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Abstract

We consider the well-studied problem of learning intersections of halfspaces under the

Gaussian distribution in the challenging agnostic learning model. Recent work of Diakonikolas

et al. (2021b) shows that any Statistical Query (SQ) algorithm for agnostically learning the class

of intersections of k halfspaces over R
n to constant excess error either must make queries of

tolerance at most n−Ω̃(
√

log k) or must make 2n
Ω(1)

queries. We strengthen this result by improving

the tolerance requirement to n−Ω̃(log k). This lower bound is essentially best possible since an

SQ algorithm of Klivans et al. (2008) agnostically learns this class to any constant excess error

using nO(log k) queries of tolerance n−O(log k). We prove two variants of our lower bound, each

of which combines ingredients from Diakonikolas et al. (2021b) with (an extension of) a different

earlier approach for agnostic SQ lower bounds for the Boolean setting due to Dachman-Soled et al.

(2014). Our approach also yields lower bounds for agnostically SQ learning the class of “convex

subspace juntas” (studied by Vempala, 2010a) and the class of sets with bounded Gaussian surface

area; all of these lower bounds are nearly optimal since they essentially match known upper bounds

from Klivans et al. (2008).

Keywords: Statistical Query learning, agnostic learning, intersections of halfspaces

1. Introduction

Linear threshold functions, or halfspaces, are ubiquitous in machine learning. They arise in the

context of many statistical models for classification (Duda et al., 1973), and they are the focus

of many well-known machine learning methods, including Perceptron (Rosenblatt, 1962), Support

Vector Machines (Vapnik, 1982), and AdaBoost (Freund and Schapire, 1997). In this work, we

consider the problem of agnostic learning for a natural and well-studied generalization of this

function class: intersections of halfspaces.

Although many efficient algorithms for learning halfspaces have been developed to handle

a wide variety of settings (Blumer et al., 1989; Blum et al., 1998b; Kalai et al., 2008; Awasthi

et al., 2017; Diakonikolas et al., 2021a), known algorithms for intersections of halfspaces are

conspicuously limited in scope and applicability. Indeed, no efficient PAC learning algorithms

are known even for the case of intersections of two halfspaces. There, a learner faces a “credit

assignment” problem when considering negative examples, as either of the two halfspaces may

be responsible for an example being classified as negative, but the learner is not privy to this

information. This prevents a straightforward formulation of the learning problem as a linear

program, which had sufficed in the case of learning single halfspaces.

Because of the apparent difficulty of going beyond single halfspaces, much of the progress has

come from learning under “nice” data marginal distributions, such as the uniform distribution or the
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Gaussian distribution (Blum and Kannan, 1997; Vempala, 1997, 2010b; Klivans et al., 2004; Kalai

et al., 2008; Klivans et al., 2008; Vempala, 2010a; Kane, 2014). The fastest algorithm to date for

agnostically learning intersections of halfspaces under Gaussian marginals in R
n is L1 polynomial

regression (Kalai et al., 2008), which was shown by Klivans et al. (2008) to successfully learn up

to any constant excess error in time nO(log k). (Under the additional assumption of realizability,

Vempala (2010a) showed that when k = o(n), preprocessing with principal component analysis

improves this running time to poly(n, k) + kO(log k).) Since this upper bound has resisted

improvement for several years, attention has turned to trying to prove lower bounds, and such lower

bounds are the subject of this paper.

The Statistical Query (SQ) model of Kearns (1998) offers an attractive setting for proving

unconditional lower bounds against a broad class of learning algorithms. SQ learning algorithms can

access data only through imperfect estimates of the expected values of query functions with respect

to the data distribution. Nearly all known learning algorithms, including those of Kalai et al. (2008),

Klivans et al. (2008) and Vempala (2010a), can be implemented within the SQ model, so lower

bounds in the SQ model are evidence for the computational difficulty of a learning problem. Because

these algorithmic results for agnostic learning hold only under “nice” marginal distributions, it is of

interest to prove distribution-dependent SQ lower bounds under the same marginals.

The pioneering work of Dachman-Soled et al. (2014) provided a blueprint for proving such

distribution-dependent SQ lower bounds. They proved an equivalence between the approximation

resilience of functions in a concept class and the SQ agnostic learnability of that class, and used

this equivalence to obtain the first super-polynomial SQ lower bounds for agnostically learning the

important concept class of monotone juntas under the uniform distribution. To establish SQ lower

bounds for agnostic learning under Gaussian marginals, Diakonikolas et al. (2021b) extended the

approach of Dachman-Soled et al. (2014) using new duality arguments and embedding techniques.

In doing so, they obtained lower bounds for agnostically learning a number of Boolean concept

classes (as well as some real-valued concept classes). For intersections of k halfspaces, their

agnostic SQ lower bound is nΩ̃(
p
log k), which should be contrasted with the nO(log k) upper bound

of Klivans et al. (2008). In fact, they conjectured that it may be the upper bound that is loose.

Our results prove that the algorithmic results of Klivans et al. (2008) are indeed nearly

optimal. Specifically, we show that any SQ algorithm that agnostically learns intersections of

k  exp(O(n0.245)) halfspaces to any constant excess error must have complexity at least nΩ̃(log k).

The notion of complexity is made more precise in the informal theorem statement below.

Theorem 1 (Informal version of Theorem 18) Any SQ algorithm that agnostically learns

intersections of k halfspaces to excess error ✏ under Gaussian marginals requires either 2n
Ω(1)

queries or at least one query of tolerance n�Ω̃(log k+1/✏2).

This result is nearly optimal for any constant ✏, up to a log log k factor in the exponent, because

the nO(log k) time and sample complexity upper bounds from Klivans et al. (2008) can be achieved

by an SQ algorithm. We note that by the AM-GM inequality the exponent Ω̃(log k + 1/✏2) in our

lower bound is always at least Ω̃(
p
log k/✏), which is the exponent from the SQ lower bound of

Diakonikolas et al. (2021b), but can also be significantly stronger.

In fact, when k is small (k = O(n0.49)), we show that the hardness of learning intersections of

2k halfspaces is already present in the easier problem of learning a simple subset of the class: the

family of k-dimensional cubes. This result, given in Theorem 7, relies on new technical facts about

the L1-error approximation degree of cube functions under Gaussian marginals. While Theorem 18
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has the strength of applying to much larger choices of k, Theorem 7 provides an explicit class of

rotated cubes that are difficult to learn in the agnostic SQ model, in contrast to the other existential

result.

The hardness of learning rotated cubes is of further interest because there exists a poly(n)-time

algorithm for realizably learning k-dimensional cubes that is far more efficient than the best known

poly(n, k) + nkO(log(k))-time algorithm by Vempala (2010a) for agnostically learning general

intersections of halfspaces. This algorithm uses the gradient descent approach of Nguyen and

Regev (2006) and Frieze et al. (1996) to learn each orthogonal direction. Theorem 18 implies that

no such algorithm for learning rotated cubes exists in the agnostic setting.

Our bounds additionally imply new hardness results on learning functions with bounded

Gaussian surface area and convex subspace juntas (see Theorems 20 and 21 respectively).

1.1. Techniques

Our proofs follow the blueprints of Dachman-Soled et al. (2014) and Diakonikolas et al. (2021b)

and build upon them by using weak learning lower bounds from De and Servedio (2021) and new

technical innovations for proving resilience with respect to continuous measures. Put roughly,

Dachman-Soled et al. (2014):

(a) introduced a notion of approximate resilience on the Boolean cube and established an

equivalence to L1 approximate degree using linear programming duality;

(b) used a combinatorial argument to show that if a k-dimensional function f is approximately

resilient, then there exists a family of k-juntas (n-dimensional embeddings of f for n � k)

that is hard to agnostically learn in the SQ model;

(c) used Boolean Fourier analysis to prove approximate resilience for the Tribes function (a

monotone read-once DNF); and

(d) proved a tighter approximate resilience bound for other monotone Boolean functions by

combining a hardness result on weak learning of Blum et al. (1998a) with an agnostic learning

algorithm based on L1 polynomial approximation by Kalai et al. (2008).

To transfer this methodology to the Gaussian measure on R
n, Diakonikolas et al. (2021b):

(a0) extended the equivalence of approximate resilience and L1 approximate degree to Gaussian

marginals with a more technical argument involving an infinite linear program and the Hahn-

Banach Theorem;

(b0) showed that L1 polynomial inapproximability of a k-dimensional function implies

the hardness of SQ-learning a family of n-dimensional embeddings of f applied to

k-dimensional subspaces1; and

(c0) lower-bounded the L1 approximate degree of an intersection of k halfspaces using a new

connection with Gaussian noise sensitivity.

Our results are obtained using a hybrid of the Dachman-Soled et al. (2014) and Diakonikolas

et al. (2021b) approaches. More precisely, we rely on (a0) and (b0) to establish agnostic SQ lower

bounds over Gaussian marginals for approximately resilient functions, but we draw inspiration from

(c) instead of (c0) to bound the approximate resilience of the Cubek function by directly analyzing its

Hermite representation. We also draw inspiration from (d) when we lower-bound the approximate

1. The underlying hard problem is distinguishing a standard (multivariate) Gaussian from a distribution that differs from

the standard Gaussian only in the high-order moments of a k-dimensional projection (Diakonikolas et al., 2017).
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resilience of other intersections of halfspaces by using a recent hardness result from De and Servedio

(2021) for weak learning those functions.

