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Abstract

We consider the well-studied problem of learning intersections of halfspaces under the
Gaussian distribution in the challenging agnostic learning model. Recent work of Diakonikolas
et al. (2021b) shows that any Statistical Query (SQ) algorithm for agnostically learning the class
of intersections of k£ halfspaces over R™ to constant excess error either must make queries of
tolerance at most n~ (VI8 k) or must make gn” queries. We strengthen this result by improving
the tolerance requirement to n~*(1°2%)_ This lower bound is essentially best possible since an
SQ algorithm of Klivans et al. (2008) agnostically learns this class to any constant excess error
using n°1°8%) queries of tolerance n~°(°8%)  We prove two variants of our lower bound, each
of which combines ingredients from Diakonikolas et al. (2021b) with (an extension of) a different
earlier approach for agnostic SQ lower bounds for the Boolean setting due to Dachman-Soled et al.
(2014). Our approach also yields lower bounds for agnostically SQ learning the class of “convex
subspace juntas” (studied by Vempala, 2010a) and the class of sets with bounded Gaussian surface
area; all of these lower bounds are nearly optimal since they essentially match known upper bounds
from Klivans et al. (2008).

Keywords: Statistical Query learning, agnostic learning, intersections of halfspaces
1. Introduction

Linear threshold functions, or halfspaces, are ubiquitous in machine learning. They arise in the
context of many statistical models for classification (Duda et al., 1973), and they are the focus
of many well-known machine learning methods, including Perceptron (Rosenblatt, 1962), Support
Vector Machines (Vapnik, 1982), and AdaBoost (Freund and Schapire, 1997). In this work, we
consider the problem of agnostic learning for a natural and well-studied generalization of this
function class: intersections of halfspaces.

Although many efficient algorithms for learning halfspaces have been developed to handle
a wide variety of settings (Blumer et al., 1989; Blum et al., 1998b; Kalai et al., 2008; Awasthi
et al., 2017; Diakonikolas et al., 2021a), known algorithms for intersections of halfspaces are
conspicuously limited in scope and applicability. Indeed, no efficient PAC learning algorithms
are known even for the case of intersections of two halfspaces. There, a learner faces a “credit
assignment” problem when considering negative examples, as either of the two halfspaces may
be responsible for an example being classified as negative, but the learner is not privy to this
information. This prevents a straightforward formulation of the learning problem as a linear
program, which had sufficed in the case of learning single halfspaces.

Because of the apparent difficulty of going beyond single halfspaces, much of the progress has
come from learning under “nice” data marginal distributions, such as the uniform distribution or the
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Gaussian distribution (Blum and Kannan, 1997; Vempala, 1997, 2010b; Klivans et al., 2004; Kalai
et al., 2008; Klivans et al., 2008; Vempala, 2010a; Kane, 2014). The fastest algorithm to date for
agnostically learning intersections of halfspaces under Gaussian marginals in R™ is L' polynomial
regression (Kalai et al., 2008), which was shown by Klivans et al. (2008) to successfully learn up
to any constant excess error in time n©(°8%) (Under the additional assumption of realizability,
Vempala (2010a) showed that when k = o(n), preprocessing with principal component analysis
improves this running time to poly(n, k) + k°U°2k) )  Since this upper bound has resisted
improvement for several years, attention has turned to trying to prove lower bounds, and such lower
bounds are the subject of this paper.

The Statistical Query (SQ) model of Kearns (1998) offers an attractive setting for proving
unconditional lower bounds against a broad class of learning algorithms. SQ learning algorithms can
access data only through imperfect estimates of the expected values of query functions with respect
to the data distribution. Nearly all known learning algorithms, including those of Kalai et al. (2008),
Klivans et al. (2008) and Vempala (2010a), can be implemented within the SQ model, so lower
bounds in the SQ model are evidence for the computational difficulty of a learning problem. Because
these algorithmic results for agnostic learning hold only under “nice” marginal distributions, it is of
interest to prove distribution-dependent SQ lower bounds under the same marginals.

The pioneering work of Dachman-Soled et al. (2014) provided a blueprint for proving such
distribution-dependent SQ lower bounds. They proved an equivalence between the approximation
resilience of functions in a concept class and the SQ agnostic learnability of that class, and used
this equivalence to obtain the first super-polynomial SQ lower bounds for agnostically learning the
important concept class of monotone juntas under the uniform distribution. To establish SQ lower
bounds for agnostic learning under Gaussian marginals, Diakonikolas et al. (2021b) extended the
approach of Dachman-Soled et al. (2014) using new duality arguments and embedding techniques.
In doing so, they obtained lower bounds for agnostically learning a number of Boolean concept
classes (as well as some real-valued concept classes). For intersections of k halfspaces, their
agnostic SQ lower bound is nS{V108k) which should be contrasted with the n@(0g#) upper bound
of Klivans et al. (2008). In fact, they conjectured that it may be the upper bound that is loose.

Our results prove that the algorithmic results of Klivans et al. (2008) are indeed nearly
optimal. Specifically, we show that any SQ algorithm that agnostically learns intersections of
k < exp(O(n°2%)) halfspaces to any constant excess error must have complexity at least n‘2(°8 %),
The notion of complexity is made more precise in the informal theorem statement below.

Theorem 1 (Informal version of Theorem 18) Any SQ algorithm that agnostically learns

. . . . . . Q(1)
intersections of k halfspaces to excess error € under Gaussian marginals requires either 2"

queries or at least one query of tolerance n—ogk+1/e%)

This result is nearly optimal for any constant ¢, up to a log log k& factor in the exponent, because
the n©(°2%) time and sample complexity upper bounds from Klivans et al. (2008) can be achieved
by an SQ algorithm. We note that by the AM-GM inequality the exponent Q(log k + 1/€2) in our
lower bound is always at least Q(\/log k/€), which is the exponent from the SQ lower bound of
Diakonikolas et al. (2021b), but can also be significantly stronger.

In fact, when k is small (k = O(n"4?)), we show that the hardness of learning intersections of
2k halfspaces is already present in the easier problem of learning a simple subset of the class: the
family of k-dimensional cubes. This result, given in Theorem 7, relies on new technical facts about
the L!-error approximation degree of cube functions under Gaussian marginals. While Theorem 18
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has the strength of applying to much larger choices of k, Theorem 7 provides an explicit class of
rotated cubes that are difficult to learn in the agnostic SQ model, in contrast to the other existential
result.

The hardness of learning rotated cubes is of further interest because there exists a poly(n)-time
algorithm for realizably learning k-dimensional cubes that is far more efficient than the best known
poly(n, k) + nkOUog(k)_time algorithm by Vempala (2010a) for agnostically learning general
intersections of halfspaces. This algorithm uses the gradient descent approach of Nguyen and
Regev (2006) and Frieze et al. (1996) to learn each orthogonal direction. Theorem 18 implies that
no such algorithm for learning rotated cubes exists in the agnostic setting.

Our bounds additionally imply new hardness results on learning functions with bounded
Gaussian surface area and convex subspace juntas (see Theorems 20 and 21 respectively).

