2 excitation in physical
test are chosen as reference for comparison (Figure 3.69 - Figure 3.73). In general good
consistency 1s found for all accelerances. For 4,./VC, the theoretical accelerance has close
resonant frequencies but slightly lower amplitudes for both real and imaginary parts. For
Axc/HC, the fundamental mode is well captured for the real part and slightly overestimated in
amplitude for the imaginary part. The undesired mode at 15 Hz in the tests is not accounted for
by the theoretical formulation. For 4,./VE, the resonant frequencies are overestimated and
amplitudes are underestimated. For 4./VE, both lateral mode and the coupled rocking-lateral
mode are captured, but the resonant frequencies for the rocking mode are underestimated and

amplitudes are noticeably overestimated. Similar trends can also be found for 4,./VE.
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Figure 3.69 Comparison of Ay/VC accelerance for the single pile.
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3.8.2 2x2 Pile Group
1. Input parameters

The dimensionless pile parameters are identical to the single pile as in Table 3.16. Soil
density and Poisson’s ratio also remain constant. Dimensionless soil shear modulus profiles

for the disturbed zone and the half-space are presented in Figure 3.74 and Figure 3.75.
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Figure 3.74 Layered soil shear modulus and damping ratio profiles within the disturbed zone

Jor pile group.
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Figure 3.75 Layered soil shear modulus and damping ratio profiles in the half-space for pile
group.
2. Numerical results and comparison
The comparison of theoretical and experimental accelerances for the 2x2 pile group is
presented in Figure 3.76 - Figure 3.80. For 4,/VC, the amplitudes of theoretical accelerance

are only about half of the experimental ones. For 4,./HC, the fundamental peak is captured
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with a higher resonant frequency and lower amplitude. For 4,./VE, the amplitude of the unique

resonant peak is underestimated. For 4. /VE, the fundamental mode at 14 Hz 1s well captured

while the

x 10

second mode is underestimated in amplitude. Similar situation is found for 4y /VE.
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3.9 Soil Profile Calibration

Past computational and experimental studies have revealed that the soil profiles in
either theoretical or numerical models are typically calibrated to improve accuracy in
predictions of pile-soil system responses (e.g., Blaney and O’Neil 1986). One reason is that
assumptions applied in the models may not be realistic. Primary assumptions include axial
symmetrically piecewise homogeneous soils, bonded pile-soil interface throughout vibration
progress, and linearly viscoelastic behavior of soils. CPT and SCPT tests in this study have
indicated variations in layered soil profiles for the three soundings. Gapping may also form
near ground level for horizontal vibrations (e.g., Stewart et al. 2007). Another reason is the
measurement error in site investigation and testing. The shear modulus and material damping

ratio profiles obtained from the SCPT tests are a piecewise average of approximate every 1 m



267

depth, which cannot precisely capture the sharp variation in the soil shear modulus for thin
layers, especially near ground level. In addition, soil bulk density has to be assumed since
corresponding laboratory test is currently not available. Last but not the least, the disturbed-
zone BEM models are still under study. Only homogeneous sands (e.g., Ashlock 2006) and in-
situ soft clays (e.g., Fotouhi 2014) have been studied for the proposed disturbed-zone models.
Disturbed-zone models for pile group in stiff clays have yet to be thoroughly investigated.
Studies have demonstrated that by calibrating soil profile better consistency can be achieved
between theoretical and experimental results (e.g., Crouse et al. 1990).

The soil profiles obtained from site investigation commonly need to be calibrated for
the disturbed zone by trial-and-error until the best match is achieved (e.g., Vaziri and Han 1991;
Manna and Baidya 2010; Elkasabgy and El Naggar 2013). This section presents several
modified soil profiles that exhibit better match in accelerance functions.

3.9.1 Calibration for Single Pile

Although preliminary theoretical accelerances by CASE E2 soil profiles within the
disturbed zone suggest generally good agreement with the experimental one, efforts are made
for better match by calibrating soil profiles in both disturbed zone and half-space. For the
CASE E2 soil profiles, the resonant frequencies for the vertical modes are slightly
overestimated and the amplitudes are underestimated. Resonant frequencies for rocking modes
in both 4./VE and 4,./VE show lower resonant frequencies. Horizontal modes in 4,./HC and
Axc/VE are well captured. As a general rule, both vertical stiffness and damping should be

decreased for the single pile. Pile deformation suggests with rotation at pile head, second layer
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of pile elements have largest horizontal deformation. To increase resonant frequencies for the
rocking modes, soil shear modulus at this depth is to be increased and this change should also
have minor effects on the horizontal modes. To this end, the soil profiles were calibrated by
three steps. As an initiative, soil shear modulus for all depths within the disturbed zone was
decreased by 30%. Based on the soil profiles in the Step 1, soil shear modulus within the
disturbed zone was increased by four times at depth of the top layer pile elements and decreased
by 50% for the second layer pile element. In Step three, material damping ratio within the
disturbed zone was decreased to zero for all soils below Depth/arerof 5.80 and for all soils in
the half-space. Layered soil profiles in the above three steps are termed as CASE E2 vl, CASE
E2 v2, and CASE E2 v3 (Figure 3.81 - Figure 3.83). The resulting accelerances are compared
with the reference experimental accelerances in Figure 3.84. The vertical modes in 4,./VC and
Ay/VE now have better resonant frequencies and higher amplitudes. Horizontal modes in
Axc/VE have slightly higher, but still acceptable amplitudes. Resonant frequencies are not
affected. The rocking modes, although show favorable improvement, still present obvious
differentiation. The possible reason may be the error in polar moment of inertia of the pile cap.
Further calibration was implemented with a focus on matching the rocking modes. However
the soil profiles began to induce inconsistency in vertical and horizontal modes. Generally, the
calibrated soil profiles progressively lead to better consistency with experimental data. For the

time being CASE E2 v3 is regarded as suitable set of profiles for the single pile testing.
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3.9.2 Calibration for the Pile Group

Case study in Section 3.8.2 shows that the CASE E2 soil profiles for the pile group
result in lower amplitudes for all vertical, horizontal, and rocking modes. In addition, the
resonant frequencies for the horizontal mode in 4.,./HC are slightly overestimated. This
suggests that the damping ratio is overestimated. To this end, the soil profiles were calibrated
in two steps. In the first step, the damping ratio within the disturbed zone was decreased to
minimum material damping ratio, i.e., 2.6%, for all depths. The soil profiles are termed as
CASE E2 dl. In the second step, damping ratio within the disturbed zone was reduced to zero
for depths greater than 15.457 and reduced to 0.87% for the depths above. Damping ratio in
the half-space 1s also reduced to zero. The soil profiles for the second step are termed as CASE
E2 d2. Additionally, 5-domain models were used to compute impedance functions. Shear
modulus profiles were 100%, 80%, and 50% of the profile for half-space in Section 3.8.2 for
all depths, and are termed as 5D d1, 5D d2, and 5D d3, respectively. The resulting impedance
functions based on the above calibrated soil profiles are compared in Figure 3.85 . For 4,./VC,
CASE E2 d2 profiles elicit best match in resonant frequency but shows underestimation in
amplitudes, especially for the real part. 5-domain models show sharp resonant peaks with
higher amplitudes. Similar trends are also found for 4,./VC. For 4x/HC, all soil profiles result
i overestimated resonant frequencies. CASE E2 d1 provides closest resonant amplitude. For
Ax/VE, CASE E2, 5D dl and 5D d2 profiles all lead to well capture of the horizontal mode at
around 14 Hz but none of them show good estimation for the rocking mode. Likewise, the
amplitude of rocking mode in 4,./VE is noticeably underestimated by all soil profiles, although