In more detail, Theorem 7 proves the hardness of learning the restricted class of k-dimensional

cubes for k = O(n0.49) in n-dimensional space by directly bounding the approximate resilience of

a single cube function, Cubek : Rk ! R. That is, we show that Cubek is close in L1-distance

to a bounded function that is orthogonal to all polynomials of degree d = Ω̃(log k). To construct

this bounded function, we develop a new argument which is inspired by (c) but is significantly

more technically involved. Due to the unboundedness and continuity of our N (0, In) setting, our

argument requires a careful iterative construction, which involves defining a thresholding transform

that reduces the low-degree Hermite coefficients of its input while maintaining its boundedness and

taking the limit of applying the transform an infinite number of times. The key properties of Cubek
for this argument are the boundedness of its outputs and its small low-degree Hermite weight. The

approximate resilience of Cubek provides an almost-tight bound on the L1 approximate degree of

the function, and the main result follows by direct application of (a0) and (b0).
Theorem 14, which shows the hardness of learning to constant accuracy the broader classes of

all intersections of k halfspaces for any k = exp(O(n0.245)), instead relies on the combination

of recent lower bounds on the number of queries needed to weakly learn intersections of k
halfspaces from De and Servedio (2021) and well-known algorithmic results of Kalai et al. (2008)

for agnostically learning functions with bounded L1 approximate degree. This approach draws

inspiration from (d). We show that the L1 approximate degree of a random intersection of k
halfspaces must be at least Ω̃(log k) with high probability, since otherwise there would be a

contradiction between the aforementioned works: Kalai et al. (2008) would provide an algorithm

to weakly learn intersections of halfspaces using fewer queries than the lower bound established by

De and Servedio (2021). As before, these bounds on polynomial inapproximability translate to SQ

learning lower bounds via the machinery of Diakonikolas et al. (2021b).

All of the above arguments are for constant excess error (constant ✏). We introduce the

dependence on 1
✏

in Theorem 18 by augmenting the previously-considered intersections of k
halfspaces with a single halfspace (in an additional dimension) that passes through the origin.

Ganzburg (2002) showed that a single halfspace has L1 ✏-approximate degree Ω( 1
✏2
), and we use

this to show that our new intersection of halfspaces has approximate degree Ω̃(log k + 1
✏2
).

1.2. Related work

Efficient algorithms are known for PAC learning intersections of halfspaces under certain marginal

distributions. Baum (1990) gave an algorithm for learning two homogeneous halfspaces under

origin-symmetric distributions, and the same algorithm is now known to also succeed under

mean-zero log-concave distributions (Klivans et al., 2009). For PAC learning intersections (and

other functions) of k general halfspaces, algorithms are known for the uniform distribution on

the unit ball (Blum and Kannan, 1997), the uniform distribution on the Boolean cube (Klivans

et al., 2004; Kalai et al., 2008; Kane, 2014), Gaussian distributions (Klivans et al., 2008; Vempala,

2010a), and general log-concave distributions (Vempala, 1997, 2010b). In most of these cases,

the dependence on k in the running time is nΩ(k) or worse (the exceptions are the algorithms for

Gaussian or uniform on {�1, 1}n marginals). In fact, only the L1 polynomial regression algorithm

is known to succeed in the agnostic setting, and only under Gaussian or uniform on {�1, 1}n

marginals (Klivans et al., 2008; Kane, 2014). Finally, efficient algorithms are also known for PAC

learning intersections of any constant number of halfspaces under marginals satisfying a geometric
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margin condition (Arriaga and Vempala, 2006; Klivans and Servedio, 2008), and also for learning

intersections (and other functions) of halfspaces using membership queries (Kwek and Pitt, 1998;

Gopalan et al., 2012).

Our work focuses on hardness of learning intersections of halfspaces. Besides the SQ lower

bounds of Diakonikolas et al. (2021b) for (agnostic) learning under Gaussian marginals (which

built on the closely related work of Dachman-Soled et al. (2014)), there is other evidence for the

difficulty of this learning problem. First, distribution-free PAC learning—both proper learning and

improper learning with certain hypothesis classes—is known to be NP-hard (Blum and Rivest, 1992;

Megiddo, 1988), and lower bounds on the threshold degree of intersections of two halfspaces due to

Sherstov (2013) rule out efficient algorithms that use polynomial threshold functions as hypotheses.

Cryptographic lower bounds (Klivans and Sherstov, 2006) give further evidence that distribution-

free PAC learning is hard even if the learner is permitted to output any polynomial-time computable

hypothesis. (The distribution-free correlational SQ lower bounds of Gollakota et al. (2020) give

similar evidence for restricted types of learners.) These lower bounds leave open the possibility

that fixed-distribution PAC learning is tractable, but again there is evidence against this, at least for

certain classes of learning algorithms. Klivans and Sherstov (2007) showed that there is a (non-

uniform) marginal distribution on the Boolean cube under which the SQ dimension of intersections

of
p
n halfspaces is at least 2Ω(

p
n); this implies lower bounds for (weak) SQ learning under that

distribution. Finally, Klivans et al. (2008) gave membership query lower bounds for learning certain

convex bodies under Gaussian marginals. These lower bounds are exhibited by intersections of k
halfspaces for sufficiently large k, but they do not rule out poly(n) query algorithms unless k is at

least polynomially large in n. Moreover, these lower bounds are insensitive to the error parameter ✏

sought by the learner, and in particular do not become higher for subconstant ✏.

1.3. Organization

In Section 3 we prove Theorem 7, which gives an nΩ̃(log k) SQ lower bound for agnostically

learning intersections of k halfspaces (in fact, k-dimensional cubes) to constant excess error

when k = O(n0.49). Section 4 gives a similar SQ lower bound for larger values of k (using

different arguments and less structured intersections of halfspaces which are not cubes). Section 5

improves the quantitative results of both these sections by allowing for subconstant excess error,

thereby establishing Theorem 1 (see Theorem 18 in Section 5 for a detailed theorem statement).

Appendix A extends our results to the concept class of functions with bounded Gaussian surface

area and convex subspace juntas, and gives some observations on lower bounds for L1 polynomial

approximation.

2. Preliminaries

2.1. Functions in Gaussian space

For any k 2 N, the standard Gaussian distribution on R
k is denoted by N (0, Ik). For q � 1,

let kfkq = Ex⇠N (0,Ik)[|f(x)|
q]1/q denote the Lq-norm of f 2 Lq(N (0, Ik)), and let hf, gi =

Ex⇠N (0,In)[f(x)g(x)] denote the inner product between f, g 2 L2(N (0, Ik)). For a multi-index

J 2 N
k, let #J denote the number of nonzero elements of J , and let |J | = J1 + · · ·+ Jk. Let Pk,d

denote the family of all polynomials p : Rk ! R of degree at most d.

In Appendix B, we recall basic facts about the Hermite polynomials {HJ}J2Nk , which form an

orthogonal basis for L2(N (0, Ik)), as well as some tools based on Gaussian hypercontractivity.
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2.2. Agnostic learning under Gaussian marginals and Statistical Query learning

We recall the framework of agnostic learning under Gaussian marginals. Given a concept class C
of functions from R

n to {�1, 1}, an agnostic learning algorithm is given access to i.i.d. labeled

examples (x,y) drawn from a distribution D over Rn ⇥ {�1, 1}, where the marginal of D over

the first n coordinates is N (0, In). Intuitively, a successful agnostic learning algorithm for C is one

which can find a hypothesis that correctly predicts the label y almost as well as the best predictor in

C. More precisely, an agnostic learning algorithm for C under Gaussian marginals with excess error

✏ is an algorithm which, with high probability, outputs a hypothesis function h : Rn ! {�1, 1}
such that Pr(x,y)2D[h(x) 6= y]  OPT + ✏, where OPT = inff2C Pr(x,y)2D[f(x) 6= y]. The

special case of OPT = 0 corresponds to (realizable) PAC learning under the Gaussian distribution.

The above definition is for a learning scenario in which the learner has access to individual

random examples. In the well-known Statistical Query (SQ) learning model, the learning algorithm

cannot access individual examples from D but instead has access to a “STAT oracle.”

Definition 2 A learning algorithm A has access to a STAT oracle if A makes queries with a function

g : Rn ⇥ {�1, 1} ! [�1, 1] and a tolerance parameter ⌧ > 0 and recieves an estimate of the

expectation E(x,y)⇠D[g(x,y)] that is accurate up to additive error ±⌧ . An algorithm A with access

to a STAT oracle is an SQ agnostic learning algorithm for concept class C if it returns with high

probability a hypothesis h : Rn ! {�1, 1} such that Pr(x,y)2D[h(x) 6= y]  OPT+ ✏.

2.3. Resilience and L1 polynomial approximation

Dachman-Soled et al. (2014) established a useful connection between lower bounds for SQ

agnostic learning under the uniform distribution on {�1, 1}n and the notion of resilience for

bounded functions. This connection was extended to the Gaussian setting by Diakonikolas et al.

(2021b), and it also plays an essential role in our results.

Intuitively, a function is “resilient” if it has zero correlation with all low-degree basis functions.

More formally, we have the following:

Definition 3 A function g : R
n ! [�1, 1] is d-resilient if hg, pi = 0 for every p 2 Pn,d

(equivalently, hg,HJi = 0 for every |J |  d). For 0  ↵ < 1, a function f : Rn ! [�1, 1]
is said to be ↵-approximately d-resilient if there exists a d-resilient witness g : Rn ! [�1, 1] such

that kf � gk1  ↵.

Next we define the notion of L1 polynomial approximation:

Definition 4 Given 0  ✏ < 1 and f : Rn ! [�1, 1], we say that the L1 ✏-approximate degree of

f is the smallest value d � 0 such that there exists a polynomial p 2 Pn,d satisfying kf � pk1  ✏.

Definition 4 is of course equivalent to d being the largest value such that every polynomial p of

degree at most d� 1 has kf � pk1 > ✏.
Using linear programming duality, for the setting of functions f : {�1, 1}n ! [�1, 1] and

the uniform distribution over {�1, 1}n, Dachman-Soled et al. (2014) established an equivalence

between the L1-distance to the closest d-resilient bounded function (cf. Definition 3) and the best

possible accuracy of L1 polynomial approximation by degree-d polynomials (cf. Definition 4). They

did this by showing (see their Theorem 1.2) that for f : {�1, 1}n ! [�1, 1], if the former quantity

is ↵ then the latter quantity is 1� ↵.
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This equivalence was extended to the setting of Gaussian space (our domain of interest in the

current work) by Diakonikolas et al. (2021b); a more involved argument is required for this setting,

essentially because now the linear programming duality involves an infinitely large linear program,

but the result still goes through. The proof of their Proposition 2.1 establishes the following:2

Lemma 5 (Equivalence of approximate resilience and L1 approximate degree) A function f :
R
n ! {�1, 1} is ↵-approximately d-resilient if and only if its L1 (1� ↵)-approximate degree is d.