1.1. Techniques

Our proofs follow the blueprints of Dachman-Soled et al. (2014) and Diakonikolas et al. (2021b)
and build upon them by using weak learning lower bounds from De and Servedio (2021) and new
technical innovations for proving resilience with respect to continuous measures. Put roughly,
Dachman-Soled et al. (2014):

(a) introduced a notion of approximate resilience on the Boolean cube and established an
equivalence to L' approximate degree using linear programming duality;

(b) used a combinatorial argument to show that if a k-dimensional function f is approximately
resilient, then there exists a family of k-juntas (n-dimensional embeddings of f for n > k)
that is hard to agnostically learn in the SQ model;

(c) used Boolean Fourier analysis to prove approximate resilience for the Tribes function (a
monotone read-once DNF); and

(d) proved a tighter approximate resilience bound for other monotone Boolean functions by
combining a hardness result on weak learning of Blum et al. (1998a) with an agnostic learning
algorithm based on L' polynomial approximation by Kalai et al. (2008).

To transfer this methodology to the Gaussian measure on R", Diakonikolas et al. (2021b):

(@') extended the equivalence of approximate resilience and L' approximate degree to Gaussian
marginals with a more technical argument involving an infinite linear program and the Hahn-
Banach Theorem:;

(b’) showed that L' polynomial inapproximability of a k-dimensional function implies
the hardness of SQ-learning a family of n-dimensional embeddings of f applied to
k-dimensional subspaces'; and

(c') lower-bounded the L' approximate degree of an intersection of k halfspaces using a new
connection with Gaussian noise sensitivity.

Our results are obtained using a hybrid of the Dachman-Soled et al. (2014) and Diakonikolas
et al. (2021b) approaches. More precisely, we rely on (a’) and (b’) to establish agnostic SQ lower
bounds over Gaussian marginals for approximately resilient functions, but we draw inspiration from
(¢) instead of (¢’) to bound the approximate resilience of the Cube, function by directly analyzing its
Hermite representation. We also draw inspiration from (d) when we lower-bound the approximate

1. The underlying hard problem is distinguishing a standard (multivariate) Gaussian from a distribution that differs from
the standard Gaussian only in the high-order moments of a k-dimensional projection (Diakonikolas et al., 2017).
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resilience of other intersections of halfspaces by using a recent hardness result from De and Servedio
(2021) for weak learning those functions.

In more detail, Theorem 7 proves the hardness of learning the restricted class of k-dimensional
cubes for k = O(n%49) in n-dimensional space by directly bounding the approximate resilience of
a single cube function, Cubey, : RF — R. That is, we show that Cube, is close in L!-distance
to a bounded function that is orthogonal to all polynomials of degree d = Q(log k). To construct
this bounded function, we develop a new argument which is inspired by (c) but is significantly
more technically involved. Due to the unboundedness and continuity of our A/ (0, I,,) setting, our
argument requires a careful iterative construction, which involves defining a thresholding transform
that reduces the low-degree Hermite coefficients of its input while maintaining its boundedness and
taking the limit of applying the transform an infinite number of times. The key properties of Cubey,
for this argument are the boundedness of its outputs and its small low-degree Hermite weight. The
approximate resilience of Cube;, provides an almost-tight bound on the L' approximate degree of
the function, and the main result follows by direct application of (a’) and (b").

Theorem 14, which shows the hardness of learning to constant accuracy the broader classes of
all intersections of k halfspaces for any k = exp(O(n’-?4%)), instead relies on the combination
of recent lower bounds on the number of queries needed to weakly learn intersections of k
halfspaces from De and Servedio (2021) and well-known algorithmic results of Kalai et al. (2008)
for agnostically learning functions with bounded L' approximate degree. This approach draws
inspiration from (d). We show that the L' approximate degree of a random intersection of k
halfspaces must be at least Q(log k) with high probability, since otherwise there would be a
contradiction between the aforementioned works: Kalai et al. (2008) would provide an algorithm
to weakly learn intersections of halfspaces using fewer queries than the lower bound established by
De and Servedio (2021). As before, these bounds on polynomial inapproximability translate to SQ
learning lower bounds via the machinery of Diakonikolas et al. (2021b).

All of the above arguments are for constant excess error (constant €). We introduce the
dependence on % in Theorem 18 by augmenting the previously-considered intersections of k
halfspaces with a single halfspace (in an additional dimension) that passes through the origin.
Ganzburg (2002) showed that a single halfspace has L' e-approximate degree Q(E%), and we use
this to show that our new intersection of halfspaces has approximate degree Q(log k+ 6%)

1.2. Related work

Efficient algorithms are known for PAC learning intersections of halfspaces under certain marginal
distributions. Baum (1990) gave an algorithm for learning two homogeneous halfspaces under
origin-symmetric distributions, and the same algorithm is now known to also succeed under
mean-zero log-concave distributions (Klivans et al., 2009). For PAC learning intersections (and
other functions) of £ general halfspaces, algorithms are known for the uniform distribution on
the unit ball (Blum and Kannan, 1997), the uniform distribution on the Boolean cube (Klivans
et al., 2004; Kalai et al., 2008; Kane, 2014), Gaussian distributions (Klivans et al., 2008; Vempala,
2010a), and general log-concave distributions (Vempala, 1997, 2010b). In most of these cases,
the dependence on k in the running time is nf*) or worse (the exceptions are the algorithms for
Gaussian or uniform on {—1, 1}" marginals). In fact, only the L' polynomial regression algorithm
is known to succeed in the agnostic setting, and only under Gaussian or uniform on {—1,1}"
marginals (Klivans et al., 2008; Kane, 2014). Finally, efficient algorithms are also known for PAC
learning intersections of any constant number of halfspaces under marginals satisfying a geometric
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margin condition (Arriaga and Vempala, 2006; Klivans and Servedio, 2008), and also for learning
intersections (and other functions) of halfspaces using membership queries (Kwek and Pitt, 1998;
Gopalan et al., 2012).

Our work focuses on hardness of learning intersections of halfspaces. Besides the SQ lower
bounds of Diakonikolas et al. (2021b) for (agnostic) learning under Gaussian marginals (which
built on the closely related work of Dachman-Soled et al. (2014)), there is other evidence for the
difficulty of this learning problem. First, distribution-free PAC learning—both proper learning and
improper learning with certain hypothesis classes—is known to be NP-hard (Blum and Rivest, 1992;
Megiddo, 1988), and lower bounds on the threshold degree of intersections of two halfspaces due to
Sherstov (2013) rule out efficient algorithms that use polynomial threshold functions as hypotheses.
Cryptographic lower bounds (Klivans and Sherstov, 2006) give further evidence that distribution-
free PAC learning is hard even if the learner is permitted to output any polynomial-time computable
hypothesis. (The distribution-free correlational SQ lower bounds of Gollakota et al. (2020) give
similar evidence for restricted types of learners.) These lower bounds leave open the possibility
that fixed-distribution PAC learning is tractable, but again there is evidence against this, at least for
certain classes of learning algorithms. Klivans and Sherstov (2007) showed that there is a (non-
uniform) marginal distribution on the Boolean cube under which the SQ dimension of intersections
of y/n halfspaces is at least 292(V1): this implies lower bounds for (weak) SQ learning under that
distribution. Finally, Klivans et al. (2008) gave membership query lower bounds for learning certain
convex bodies under Gaussian marginals. These lower bounds are exhibited by intersections of k
halfspaces for sufficiently large &, but they do not rule out poly(n) query algorithms unless k is at
least polynomially large in n. Moreover, these lower bounds are insensitive to the error parameter e
sought by the learner, and in particular do not become higher for subconstant €.