6-domain models show better consistency in terms of resonant frequency.
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Figure 3.85 Accelerances by calibrated soil profiles for pile group tests.
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Figure 3.85 (continued)

3.9.3 Summary

To be concluded, the theoretical accelerance functions have the same trends as the
experimental results using the arbitrary CASE E2 soil profiles for the disturbed zone. More
calibrated soil profiles lead to better match in accelerance functions. This validates the
computations models established for single piles in previous studies and the models for pile

groups in this study. Due to limitation of time, more effort will be put on soil profile calibration.
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CHAPTER 4. PARAMETRIC STUDIES

Parametric studies were performed for a single pile case and a pile group focusing on
shear modulus and damping ratio profiles within the disturbed zone and half-space. Influence
of pile gapping, spacing, and size of disturbed zone were also investigated. For the
superstructure, unembedded pile length, mass, and polar moment inertia that are incorporated
in the substructuring formulation were examined.

Parametric studies in this chapter was completed shortly after the site investigation and
ahead of pile installation and pile cap construction. The initially proposed pile properties in
Table 4.1 were used. Note that they are generally consistent with the actual pile properties

except for pile thickness. Actual properties of the pile caps in Section 2.3 were still adopted.

Table 4.1 Initially proposed pile properties.

Outer diameter 0.219 m
Thickness 0.635 cm
Embedded length in soil 7.62 m

Embedded length in pile cap 0.914 m

Young’s modulus 200 GPa
Poisson’s ratio 0.26

Density 7.850 kg/m>
Spacing (X.y) 0.914 m

4.1 Sensitivity due to Soil Profiles within Disturbed Zone

Six soil profiles for disturbed zone were established based on the SCPT-1 profiles
(Eqn.(4.1)). The general principle is linearly varying soil profiles such that shear modulus is

reduced at shallow depths and decreased along lower portion of piles, respectively. The depth

for transition point is controlled by z, and the degree of variation is governed by &, , which

are listed in Table 4.2. The soil profiles are presented in Figure 4.1.
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G'(z) = GO(z)x[HM%—zo)]
E@)=& I[1+@ 2,)"]+£°(2) @1
G°(z) =SCPT-1 profile

£9(z) = minimum material damping by SCPT-1 profile
where z, =5,n=3,&,=0.3, and L is the pile length.

disturbed zone (inner):

half-space (outer): {

Table 4.2 Parameters for linear variation of soil shear modulus within disturbed zone.

Case L1 L2 L3 L4 L5 L6
z, 0.5 0.5 0.5 0.7 0.7 0.7
k, 04 0.7 1.0 0.4 0.7 1.0

Due to computational intensity for pile group models, parametric studies on soil profile
within disturbed zone were performed only for the single pile case. Output impedance
functions are summarized in Figure 4.2 and compared to the case E2 profile. Case L6 that has
the steepest slope in linear variation has the lowest stiffnesses (real parts) for almost all
immpedance functions. In general, Case 1.2 and CASE L6 result in the highest and the lowest

stiffnesses. Case L2 and CASE E2 result in the highest and lowest damping (real parts),

respectively. Excluding Ex‘l and £ that are negligibly small, all impedance functions follow

the same trend such that the stiffnesses deviate from others with relatively constant offset with
at all frequencies and dampings show increasing deviations at higher frequencies.

The resulting accelerance functions are presented in Figure 4.3 to Figure 4.7. The
vertical modes in 4,//VC and 4,./VE show the lowest resonant frequencies for CASE L6,
followed by CASE L4 and CASE L3, which is attributed to their relatively low vertical
impedances. The remaining cases only show small variations in the vertical mode. The lateral
modes in 4x/HC and 4,//VE exhibit negligible differences for all soil profiles, suggesting low
sensitivities of the lateral modes to the horizontal impedance. For the rocking modes in Ax./VE

and 4,./VE, CASE L6 leads to the lowest resonant frequencies and amplitudes.
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Figure 4.7 4,./VE using CASE L1~L6 soil profiles for single pile.

4.2 Sensitivity due to Soil Profiles in the Half-Space

In addition to soil profiles in the disturbed zone, it is also necessary to quantify the
mfluence of soil profiles in the half-space. Two cases were examined — a single pile with
disturbed zone and a 2x2 pile group with disturbed zone. Soil profiles for the half-space and

the disturbed zone were modified based on profiles in Section 3.8.2. Specifically, shear

modulus G was varied by +20% for all depths and the material damping ratio D, was then

varied by 5 and 10 times for all depths.

4.2.1 Single Pile Case

Impedance functions due to the modified soil profiles are shown in Figure 4.8 and
Figure 4.9. Compared to soil profiles within disturbed zone, influence of soil shear modulus

and damping ratio in the half-space are drastically weak. Higher shear modulus G slightly
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increases stiffnesses at low frequencies and subsequently reduces stiffness at frequencies

higher than 0.2. The differences due to modified dampings are even less noticeable. The sharp

variations in &_ and Emyz can be ignored because of the small absolute values.

The sensitivity of accelerance functions to variations of soil shear modulus and material
damping ratio in half-space are shown in Figure and Figure , respectively. Higher soil shear
modulus in the half-space typically results in higher resonant amplitudes for the vertical and
the rocking modes, but have no impact on the lateral modes. Higher soil material damping ratio
in half-space leads to higher resonant amplitudes for the vertical modes but slightly lower
amplitudes for the coupled lateral-rocking modes. The overall influence of soil profiles in the
half-space for single pile 1s small.

4.2.2 2x2 Pile Group Case

As indicated in Figure 4.12 and Figure 4.13, the sensitivity of impedances due to soil
profiles in the half-space for pile group is even less significant than for single pile. Varying

soil shear modulus by +20% or increasing soil material damping ratio up to 10 times only

caused nuances for all impedance functions. Although some impedance functions such as k_zz
and Emvz exhibit relatively large deviations, their small absolute values suggest very limited

impact in dynamic pile analyses. In terms of accelerance transfer functions (Figure and Figure
4.16), lower soil shear modulus in the half-space suggests slightly higher resonant amplitudes
for the vertical modes and no effects on the coupled lateral-rocking modes. The sensitivity of
accelerance functions due to soil material damping ratio is also insignificant. To be concluded,
parametric studies suggest that soil shear modulus and damping profiles in the half-space are

minor factors for dynamic pile analyses and thus of less importance in calibration.
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Figure 4.8 Sensitivity of impedance functions for single pile to shear modulus in half-space.
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4.3 Soil Layer Discretization

To apply layered Green’s functions in BEASSI, continuous soil profiles obtained by
CPT correlations or piecewise soil profiles obtained by SCPT need to be discretized. Similar
to the boundary discretization discussed in Section 3.6.2, determining soil layer thickness
brings a tradeoff between the accuracy of the impedance functions, and the computational time.
To determine appropriate layering for the dynamics of soil-pile group problems, parametric
studies were performed for two models: 1) 2x2 pile group in the half-space with layered square-
root soil profiles; and 2) 2x2 pile group with disturbed zone in layered soil profiles from the
SCPT data.