In the Boolean hypercube setting, Dachman-Soled et al. (2014) combined their L1 polynomial

approximation characterization of resilience with standard SQ lower bounds and standard results

on the existence of combinatorial designs to show the following: if f : {�1, 1}k ! {�1, 1} is

an ↵-approximately d-resilient function, then (roughly speaking; see their Lemma 2.1 for a precise

statement) any concept class of functions from {�1, 1}n to {�1, 1} containing all “embeddings” of

f (according to the combinatorial design) admits a Statistical Query lower bound.

Diakonikolas et al. (2021b) carried out a similar-in-spirit argument in the setting of Gaussian

space. We note that their result is significantly technically more challenging than the analogous

argument of Dachman-Soled et al. (2014); it builds on recent SQ lower bounds for distinguishing

distributions due to Diakonikolas et al. (2017), and uses embeddings of low-dimensional functions

in hidden low-dimensional subspaces rather than combinatorial designs. We record their key result

below, which will be crucially used for all of our agnostic SQ lower bounds:

Lemma 6 (Diakonikolas et al., 2021b, Theorem 1.4) Let n,m 2 N with m  na for any 0 <
a < 1/2, and let ✏ � n�c for a suitably small absolute constant c > 0. Given any function f :
R
m ! {�1, 1}, let d be the L1 (2✏)-approximate degree of f .3 Let C be a class of {�1, 1}-valued

functions on R
n which includes all functions of the form F (x) = f(Px) for all P 2 R

m⇥n such

that PPT = Im. Any SQ algorithm that agnostically learns C under N (0, In) to error OPT + ✏

either requires queries with tolerance at most n�Ω(d) or makes at least 2n
Ω(1)

queries.

3. Hardness of SQ learning to constant excess error via approximate resilience

The main result of this section is Theorem 7, which, roughly speaking, shows that any SQ algorithm

that makes a sub-exponential number of statistical queries and agnostically learns the concept class

of “embedded k-dimensional cubes” (for k = O(n0.49)) to any constant excess error that is bounded

below 1
2 must make queries of tolerance n�Ω(log(k)/ log log k). (Note that this gives a special case of

Theorem 1 in which the excess error ✏ is constant and k = O(n0.49).) This is done by establishing

that the k-dimensional cube function is approximately resilient; recall that by Definition 3, this

means that it is close in L1 distance to a bounded function that is orthogonal to all low-degree

polynomials.

We define the function Cubek : R
k ! {�1, 1} as Cubek(y) := sign(✓k � kyk1). (Note

that this is equivalent to Cubek(y) = 2
Qk

i=1 {|yi|  ✓k}� 1.) In words, Cube�1
k (1) is the axis-

aligned origin-centered solid cube with side length 2✓k, where ✓k � 0 is chosen to ensure that

Ey⇠N (0,Ik)[Cubek(y)] = 0. Note that Cubek is an intersection of 2k halfspaces.

2. The statement of Proposition 2.1 of Diakonikolas et al. (2021b) only goes in one direction (that L1 polynomial

approximate degree implies approximate resilience), but the proof establishes both directions.

3. By Lemma 5, this condition is equivalent to f being (1� 2✏)-approximately d-resilient.

7
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Theorem 7 For sufficiently large n and k, with k = O(n0.49), define the concept class C = {x 7!
Cubek(Px) : P 2 R

k⇥n, PPT = Ik}. Any SQ algorithm that agnostically learns C to excess error
1
2

�
1� 1

k0.49

�
requires 2n

Ω(1)
queries or at least one query of tolerance n�Ω(log(k)/ log log k).

This strengthens the bounds of Diakonikolas et al. (2021b) for the regime of k = O(n0.49) and

constant excess error, improving the n�Ω̃(
p
log k) tolerance requirement to n�Ω̃(log k). Theorem 7

follows directly from Lemmas 5 and 6 and the following lemma:

Lemma 8 For sufficiently large k, the function Cubek is ↵-approximately d-resilient for ↵ =
k�0.49 and d = Ω(log(k)/ log log k).

The proof of Lemma 8 has two main ingredients: a bound on the Hermite weight of Cubek that

is contained in its low-degree coefficients (Lemma 9), and an approximate resilience guarantee for

functions with bounded low-degree Hermite weight (Lemma 10). We prove Lemma 8 in Section 3.2

by applying those two lemmas and choosing an appropriate setting for d in terms of k.

Lemma 9 For any sufficiently large k, and any d � 0,4

X

|J |d

‡Cubek(J)2  20d(3 ln k)d

k
.

We prove this lemma in Appendix C.1 by exactly computing the Hermite coefficients of one-

dimensional centered interval functions (Lemma 27) and using those values to carefully bound the

Cubek Hermite coefficients. At a high level, our bounds on the low-degree Hermite coefficients of

Cubek are similar in flavor to the bounds of Mansour (1992) on the low-degree Fourier coefficients

of the read-once “tribes” CNF over the Boolean hypercube.

Lemma 10 For sufficiently large k, d � 2, and f : Rk ! {�1, 1}, let � :=
P

|J |d
ef(J)2. Then

f is ↵-approximately d-resilient for ↵ = �0.498(72 ln k)d/2.

The proof of Lemma 10 is given in Section 3.1 and is somewhat technically involved. Our

argument modifies and extends a proof idea from Dachman-Soled et al. (2014), which they use to

show that the function Tribes : {�1, 1}k ! {�1, 1} is approximately resilient. Starting with the

Tribes function, their approach is essentially to (i) discard its low-degree Fourier component; (ii)

truncate the resulting function so it does not take very large values; (iii) again discard the low-degree

Fourier component of (ii) (since the truncation could have reintroduced some low-degree Fourier

component); and (iv) normalize the result of (iii) to give an L1 norm of at most 1. They show that

this yields a new function that (1) has zero low-degree Fourier weight, (2) takes output values that

are bounded in [�1, 1], and (3) is close to the original Tribes function in L1 distance.

In our setting we have the same high level goals of achieving (1-3), but achieving boundedness

is significantly more difficult on the unbounded domain R
k than on the finite hypercube {�1, 1}k.

Our witness to the approximate resilience of Cubek is not constructed in a single shot (in contrast

to Dachman-Soled et al.), but rather is constructed gradually through an iterative process.

4. See Appendix B for notation for Hermite coefficients.

8



NEAR-OPTIMAL SQ LOWER BOUNDS FOR AGNOSTICALLY LEARNING INTERSECTIONS OF HALFSPACES

3.1. Approximate resilience of functions with small low-degree weight (Proof of Lemma 10)

In this section, we prove Lemma 10. Our key tool is the TruncHighd,⌧ transformation, defined

below, and a careful iterative application of TruncHighd,⌧ to produce a witness to the approximate

resilience of a given Boolean function f with small low-degree Hermite weight.

Definition 11 For any f 2 L2(N (0, Ik)) and d 2 N, let Lowd and Highd be L2(N (0, Ik)) !
L2(N (0, Ik)) transformations that reduce a function to its low-degree and high-degree Hermite

components respectively, i.e.

Lowd[f ] :=
X

|J |d

f̃(J)HJ , and Highd[f ] :=
X

|J |>d

f̃(J)HJ = f � Lowd[f ].

For any ⌧ > 0, the truncation transformation TruncHighd,⌧ : L2(N (0, Ik)) ! L2(N (0, Ik)) is

TruncHighd,⌧ [f ](x) := Highd[f ](x)�Highd[f ](x) {|Lowd[f ](x)| > ⌧}

=

®
Highd[f ](x) if |Lowd[f ](x)|  ⌧ ,

0 otherwise.

The purpose of TruncHighd,⌧ [f ] is to shrink the low-degree weight of f while staying bounded

in L1 and close to f in L1. These properties are given in the following propositions.

Proposition 12 If kfk1 < 1, then kTruncHighd,⌧ [f ]k1  kfk1 + ⌧.

Proof. TruncHighd,⌧ [f ](x) is non-zero only if |Lowd[f ](x)|  ⌧ . In that case, it is clear that��TruncHighd,⌧ [f ](x)
�� = |Highd[f ](x)| = |f(x)� Lowd[f ](x)|  |f(x)|+ ⌧ .

Proposition 13 For any k � 1 and d � 2, fix some a > 1 and ⇢ � kLowd[f ]k2 and let

⌧ := ⇢

Å
4e ln(3k) +

8e

d
ln

Å
a kfk2

⇢

ããd/2
. (1)

Then, (i) kLowd[TruncHighd,⌧ [f ]]k2  ⇢
a , and (ii) kTruncHighd,⌧ [f ]� fk1  2⇢.

We prove Proposition 13 in Appendix C.2.

Note that there is a tension in the choice of the truncation parameter ⌧ . If ⌧ is too large, then

TruncHighd,⌧ [f ] might still take large values. But if ⌧ is too small, then the low-degree weight of

TruncHighd,⌧ [f ] might not become much smaller compared to that of f . The proof of Lemma 10

works by applying TruncHighd,⌧ iteratively with a carefully chosen decreasing schedule of ⌧ -

values. This process converges to a function that is bounded, has zero low-degree weight, and

is sufficiently close to f , and this function certifies the ↵-approximate d-resilience of f .

Proof of Lemma 10. Since any f with kfk1  1 is trivially 1-approximately d-resilient for all

d � 0, we may assume that ↵ < 1. We define a sequence of functions (fi)i2N by f0 := f and

fi := TruncHighd,⌧i [fi�1] for i � 1, where

⌧i :=
kLowd[f0]k2

4(i�1)d

Ç
4e ln(3k) +

8e

d
ln

Ç
4id kfi�1k2
kLowd[f0]k2

ååd/2

. (2)

We’ll show that the sequence (fi)i2N has a limit in L2(N (0, Ik)) that yields a witness to the ↵-

approximate d-resiliance of f . To do this, it will suffice to show the following claims for all i � 1:

9
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Claim 1. ⌧i  ↵
3·2i

.