1.3. Organization

In Section 3 we prove Theorem 7, which gives an nftogk) SQ lower bound for agnostically
learning intersections of % halfspaces (in fact, k-dimensional cubes) to constant excess error
when k = O(n®4?). Section 4 gives a similar SQ lower bound for larger values of k (using
different arguments and less structured intersections of halfspaces which are not cubes). Section 5
improves the quantitative results of both these sections by allowing for subconstant excess error,
thereby establishing Theorem 1 (see Theorem 18 in Section 5 for a detailed theorem statement).
Appendix A extends our results to the concept class of functions with bounded Gaussian surface
area and convex subspace juntas, and gives some observations on lower bounds for L' polynomial
approximation.

2. Preliminaries
2.1. Functions in Gaussian space

For any k& € N, the standard Gaussian distribution on R* is denoted by A(0, ). For ¢ > 1,
let [[fllg = Exnrco,r)[|.f (x)]7 ]'/4 denote the LI-norm of f € LI(N(0,I})), and let (f,g) =
BN (0,1,) [ (%)g(x)] denote the inner product between f,g € L*(N(0,;)). For a multi-index
J € N¥, let #J denote the number of nonzero elements of J, and let | J| = Jy + - - + Ji. Let Py 4
denote the family of all polynomials p : R¥ — R of degree at most d.

In Appendix B, we recall basic facts about the Hermite polynomials { H j} jcnr, which form an
orthogonal basis for L?(N(0, I1,)), as well as some tools based on Gaussian hypercontractivity.



HSU SANFORD SERVEDIO VLATAKIS-GKARAGKOUNIS

2.2. Agnostic learning under Gaussian marginals and Statistical Query learning

We recall the framework of agnostic learning under Gaussian marginals. Given a concept class C
of functions from R™ to {—1, 1}, an agnostic learning algorithm is given access to i.i.d. labeled
examples (x,y) drawn from a distribution D over R” x {—1,1}, where the marginal of D over
the first n coordinates is A/(0, I,). Intuitively, a successful agnostic learning algorithm for C is one
which can find a hypothesis that correctly predicts the label y almost as well as the best predictor in
C. More precisely, an agnostic learning algorithm for C under Gaussian marginals with excess error
€ is an algorithm which, with high probability, outputs a hypothesis function » : R" — {—1,1}
such that Pr(y yyep[h(x) # y] < OPT + ¢, where OPT = infycc Prix y)ep[f(x) # y]. The
special case of OP'T = 0 corresponds to (realizable) PAC learning under the Gaussian distribution.

The above definition is for a learning scenario in which the learner has access to individual
random examples. In the well-known Statistical Query (SQ) learning model, the learning algorithm
cannot access individual examples from D but instead has access to a “STAT oracle.”

Definition 2 A learning algorithm A has access to a STAT oracle if A makes queries with a function
g : R" x {-1,1} — [-1,1] and a tolerance parameter T > 0 and recieves an estimate of the
expectation By v\.plg(X,y)] that is accurate up to additive error £1. An algorithm A with access
to a STAT oracle is an SQ agnostic learning algorithm for concept class C if it returns with high
probability a hypothesis h : R™ — {1, 1} such that Prx yep[h(x) # y] < OPT +e.

2.3. Resilience and L' polynomial approximation

Dachman-Soled et al. (2014) established a useful connection between lower bounds for SQ
agnostic learning under the uniform distribution on {—1,1}" and the notion of resilience for
bounded functions. This connection was extended to the Gaussian setting by Diakonikolas et al.
(2021b), and it also plays an essential role in our results.

Intuitively, a function is “resilient” if it has zero correlation with all low-degree basis functions.
More formally, we have the following:

Definition 3 A function g : R" — [—1,1] is d-resilient if (g,p) = 0 for every p € Ppq
(equivalently, (g, Hy) = 0 for every |J| < d). For 0 < a < 1, a function f : R" — [-1,1]
is said to be a-approximately d-resilient if there exists a d-resilient witness g : R™ — [—1, 1] such
that || f — gll; < e

Next we define the notion of L' polynomial approximation:

Definition 4 Given 0 < ¢ < 1 and f : R® — [~1, 1], we say that the L' e-approximate degree of
f is the smallest value d > 0 such that there exists a polynomial p € Py, 4 satisfying || f — p||; < e.

Definition 4 is of course equivalent to d being the largest value such that every polynomial p of
degree at most d — 1 has || f — p||; > e.

Using linear programming duality, for the setting of functions f : {—1,1}" — [-1,1] and
the uniform distribution over {—1,1}", Dachman-Soled et al. (2014) established an equivalence
between the L'-distance to the closest d-resilient bounded function (cf. Definition 3) and the best
possible accuracy of L' polynomial approximation by degree-d polynomials (cf. Definition 4). They
did this by showing (see their Theorem 1.2) that for f : {—1,1}" — [—1, 1], if the former quantity
is « then the latter quantity is 1 — a.
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This equivalence was extended to the setting of Gaussian space (our domain of interest in the
current work) by Diakonikolas et al. (2021b); a more involved argument is required for this setting,
essentially because now the linear programming duality involves an infinitely large linear program,
but the result still goes through. The proof of their Proposition 2.1 establishes the following:?

Lemma 5 (Equivalence of approximate resilience and L' approximate degree) A function f :
R™ — {—1,1} is a-approximately d-resilient if and only if its L' (1 — «)-approximate degree is d.

In the Boolean hypercube setting, Dachman-Soled et al. (2014) combined their L' polynomial
approximation characterization of resilience with standard SQ lower bounds and standard results
on the existence of combinatorial designs to show the following: if f : {—1,1}¥ — {—1,1} is
an a-approximately d-resilient function, then (roughly speaking; see their Lemma 2.1 for a precise
statement) any concept class of functions from {—1, 1}" to {—1, 1} containing all “embeddings” of
f (according to the combinatorial design) admits a Statistical Query lower bound.

Diakonikolas et al. (2021b) carried out a similar-in-spirit argument in the setting of Gaussian
space. We note that their result is significantly technically more challenging than the analogous
argument of Dachman-Soled et al. (2014); it builds on recent SQ lower bounds for distinguishing
distributions due to Diakonikolas et al. (2017), and uses embeddings of low-dimensional functions
in hidden low-dimensional subspaces rather than combinatorial designs. We record their key result
below, which will be crucially used for all of our agnostic SQ lower bounds:

Lemma 6 (Diakonikolas et al., 2021b, Theorem 1.4) Let n,m € N with m < n® for any 0 <
a < 1/2, and let € > n™¢ for a suitably small absolute constant ¢ > 0. Given any function f :
R™ — {—1,1}, let d be the L' (2¢)-approximate degree of f.> Let C be a class of {—1,1}-valued
functions on R™ which includes all functions of the form F(x) = f(Px) for all P € R™ ™ such
that PPT = I,,,. Any SQ algorithm that agnostically learns C under N (0, I,,) to error OPT + ¢
either requires queries with tolerance at most n=*%Y or makes at least gnt) queries.

3. Hardness of SQ learning to constant excess error via approximate resilience

The main result of this section is Theorem 7, which, roughly speaking, shows that any SQ algorithm
that makes a sub-exponential number of statistical queries and agnostically learns the concept class
of “embedded k-dimensional cubes” (for k = O(n%4?)) to any constant excess error that is bounded
below % must make queries of tolerance n~2(l08(k)/loglogk) " (Note that this gives a special case of
Theorem 1 in which the excess error € is constant and k = O(n"4°).) This is done by establishing
that the k-dimensional cube function is approximately resilient; recall that by Definition 3, this
means that it is close in L! distance to a bounded function that is orthogonal to all low-degree
polynomials.