4.3.1 2x2 Pile Group in Half-space with Layered Square-Root Soil Profile

For the 2x2 pile group in the half-space, the soil has zero material damping ratio,
constant dimensionless density of unity, and Poisson’s ratio of 0.42. The square-root shear

modulus profile is determined using Eqn.(4.2):

z
GO = Gn_:'r —_— (42)
'\‘ a,,

where = 1s actual depth. Layering in the half-space was analyzed using pile Mesh B and all soil
layers have uniform thicknesses. Number of layers per element (noted as L/E) was specified
as 1, 2, 3, and 4 (Figure 4.16). The resulting primary impedance functions are compared in

Figure 4.17.

When o is below 0.25, all four types of layer discretization show good agreement

except for l?; ' and Ei‘l . This suggests that the horizontal impedances accounting for
mteraction between the loaded pile and the pile in line of the force are sensitive to layering

even at low frequencies. When o goes beyond 0.50, most impedances exhibit diversion. The
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variation in soil shear modulus near surface is magnified at higher frequencies. Only k=" and

E that are determined by deeper soils are negligibly affected.

Overall, effects of soil layer discretization on impedance functions for the 5-domain
model with square-root soil profile are noticeable at high frequencies. 3 L/E provides results
close to the finer 4 L/E discretization for the frequency range of interest and thus deemed to

give the optimal balance of accuracy and efficiency.
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Figure 4.16 Layering for the 22 pile group in the half-space with the square-root soil profile.
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4.3.2 2x2 Pile Group Surrounded by Disturbed Zone and Half-space

To analyze layering effects for 6-domain models, two aspects need to be noted:

1) In BEASSI, number of layers per element for each vertical element is a constant
value shared by two neighboring domains. When the actual layer thicknesses for an element in
the two soil domains are different, resulting in different number of soil layers on each side,
then number of layers per element specified for the element must be the least common multiple
to avoid potential convergence problems when applying Gaussian quadrature. Otherwise, sub-
regions per element may cross multiple soil layers with quadrature points in different soil
layers. If there is a drastic variation in soil shear modulus. Green’s functions evaluated at these
quadrature points may have significant variations, ending up with using higher order Gaussian
quadrature for numerical integration.

2) The actual number of layers per element indicated in /ayercoordN.dat can be smaller
than the number specified for each element in inp.dat, so long as each sub-region does not
cross two or more layers in either zone. If six layers per element is specified for an element,
for example, the actual number of layers can also be 1, 2 or 3. Though no numerical difficulties
are induced, redundant integrations are performed while they could be implemented over
combined sub-regions without increasing Gaussian quadrature order.

An example of possible layer discretization within the disturbed zone and half-space
are presented in Figure 4.18. Pile Mesh B (blue), inclusion Mesh F (green), and inclusion
boundary at infinity (purple) are shown. Black solid lines denote discretization of soil layers.
Number of layers was specified as 2, 3, and 4 for the disturbed zone, and 4, 3, 2 and 1 for the
half-space. The least number of layer per inclusion element for each case, i.e., least common

multiple, 1s listed in Table 4.3.
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Figure 4.18 Possible soil layer discretization for the disturbed zone and the half-space.

Table 4.3 Least number of layers per inclusion element for the example cases.

Case (@ (b) () (@) (e) ®
Least number of layers
4 6 2 2 4 12
per inclusion element
case (2 (h) @ @) (k) )
Least number of layers
4 4 6 6 6 6

per inclusion element
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Cases (1), (k) and (1), which have the same layering in the disturbed zone but different layers

i the half-space were analyzed first. Actual soil profiles are demonstrated in by case (1) in
Figure 4.19 and the resulting impedance functions are presented in Figure 4.20. For K" and

K*, slight deviations are observed in k_ and !?myz for the Case (1), and the impedance functions

in K*'and K*' show good agreement. The primary reason is that the pile impedances are more
sensitive to the soil shear modulus and damping values within the disturbed zone than those in
the surrounding half-space, as discussed in Section 4.2.2. For the actual SCPT soil profiles
obtained at the test site, the shear modulus does not change drastically at shallow depths. Two
soil layers per inclusion element i.e., Case (k), was found to be sufficient for discretizing the
outer half-space soil profile.

The soil layers within the disturbed zone need to be compatible with both the inclusion
mesh and the pile mesh. For pile Mesh B and inclusion Mesh E, three scenarios using 1, 2, and

3 soil layers per vertical element of the pile were analyzed (Figure 4.21). A satisfactory

agreement in each of the impedance functions can be seen, with the exception of &' and k>

that deviate slightly at certain frequencies for the 1-layer case (Figure 4.22).

In conclusion, the two cases analyzed for the 2x2 pile group using the square-root and
SCPT layered profiles show general convergence in impedance functions for the layer
discretization studied herein. Consistency is observed at low frequencies while deviations
normally occur with an increasing frequency. Discretization of soil profile near the ground
level is accountable for the deviations. For soil profile with less variation such as in the half-
space for the 6-domain model, fine discretization of soil layers does not necessarily lead to

more accurate results.
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Figure 4.19 Soil laver discretization in the half-space for a 2 %2 pile group.
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Figure 4.20 Comparison of impedance functions for discretizing square-root soil layer in the
half-space for a 2 %2 pile group with disturbed zone.



316

|—Re(casc(k]) = = Im(case(k)) = Re(case(i)) = = Im(case(i)) =Re(case(l)) = = lm{case(l})|

0.4 0.15
0.3
0.1
0.2
0.1 0.05
- -
._-!1 = 0 ~ 5
0.1 0
02
0.05
03
04 0.1
0 0.1 02 03 0.4 0 0.1 02 03 0.4
3 4

—
|, 5

[~ = 0.1

0.1

0.2

03
0 0.1 0.2 03 0.4 0 0.1 0.2 03 0.4

W= W‘arr-f/(Grf-f/,u:’e-f)UQ W= u;{-’-:'r"f/(G;'r-.f/prf f)l';!g

(b) Primary impedance functions in K*™

Figure 4.20 (continued)



317

|—Re(case(k)) = = Im(case(k)) === Re(case(i)) = = Im(case(i)) === Re(case(l)) = = lm(case(l))|

0.6 . . . 0.3
0.4 02T
01}
0.2
.—Ic — 0
s 0 o
2 =2 0.1
0.2
0.2
04 r 0.3
-0.6 L L L 0.4 L L L
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
3 . . . 5 : . .

. . . 1 . . .
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

w= waref/(Gref/pref)l/z w= waref/(Gref/pref)1/2

(c) Primary impedance functions in K>

Figure 4.20 (continued)



318

|—Rdtase(k)} = = Im(case(k)) = Re(case(i)) = = Im(case(i)) = Re(case(l)) = = Im{l:ase{l)}l

0.2 0.2
0.15
0.1
0.1
0.05
7 To
<5 0 el
-~ -
0.05 0.1
0.1
0.2
.15
0.2 03
0 0.1 0.2 03 04 0 0.1 0.2 0.3 0.4
1.5 2

0.4

T 0.1 0.2 03 0.4 0 0.1 0.2 0.3 0.4
_ 9 _ /9
W = W(J-:-e.-j'/(G:-f:f/p:-f:f)l" - W = war‘r:f/(G!‘r:f/p!‘t:f)l; -

(d) Primary impedance functions in K**

Figure 4.20 (continued)



319

0 T T 0 I I I 0 T T T
10 - -1 10 - 10 E
20 - 20 - 20 =
0 -1 30 — 30
Y= - = . W0E
k 2 k
@ = 2
2 s - 2 sf 4 £ s0
2 = 2
o U &
= = =
60 |- . 60 | . 60
70 E — 70 E - 70 E
80 - 80 | . 80 E
90 | - 90 | . 90 |=
100 ' ' ' 100 : . . 100 ' ' '
0 05 1 15 2 0 05 1 15 2 0 05 1 15
Re(G /G_) Re(G /G _) Re(G /G_)
(a) Case (¢) (b) Case (g) (c) Case (k)

Figure 4.21 Soil layer discretization within the disturbed zone for a 2 *2 pile group with
disturbed zone.