Claim 2. kfik1  1 + ↵
3

Pi
◆=1

1
2◆  1 + ↵

3 .

Claim 3. kLowd[fi]k2  1
4id

kLowd[f0]k2  ↵
6·4id

and kfi � fi�1k1  ↵
3·4(i�1)d .

We now explain why this is enough to prove the lemma. Claim 2 ensures that kfik1  1 +
↵/3, while Claim 3 (for all i) ensures that kfi � f0k1 

Pi
◆=1 kf◆ � f◆�1k1  2↵/3 (by the

triangle inequality), and also limi!1 kLowd[fi]k2 = 0. By a limit argument (Proposition 31),

the sequence (fi)i2N converges in L2(N (0, Ik)) to some f⇤ 2 L2(N (0, Ik)) with kf⇤k1  1 +
↵/3, Lowd[f

⇤] = 0, and kf⇤ � fk1  2↵/3. This proves the lemma because one of f⇤ and

f⇤⇤ := f⇤/kf⇤k1 witnesses that f is ↵-approximately d-resilient. Indeed, if kf⇤k1 > 1, then

kf⇤⇤k1 = 1, Lowd[f
⇤⇤] = 0, and

kf � f⇤⇤k1  kf � f⇤k1 + kf⇤ � f⇤⇤k1  2↵

3
+

Å
1� 1

kf⇤k1

ã
kf⇤k1  ↵,

where the first inequality uses the triangle inequality and comparison of k · k1 and k · k1.

It remains to prove Claim 1, Claim 2, and Claim 3 for all i � 1 by induction on i.

For the base case i = 1, ⌧1  ↵
6 (Claim 1) is an immediate consequence of the upper bound

on ⌧1 from Fact 30 in Appendix C.3, which relies on having kf0k1 = 1 < 4
3 . Proposition 12

and the bound on ⌧1 imply kf1k1  1 + ↵
6 (Claim 2). By taking a = 4d and ⇢ = kLowd[f0]k2,

Proposition 13 implies that kLowd[f1]k2  1
4d

kLowd[f0]k2 and kf1 � f0k1  2 kLowd[f0]k2. We

conclude the base case of Claim 3 by observing that kLowd[f0]k2  ⌧1  ↵
6 by Fact 30.

We prove the inductive step by assuming that the three claims all hold for some fixed i � 1 and

showing that they also hold for i+ 1. By applying Fact 30 with kfik1  1 + ↵
3  4

3 from step i of

Claim 2, we have ⌧i+1  ↵
3·2i+1 (step i + 1 of Claim 1). Step i + 1 of Claim 2 is immediate from

Proposition 12, the bound on ⌧i+1, and a geometric sum:

kfi+1k1  kfik1 + ⌧i+1  1 +
↵

3

i+1X

◆=1

1

2◆
 1 +

↵

3
.

We apply Proposition 13 with a = 4d and ⇢ = 1
4id

kLowd[f0]k25 to obtain

kLowd[fi+1]k2 
1

4(i+1)d
kLowd[f0]k2 and kfi+1 � fik1 

2

4id
kLowd[f0]k2 .

Combining this with the bound kLowd[f0]k2  ↵
6 completes step i+ 1 of Claim 3.

Hence, the three claims hold for all i � 1 by induction, which concludes the proof.

3.2. Approximate resilience of Cubek (Proof of Lemma 8)

Let d = ln k
125 ln ln k . By Lemma 9, for sufficiently large k we have

� :=
X

|J |d

‡Cubek(J)2  20d(3 ln k)d

k
.

5. Note that ⇢ � kLowd[fi]k2 by step i of Claim 3, which is necessary for Proposition 13.

10
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Lemma 10 guarantees that Cubek is ↵-approximately d-resilient for

↵ = �0.498(72 ln k)d/2  exp (�0.498 ln k + 0.00799 ln k + o(ln k))  k�0.49.

This completes the proof of Lemma 8.

4. Hardness of SQ learning to constant excess error via weak learning lower bounds

In this section we give a different proof of our main agnostic SQ hardness result for learning

intersections of k halfspaces to constant excess error. While Theorem 7 established hardness for

a highly structured subclass of this concept class (consisting of suitable embeddings of the Cubek

function), the current argument only applies to the broader class of all intersections of k halfspaces.

However, an advantage of the current argument is that it holds for a wider range of values of k (up

to 2O(n0.245)). In more detail, in this section we prove the following:

Theorem 14 For sufficiently large n and any k = 2O(n0.245), any SQ algorithm that agnostically

learns the class of intersections of k halfspaces over R
n to excess error c requires either 2n

Ω(1)

queries or at least one query of tolerance n�Ω(log(k)/ log log k). (Here c > 0 is an absolute constant

independent of all other parameters.)

As discussed in Section 1.1, the proof of Theorem 14 follows the high-level approach of

Theorem 1.4 of Dachman-Soled et al. (2014). Rather than analyzing the Hermite spectrum of the

hard-to-learn functions (as was done in Section 3), the argument combines the agnostic learning

algorithm of Kalai et al. (2008) with a (slight extension of a) recently-established lower bound on

the ability of membership query (MQ) algorithms to weakly learn intersections of halfspaces.

We first recall the following lower bound from De and Servedio (2021):

Lemma 15 (De and Servedio, 2021, Theorem 2) For sufficiently large m, for any q � m, there

is a distribution Dactual over centrally symmetric convex sets (specifically, intersections of O(q100)
halfspaces) of Rm with the following property: for a target convex set f ⇠ Dactual for any MQ

algorithm A making at most q many queries to f , the expected error of A (the probability over f ⇠
Dactual, any internal randomness of A, and a Gaussian x ⇠ N (0, In), that the output hypothesis h
of A is wrong on x) is at least 1

2 � O(log q)p
m

.

We require the following corollary of Lemma 15, which we prove in Appendix D.1.

Corollary 16 For sufficiently large n, for all q � m, there is a distribution D over intersections

of q101 halfspaces such that for a target function f ⇠ D, any MQ algorithm A making at most q

queries to f has expected error at least 1
2 � O(log q)p

m
(where the expectation is over f ⇠ D and any

internal randomness of A, and the the accuracy is with respect to N (0, In)).

Theorem 14 follows immediately from Lemma 6 and the following lemma.

Lemma 17 For any k = 2O(n0.245), there exists an intersection of k halfspaces f : Rm ! {�1, 1}
that has L1 1

2 -approximate degree d = Ω(log(k)/ log log k), where m = O(n0.49).

11
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Proof. First we note that we may assume k is at least some sufficiently large absolute constant as

specified below through the choice of q (since otherwise, because of the Ω(·) in the specification

of d, there is nothing to prove). Suppose that every intersection of k halfspaces f over Rm has

L1 1
2 -approximate degree at most d � 1; we will prove the lemma by showing that d must be

Ω(log(k)/ log log k).
Let q = k1/101 and let S ✓ R

n be the subspace of R
n spanned by the first m = c1 ln

2 q
coordinates, where c1 is a sufficiently large universal constant specified below and q is chosen

sufficiently large (relative to c1) so that q � m and m satisfies the “sufficiently large” requirement

of Corollary 16. By Corollary 16, there is a distribution D over intersections of at most k =
q101 halfspaces over S such that any membership query algorithm making at most q queries to an

unknown f ⇠ D outputs a hypothesis with expected error at least 1
2 � O(log q)p

m
. For a sufficiently

large setting of c1, this expected error is at least 1
2 � O(log q)p

c1 ln q � 0.49.
By the assumption that every intersection of k halfspaces has L1 1

2 -approximate degree at most

d � 1, if the agnostic learner of Theorem 5 of Kalai et al. (2008) is run on any intersection of

k halfspaces over the first m coordinates, then it uses s := poly(md/✏) labeled examples from

N (0, In), runs in poly(s) time, and with probability at least (say) 0.9 outputs a hypothesis h with

error at most

✏+
1

2
min

p2Pn,d

kf � pk1  ✏+
1

4

(see Theorem 1.3 of Dachman-Soled et al. (2014)). Taking ✏ = 0.15 and observing that a labeled

example from N (0, In) can be simulated using a single membership query, we see that for the

concept class of intersections of k halfspaces over the first m coordinates, there is a membership

query algorithm A that makes at most mc2d many membership queries and with probability at

least 0.9 achieves error at most 0.4; hence the expected error of this MQ algorithm is at most

0.9 · 0.4 + 0.1 · 1 = 0.46.

Comparing the conclusions of the previous two paragraphs, we see that mc2d � q, and hence

(recalling that m = c1 ln
2 q and q = k1/101), we get that

d � ln q

c2 lnm
= Ω(log(k)/ log log k),

which proves the lemma.

5. Hardness of SQ learning to arbitrary excess error

In this section, we strengthen both of the SQ lower bounds from Sections 3 and 4 by combining

them with lower bounds on the L1 ✏-approximate degree of halfspaces due to Ganzburg (2002).

By doing so, we improve the lower bounds to nΩ(log(k)/ log log(k)+1/✏2) for agnostically learning

intersections of k halfspaces to excess error ✏ for any ✏ � n�c (cf. Lemma 6). By the arithmetic-

geometric mean inequality, this lower bound is always at least as strong as the n�Ω̃(log1/2(k)/✏) lower

bound of Diakonikolas et al. (2021b).

Let k,m be as described in Lemma 17. We construct an intersection of k + 1 halfspaces over

R
m+1 by taking the intersection of

• the k halfspaces identified in Lemma 17 over Rm; and

• an origin-centered halfspace orthogonal to the (m+ 1)-st coordinate basis vector.

12
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Appendix E formally bounds the L1 approximate degree of intersections of this construction of

half spaces and proves a strengthening of Theorem 14, which is our main agnostic SQ lower bound:

Theorem 18 (Formal version of Theorem 1) For any k = 2O(n0.245) and any ✏ � n�c for a

suitably small absolute constant c > 0, any SQ algorithm that agnostically learns intersections of

k halfspaces to excess error ✏ under Gaussian marginals requires either 2n
Ω(1)

queries or at least

one query of tolerance n�Ω(log(k)/ log log k+1/✏2).
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Appendix A. Discussion

A.1. Agnostic SQ lower bounds for learning functions of bounded Gaussian surface area and

convex m-subspace juntas

In this appendix, we note that our arguments imply agnostic SQ lower bounds for several classes of

{�1, 1}-valued functions over Rn that were studied by Vempala (2010a) and Klivans et al. (2008).