We define the function Cubey : R¥ — {—1,1} as Cubey(y) := sign(d — |ly|l..). (Note
that this is equivalent to Cubey(y) = 2 Hle 1{|yi| < 6k} — 1.) In words, Cube; '(1) is the axis-
aligned origin-centered solid cube with side length 26, where 6, > 0 is chosen to ensure that
Ey~Ar(0,1,)[Cuber (y)] = 0. Note that Cubey, is an intersection of 2k halfspaces.

2. The statement of Proposition 2.1 of Diakonikolas et al. (2021b) only goes in one direction (that L' polynomial
approximate degree implies approximate resilience), but the proof establishes both directions.
3. By Lemma 5, this condition is equivalent to f being (1 — 2¢)-approximately d-resilient.
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Theorem 7 For sufficiently large n and k, with k = O(n%9), define the concept class C = {x
Cubey(Pz) : P € RF*™ PPT = I,.}. Any SQ algorithm that agnostically learns C to excess error

. Q1 . —
% (1 — ko%) requires 2" ( queries or at least one query of tolerance n~X10g(k)/loglogk)

This strengthens the bounds of Diakonikolas et al. (2021b) for the regime of k& = O(n"*Y) and
constant excess error, improving the n~2(vVI°gk) tolerance requirement to n~*1°8%) Theorem 7
follows directly from Lemmas 5 and 6 and the following lemma:

Lemma 8 For sufficiently large k, the function Cubey is a-approximately d-resilient for o =
k=049 and d = Q(log(k)/ loglog k).

The proof of Lemma 8 has two main ingredients: a bound on the Hermite weight of Cubey, that
is contained in its low-degree coefficients (Lemma 9), and an approximate resilience guarantee for
functions with bounded low-degree Hermite weight (Lemma 10). We prove Lemma 8 in Section 3.2
by applying those two lemmas and choosing an appropriate setting for d in terms of k.

Lemma9 For any sufficiently large k, and any d > 0,*

20d(31n k)4
[J|<d

We prove this lemma in Appendix C.1 by exactly computing the Hermite coefficients of one-
dimensional centered interval functions (Lemma 27) and using those values to carefully bound the
Cube;, Hermite coefficients. At a high level, our bounds on the low-degree Hermite coefficients of
Cube, are similar in flavor to the bounds of Mansour (1992) on the low-degree Fourier coefficients
of the read-once “tribes” CNF over the Boolean hypercube.

Lemma 10 For sufficiently large k, d > 2, and f : R¥ — {—1,1}, let vy := Z\J|§d f(J)2. Then
f is a-approximately d-resilient for oo = ~0-498(721n k)/2.

The proof of Lemma 10 is given in Section 3.1 and is somewhat technically involved. Our
argument modifies and extends a proof idea from Dachman-Soled et al. (2014), which they use to
show that the function Tribes : {—1,1}* — {—1,1} is approximately resilient. Starting with the
Tribes function, their approach is essentially to (i) discard its low-degree Fourier component; (ii)
truncate the resulting function so it does not take very large values; (iii) again discard the low-degree
Fourier component of (ii) (since the truncation could have reintroduced some low-degree Fourier
component); and (iv) normalize the result of (iii) to give an L°° norm of at most 1. They show that
this yields a new function that (1) has zero low-degree Fourier weight, (2) takes output values that
are bounded in [—1, 1], and (3) is close to the original Tribes function in L! distance.

In our setting we have the same high level goals of achieving (1-3), but achieving boundedness
is significantly more difficult on the unbounded domain R¥ than on the finite hypercube {—1, 1}*.
Our witness to the approximate resilience of Cubey, is not constructed in a single shot (in contrast
to Dachman-Soled et al.), but rather is constructed gradually through an iterative process.

4. See Appendix B for notation for Hermite coefficients.
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3.1. Approximate resilience of functions with small low-degree weight (Proof of Lemma 10)

In this section, we prove Lemma 10. Our key tool is the TruncHigh, ; transformation, defined
below, and a careful iterative application of TruncHigh, ; to produce a witness to the approximate
resilience of a given Boolean function f with small low-degree Hermite weight.

Definition 11 For any f € L*(N(0,1})) and d € N, let Low, and High, be L*(N(0, 1)) —
L?(N(0,1},)) transformations that reduce a function to its low-degree and high-degree Hermite
components respectively, i.e.

Lowg[f] :== Y f(J)Hy, and Highy[f]:= > f(J)H; = f — Low[f].
|J|<d |J|>d

For any 7 > 0, the truncation transformation TruncHigh, . : L*(N'(0, I,)) — L*(N(0, I1,)) is

TruncHigh, . [f](z) := Highy[f](z) — Highy[f](z)1 {|[Lowa[f](x)| > 7}
— {Highd[f](x) if [Lowga[f](z)| < T,

0 otherwise.

The purpose of TruncHigh, ,[f] is to shrink the low-degree weight of f while staying bounded
in L and close to f in L'. These properties are given in the following propositions.

Proposition 12 If || f||, < oo, then || TruncHighy . [f][loc < [[f]lo + 7

Proof. TruncHigh, .[f](x) is non-zero only if |Lowgy[f](z)| < 7. In that case, it is clear that
| TruncHigh, , [f](z)| = [Highy[f](2)] = |f(x) — Lowa[f](x)| < [f(2)| + 7. u

Proposition 13 For any k > 1 and d > 2, fix some a > 1 and p > ||Lowy[f]||, and let

Ti=p (46 In(3k) + % In <a||pf|]2>)d/2 . (1)

Then, (i) |Lowg[TruncHigh, - [f]]lle < 2, and (ii) || TruncHigh, . [f] — fll1 < 2p.

We prove Proposition 13 in Appendix C.2.

Note that there is a tension in the choice of the truncation parameter 7. If 7 is too large, then
TruncHigh,, ,[f] might still take large values. But if 7 is too small, then the low-degree weight of
TruncHigh,, ,[f] might not become much smaller compared to that of f. The proof of Lemma 10
works by applying TruncHigh, ; iteratively with a carefully chosen decreasing schedule of 7-
values. This process converges to a function that is bounded, has zero low-degree weight, and
is sufficiently close to f, and this function certifies the a-approximate d-resilience of f.

Proof of Lemma 10. Since any f with || ||, < 1 is trivially 1-approximately d-resilient for all
d > 0, we may assume that & < 1. We define a sequence of functions (f;);cn by fo := f and
fi := TruncHigh, . [fi—1] for i > 1, where

. /2
 [Lowalfolll, se (494 fi], )\

We’ll show that the sequence (f;);cn has a limit in L?(N(0, I;)) that yields a witness to the -
approximate d-resiliance of f. To do this, it will suffice to show the following claims for all ¢ > 1:
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. ' o
Claim1. ; < 357

Claim 2. [fil, <1+8%0, £ <1+2.