320

|—Re(case(c]) = = Im(case(c)) = Re(case(g)) = = Im(case(g)) = Re(case(k)) = = Im(case(k)}|

5 : : . 0.15
4 " E
s® 0.1 -
P
¢
- 3r L4 11—~
P
| & ¢ L5 005 T
— & — -
| \d |1
¢
.
1t ’ . 0 ]
rd
'-
0 ' ' ' -0.05 L ' L
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
20 . : . 70 . . :

15-\/— 1 50 R

0 S0t 1
Q10 1 |
—
2 - = a0l ]
—"-- -
-
5 "‘ | 20 ‘-‘——"‘ b
- -
- 10 - E
0" .-""‘-‘
0 ' ' ' 0 L ' L
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
12 T T T
l"-\/ ] ]
- i
8T - ]
a"
|T;;u 6 ’f i
L i
=2 e .
’,
4 Py 1
’ i
’
’
2 ’ ] ]
“
0 1 1 1 0.2 L 1 L
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
—__ 1/2 —_ 1/2
W = warer/(Gref/pref) / W = Waref/(Gref/pref) /

(a) Primary impedance functions in K"

Figure 4.22 Impedance functions for various layer discretization in the disturbed zone for
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4.4 Pile Group Gapping

Gaps are commonly observed between piles and suwrrounding soil near the ground
surface due to pile installation and lateral excitation (e.g., Rollins et al. 2003a; Stewart et al.
2007; Chandrasekaran et al. 2013). Formation of gaps normally accounts for the lower
experimental impedances compared to the theoretical values (e.g., Manna and Baidya 2009),
and incorporating gapping into theoretical or numerical models may lead to better consistency
(e.g., Blaney and O’Neil 1986; El Naggar and Novak 1996; Ashlock and Fotouhi 2013). Thus
it 1s essential to examine the influence of gapping on impedance functions for pile groups.

While the depth of gapping is difficult to be accurately measured or controlled in
physical tests, it can be well determined or specified in numerical analyses. Two methods
modeling gapping in BEM models were studied in previous studies. Ashlock (2006) modeled
separation at pile-soil interface using double elements, at which zero tractions were prescribed.
Half of the elements simulated the pile surface and the other half simulated the soil surface.
Triple nodes were deployed on shared edges of soil, unembedded pile segment, and embedded
pile segment for prescribing individual boundary and continuity conditions (Figure 4.23). The
other approach adopted by Fotouhi (2014) was removing the top no-contact zone, shortening
embedded pile length, and simultaneously increasing the unembedded pile length for
compensation (Figure 4.24). Both approaches have their own limitations. The zero traction at
pile and soil interfaces in the first approach may not be realistic since gap could temporarily
enclose during steady-state vibration and hence transfer reaction between pile and soil. Even
if a gap exists throughout vibration, the zero-traction boundary condition cannot prevent the
pile elements and the soil elements from penetrating into each other in BEM simulation.
Removing the entire top layer in the second approach not only eliminated the possible

temporary contact between pile and soil, but also excluded the existence of the top soil layer
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in the far region. This may affect distribution of soil self-weight and wave propagation,
especially near ground surface. In a case of 2x2 pile group when a broader area 1s influenced
than the single pile, drawback of the second approach might be more drastic. Therefore the
first approach 1s applied in this study for pile group problems. Due to the high sensitivity of
dynamic response of piles to the gapping, the lengths of gap studied herein are 1-element long
(termed as short gap) and 2-element long (termed as long gap), corresponding to 0.317 m
(1.45d ) and 0.634 m (2.94), respectively. To exclude effects of inclusion, a BEM model of
2x2 pile group in the half-space was reanalyzed with gapping. The BEM model for the long
gap 1s shown in Figure 4.25 as an example.

The resulting impedance functions from BEASSI are plotted in Figure 4.26. The
influence of gap on primary impedance functions in K'is noticeable. I?le"l 1s greatly reduced,
which is consistent with the fact that the horizontal resistance on pile is mainly developed along
the top portion. A longer gap results in a lower stiffness and damping. For Ez‘l and k_:,;:y ,
stiffnesses for the short gap are close to the case without gap at high frequencies but show
deviation at low frequencies. Damping show the opposite trend. For the case of long gapping,

both real and imaginary parts exhibit lower amplitudes at all frequencies. For E‘; short

gapping does not significantly change the stiffnesses but decreases the damping. As for
immpedance functions in off-diagonal elementary matrices, it is difficult to describe the effect
of gapping due to the strongly frequency-dependent pile-soil interaction. The general finding
1s that longer gap results in lower amplitude for impedance. The reduction 1s more significant

for the horizontal impedance (]?“) and the coupled rotation- and vertical-horizontal

impedances (e.g., £, A_*.U ) than the vertical impedance (A_*.ZZ ). In the other words, gapping can

2
myx
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substantially decrease the degree of dynamic pile-soil-pile interaction, especially in horizontal
direction.

The resulting accelerance functions are compared in Figure . The long gapping suggests
lowest resonant frequencies and the short gapping results in highest resonant amplitudes for
the vertical modes. As the length of gap increases, the lateral modes show lower resonant
frequencies and higher amplitudes, and the rocking modes for 4x/VE and A4,/VE exhibit

similar decreasing trends for the resonant frequencies.
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Double nodes/
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double elements
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Figure 4.23 Differentiating pile and soil using double elements (Ashlock 2006).
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Figure 4.24 Removing the entire top layer in BEA (Fotouhi 2014).

domain connectivity:
triple nod pile - air : boundary/continuity condition:
oreen elements: prescribed displacement
blue elements: traction free
pink elements: traction free
elements: bonded

domain connectivity:

pile - air

domain connectivity:
s0il - air

double nodes

- AN domain connectivity:
soil - air

domain connectivity:
'\ pile - air
domain commectivity: triple nodes
pile - air

A

Figure 4.25 Modeling 2-element-long gapping for 2% 2 pile group.
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Figure 4.26 Influence of gapping on impedance functions of a 2 %2 pile group.
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Figure 4.26 (continued)
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damping ratio in half-space for pile group.
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Figure 4.27 (continued)
4.5 Pile Spacing

Pile spacing is an important factor in dynamics of pile group. Most previous
experimental studies focused on close pile spacings with spacing-to-diameter ratios (S/d)
below 10 and S/d=3 was most commonly studied (see Table 1.1). S/d ratios lower than 2 are
not recommended in practice due to construction concern and a high S/d ratios make pile-soil-
pile interaction less significant. Parametric studies on pile spacing by full-scale in-situ tests
such as by Rollins et al. (2006), are time-consuming and costly. Demanding test conditions
such as a large test field, complicated loading frames, and enormous load capacity are required.
Small-scale laboratory tests (e.g., Goit et al. 2013), though economical using model piles and
soils, may not be able to reveal true physical essence. On the other hand, it 1s pragmatic to

analyze variable spacings using BEM models simply by translation of existing pile meshes
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without increasing computational intensity. More importantly, all parameters other than
spacing rigorously remain constant, which 1s arduous in physical tests.