Our lower bounds essentially match the upper bounds for those classes by Klivans et al. (2008).

Functions with bounded Gaussian Surface Area. Recall the definition of Gaussian Surface Area:

Definition 19 Let f : Rn ! {�1, 1} be such that {x 2 R
n : f(x) = 1} is a Borel set. The

Gaussian surface area of f is defined to be

Γ(f) := lim inf
�!0

Prx⇠N (0,In)

⇥
f(x) = �1 and 9y 2 f�1(1) s.t. kx� yk2  �

⇤

�
.

Let Cs denote the class of all Borel sets in R
n with Gaussian surface area at most s. The main

result of Klivans et al. (2008, Theorem 25) is that Cs is agnostically learnable to accuracy OPT+ ✏

by an SQ algorithm that makes nO(s2/✏4) queries, each of tolerance n�O(s2/✏4). Their agnostic

learning algorithm for intersections of k halfspaces, mentioned earlier, is obtained from this result

by combining it with the fact, due to Nazarov (2003), that any intersection of k halfspaces has

Gaussian surface area at most O(
p
log k).

Let s = O(n0.1225), let m = n0.49 and let k = 2s
2
= 2O(

p
m). By Lemma 17 there is

an intersection of k halfspaces over R
m that has L1 1

2 -approximate degree Ω(s2/ log s), and by

Nazarov’s upper bound on Gaussian surface area, this function has Gaussian surface area at most

O(s). Combining this with Lemma 6, we immediately obtain that for any s  O(n0.1225), any

SQ agnostic learning algorithm that achieves constant excess error under Gaussian marginals for

the class Cs either requires queries with tolerance at most n�Ω(s2/ log(s)) or makes at least 2n
Ω(1)

queries. Combining this with the arguments of Section 5, we get the following result for Cs:

Theorem 20 For sufficiently large n, any s = O(n0.1225), and any ✏ � n�c for a suitably small

absolute constant c > 0, any SQ algorithm that agnostically learns the class Cs to excess error ✏

requires either 2n
Ω(1)

queries or at least one query of tolerance n�Ω(s2/ log(s)+1/✏2).

Convex subspace juntas. Vempala (2010a) gave a learning algorithm (in the realizable, i.e., non-

agnostic, setting) for a class of functions that we refer to as convex m-subspace juntas. A function

f : R
n ! {�1, 1} is a convex m-subspace junta if f is the indicator function of a convex set

K with a normal subspace of dimension m; equivalently, f is an intersection of halfspaces all of

whose normal vectors lie in some subspace of Rn of dimension at most m (note that the number of

halfspaces in such an intersection may be arbitrarily large or even infinite).

Vempala’s algorithm learns to accuracy ✏ and runs in time poly(n, 2m/✏,mÕ(
p
m/✏4)) in the

realizable (OPT = 0) setting of learning under Gaussian marginals. As alluded to in Section 1,

this algorithm uses principal component analysis to do a preprocessing step and then runs the

algorithm of Klivans et al. (2008). The analysis crucially relies on a Brascamp-Lieb type inequality

(Lemma 4.7 of Vempala, 2010a) which, roughly speaking, makes it possible to identify the “relevant

directions”); however, this breaks down in the non-realizable (agnostic) setting. The best known

agnostic learning result for the class of convex m-subspace juntas under Gaussian marginals is

17
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the SQ algorithm of Klivans et al. (2008), which makes nO(
p
m/✏4) statistical queries, each of

tolerance at least n�O(
p
m/✏4). This performance bound for the algorithm follows immediately

from Theorem 25 of Klivans et al. (2008) and the upper bound, due to Ball (1993), that any convex

set in R
m has Gaussian surface area at most O(m1/4).

Let m  n0.49. By Lemma 17 there is a convex m-subspace junta (an intersection of 2O(
p
m)

many halfspaces, all of whose normal vectors lie in an m-dimensional subspace of Rn) that has

L1 1
2 -approximate degree Ω(

p
m/ logm). Combining this with Lemma 6 and the arguments of

Section 5, we obtain the following lower bound:

Theorem 21 For sufficiently large n, any m  n0.49, and ✏ � n�c for a suitably small absolute

constant c > 0, any SQ algorithm that agnostically learns the class of convex m-subspace juntas to

excess error ✏ requires either 2n
Ω(1)

queries or at least one query of tolerance n�Ω(
p
m/ logm+1/✏2).

A.2. On lower bounds for L1 polynomial approximation

One of the contributions of Diakonikolas et al. (2021b) is that it introduced new analytic techniques

for obtaining lower bounds on the L1 approximate degree of functions f : R
n ! {�1, 1}. In

particular, Diakonikolas et al. (2021b) established a new structural result that translates a lower

bound on the Gaussian Noise Sensitivity of any function f : Rn ! {�1, 1} to a lower bound on

the L1 approximate degree of f .

Definition 22 (O’Donnell, 2014, Definition 11.9) Given 0  ⇢  1 and f : Rn ! {�1, 1}, the

Gaussian Noise Sensitivity of f at correlation 1� ⇢, written GNS⇢(f), is

GNS⇢(f) := Pr
(x,g)⇠N (0,In)⌦2

h
f(x) 6= f((1� ⇢)x+

p
2⇢� ⇢2g)

i
.

Equivalently, GNS⇢(f) is the probability that f(x) 6= f(y) where x,y are standard n-dimensional

Gaussians with correlation 1� ⇢.

Theorem 23 (Diakonikolas et al., 2021b, Theorem 1.5) Let f : Rn ! {�1, 1} and let p : Rn !
R be any polynomial of degree at most d. Then

1. kf � pk1 � Ω(1/ log d) ·GNS(ln(d)/d)2(f).

2. For any ✏ > 0, we have kf � pk1 � GNS✏(f)/4�O(d
p
✏).

In contrast with L2 polynomial approximation (for which the degree required for ✏-

approximation can be “read off” of the Hermite expansion), polynomial approximation in L1

is much less well understood. Thus it is interesting and useful to have general tools for L1

approximate degree bounds such as Theorem 23, and conversely, it is of interest to understand the

limitations of such tools.

Diakonikolas et al. (2021b) use Theorem 23 to prove an L1 approximate degree lower bound

for intersections of k halfspaces. They first show that for a particular6 intersection of k halfspaces

f 0 over Rk, for each ⌧ < Θ(1/ log k) it holds that GNS⌧ (f
0) = Θ(

p
⌧ log k). Combining this

with item (1) of Theorem 23 gives that any polynomial p for which kf � pk1  ✏ must have

6. This function f 0 is very similar to the Cubek function; instead of upper and lower bounding each of the k coordinates

x1, . . . , xk, it only upper bounds each coordinate.
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d � Ω( log
1/2 k
✏

). Our resilience results for the Cubek function give a stronger L1 approximate

degree lower bound, and combining this with the GNS bound from Diakonikolas et al. (2021b)

gives an example of a function for which the bound of part (1) of Theorem 23 is not tight.

In more detail, recall that our Lemma 8 states that the Cubek function is k�0.49-approximately

Θ(log(k)/ log log k)-resilient. An entirely similar analysis to the proof of Lemma 8 shows that the

function f 0 of Diakonikolas et al. (2021b) is also k�0.49-approximately d := Θ(log(k)/ log log k)-
resilient, i.e., there is a function g : Rk ! [�1, 1] which has zero correlation with every polynomial

of degree at most d � 1 and which has kf 0 � gk1  k�0.49. By Lemma 5, the existence of this

resilient g implies that every polynomial p of degree at most d� 1 must have

kf 0 � pk1 � 1� 2

k0.49
,

which is close to one for large k.

Now consider what can be obtained from the GNS bound of Diakonikolas et al. (2021b). Since

GNS((ln(d�1))/(d�1))2(f
0) =

 

Θ((log log k)4)

(ln k)2
· ln k =

Θ((log log k)2)p
ln k

,

part (1) of Theorem 23 only gives that every polynomial p of degree at most d� 1 has

kf 0 � pk1 � Ω

Å
log log(k)p

log k

ã
.

This bound is close to zero for large k.

Appendix B. Hermite polynomials and Gaussian hypercontractivity

Let {hj}
1
j=0 be the (unnormalized) probabilists’ Hermite polynomials

hj(x) := (�1)jex
2/2 dj

dxj
e�x2/2, j = 0, 1, 2, . . . . (3)

These polynomials form an orthogonal basis for the Hilbert space L2(N (0, 1)); more precisely, we

have hhj , hj0i = j! · �j,j0 . For any f 2 L2(N (0, 1)), the Hermite coefficients ef(j) of f are given by

ef(j) := 1p
j!

hf, hji .

Let {HJ}J2Nk be the multivariate Hermite polynomials, which correspond to a tensor product

of the univariate Hermite polynomials above. That is,

HJ(x) :=
kY

i=1

hJi(xi).

These polynomials form an orthogonal basis for L2(N (0, Ik)), and we have that hHJ , HJ 0i =

J !�J,J 0 , where J ! = J1! · · · Jk!. For any F 2 L2(N (0, Ik)), the Hermite coefficients ‹F (J) of F are

given by

‹F (J) :=
1p
J !

hF,HJi .
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Additional properties of the Hermite polynomials can be found in Chapter 22 of Abramowitz and

Stegun (1972) and Section 11.2 of O’Donnell (2014).

Our results—particularly those in Section 3.1—rely on bounds powered by Gaussian

hypercontractivity. We recall the basic Gaussian hypercontractive inequality for low-degree

polynomials (Bonami, 1970; Nelson, 1973; Gross, 1975):

Fact 24 For a polynomial p 2 Pd and any q � 2, kpkq  (q � 1)d/2 kpk2.