Claim 3. [|[Lowq[fillly < 7z [Lowalfolll, < g5m and | fi = fi-1lly < 5

We now explain why this is enough to prove the lemma. Claim 2 ensures that || fi||cc < 1 +
a/3, while Claim 3 (for all ¢) ensures that || f; — fol1 < Zle |f. — fi=1lli < 2a/3 (by the
triangle inequality), and also lim;_,o ||Lowg[fi]]l2 = 0. By a limit argument (Proposition 31),
the sequence (f;);en converges in L2(N(0, I1,)) to some f* € L2(N(0, 1)) with || f*[joc < 1+
a/3, Lowg[f*] = 0, and ||f* — f|i < 2a/3. This proves the lemma because one of f* and
1 = f*/||f*|loo witnesses that f is «-approximately d-resilient. Indeed, if || f*|l« > 1, then

| f*[loc = 1, Lowg[f**] = 0, and

17 = £l S0 = P A = e < 22 (1 ) 1 < o
1/ * Mo
where the first inequality uses the triangle inequality and comparison of || - ||; and || - ||cc-
It remains to prove Claim 1, Claim 2, and Claim 3 for all 7 > 1 by induction on 4.
For the base case 1 = 1, 11 < % (Claim 1) is an immediate consequence of the upper bound

on 71 from Fact 30 in Appendix C.3, which relies on having || follc = 1 < 3. Proposition 12
and the bound on 71 imply || f1]|, < 1+ & (Claim 2). By taking a = 4% and p = |[Lowg[fo]|,.

Proposition 13 implies that ||Lowy[f1]||2 < 4% |ILowq][fol|l, and || fi — foll1 < 2||Lowq[fo]ll,- We
conclude the base case of Claim 3 by observing that ||Lowg[fo]||; < 71 < § by Fact 30.

We prove the inductive step by assuming that the three claims all hold for some fixed 7 > 1 and
showing that they also hold for i + 1. By applying Fact 30 with || f;|| , <1+ § < % from step i of
Claim 2, we have 7,11 < 55777 (step ¢ + 1 of Claim 1). Step i + 1 of Claim 2 is immediate from
Proposition 12, the bound on 7,41, and a geometric sum:

i+1
o 1
| fisilloo < [ filloo + Tig1 < 1+ 3 E 5 S1+
=1

w|R

We apply Proposition 13 with a = 4% and p = 4,% [Lowa[fo]|l,> to obtain

1 2
ILowalfii]llz < Jyg ILowalfollly  and [l fiss = filly < 57 [ILowalfolll, -

Combining this with the bound ||Low|[fo]||, < § completes step i + 1 of Claim 3.
Hence, the three claims hold for all # > 1 by induction, which concludes the proof. |

3.2. Approximate resilience of Cube;, (Proof of Lemma 8)

Letd = 12;{‘% By Lemma 9, for sufficiently large k£ we have
20d(31n k)4
= C R e ke
yi= ) Cubey(J)* < ’
|J|<d

5. Note that p > ||[Lowq|[f:]||, by step ¢ of Claim 3, which is necessary for Proposition 13.

10
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Lemma 10 guarantees that Cubey, is a-approximately d-resilient for
o =A"198(721n k)¥? < exp (—0.498In k 4 0.00799 In k 4 o(In k)) < k=049,

This completes the proof of Lemma 8. |

4. Hardness of SQ learning to constant excess error via weak learning lower bounds

In this section we give a different proof of our main agnostic SQ hardness result for learning
intersections of k£ halfspaces to constant excess error. While Theorem 7 established hardness for
a highly structured subclass of this concept class (consisting of suitable embeddings of the Cubey,
function), the current argument only applies to the broader class of all intersections of £ halfspaces.
However, an advantage of the current argument is that it holds for a wider range of values of &k (up
to 20(”0‘245)). In more detail, in this section we prove the following:

(n?

'245), any SQ algorithm that agnostically
Q1)

Theorem 14 For sufficiently large n and any k = 2°
learns the class of intersections of k halfspaces over R™ to excess error c requires either 2"
queries or at least one query of tolerance n~2(108(K)/10g10gk) " (Here ¢ > ( is an absolute constant
independent of all other parameters.)

As discussed in Section 1.1, the proof of Theorem 14 follows the high-level approach of
Theorem 1.4 of Dachman-Soled et al. (2014). Rather than analyzing the Hermite spectrum of the
hard-to-learn functions (as was done in Section 3), the argument combines the agnostic learning
algorithm of Kalai et al. (2008) with a (slight extension of a) recently-established lower bound on
the ability of membership query (MQ) algorithms to weakly learn intersections of halfspaces.

We first recall the following lower bound from De and Servedio (2021):

Lemma 15 (De and Servedio, 2021, Theorem 2) For sufficiently large m, for any ¢ > m, there
is a distribution Dacrual over centrally symmetric convex sets (specifically, intersections of O(q*%°)
halfspaces) of R™ with the following property: for a target convex set f ~ Dyctual for any MQ
algorithm A making at most ¢ many queries to f, the expected error of A (the probability over f ~
Dactual, any internal randomness of A, and a Gaussian x ~ N (0, I,,), that the output hypothesis h

of A is wrong on x) is at least 3 — %‘

We require the following corollary of Lemma 15, which we prove in Appendix D.1.

Corollary 16 For sufficiently large n, for all ¢ > m, there is a distribution D over intersections
of ¢'°% halfspaces such that for a target function f ~ D, any MQ algorithm A making at most q

O(log q)
m

queries to f has expected error at least % — (where the expectation is over f ~ D and any

internal randomness of A, and the the accuracy is with respect to N (0, I,)).
Theorem 14 follows immediately from Lemma 6 and the following lemma.

Lemma 17 Forany k = 20(n**) there exists an intersection of k halfspaces f : R"™ — {—1,1}
that has L' §-approximate degree d = Q(log(k)/ loglog k), where m = O(n%4%).

11
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Proof. First we note that we may assume k is at least some sufficiently large absolute constant as
specified below through the choice of ¢ (since otherwise, because of the §2(-) in the specification
of d, there is nothing to prove). Suppose that every intersection of k halfspaces f over R has
L' %—approximate degree at most d — 1; we will prove the lemma by showing that d must be
Q(log(k)/ loglog k).

Let ¢ = k'/191 and let S C R™ be the subspace of R” spanned by the first m = ¢;In’q
coordinates, where c; is a sufficiently large universal constant specified below and ¢ is chosen
sufficiently large (relative to c1) so that ¢ > m and m satisfies the “sufficiently large” requirement
of Corollary 16. By Corollary 16, there is a distribution D over intersections of at most k =
q'°! halfspaces over S such that any membership query algorithm making at most ¢ queries to an
unknown f ~ D outputs a hypothesis with expected error at least % — O(Liq). For a sufficiently
large setting of c;, this expected error is at least % — \O/(Ciff;nqg > 0.49.

By the assumption that every intersection of k halfspaces has L' %—approximate degree at most
d — 1, if the agnostic learner of Theorem 5 of Kalai et al. (2008) is run on any intersection of
k halfspaces over the first m coordinates, then it uses s := poly(m?/¢) labeled examples from
N(0, I,), runs in poly(s) time, and with probability at least (say) 0.9 outputs a hypothesis h with
error at most

1 . < 1
€+3,min I =plly < e+
(see Theorem 1.3 of Dachman-Soled et al. (2014)). Taking ¢ = 0.15 and observing that a labeled
example from AN(0, I,,) can be simulated using a single membership query, we see that for the
concept class of intersections of k halfspaces over the first m coordinates, there is a membership
query algorithm A that makes at most m®¢ many membership queries and with probability at
least 0.9 achieves error at most 0.4; hence the expected error of this MQ algorithm is at most
0.9-04+4+0.1-1=0.46.