In this study, four spacing-to-diameter ratios for a 2x2 pile group in layered soils are
analyzed — 3, 4.174, 7, and 9. No disturbed zone is included to exclude influence of size and
shape of the disturbed zone, as well as soil properties within the disturbed zone. Impedance
functions are extremely shaky with frequency, exhibit various trends, and thus are not suitable
for presenting the influence of pile spacing. Instead, presenting the response of the entire pile
group 1s more helpful. Thus the results are presented in forms of directional group impedance
(Figure 4.28), and group efficiency ratio (Figure 4.29).

Group impedances in the vertical and horizontal directions exhibit similar trends, such

that with a larger spacing, the peaks occur at a lower frequency with a lower amplitude. At

frequencies below ©=0.1, larger spacings result in higher stiffnesses and dampings. As for
group impedances in the rocking and torsional directions, peak frequencies still follow the
same trends as in the vertical and horizontal directions. However, spacing becomes
predominant in affecting peak amplitudes, which makes the frequency-dependent variation

less significant within frequency range of interest.
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(a) Vertical group stiffness and damping
Figure 4.28 Group impedance for a 2%2 pile group.



Horizontal group stiffness

Rocking group stiffness

Torsional group stiffness

40

35

30

25

20

15

10

8000

7000 {

6000 |

5000

4000 |

3000 |

2000 |

1000

L]

7000

6000 |

5000 |

4000 |

3000 |

2000

1000

[]

50 —0
—— /=3 45| [~0 sa=s ® )
el §/d=4.174 - -0 S/d=4.174 ’

s/d=7 e 40 sid=7 ’ _
== 5/d=9 .E_ -0 S/d=9 d'
1 35 f 1
3 5 R, |
4 % LY N
r
£ 25 Q i
| & 5,2 e,
ﬁ 20 F ) ,’ A Y © 4
g "o g v~
4 N 15 e e ” 4
s ., 8 8"
10 0'1 P 1
b 57
St ("] -
. . . ol . . .
0.1 0.2 03 04 0 0.1 0.2 0.3 0.4
- __ 1/2 - __ 1/2
W = waref/(Gref/Pref) / W= Waref/(Gref/Pref) /
(b) Horizontal group stiffness and damping
4000
= S/d=3 o s
"'E:Z;‘"“ 3500 F | =0 S/d=4.174 L
== $/d=9 S/d=1 o~ =
gﬂ 3000 | =0 S/d=9 ’
'E. ’
L (<]
2500 o /
& g
g 2000 I v
o0
=0 I
1500 -
g o
$ 1000 !
& ra -
ﬂh
'—0—.——0——0""/._. 8 o o
500 o -0
[O—o—c—c—o—o——l—' re g “o-©" -0
- - - oG =g =€ - -

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
— 1/2 — 1/2
szaref/(Gref/Pref) / szaref/(Gref/Pref) /

(c) Rotational group stiffness and damping
. . . 4500 .

-0 Sid=3 )
== S/d=3 4000 - =0 S/id=4.174 ’
== $/d=4.174 sla=7 ’

5/d=7 -
—o—5/ds op 3500 [ (= 842 I
£ 3000 f
-~
=
%a.zsuu L
52000
]
=
£ 1500
g
& 1000 -

I -]

oo W g e
- : : 0 Gz =9" :
0 0.1 02 0.3 0.4 0 0.1 0.2 0.3 0.4

W= waref/(Gfef/pref)lfQ

336

@ = warer/(Greg/pres)"/?

(d) Torsional group stiffness and damping
Figure 4.28 (continued)
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GER was widely used to interpret dynamics of pile group in previous studies. However,

the results were commonly reported for a limited frequency range. Novak and Mitwally (1990)

calculated GER up to ® of 0.25. Han and Vaziri (1992), and Manna and Baidya (2010)

calculated GER up to 70 Hz and 50 Hz, respectively. Within the limited frequency range GERs

appear to be monotonic, either increasing or decreasing. When frequency increases to ® of

0.33 or / of 155 Hz in this study, however, GER shows fluctuation with frequency above and

below unity, in both vertical and horizontal directions. The phenomena are observable for all
S/d ratios. To be specific, for lower S/d ratios, the first GER peak has greater amplitude and
occurs at higher frequency. As S/d increases, GER peak amplitudes and the corresponding
frequencies decrease, except that the damping ratio in the horizontal direction remain
approximately constant. The maximum and minimum GERs for vertical and horizontal
vibrations for the examined case are summarized in Table 4.4. GER varies from 0.42 to 3.00
m the vertical direction and from 0.4 to 1.94 in the horizontal direction. The GER values
provide insights in engineering design to achieve optimum ovreall performance of pile groups
and highest safety factor for designated frequency range.

As a summary, pile spacing has substantial influence on the overall response of pile
group, and the influence is strongly frequency-dependent. For vertical and horizontal group
impedances, amplitude i1s mainly frequency-dependent. For rocking and torsional group
impedances, the increase in spacing completely overshadow the effect of frequency. As a
general trend, smaller spacing results in higher amplitude of peaks for group impedance and
GER. For a given frequency range, the highest GER is achievable by specifying an optimum

pile spacing.



Table 4.4 Maximum and minimum GER values.
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Direction Parameters Maximum Minimum
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Figure 4.29 Group efficiency ratio for a 22 pile group in the vertical and horizontal

directions.
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4.6 Size of Disturbed Zone
The size of the disturbed zone proposed in Section 3.6.1 1s characterized by pile length
and inclusion radius. The pile length must be conform to the actual pile length in tests or
designs and thus is relatively affirmative. The disturbed-zone radius, however, is more

subjective and flexible, especially for various pile group patterns and spacings. In this study,
the disturbed-zone radius is an arbitrary value of (\E /2)S+5r . In this section parametric

study 1s performed to justify the proposed disturbed-zone radius and quantify its influence on
impedance functions.

The case study in Section 3.8.2 is reanalyzed with two additional inclusion radii of
(\E /2)S +3r and (\/5 /2)S +7r . The resulting impedances are compared in Figure 4.31.

Negligible differences are found for k" and E}‘jy Impedances coupled with vertical motion
such as k' and IEL": exhibit relatively greater deviations. But due to their small values, such
deviations have minor effect on accelerance functions. Slight differences are found in k'™ and

IT;; for inclusion radii of (v/2/2)S+5r and (v2/2)S+7r. General agreement is observed

for all off-diagonal elementary matrices, except for only slight deviations at certain frequencies.
In terms of accelerance functions (Figure 4.32), the differences for three cases are less
significant. Inclusion radius of (JE /2)S +3r induces slightly higher resonant amplitudes. To

be concluded, the influence of inclusion radius is small and the proposed inclusion radius of

(\E /2)S +5r 1s considered as appropriate.
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Figure 4.31 Comparison of impedance functions for various inclusion radii.
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Figure 4.32 (continued)

4.7 Superstructure

The general formulation established by method of sub-structuring suggests three
parameters potentially having considerable influence on accelerance functions — unembedded
length / , mass m, and polar mass moment of inertia J of pile cap. The parameters were
analyzed herein using the impedance functions by the 3-domain model and the 6-domain model
m Section 3.8. All parameters were varied by £25% and +10% of the original values. The

results are interpreted as magnitude of five accelerance functions.
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4.7.1 Single Pile

1. Unembedded length [,

Figure 4.33 manifests that the rocking modes are most sensitive to / , followed by the

vertical modes. For the rocking modes, long unembedded pile segments induce higher
amplitudes and lower frequencies. A larger unembedded length also results in lower resonant
frequencies and slightly higher resonant amplitudes for the vertical modes. Horizontal mode,

however, is negligibly affected by /.