In particular, we will use the following bound on the fourth moment of Hermite polynomials,

which follows immediately from Fact 24 and standard bounds on the norm of Hermite polynomials:

Fact 25 kHJk4  3d/2 kHJk2  3d/2
p
J !.

We will also use the following concentration bound, which follows from Gaussian

hypercontractivity using Markov’s inequality:

Fact 26 (O’Donnell, 2014, Theorem 9.23) For any polynomial p : Rk ! R of degree d and any

t � ed,

Pr
x⇠N (0,In)

[|p(x)| � t kpk2]  exp

Å
� d

2e
t2/d
ã
.

Proof. Consider any q � 2.

Pr [|p(x)| � t kpk2] = Pr [|p(x)|q � tq kpkq2] 
kpkqq
tq kpkq2


Ç
(q � 1)d/2

t

åq


Ç
qd/2

t

åq

.

Let q = t2/d

e , which has q � 2 because t � ed. Then,

Pr [|p(x)| � t kpk2] 
Å

1

ed/2

ãt2/d/e
= exp

Å
� d

2e
t2/d
ã
.

Appendix C. Supporting lemmas and proofs for Section 3

C.1. Small low-degree Hermite weight of Cubek (Proof of Lemma 9)

We recall Lemma 9.

Lemma 9 For any sufficiently large k, and any d � 0,7

X

|J |d

‡Cubek(J)2  20d(3 ln k)d

k
.

We note that by the analysis of Cubek by De et al. (2021, Example 14), the upper bound of

Lemma 9 in the case d = 2 is tight up to constant factors.

Our proof of Lemma 9 uses the product structure of N (0, Ik) and the fact that Cubek is

essentially a product of univariate interval functions over disjoint variables. Thanks to these

properties, it suffices to analyze the Hermite coefficients of interval functions of the right width.

7. See Appendix B for notation for Hermite coefficients.
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For any ✓ � 0, let f✓ : R ! {0, 1} be the indicator function for the interval [�✓, ✓], i.e.,

f✓(x) := {|x|  ✓} .

Then, Cubek can be written as

Cubek(x) = 2

kY

i=1

f✓k(xi)� 1.

Since ✓k is chosen to ensure that Ex⇠N (0,Ik) [Cubek(x)] = 0, the Hermite coefficients of Cubek are

given by

‡Cubek(J) =
®
0 if J = 0,

2
Qk

i=1
›f✓k(Ji) otherwise.

Proof of Lemma 9. We may assume that d  k/(2e2 ln k), since otherwise the claimed bound on
P

|J |d
„�Cubek(J)

2
is more than one.

By Lemma 27 (stated and proved below),›f✓k(Ji) = 0 for any odd Ji. Hence, the only Hermite

coefficients that may be non-zero are those corresponding to multi-indices J 2 N
k with (i) only

even components, and (ii) 1  |J |  d. Let J denote this set of multi-indices. For any such

J 2 J ,

‡Cubek(J)2 = 4

kY

i=1

›f✓k(Ji)2 = 4
Y

i:Ji=0

›f✓k(Ji)2
Y

i:Ji�2

›f✓k(Ji)2

 4
Y

i:Ji�2

ñÅ
1 +

…
e

Ji
✓k

ã2(Ji�1)

e�✓2k

ô

 4

Å
1 +

…
e

2
✓k

ã2(|J |�#J)

e�✓2k#J ,

where the first inequality uses the fact that |›f✓k(0)|  1 (Lemma 27) and the bound from Lemma 28

(stated and proved below). To bound the sum
P

|J |d
‡Cubek(J)2 = P

J2J
‡Cubek(J)2, we partition

the terms by the value of #J . Note that #J must satisfy 1  #J  bd/2c, since J is not all zeros,

and every non-zero component of J is at least two. Therefore,

X

|J |d

‡Cubek(J)2 =
bd/2cX

t=1

X

J2J :#J=t

‡Cubek(J)2

 4

Å
1 +

…
e

2
✓k

ã2(d�1) bd/2cX

t=1

|{J 2 J : #J = t}| · e�✓2kt. (4)

21



HSU SANFORD SERVEDIO VLATAKIS-GKARAGKOUNIS

The definition of J and standard binomial coefficient inequalities provide a bound on the number

of J 2 J with #J = t for t � 1:

|{J 2 J : #J = t}| =

Ç
k

t

å
��{S 2 N

t : |S|  bd/2c , Si > 0 for all i 2 [t]}
��

=

Ç
k

t

å
��{S 2 N

t : |S|  bd/2c � t}
��

=

Ç
k

t

åÇ
bd/2c

t

å

Å
e2kd

2t2

ãt
.

Therefore, we can bound the final expression from (4) by

4

Å
1 +

…
e

2
✓k

ã2(d�1) bd/2cX

t=1

Å
e2kd

2t2
e�✓2k

ãt
 4
Ä
1 +

p
e ln k

ä2(d�1)
bd/2cX

t=1

Å
e2d ln k

t2k

ãt

 8
Ä
1 +

p
e ln k

ä2(d�1)
·
e2d ln k

k
 20d(3 ln k)d

k
,

where the first inequality uses the bounds on ✓k from Lemma 29, and the second inequality uses the

assumption d  k/(2e2 ln k).

The preceding proof relies on three supporting lemmas: Lemma 27 and Lemma 28 compute and

bound the Hermite coefficients of f✓; Lemma 29 gives upper- and lower-bounds on ✓k.

Let �(x) = 1p
2⇡
e�x2/2 denote the probability density function of the one-dimensional Gaussian

distribution N (0, 1).

Lemma 27 For all j � 0, the Hermite coefficients of f✓ are as follows:

‹f✓(j) =
8
><
>:

R ✓

�✓
�(x) dx if j = 0,

0 if j is odd,

� 2p
j!
hj�1(✓)�(✓) if j � 2 is even.

Proof. Recalling the definition of univariate Hermite polynomials from Appendix B, the degree-0
coefficient ‹f✓(0) is

‹f✓(0) =
Z 1

�1
f✓(x)�(x) dx =

Z ✓

�✓

�(x) dx.

The degree-j coefficient, for j � 1, is

‹f✓(j) = 1p
j!

Z 1

�1
f✓(x)hj(x)�(x) dx =

1p
j!

Z ✓

�✓

hj(x)�(x) dx

=
1p
j!

Z ✓

�✓

� d

dx
[hj�1�(x)]�(x) dx =

1p
j!

n
�hj�1(x)�(x)

o���
✓

�✓

=
1p
j!

(hj�1(�✓)� hj�1(✓))�(✓).

22



NEAR-OPTIMAL SQ LOWER BOUNDS FOR AGNOSTICALLY LEARNING INTERSECTIONS OF HALFSPACES

The third equality follows from the identity hj(x)�(x) = � d
dx [hj�1�(x)] for j � 1, which follows

from the definition in (3). The last equality uses that �(x) is an even function.

Furthermore, if j is odd, then hj�1(�✓) = hj�1(✓), and hence ‹f✓(j) = 0. If j is even and

j � 2, then hj�1(�✓) = �hj�1(✓), and hence ‹f✓(j) = � 2p
j!
hj�1(✓)�(✓).

We bound the even-degree Hermite coefficients of the interval function by bounding each

univariate Hermite polynomial, which provides the following coefficient bound.

Lemma 28 For any even j � 2 and any ✓ � 0,

‹f✓(j)2 = 4

j!
hj�1(✓)

2�(✓)2 
Å
1 + ✓

…
e

j

ã2(j�1)

e�✓2 .

Proof. The equality is by Lemma 27. For the inequality, we define the following values:

Aj,✓ :=
1p
j!

|hj�1(✓)| , Bj,✓ :=
4

 

2e2

⇡j3

Å
1 + ✓

…
e

j

ãj�1

.

We show that Aj,✓  Bj,✓. Since ‹f✓(j)2 = (2/⇡)A2
j,✓ · e

�✓2 , this inequality implies that ‹f✓(j)2
is at most (2/⇡)B2

j,✓ · e
�✓2 , which is easily verified to be at most the claimed upper bound in the

statement of Lemma 28.

We expand Aj,✓ using an explicit formula for the Hermite polynomial (Abramowitz and Stegun,

1972, Equation 22.3.11), followed by a change of variable:

Aj,✓ =
1p
j!

|hj�1(✓)|

=
(j � 1)!p

j!

������

j/2�1X

m=0

(�1)m✓j�1�2m

2mm!(j � 1� 2m)!

������
(explicit formula for hj�1(✓))

=
(j � 1)!p

j!

������

j�1X

odd `=1

(�1)
j�1�`

2 ✓`

2
j�1�`

2

Ä
j�1�`

2

ä
!`!

������
. (change of variable)

Thus, by the triangle inequality,

Aj,✓ 
j�1X

odd `=1

(j � 1)!p
j!

·
✓`

2
j�1�`

2

Ä
j�1�`

2

ä
!`!

=

j�1X

odd `=1

p
2

2j/2

Ç
j � 1

`

å
(j � 1� `)!
p
j!
Ä
j�1�`

2

ä
!
(
p
2✓)`. (5)

We employ Stirling’s approximation
p
2⇡n(n/e)ne1/(12n+1)  n! 

p
2⇡n(n/e)ne1/(12n) to

bound each term in the sum from (5). For any odd ` 2 [1, j � 3]:

p
2

2j/2

Ç
j � 1

`

å
(j � 1� `)!
p
j!
Ä
j�1�`

2

ä
!
(
p
2✓)` 

p
2

2j/2

Ç
j � 1

`

å
4

 

2

⇡j

Å…
e

j

ãj Å2(j � 1� `)

e

ã j�1�`

2

(
p
2✓)`

=

Ç
j � 1

`

å
4

 

2e2

⇡j3

Å
✓

…
e

j

ã` Å
1� 1 + `

j

ã j�1�`

2

 4

 

2e2

⇡j3

Ç
j � 1

`

åÅ
✓

…
e

j

ã`
.
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We handle the final term, ` = j � 1, separately:

p
2

2j/2

Ç
j � 1

`

å
(j � 1� `)!
p
j!
Ä
j�1�`

2

ä
!
(
p
2✓)` =

p
2

2j/2
1p
j!
(
p
2✓)j�1 

p
2

2j/2
1

(2⇡j)1/4

Å…
e

j

ãj
(
p
2✓)j�1

=
1

(2⇡j)1/4

…
e

j

Å
✓

…
e

j

ãj�1

 4

 

2e2

⇡j3

Ç
j � 1

`

åÅ
✓

…
e

j

ã`
.