Comparing the conclusions of the previous two paragraphs, we see that m®? > ¢, and hence
(recalling that m = ¢; In? g and ¢ = k'/101), we get that
g> _ng

“clnm

= Q(log(k)/loglog k),

which proves the lemma. |

5. Hardness of SQ learning to arbitrary excess error

In this section, we strengthen both of the SQ lower bounds from Sections 3 and 4 by combining
them with lower bounds on the L' e-approximate degree of halfspaces due to Ganzburg (2002).
By doing so, we improve the lower bounds to nf(l0s(k)/loglog(k)+1/ <) for agnostically learning
intersections of k halfspaces to excess error € for any € > n~° (cf. Lemma 6). By the arithmetic-
geometric mean inequality, this lower bound is always at least as strong as the n~20g' 2 (k)/€) 1ower
bound of Diakonikolas et al. (2021b).

Let k, m be as described in Lemma 17. We construct an intersection of k£ 4 1 halfspaces over
R™*+! by taking the intersection of

* the k halfspaces identified in Lemma 17 over R™; and

* an origin-centered halfspace orthogonal to the (m + 1)-st coordinate basis vector.

12
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Appendix E formally bounds the L' approximate degree of intersections of this construction of
half spaces and proves a strengthening of Theorem 14, which is our main agnostic SQ lower bound:

. 0.245 _

Theorem 18 (Formal version of Theorem 1)  For any k = 2°""") and any ¢ > n=¢ for a

suitably small absolute constant ¢ > 0, any SQ algorithm that agnostically learns intersections of
. . . . Q(1 .

k halfspaces to excess error € under Gaussian marginals requires either 2" @ queries or at least

2
one query of tolerance n~}(108(k)/loglogk+1/¢%)
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Appendix A. Discussion

A.1. Agnostic SQ lower bounds for learning functions of bounded Gaussian surface area and
convex m-subspace juntas

In this appendix, we note that our arguments imply agnostic SQ lower bounds for several classes of
{—1, 1}-valued functions over R™ that were studied by Vempala (2010a) and Klivans et al. (2008).
Our lower bounds essentially match the upper bounds for those classes by Klivans et al. (2008).

Functions with bounded Gaussian Surface Area. Recall the definition of Gaussian Surface Area:

Definition 19 Let f : R" — {—1,1} be such that {x € R" : f(x) = 1} is a Borel set. The
Gaussian surface area of f is defined to be

Pry. =—land 3y c f1(1) st [|[x—yl, <9
D(f) = lim inf N (0.1) [F(X) an 59 f @) st |x —ylly <]
—)

Let C; denote the class of all Borel sets in R™ with Gaussian surface area at most s. The main
result of Klivans et al. (2008, Theorem 25) is that C, is agnostically learnable to accuracy OPT + ¢
by an SQ algorithm that makes nO(s*/e) queries, each of tolerance n=06*/<") " Their agnostic
learning algorithm for intersections of k halfspaces, mentioned earlier, is obtained from this result
by combining it with the fact, due to Nazarov (2003), that any intersection of k halfspaces has
Gaussian surface area at most O(/log k).

Let s = O(n%'225) let m = n%4 and let k = 25" = 20(V™) By Lemma 17 there is
an intersection of k halfspaces over R™ that has L' J-approximate degree €)(s?/logs), and by
Nazarov’s upper bound on Gaussian surface area, this function has Gaussian surface area at most
O(s). Combining this with Lemma 6, we immediately obtain that for any s < O(n?122%), any
SQ agnostic learning algorithm that achieves constant excess error under Gaussian marginals for
the class C; either requires queries with tolerance at most n~%s*/108()) or makes at least 27"
queries. Combining this with the arguments of Section 5, we get the following result for Cs:

Theorem 20 For sufficiently large n, any s = O(n%1225), and any ¢ > n=¢ for a suitably small

absolute constant ¢ > 0, any SQ algorithm that agnostically learns the class Cs to excess error €
. . Q . 2 2

requires either 2" @ queries or at least one query of tolerance n~(s”/108(s)+1/€%),

Convex subspace juntas. Vempala (2010a) gave a learning algorithm (in the realizable, i.e., non-
agnostic, setting) for a class of functions that we refer to as convex m-subspace juntas. A function
f : R* — {—1,1} is a convex m-subspace junta if f is the indicator function of a convex set
K with a normal subspace of dimension m; equivalently, f is an intersection of halfspaces all of
whose normal vectors lie in some subspace of R™ of dimension at most m (note that the number of
halfspaces in such an intersection may be arbitrarily large or even infinite). i

Vempala’s algorithm learns to accuracy € and runs in time poly(n, 2™ /e, mO(V™/<)) in the
realizable (OPT = 0) setting of learning under Gaussian marginals. As alluded to in Section 1,
this algorithm uses principal component analysis to do a preprocessing step and then runs the
algorithm of Klivans et al. (2008). The analysis crucially relies on a Brascamp-Lieb type inequality
(Lemma 4.7 of Vempala, 2010a) which, roughly speaking, makes it possible to identify the “relevant
directions”); however, this breaks down in the non-realizable (agnostic) setting. The best known
agnostic learning result for the class of convex m-subspace juntas under Gaussian marginals is

17



HSU SANFORD SERVEDIO VLATAKIS-GKARAGKOUNIS

the SQ algorithm of Klivans et al. (2008), which makes nOWmM/€!) statistical queries, each of
tolerance at least n=C(/m/<")_ This performance bound for the algorithm follows immediately
from Theorem 25 of Klivans et al. (2008) and the upper bound, due to Ball (1993), that any convex
set in R™ has Gaussian surface area at most O(m'/4).

Let m < n®49. By Lemma 17 there is a convex m-subspace junta (an intersection of 20(vV™)
many halfspaces, all of whose normal vectors lie in an m-dimensional subspace of R™) that has
L %—approximate degree Q(y/m/logm). Combining this with Lemma 6 and the arguments of
Section 5, we obtain the following lower bound:

Theorem 21 For sufficiently large n, any m < n®*, and € > n=¢ for a suitably small absolute

constant ¢ > 0, any SQ algorithm that agnostically learns the class of convex m-subspace juntas to
. . Q(1 . _ 2
excess error € requires either 2" @ queries or at least one query of tolerance n Q(vm/logm+1/€%)

A.2. On lower bounds for L' polynomial approximation

One of the contributions of Diakonikolas et al. (2021b) is that it introduced new analytic techniques
for obtaining lower bounds on the L! approximate degree of functions f : R® — {—1,1}. In
particular, Diakonikolas et al. (2021b) established a new structural result that translates a lower
bound on the Gaussian Noise Sensitivity of any function f : R™ — {—1,1} to a lower bound on
the L' approximate degree of f.

Definition 22 (O’Donnell, 2014, Definition 11.9) Given 0 < p < land f : R" — {—1,1}, the
Gaussian Noise Sensitivity of f at correlation 1 — p, written GNS,(f), is

— _ — 2
GNS,(f) = Pr [ Fx) # F(1—pyx+/2p—p g)].
Equivalently, GNS,(f) is the probability that f(x) # f(y) where X,y are standard n-dimensional
Gaussians with correlation 1 — p.

Theorem 23 (Diakonikolas et al., 2021b, Theorem 1.5) Let f : R" — {—1,1} andletp : R" —
R be any polynomial of degree at most d. Then

L |f = plly > Q(1/logd) - GNS(1n(y/ay2 (f)-
2. Forany e > 0, we have || f — p|l; > GNS(f)/4 — O(d\/e).