2. Mass of pile cap m

Figure 4.34 shows that mass of pile cap m is influential on all vibration modes,
especially for the vertical modes. Take 4,./VC for example, an increasing mass drastically
decreases the resonant amplitude, as well as resonant frequency of the vertical mode. The same
trend is also found for the horizontal modes, as suggested by the fundamental peaks in Ax./HC
and Axc /VE. For the rocking modes, resonant amplitudes exhibit decreasing trends and
resonant frequencies almost remain constant with an increasing m .
3. Polar moment of inertia J

Equation of motion indicates that primarily the rocking motion is associated with J .
The vertical modes are not affected and the horizontal modes also show minor differences
(Figure 4.38). The rocking modes, as expected, are susceptible to the variation of J . For the
rocking mode in 4./VE, a larger J induces the peak shifting towards upper left. The rocking

mode in 4;./VE tends to shift towards lower left.
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Figure 4.33 Sensitivity of accelerance functions for single pile to un-embedded length 1.
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4.7.2 2x2 Pile Group

1. Unembedded length [,

As suggested by Figure 4.36, all accelerance functions are sensitive to /. Specifically,

longer unembedded pile segments result in lower resonant frequencies and slightly higher

amplitudes for the vertical modes in 4,./VC and 4,./VE accelerances. Resonant frequencies of

the horizontal modes in 4x/HC and A4x/VE decrease with /,, while the amplitudes have

opposite trends. This is different from the single pile case. Rocking mode is most sensitive to

[, showing tremendous change in both resonant frequency and amplitude.

2. Mass of pile cap m

Mass of pile cap m also exhibits substantial influence on the vertical and horizontal
modes (Figure 4.37). In general, an increasing mass leads to decreasing resonant frequencies
and amplitudes of all vertical and horizontal modes. The rocking mode in 4./VE shows
varying amplitude and resonant frequency. The rocking mode in 4,./VE, however, is negligibly
affected by m.
3. Polar moment of inertia J

As indicated in Eqns (3.55) and (3.56), the vertical and horizontal modes remain
independent of J when no rocking mode is induced. This is verified by no variations for the
resonant peaks i 4,./VC and Ax/HC (Figure 4.38). Although the resonant peak in 4,./VE is
primarily associated with the vertical mode, the rocking mode is also accounted for due to
eccentricity of loading. That explains the slight differentiation observed. As expected, the
rocking mode, either in A4x/VE or A./VE, exhibits significant change in both resonant

frequency and amplitude.
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The findings in parametric study on superstructure reveal intensive influence on

accelerance functions due to variations of /,, m, and J . Compared to the pile impedance

functions at the ground level, these parameters have more substantial impact on dynamic

responses of superstructure. Therefore, the accuracy of the parameters is of great importance

in matching experimental accelerance functions. In physical tests, / should be from direct

measurement. Mass and polar moment of inertia of the cap-shaker system, i.e., mand J, should
be estimated both theoretically and numerically to ensure consistent results as demonstrated in
Section 2.7.1. Finally, the parametric study on superstructure add some sights into planning of
physical tests. By adjusting given parameters reasonably, it is possible to control the resonant
frequencies and amplitudes for directional excitation. For example, longer unembedded pile

segments / in full-scale pile group tests can increase magnitude of the rocking mode but

simultaneously decreases the magnitude of the horizontal mode. A greater J , though making
the amplitude for rocking mode in 4y./VE higher, may lower the amplitude for the rocking
mode in A,/VE. An appropriately designed superstructure should keep the resonant
frequencies for directional vibration modes not beyond excitation capacity and measurement
range, and simultaneous elicit relatively high resonant amplitudes to increase signal-to-noise
ratio. For design of machine foundations, it is beneficial to choose appropriate mass and polar
moment of inertia of the superstructure to keep structural resonant frequency away from the

working frequency of the machine.
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4.8 Incorporation of Nonlinearity in Soil Material
4.8.1 Derivation of Strain-compatible Soil Profiles in Layered Disturbed Zone

Kondner (1963a, 1963b) discovered relations between axial stress and deviator stress
from the cyclic triaxial tests and established hyperbolic constitutive models for cyclically
loaded soils. Since then a series of hyperbolic stress-strain models have been proposed (e.g.,
Seed and Idriss 1970; Kokusho et al. 1982; Vucetic and Dobry 1991; Stokoe et al. 1999). These
models were mostly established based on laboratory tests such as the cyclic triaxial tests, cyclic
simple shear tests, cyclic torsional tests, and resonant column tests. Among them, hyperbolic
stress-strain relationship developed by Hardin and Drnevich (1972a 1972b) has been widely
used (e.g., Schnabel et al. 1972; Vucetic and Dobry 1991). The original model is summarized
by Equation (4.3):

1
_1+y,,

max

4.3)

D: }/ﬁ
1+y,

max

where 7, :L[Hae"’“’ "‘")] is hyperbolic shear strain and y, =éﬁ is reference strain.

Parameters ¢ and D are soil constants depending on soil type. Small-strain shear modulus G__
primarily depends on effective mean principle stress, void ratio, and degree of saturation.
Maximum damping ratio D___ 1s determined by effective mean principle stress, void ratio, and
number of cycles.

This model was later modified to explicitly incorporate minimum material damping and

simplify hyperbolic strain by Drnevich (2017):



361

G=— "' G,
1+A(l]
7
A(l]“ (.4)
D-D, =—""2 (D, -D,)
1+A[L]
2

where 4=0.63, n=1.338 forsand, and 4 =0.68,n=1.275 for clayey and silty soils (private
communication).

Within soil each layer, void ratio e, over consolidation ratio (OCR), value of K that
depends on plasticity index, mean principal effective stress o, , vibration frequency f , and

number of cycles N are unlikely to change significantly. Then G___, D__, D,, can be seen as

max ? max

constants and 7= becomes the only variable in Equation (4.4). Multiple methods are available
a

to calculate G_, , D

 and 7, . To be specific, G, can be evaluated by empirical
correlations, laboratory test such as resonant column tests and cyclic simple shear test, or in-

situ tests like SCPT and cross-hole tests. D_. can be derived through the aforementioned

laboratory tests or SCPT test as in Section 2.2.2, and D__can be estimated by empirical
correlations as in Equation (4.5). It should be noted that due to pile installation, the original
soil profile may change from site investigation. Soil near pile toe is heavily displaced, resulting
in a higher mean principal effective stress and a lower void ratio. Soils near ground surface, on
the other hand, may be subjected to heaving, resulting reduced mean principal effective stress

and increased void ratio. Thus, G__ 1s commonly reduced for top layers and increased for lower

layers. In this section, only influence of shear strain level is studied.
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— 2  —
6. =12302282¢ (ocpyEs ™
for saturated cohesive soil : l+e) 4.5)
D =31-(3+0.03f)c, +1.5f">~1.5(logN)

Recall that in the disturbed-zone BEM models, the half-space stands for undisturbed
soils with negligible strain levels. Thus the strain-compatible soil shear modulus and damping
models only need to be applied for the disturbed zone. To this end, three difficulties must be
addressed for the application:

1. Soil stress state in aforementioned laboratory tests from which hyperbolic models
were established 1s relatively simple such that minor principal stress ¢, commonly equals o, .
External shear stress 7 is only applied on the same plane as o, with the maximum value

calculated by Equation (4.6). The stress state is suitable for site response analysis, such that

major principal stress o, simulates vertical soil pressure, o, and o, simulate lateral earth

pressure, and 7 refers to shear force between soil layers induced by earthquakes.