Therefore, we upper-bound the summation from (5) term-by-term, and then further simplify bound

by including additional non-negative terms in the summation:

Aj,✓  4

 

2e2

⇡j3

j�1X

odd `=1

Ç
j � 1

`

åÅ
✓

…
e

j

ã`

 4

 

2e2

⇡j3

j�1X

`=0

Ç
j � 1

`

åÅ
✓

…
e

j

ã`

= 4

 

2e2

⇡j3

Å
1 + ✓

…
e

j

ãj�1

= Bj,✓.

Lemma 29 For sufficiently large k,
p
2 ln k � ln(2 ln k)  ✓k 

p
2 ln k.

Proof. Recall that ✓k is defined so that Ex⇠N (0,Ik) [Cubek(x)] = 0. In other words, it is the median

value of y := maxi2[k] |xi|, where (x1, . . . ,xk) ⇠ N (0, 1)⌦k. Therefore, it suffices to show that

for lk :=
p

2 ln k � ln(2 ln k) and uk :=
p
2 ln k, we have Pr[y < lk]  1/2  Pr[y < uk]. Note

that for any t � 0, Pr[y < t] = (1 � Prx1⇠N (0,1)[|x1| � t])k. Using the Mills ratio bound (see,

e.g., Feller, 1968, Lemma 2 on page 175) and 1� x  e�x for all x 2 R,

Pr[y < lk] 
Ç
1�
Ç

1

lk
� 1

l3k

å…
2

⇡
e�l2k/2

åk

=

Ç
1� 1p

2 ln k � ln(2 ln k)
(1� o(1))

…
2

⇡
·

p
2 ln k

k

åk

 exp

Ç
� (1� o(1))

…
2

⇡

å
 1

2

by the choice of lk and assumption that k is sufficiently large. Similarly (but now using 1 � x �
e�x/(1�x) for x < 1),

Pr[y < uk] �
Ç
1� 1

uk

…
2

⇡
e�u2

k/2

åk

=

Å
1� 1p

⇡ ln k
·
1

k

ãk

� exp

Å
� (1 + o(1))

1p
⇡ ln k

ã
� 1

2
.
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C.2. Properties of TruncHighd,⌧ for sufficiently large ⌧ (Proof of Proposition 13)

We recall Proposition 13.

Proposition 13 For any k � 1 and d � 2, fix some a > 1 and ⇢ � kLowd[f ]k2 and let

⌧ := ⇢

Å
4e ln(3k) +

8e

d
ln

Å
a kfk2

⇢

ããd/2
. (1)

Then, (i) kLowd[TruncHighd,⌧ [f ]]k2  ⇢
a , and (ii) kTruncHighd,⌧ [f ]� fk1  2⇢.

Proof of Proposition 13, part (i). We first bound the low-degree Hermite coefficients of

TruncHighd,⌧ (f). Fix some J with |J |  d. Then
���� Â�TruncHighd,⌧ [f ](J)

���� 
���‚�Highd[f ](J)

���+ 1p
J !

����E [Highd[f ](x) {|Lowd[f ](x)| > ⌧}HJ(x)]]

����

 1p
J !

kHighd[f ]k2
q

E [ {|Lowd[f ](x) > ⌧ |}HJ(x)2]

 1p
J !

kfk2 Pr [Lowd[f ](x) > ⌧ ]1/4 kHJk4

 1p
J !

kfk2 exp
Ç
� d

8e

Å
⌧

kLowd[f ]k2

ã2/då
3d/2

p
J !

 kfk2 exp
Ç
� d

8e

Å
⌧

⇢

ã2/då
3d/2.

The first inequality follows from the linearity of the Hermite expansion and a triangle inequality.

The second follows by Cauchy-Schwarz and the definition of Highd(f). The third follows from

kHighd[f ]k2  kfk2 and another application of Cauchy-Schwarz. The fourth uses Fact 25 and

Fact 26 (note that (1) gives ⌧/kLowd[f ]k2 � ed, so Fact 26 can indeed be applied).

Now we consider the full Hermite expansion of Lowd(TruncHighd,⌧ (f)) and plug in ⌧ to

retrieve the claim:

��Lowd[TruncHighd,⌧ [f ]]
��2
2
=

X

|J |d

Â�TruncHighd,⌧ [f ](J)
2  kd kfk22 exp

Ç
� d

4e

Å
⌧

⇢

ã2/då
3d

 (3k)d kfk22 exp
Ç
�d ln(3k)� ln

Ç
a2 kfk22

⇢2

åå
=

⇢2

a2
.

In the first inequality, we used the fact that the number of k-dimensional multi-indices J with

|J |  d is at most kd for d � 2.

Proof of Proposition 13, part (ii). We have
��TruncHighd,⌧ [f ]� f

��
1
 kf �Highd[f ]k1 + kHighd[f ] {|Lowd[f ]| > ⌧}k1
 kLowd[f ]k1 + kHighd[f ]k2

q
Pr [|Lowd[f ]| > ⌧ ]

 kLowd[f ]k2 + kfk2
q
Pr [|Lowd[f ]| > ⌧ ]

 kLowd[f ]k2 + kfk2 Pr [|Lowd[f ]| > ⌧ ]1/4 ,
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where the first inequality is by the triangle inequality and the definition of TruncHighd,⌧ , the second

is Cauchy-Schwarz, and the third is monotonicity of norms and kHighd[f ]k2  kfk2. We once

again use Fact 26 and ⌧ to obtain

��TruncHighd,⌧ [f ]� f
��
1
 ⇢+ kfk2 exp

Å
� d

8e

Å
4e log(3k) +

8e

d
log

Å
a kfk2

⇢

ããã

 ⇢+
⇢

a
 2⇢.

C.3. Proof of exponential decay of ⌧i for Lemma 10

Fact 30 For any fixed i � 1 and

⌧i :=
kLowd[f0]k2

4(i�1)d

Ç
4e ln(3k) +

8e

d
ln

Ç
4id kfi�1k2
kLowd[f0]k2

ååd/2

from (2), if kfi�1k1  4
3 , then ⌧i  ↵

3·2i
for ↵ = kLowd[f0]k0.9962 (72 ln k)d/2. In addition, ⌧1 �

kLowd[f0]k2.

Proof. We first consider the case where i = 1. A sufficiently large choice of k yields the following:

⌧1 = kLowd[f0]k2
Å
4e ln 3k + 8e ln 4 +

8e

d
ln

Å
1

kLowd[f0]k2

ããd/2
[kf0k2 = 1]

 kLowd[f0]k2

 
11 ln k +

1000e

kLowd[f0]k1/125d2

!d/2

[4e ln 3k + 8e ln 4  11 ln k; lnx  x]

 kLowd[f0]k2

 
12

kLowd[f0]k1/125d2

ln k

!d/2

[8x � 1, 11 ln k + 1000ex  12x ln k]

= kLowd[f0]k0.9962 (12 ln k)d/2  ↵

6
.

Observe that ⌧1 � kLowd[f0]k2 for sufficiently large k, because the base of the exponent will always

be at least 1.

For fixed i � 2, we prove ⌧i  ↵
e·2i

by bounding ⌧i
⌧1

. Using the assumption that kfi�1k2 
kfi�1k1  4

3 ,

⌧i

⌧1
=

1

4(i�1)d

Ç
4e ln(3k) + 8e

d ln(4id kfi�1k2)� ln kLowd[f0]k2
4e ln(3k) + 8e

d ln(4d kf0k2)� ln kLowd[f0]k2

åd/2

 1

4(i�1)d

Ç
ln 4(i+1)d

ln 4d

åd/2


Å
i+ 1

16i�1

ãd/2
 1

4id/2
 1

2i�1
.

C.4. Proof of convergence of fi’s in Lemma 10

The proof of Lemma 10 constructs a sequence of functions f0, f1, · · · 2 L2(N (0, Ik)) with the

following properties for any a, b, and c having b � 4 and c  2:

1. For all i, kfi+1 � fik1  a
bi

.
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2. For all i, kfik1  c.

3. limi!1 kLowd(fi)k2 = 0.

We now prove that such a sequence has a limit in L2(N (0, Ik)) with the desired properties, as given

in the following proposition.

Proposition 31 For the sequence described above, there exists some f⇤ 2 L2(N (0, Ik)) such that

Lowd(f
⇤) = 0, kf⇤k1  c, and kf⇤ � fik1  2a

bi
for all i.

Towards the proof of Proposition 31, we first show that properties (1) and (2) imply an additional

property about L2 distances between iterates.

Lemma 32 For all i, kfi+1 � fik2 
»

2ac
bi

.

Proof. By the triangle inequality we have kfi+1 � fik1  2c, and from this the bound is immediate

from Holder’s inequality:

kfi+1 � fik2 
»

kfi+1 � fik1 kfi+1 � fik1 
…
2c ·

a

bi
.

The following is immediate from Lemma 32 and the fact that L2(N (0, Ik)) is complete (because

it is a Hilbert space).

Corollary 33 The sequence f0, f1, . . . is a Cauchy sequence in L2(N (0, Ik)) and converges to

some f⇤ 2 L2(N (0, Ik)).

Before completing the proof of Proposition 31, we recall the following topological fact

concerning functional spaces L2 and L1.

Lemma 34 For any probability measure µ on R
k and any ↵ > 0,

I↵ :=
�
f 2 L2(µ) : kfk1  ↵

 
is a closed set in L2(µ).

Proof. Consider any functional sequence (fn)n2N in I↵ such that fn ! f in L2(µ) as n ! 1. It

is clear that the limit f belongs to L2(µ) since L2(µ) is, by itself, closed. Thus, it suffices to prove

that Prx⇠µ [|f(x)|  ↵] = 1. Fix any " > 0 and n 2 N.