In contrast with L? polynomial approximation (for which the degree required for e-
approximation can be “read off” of the Hermite expansion), polynomial approximation in L!
is much less well understood. Thus it is interesting and useful to have general tools for L'
approximate degree bounds such as Theorem 23, and conversely, it is of interest to understand the
limitations of such tools.

Diakonikolas et al. (2021b) use Theorem 23 to prove an L' approximate degree lower bound
for intersections of k halfspaces. They first show that for a particular® intersection of k halfspaces
f" over R¥, for each 7 < ©(1/logk) it holds that GNS,(f) = ©(y/7logk). Combining this
with item (1) of Theorem 23 gives that any polynomial p for which ||f — p|l1 < e must have

6. This function f’ is very similar to the Cubey, function; instead of upper and lower bounding each of the k coordinates
Z1,..., Xk, it only upper bounds each coordinate.
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d > Q(%) Our resilience results for the Cube;, function give a stronger L' approximate
degree lower bound, and combining this with the GNS bound from Diakonikolas et al. (2021b)
gives an example of a function for which the bound of part (1) of Theorem 23 is not tight.

In more detail, recall that our Lemma 8 states that the Cubey, function is k~%4?-approximately
©(log(k)/loglog k)-resilient. An entirely similar analysis to the proof of Lemma 8 shows that the
function f’ of Diakonikolas et al. (2021b) is also k~°-4°-approximately d := ©(log(k)/ log log k)-
resilient, i.e., there is a function g : R*¥ — [—1, 1] which has zero correlation with every polynomial
of degree at most d — 1 and which has ||f’ — g||;1 < k%4, By Lemma 5, the existence of this
resilient g implies that every polynomial p of degree at most d — 1 must have

2
If =plli > 1~ 709

which is close to one for large k.
Now consider what can be obtained from the GNS bound of Diakonikolas et al. (2021b). Since

O((loglog k)*) O((loglog k)*)
GNS (1n(d—1))/(d-1))2(f') = T Ink = NV

part (1) of Theorem 23 only gives that every polynomial p of degree at most d — 1 has

log log(k)) ‘

/_ >Q(
1" =pll > Tosk

This bound is close to zero for large k.
Appendix B. Hermite polynomials and Gaussian hypercontractivity

Let {h;}32 be the (unnormalized) probabilists’ Hermite polynomials

- Y 2
) (g2 W a?)2 .
hj(z) == (—=1)’e P , 7=0,1,2,.... 3)
These polynomials form an orthogonal basis for the Hilbert space L?(N(0, 1)); more precisely, we
have (h;, hj) = j!-§; . Forany f € L*(N(0,1)), the Hermite coefficients f(j) of f are given by

-~ 1
fG) = NG {f,hj) -
Let {H} jon+ be the multivariate Hermite polynomials, which correspond to a tensor product
of the univariate Hermite polynomials above. That is,

k
Hy(x) == [ hs (i)
=1

These polynomials form an orthogonal basis for L2(N(0,I;)), and we have that (H;, Hj/) =

J18; 51, where J! = Ji!--- Ji!. Forany F € L?(N(0, I1.)), the Hermite coefficients F'(.J) of F are
given by
~ 1
F(J) = —— (F, Hy) .
(/) Naii (F, Hy)
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Additional properties of the Hermite polynomials can be found in Chapter 22 of Abramowitz and
Stegun (1972) and Section 11.2 of O’Donnell (2014).

Our results—particularly those in Section 3.1—rely on bounds powered by Gaussian
hypercontractivity. We recall the basic Gaussian hypercontractive inequality for low-degree
polynomials (Bonami, 1970; Nelson, 1973; Gross, 1975):

Fact 24 For a polynomial p € Pq and any ¢ > 2, ||p||, < (¢ — D2 |||,

In particular, we will use the following bound on the fourth moment of Hermite polynomials,
which follows immediately from Fact 24 and standard bounds on the norm of Hermite polynomials:

Fact25 | Hjl||, < 3%?||Hyl|, < 392V J.

We will also use the following concentration bound, which follows from Gaussian
hypercontractivity using Markov’s inequality:

Fact 26 (O’Donnell, 2014, Theorem 9.23) For any polynomial p : R¥ — R of degree d and any
t>ed

d
P > < _a 2/d) .
xNN(EJn) HP(X)| >t HPHQ] < exp ( Qet

Proof. Consider any g > 2.

g a2\ 9 a2\ 9
Pr[p(x)] = ¢ lpll] = Prllp(ol? = # [p9) < s <(<q 1 ) g(q) |

= taplld t

Letq = #, which has ¢ > 2 because ¢ > e, Then,

1\ d o4
Prlptol 2 ol < () = e (—ae?). .

Appendix C. Supporting lemmas and proofs for Section 3
C.1. Small low-degree Hermite weight of Cube; (Proof of Lemma 9)

We recall Lemma 9.

Lemma9 For any sufficiently large k, and any d > 0,”

20d(3Ink)?
Z Cubey(J)? < Od(?’km
|J|<d

We note that by the analysis of Cube; by De et al. (2021, Example 14), the upper bound of
Lemma 9 in the case d = 2 is tight up to constant factors.

Our proof of Lemma 9 uses the product structure of N(0, ;) and the fact that Cubey is
essentially a product of univariate interval functions over disjoint variables. Thanks to these
properties, it suffices to analyze the Hermite coefficients of interval functions of the right width.

7. See Appendix B for notation for Hermite coefficients.

20



NEAR-OPTIMAL SQ LOWER BOUNDS FOR AGNOSTICALLY LEARNING INTERSECTIONS OF HALFSPACES

For any 6 > 0, let fy : R — {0, 1} be the indicator function for the interval [—6, 6], i.e

fo(x) = 1{[z[ < 0}.

Then, Cubej, can be written as

Cubey(z) = QHka x;)

Since 0y, is chosen to ensure that Ex.zr(o,7,) [Cubey(x)] = 0, the Hermite coefficients of Cubey, are
given by

0 if J =0
Cubey,(J) = { ! ’

2115, fo.(Ji) otherwise.

Proof of Lemma 9. We may assume that d < k/(2¢? In k), since otherwise the claimed bound on
—_— 2
ZIJISd Cubeg(J) is more than one.

By Lemma 27 (stated and proved below), };;(JZ-) = 0 for any odd J;. Hence, the only Hermite
coefficients that may be non-zero are those corresponding to multi-indices J € N¥ with (i) only
even components, and (ii) 1 < |J| < d. Let J denote this set of multi-indices. For any such
Jed,

i)? H fo, (J
i:J; >2
(J;—1) 0
Loy
c 2(|J|=#J) ,
<4 (1 + \/;ek) e O

where the first inequality uses the fact that \J?g;(O)| < 1 (Lemma 27) and the bound from Lemma 28

k
Cubek H

k‘
II

I/\
k‘
N

(stated and proved below). To bound the sum } -, ; m(J = jes m(J )2, we partition
the terms by the value of #.J. Note that #.J must satisfy 1 < #J < |d/2], since J is not all zeros,
and every non-zero component of J is at least two. Therefore,

ld/2]
S Cuber()2 =" Y Cubey(J)?
|J]<d t=1 JeJ:#J=t

<4(a vﬁ@)d]'g%HJej 47 =1} e 4
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The definition of 7 and standard binomial coefficient inequalities provide a bound on the number
of J € J with #J =t fort > 1:
k
HT €T #J =t} = <t> [{S e N':|S| < |d/2],S; > Oforallic [t]}]
k t
=1, {S eN':|S| < |d/2] —t}|
kN (1d/2) <e2kd>t
= < .
t t -\ 212
Therefore, we can bound the final expression from (4) by
(d-1) Ld/2] Qkid ld/2] 2 t
g2 (d—1) e“dInk
<1+\/79k> <2t2€ k> <4(1+\/eln> tz:;(t%

e2dl 2 In k)?
( +\/€T) (d— 1) dknk: < Od(?)knk') :

where the first inequality uses the bounds on 8}, from Lemma 29, and the second inequality uses the
assumption d < k/(2¢%In k). [ |