T :{{(lJrzKO) o sin§_5+gcosg_é} —{(1_—;{“)5‘} } (4.6)

However, for soil-pile interaction problems, soil stress states are far more complicated
because of combination of piles’ directional vibrations, and wave reflection and refraction at
layers and pile interfaces. The in-situ soil stress state 1s unlikely to match the ideal case as in
laboratory tests. Duncan and Chang (1970) suggests that for three—dimensional stress and
strain states, it would be desirable to include failure criterion or effects of value of intermediate
principal stress. Ni (1987) studied dynamic properties of dry sand under true triaxial loadings
by resonant column and torsional shear tests. Low-amplitude shear modulus was found to be

dependent on the principal stresses in the direction of wave propagation and particle motion,
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and relatively irrelevant of stress in the out-of-plane direction. Due to limited studies on soil
dynamic strain-stress behavior under true stress states, only torsional vibration of a single pile
1s considered to suitable for applying Hardin-Drnevich’s hyperbolic model in this study.
Torsion of a single pile induces most similar stress states to the laboratory tests such that major
shear stresses are applied horizontally.

2. For harmonic vibrations, the strain level and corresponding shear modulus and
damping ratio vary with time. For the equivalent linear analyses (Figure 4.39) performed in

the frequency domain by BEASSI, shear strain » should be a constant that corresponds to a
unique shear strain level for each cycle.

-
0,2'- kgrom® 00

DRY CLEAN Gmax
il

GRADED SAND
e 0.57
G-0248kghm®
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/ /
/ s / "‘I1ox1o"

/

Figure 4.39 Equivalent linear analysis (Hardin and Drnevich 1972b).

3. In laboratory tests, soil samples has uniform shear strains at each cross section (i.e.,
depth). In in-situ tests, magnitude of shear strain varies from location to location even at each
depth. In general, the soils near the vibrating pile(s) have higher strains than the soils in far
region due to attenuation of wave energy (see accelerance functions for soil accelerometers in
Section 2.6.4). The proposed BEM model treats soil in each layer as homogeneous medium

with constant shear modulus and damping ratio. Thus a representative shear strain level should
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be chosen for the soil layer at the same depth. In this study the representative value is defined

as:

— 2
y(z)= f:wer.az‘s:{e(\/‘;VZ}r (x, y_,z)‘2 s ‘;sz (x,», z)‘ ) “4.7)
where (x,y,z) is located within the disturbed zone. For shear modulus at a certain depth of z

within the disturbed zone,

GO-— 6.
1+ 4@y
Vs

(4.8)

The measurement of shear modulus at small strains is more reliable than that of
damping because of low signal-to-noise ratios, apparatus damping, and measurement method

(Drnevich 2017). Thus it 1s suitable to calculate damping ratio in terms of shear modulus as:

G'(2) )

D' (2) = Dy (2) +[ Dy (D) = D @] (1 - G @

4.9)

As a common approach to apply equivalent linear method, an initial » profile is

assumed, based on which initial soil shear modulus and damping profiles are be calculated
using Eqns (4.8) and (4.9). Performing BEM analysis with the initial modulus and damping
profiles provides dynamic shear strain profiles (See Section 3.7.3). Using the updated
representative shear strain profile, strain-compatible soil shear modulus and damping profiles
are recalculated, which are then substituted into next round BEM analysis. Repeating the above
steps until the representative shear strain profiles converges, which provides converged strain-
compatible soil modulus and damping profiles.

4.8.2 Case Study on a Single Pile

To validate the proposed method, a simple case studied was performed for a single pile

case. This is because proper characterization of displacement fields for a single pile requires
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much less internal points than for a 2x2 pile group. Since accuracy of strain level is crucial in
application of nonlinear constitutive models, a large amount of internal points are necessary to
capture the displacement field. When Green’s functions are not in closed form, analyzing a
pile group case requires excessive time with the current computational power and thus becomes
impractical. The dimensionless pile properties were assumed to the same as in Table 3.16. For
simplicity, soil was assumed to be clay with 4=0.68, and »=1.275 . Dimensionless
frequency was assumed as 0.1. Initial soil properties were assumed to be homogeneous:
G, =05, D_ =30%, D. =3%, r,. =00012, v=042 and p=1. Then,

T 0.0012

max

(C.

¥, = =0.0024 (4.10)

For the first around calculation, the initial 7 is assumed to be 0.1% at all depths. Then

the initial strain-compatible soil shear modulus and damping ratios are calculated as:

G'(z)= L x0.5=0.41

0.0024
; 0.41
D'(2)=0.03+[0.30-0.03](1 —55)=0.0786 (4.12)

The results of @ , G'(2), and D'(z) profiles during the first three iterations are
presented in Figure 4.40. The converged representative strain levels, differ from the initially
assumed uniform G_,_, and undulate sharply above depth of 20. The corresponding G’ (z) and
D’(2) profiles also exhibit similar trends. Beneath depth of 25, the dynamic strain levels

become negligible. In addition, the iteration converges at a fast speed. Soil profiles calculated
after 1% round iteration is very close to the profiles after 3™ round iteration. The case study

suggests that the strain-compatible soil profiles are well captured and the convergence speed
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1s satisfactory. The dynamic strain level attenuates along depth of 25, 36% upper portion of

the pile.
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Figure 4.40 Convergence of y(z), G'(z), and D'(z) profiles within three rounds of
iterations.
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CHAPTERS. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Three dimensional dynamic soil-pile group interaction has been a subject of significant
research interest in recent decades. Wide application of pile foundations subjected to a variety
of dynamic excitations has led to increasing demands on seismic and machine foundation
designs. The literature review in Chapter 1 summarizes numerous previous experimental and
computational studies, in which discrepancies were commonly observed between
computational and experimental results. To help advance fundamental knowledge on dynamic
soil-pile interaction, improve the accuracy of current computational models, and contribute an
additional experimental database, this study was aimed at performing computational and
physical simulations on single piles and pile groups.

In Chapter 2, full-scale in-situ elastodynamic vibration tests on a 2x2 pile group and a
single pile were studied. Subsurface conditions were evaluated by comprehensive site
mvestigation, including standard penetration tests, cone penetration tests with pore pressure
measurement, seismic cone penetration tests, soil classification, and other laboratory tests.
Specifically, seismic data from the SCPT tests were analyzed to estimate the in situ profiles of
small-strain shear modulus and damping, as well as Poisson’s ratio. Empirical correlations to
the SPT and CPT data were also examined to corroborate the SCPT results. Pile installation
was monitored, with both blow counts and soil plugging recorded as a function of depth. The
recorded blow counts were compared to pile driving analyses to ensure the integrity of piles
after installation, and the soil plugging lengths indicated that the driven piles were categorized

as small-displacement piles. The design and construction of the concrete pile caps were
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detailed, and the corresponding geometric properties were rigorously calculated using CAD
and simplified analytical models.