Pr
x⇠µ

[|f(x)| > ↵+ "] = Pr [|f(x)| > ↵+ " ^ |fn(x)|  ↵]

 Pr [|f(x)� fn(x)| > "]

 1

"2

Z

Rk

|f(x)� fn(x)|
2dµ(x) =

kf � fnk22
"2

.

The final step follows from Chebyshev’s inequality. By assumption, we have kf � fnk2 ! 0 as

n ! 1. For every " > 0, we have Pr [|f(x)| > ↵+ "] = 0. Hence, kfk1  ↵ and f 2 I↵.

Lemma 35 f⇤ satisfies the properties given in Proposition 31.
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Proof. Let Bi = {g 2 L2(N (0, Ik)) : kg � fik2  2
»

2ac
bi
} be the closed set containing all

functions in a small L2-ball around the i-th iterate. Note that Bi+1 ⇢ Bi for all i � 0 and thatT
i�0Bi = {f⇤}. We prove each property of Proposition 31.

1. Suppose that kLowd(f
⇤)k2 � ✏ for any fixed ✏ > 0. For any sufficiently large i,

kf⇤ � fik2 � kLowd(f
⇤)� Lowd(fi)k2 � kLowd(f

⇤)k2 � kLowd(fi)k2 � ✏� ✏

2
=

✏

2
.

This would mean that exists some i0 such that kf⇤ � fi0k2 � 2
»

2ac
bi0

, but then f⇤ would lie

outside Bi0 , which is a contradiction.

2. Let I = {g 2 L2(N (0, Ik)) : kgk1  c}. By Lemma 34 (with µ = N (0, Ik)), I is closed in

L2(N (0, Ik)) and f0, f1, . . . is a sequence in I with limit f⇤ 2 L2(N (0, Ik)), we must have

that f⇤ 2 I as well. Thus, kf⇤k1  c.

3. Fix any i � 0. Choose some i0 > i such that bi
0 � 18b2ic

a . Because f⇤ 2 Bi0 , it follows that

kfi0 � f⇤k1  kfi0 � f⇤k2  2
»

2ac
bi

0  2a
3bi

. Thus,

kf⇤ � fik1  kfi0 � fik1 + kf⇤ � fi0k1 
i0�1X

◆=i

a

b◆
+

2a

3bi
 a

bi

1X

◆=0

1

4◆
+

2a

3bi
=

2a

bi
.

Appendix D. Supporting proof for Section 4

D.1. Existence of a hard-to-weak-learn intersection of halfspaces (Proof of Corollary 16)

Corollary 16 For sufficiently large n, for all q � m, there is a distribution D over intersections

of q101 halfspaces such that for a target function f ⇠ D, any MQ algorithm A making at most q

queries to f has expected error at least 1
2 � O(log q)p

m
(where the expectation is over f ⇠ D and any

internal randomness of A, and the the accuracy is with respect to N (0, In)).

Proof. In the proof of Lemma 15, Dactual is a distribution which is supported on intersections of

finitely many halfspaces. In more detail, for Λ = q100 ln 2 and some M � Λ (the exact value is not

important for our purposes), a draw of f ⇠ Dactual is defined in the proof of Theorem 2 of De and

Servedio (2021) to be an intersection of Hf  M halfspaces from a fixed collection {h1, . . . , hM},

where each halfspace hi is independently included in the intersection with probability Λ

M . Note that

the expected number of halfspaces included in f is E [Hf ] = Λ.

We define D to be the conditional distribution of Dactual conditioned on f ⇠ Dactual being an

intersection of at most q101 halfspaces. By Markov’s inequality, we have that Hf  q101 ln 2  q101

with probability at least 1� 1
q . We bound the expected accuracy of the classifer h returned by A for

random f ⇠ D by comparing it to the expected error of a random f ⇠ Dactual:

Pr
f⇠D,A,x

[h(x) 6= f(x)] = Pr
f⇠Dactual,A,x

⇥
h(x) 6= f(x) | Hf  q101

⇤

� Pr
f⇠Dactual,A,x

⇥
h(x) 6= f(x), Hf  q101

⇤

� Pr
f⇠Dactual,A,x

[h(x) 6= f(x)]� Pr
f⇠Dactual,A,x

⇥
Hf > q101

⇤

� 1

2
� O(log q)p

m
� 1

q
� 1

2
� O(log q)p

m
,
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where in the last line we used that 1
q = O(log q)p

m
(with room to spare) since q � m.

Appendix E. Supporting lemmas and proofs for Section 5

In what follows we describe our approach to strengthen the SQ lower bounds from Section 4; the

lower bounds from Section 3 can be similarly strengthened in an entirely analogous fashion. Recall

the intersection k + 1 halfspaces over Rm+1 obtained by taking the intersection of

• the k halfspaces identified in Lemma 17 over Rm; and

• an origin-centered halfspace orthogonal to the (m+ 1)-st coordinate basis vector.

This intersection of k+1 halfspaces f : Rm+1 ! {�1, 1} can be written as f(x1, . . . , xm+1) =
f1(x1, . . . , xm) ^ f2(xm+1), where f1 : R

m ! {�1, 1} is the intersection of k halfspaces given in

Lemma 17, f2 : R ! {�1, 1} is the sign(·) function which outputs 1 on an input z iff z > 0, and

the “^” of two values from {�1, 1} is 1 iff both of them are 1.

The following lemma gives a lower bound on the approximate degree of f in terms of the

approximate degrees of f1 and f2.

Lemma 36 Let z1 and z2 be independent random variables in R
n1 and R

n2 , respectively. Fix any

✏ > 0 and gi : R
ni ! {�1, 1} for i 2 {1, 2} with c := min{Prz1 [g1(z1) = 1],Prz2 [g2(z2) =

1]} > 0. Then the function g : Rn1+n2 ! {�1, 1} defined by g(z1, z2) := g1(z1) ^ g2(z2) has

L1 (c✏)-approximate degree at least max{d1, d2} (with respect to the joint distribution of (z1, z2)),
where di is the L1 ✏-approximate degree of gi (with respect to the marginal distribution of zi).

Proof. Assume without loss of generality that d1 � d2. For a {�1, 1}-valued function h, let h0 =
h+1
2 (so h0 is the {0, 1}-valued version of h). We observe that c = min{Ez1 [g

0
1(z1)],Ez2 [g

0
2(z2)]},

and that di is the L1 (✏/2)-approximate degree of g0i.
Let d be the L1 (c✏/2)-approximate degree of g0, and let p0 be a degree-d polynomial over

R
n1+n2 satisfying Ez1,z2 [|g

0(z1, z2)� p0(z1, z2)|]  c✏/2. For this polynomial p,

min
z22Rn2 :g02(z2)=1

Ez1 [
��g0(z1, z2)� p0(z1, z2)

��]  Ez1,z2

ï��g0(z1, z2)� p0(z1, z2)
�� · g02(z2)

Ez2 [g
0
2(z2)]

ò

 Ez1,z2 [|g
0(z1, z2)� p0(z1, z2)|]

c
 ✏

2
.

So there exists z2 2 R
n2 such that

Ez1 [
��g0(z1, z2)� p0(z1, z2)

��] = Ez1 [
��g01(z1)� p0(z1, z2)

��]  ✏

2
.

Letting p = 2p0 � 1, since g = 2g0 � 1, there exists z2 2 R
n2 such that

Ez1 [|g(z1, z2)� p(z1, z2)|] = 2Ez1 [
��g01(z1)� p0(z1, z2)

��]  ✏.

Since p(·, z2) is a polynomial over Rn1 of degree at most d, it follows that the L1 (✏/2)-approximate

degree of g01 is at most d. Hence d � d1 = max{d1, d2}. Since the L1 (c✏/2)-approximate degree

of g0 (which is d) is the same as the L1 (c✏)-approximate degree of g, the lemma is proved.

By Lemma 17, the L1 1
2 -approximate degree of f1 is at least Ω(log(k)/ log log k), and hence so

is its L1 (4✏)-approximate degree (for ✏  1/8). A lower bound on the L1 (4✏)-approximate degree

of f2 is given by the following result of Ganzburg (2002).
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Lemma 37 For any ✏ > 0, the L1 ✏-approximate degree of the sign(·) function is Ω(1/✏2).

Lemma 37 (presented as Corollary B.1 of Diakonikolas et al. (2021b)) is a direct consequence

of Theorem 1 of Ganzburg (2002) and Theorem 4 of Vaaler (1985).

We are now almost ready to apply Lemma 36 to our intersection of k + 1 halfspaces obtained

via f1 (from Lemma 17) and f2 (the sign function). We just need to ensure that each of f1 and f2
takes value +1 with sufficient probability. First, observe that f1 satisfies Prx⇠N (0,Im)[f1(x) = 1] �
1/4, since otherwise the 1/2-approximate degree of f would be zero, as witnessed by the constant

�1 function. Moreover, Prx⇠N (0,1)[f2(x) = 1] = 1/2 by symmetry of N (0, 1). So, we have

established that both f1 and f2 take value +1 with probability at least 1/4, and that also they have

(4✏)-approximate degrees Ω(log(k)/ log log k) and Ω(1/✏2), respectively. Therefore, Lemma 36

implies a lower bound on the L1 ✏-approximate degree of f , as stated in the following lemma.

Lemma 38 For any k = 2O(n0.245) and any ✏ > 0, there is an intersection of k + 1 halfspaces

f : Rm+1 ! {�1, 1} with L1 ✏-approximate degree Ω( log k
log log k + 1

✏2
), where m = O(n0.49).

Lemma 38 and Lemma 6 together imply Theorem 18.

Theorem 18 (Formal version of Theorem 1) For any k = 2O(n0.245) and any ✏ � n�c for a

suitably small absolute constant c > 0, any SQ algorithm that agnostically learns intersections of

k halfspaces to excess error ✏ under Gaussian marginals requires either 2n
Ω(1)

queries or at least

one query of tolerance n�Ω(log(k)/ log log k+1/✏2).
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