Multimodal forced vibration pile tests were conducted using random vibration
techniques and a servo-hydraulic inertial shaker. Instrumentation included accelerometers on
the pile caps and in the soil, strain gauges attached to the unembedded portions of the piles,
and stringpots attached to the piles and caps. The test results were examined in the form of
power spectra, coherence functions, accelerance functions, and transfer functions for strain
gauges.

The computational simulation phase of the study was detailed in Chapter 3. The
computational framework employed 3D BEM models of piles embedded in a disturbed zone
and surrounded by a halfspace zone, with layered soil profiles in both zones. To lay a solid
foundation for analyzing the dynamic pile-soil interaction problems, a series of validations and
verifications were performed on a step-by-step basis. The CyEnce and CyStorm
supercomputing clusters were used together with the new versions of the program and verified
against benchmark problems previously analyzed on other clusters. The new capabilities of
BEASSI for handing multi-domain problems were validated by comparing impedances for 6-
domain models of the four piles and disturbed zone in a halfspace, and 5-domain models
without the disturbed zone. Beam-column “structural” Green’s functions for the piles were
compared to use of 3D dynamic point-load Green’s functions treating the pile as a viscoelastic
solid. More rigorous reference studies were performed on static and dynamic cases of floating
piles in homogeneous soils, showing general consistency between BEASSI and the reference
studies. The disturbed-zone model for single piles was also validated against reference studies.

For the purpose of deriving theoretical accelerance functions for the soil-pile system, a general
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formulation was established using the method of sub-structuring. The dynamic response of the
substructure was characterized by a global impedance matrix with account of pile-soil-pile
interaction.

A new three-dimensional BEM disturbed-zone model for pile groups is proposed, with
the boundary discretization validated by convergence studies. The numerical results were
mterpreted in the forms of theoretical centroidal accelerances, group efficiency ratios,
displacements, strain and stress fields in the soil, and bending moment and shear force profiles
m the piles. Case studies were performed corresponding to the soil and pile properties in the
physical tests, and parametric studies were conducted to calibrate the computational models to
the experimental results. By starting from a previously established model for single piles in
sand for the disturbed zone, the simultaneous vertical and coupled lateral-rocking vibration
modes were captured reasonably well in the theoretical accelerance functions. The soil profiles
were then further calibrated to better capture the experimental results.

Parametric studies were conducted in Chapter 4 specific to the effects of soil profiles
and layer discretization within the disturbed zone and in the half-space, as well as effects of
gapping, pile spacing, size of the disturbed zone, and properties of the superstructure. The
incorporation of nonlinearly strain-dependent soil profiles in equivalent linear-type analyses
was also explored using the BEM models.

5.2 Recommendations for Future Work

To further build upon the insights generated in this study, several recommendations are
listed below as possible directions for future work on dynamic soil-structure interaction.

1. Deepening understanding of soil calibration within the disturbed zone. For 3D BEM
disturbed-zone models, the soil profiles within the disturbed zone were demonstrated to be

crucial to the dynamic response of the superstructure, and require more thorough study. The
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calibration of soil shear modulus and damping ratio is still based on approximate accounts of
the most influential parameters, but the process is still too vague to efficiently guide the
calibration, especially when computation is time-consuming as in pile group problems. A
possible approach would be closer examination of all the factors contributing to the disturbed
zone individually, and their measurement in physical tests. These factors include changes in
the soil properties and behavior due to pile installation, the static foundation weight, dynamic
strain levels, and pile-soil contact conditions, among others. Initial efforts have been made in
this study to examine the influence of dynamic strain levels in the disturbed zone, and
additional efforts of this kind are needed. Considering the issue of pile-installation for example,
its horizontal influence in terms of both range and magnitude might be inferred from peak
particle velocities meausured during pile driving (e.g., Lewis and Davie 1993; Massarsch and
Fellenius 2008).

2. Enhancement of studies on the far-field soil domain. An advantage of 3D continuum
models over Winkler type foundation models is that the former enable analyzing wave
propagation and damping in the entire unbounded soil domain, while the latter only concentrate
on reactions at the pile surfaces. Although the displacement, strain, and stress fields in dynamic
problems are complicated, they can provide insights into the volume of influence,
incorporation of soil nonlinearities, and representation of wave propagation as well as
reflection and refraction at soil layer interfaces. In this study, the strain fields within the soil
domain were approximated by finite difference formulae based on internal displacements from
the BEM analyses. However, the resulting strain fields appear to be less stable than the

displacement fields. A better solution would be solving for strains using the boundary integral
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equation directly. The layered soil profile and horizontal inhomogeneities could be
automatically accounted by Green’s functions.

3. Improving computational performance. Nowadays numerical modeling is a common
approach for handling complex geotechnical problems. As the dimensions of problems in
research and practice drastically increase, computational capabilities become a limiting factor.
For example, analysis of a 3—domain problem (single pile, disturbed zone, and halfspace) for
a given frequency using the Texas Advanced Computing Center in 2014 took only 1.5 hours
using 64 processors. Analysis of a 6-domain problem (four piles, disturbed zone, and halfspace)
for a given frequency in 2018 took 10 hours using 96 processors and the optimized code,
because of the greater number of mesh nodes required. As a point of reference, for the evolution
of computational capability, single-threaded floating-point performance typically increases at
a rate of 21% annually (Poley 2012), which corresponds to an improvement by a factor of 2.14
from 2014 to 2018. Even so, such improvement can hardly match the increase in computational
power necessitated by the expansion from the single pile to the 2x2 pile group problem, unless
there is a breakthrough in algorithms or more powerful hardware. Since closed-form Green’s
functions for a layered half-space due to a point source have been noted to not exist except in
the simple case of a homogeneous half-space (Banerjee and Manoon 1990), more effort should
focus on improving the existing numerically evaluated Green’s functions, either by simplifying
the algorithm or increasing convergence speed without compromising accuracy. In terms of
parallelism, there is less than 25% room for improving CPU-based parallelization. Given the
fast development of Graphical Processing Units (GPUs), it should be promising to explore
heterogeneous computing such as GPU-based parallelization (e.g., Takahashi and Hamada

2009; Hamada 2011; Tuspa et al. 2015; Torky and Rashed 2017) in the long run.
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4. Establishment of BEM and FEM hybrid models. It is typically difficult for BEM to
handle nonlinearity, such as nonlinear soil constitutive models (see Lade 2005). This has also
been demonstrated by the challenges in modeling pile group gapping and in applying the
Hardin-Drnevich hyperbolic models to BEM analyses in this study. In contrast, FEM is more
capable in modeling pile-soil contact conditions and handling soil nonlinearities, but in the
time domain. The stress-strain relations can be easily customized using many commercial or
open-source FEM codes available at the present time. Failure criteria could be incorporated
mto analyzing destructive tests for more complicated pile foundations, and coupling of BEM
to handle the far-field wave propagation and FEM to handle nonlinearities in the disturbed
zone could be applied to the pile group problems examined in this study. Such coupling might
require first transforming the BEM formulation back to the time domain via the inverse Fourier
transform.

5. Extensive experimental studies. Since the 1970s, researchers have been active in
performing experimental studies on piles, ranging from full-scale to small-scale tests. A variety
of tests were conducted for numerous pile configurations, loading and instrumentation
configurations, and subsurface conditions. The discrepancies found between experiments and
numerical predictions necessitate further experimental studies. Increasing the quality and
number of pile test databases in the future would help reveal more fundamental phenomena of
dynamic soil-structure interaction, provide a solid basis for establishment and calibration of
computational models, and create more opportunities for innovating geotechnical testing

techniques.
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