The preceding proof relies on three supporting lemmas: Lemma 27 and Lemma 28 compute and
bound the Hermite coefficients of fy; Lemma 29 gives upper- and lower-bounds on 6.
Let ¢(x) = # ~2/2 denote the probability density function of the one-dimensional Gaussian

distribution N (0,

vﬁ

Lemma 27 For all j > 0, the Hermite coefficients of fy are as follows:

0 o
. f_9¢($) dx ifj=0,
fo(j) =40 if j is odd,
—%hj_l(H)gb(Q) ifj > 2is even.
Proof. Recalling the definition of univariate Hermite polynomials from Appendix B, the degree-0

coefficient fy(0) is
) 0
— [ fwe) o= [ o)z
—00 —0

The degree-j coefficient, for j > 1, is

Jols f/ fo(z)hj(z)p(x) dr = f/
/—g_dm j10(x)] p(z) do = —=

(hj—1(=0) — hj—1(0)) #(0).

av {—hjﬂ(:cw(as)}\:
1
-
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The third equality follows from the identity h;(z)¢(x) = [ j—1¢(x)] for j > 1, which follows
from the definition in (3). The last equahty uses that qb(x) 1s an even function.

Furthermore, if j is odd, then hj_1(—6) = h;_1(f), and hence fo(j) = 0. If j is even and
j >2,then hj_1(—0) = —h;_1(0), and hence f@( ) = %h],l(e)d)(ﬂ). [ |

We bound the even-degree Hermite coefficients of the interval function by bounding each
univariate Hermite polynomial, which provides the following coefficient bound.

Lemma 28 Forany even j > 2 and any 0 > 0,

-~ . 4 e\
f@(])2 = ﬁhj_1(9)2¢(9)2 < (1 + 9\/;) e

Proof. The equality is by Lemma 27. For the inequality, we define the following values:

1 5, ey
Ajp = il |hj—1(0)] Bjg =" 753 (1 * 9\/;) .

We show that A;y < B,g. Since }Vg(j)2 = (2/7r)A]2.79 - %%, this inequality implies that }Vg(j)z
is at most (2/ W)B]%e - =% which is easily verified to be at most the claimed upper bound in the
statement of Lemma 28.

We expand A; ¢ using an explicit formula for the Hermite polynomial (Abramowitz and Stegun,
1972, Equation 22.3.11), followed by a change of variable:

1
Aj79 - \/ﬁ ’hj—l(e)’
- /271 i—1-2
(G-D'§~ _(ymeen »
= i mz::(] Sl(j — 1= 2m)] (explicit formula for h;_1(6))
1 j—H
G- & 0t ,
= . change of variable
Nzl Z (] 1— e),g, ( g )
Thus, by the triangle inequality,
7j—1 . ¢ 7j—1
(-1 0 V2 J*l (—1-0)
eSS ! Vo e )
) H] 1—¢ —1— 2 1—¢
odd =1 Vit o' (]75 e)w, odd (= 12]/ \/J'(J 2 )

We employ Stirling’s approximation /27n(n/e)"e?/ (12041 < nl < 2rn(n/e)*e'/(127) to
bound each term in the sum from (5). For any odd ¢ € [1,j — 3]:

1—¢

() e < () SO ()T
() m 05
72;?)(];1) (0\@){
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We handle the final term, £ = j — 1, separately:

V2 (1) (i-1-0) Ve V(Y

S HCHRESEBICHR

Therefore, we upper-bound the summation from (5) term-by-term, and then further simplify bound
by including additional non-negative terms in the summation:

22 11 j—1 e\
o 2 8 07 o)

odd /=1
2¢2 14 (j—l) (e\/z>‘f
2 e
TP\t J

9262 Jj—1
=" 6.3(1+0\/€.) = Bjg. u
mj J

Lemma 29 For sufficiently large k, \/2Ink —In(2Ink) < 6 < v2Ink.

IN

Proof. Recall that 0y, is defined so that Exar(0,7,) [Cubey (x)] = 0. In other words, it is the median
value of y := max;e[y |x], where (x1,...,xx) ~ N(0,1)®¥. Therefore, it suffices to show that

for I, :== /2Ink — In(2In k) and uy, := v2Ink, we have Prly < ;] <1/2 < Prly < uy]. Note
that for any ¢ > 0, Prly < t] = (1 — Pry,ononllx1] = t])%. Using the Mills ratio bound (see,
e.g., Feller, 1968, Lemma 2 on page 175) and 1 —z < e “forall z € R,

k
11\ /2 e
Pr[y<lk]§<1—(lk—lz) \/;e lk/2>
1 2 V2Ink\"
_<1_\/21nk—1n(21nk)(1_0(1))\c' k )

< oxp (—(1 ~o(1)) \/3 <!

by the choice of [, and assumption that k is sufficiently large. Similarly (but now using 1 — =z >

e~ %/(1=2) for o < 1),
k
1 /2
Prly < ug] > (1 - \/>e_“i/2>
up Vo
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C.2. Properties of TruncHigh, . for sufficiently large 7 (Proof of Proposition 13)

We recall Proposition 13.
Proposition 13 For any k > 1 and d > 2, fix some a > 1 and p > ||Lowy[f]||, and let

Ti=p (46 In(3k) + d <a pr”2>)d/2. (1)

Then, (i) |Lowg[TruncHigh, - [f]]lle < 2, and (ii) || TruncHigh, . [f] — fll1 < 2p.

Proof of Proposition 13, part (i). We first bound the low-degree Hermite coefficients of
TruncHigh, , (f). Fix some J with |J| < d. Then

Tnﬁc?igicﬁmm\ < [Highy[f](J)| [Highy[)() 1 {|Lowa[f)(x)| > 7} H; (x)]]

vl
< = High (1], /BT {[EowalfIGx) > o[} 2, (7

\ﬁ 1£1l5 Pr [Lowal f](x) > 7]/* || H,l,

d T 2/d d/2
< 7 [[f1l5 exp (_86 (|L0Wd[f]||2> ) 3

d (T\*¢
< | fllyexp <_86 (p> ) 34/2,

The first inequality follows from the linearity of the Hermite expansion and a triangle inequality.
The second follows by Cauchy-Schwarz and the definition of High;(f). The third follows from
|Highy[f]ll5 < ||f|l, and another application of Cauchy-Schwarz. The fourth uses Fact 25 and
Fact 26 (note that (1) gives 7/||Lowa[f]||, > e?, so Fact 26 can indeed be applied).

Now we consider the full Hermite expansion of Low,(TruncHigh, . (f)) and plug in 7 to
retrieve the claim:

I 2/d
| Lowq[TruncHighy , [f]]|2 = 3 TruncHighy, [f(/)2 < k|| £I13 exp (—d (7) )3d
7 JI<d ’ de Xp

2 2 9
< (3K) || £)1? exp (—dln(Sk) —In (“y”z)> _ %.

In the first inequality, we used the fact that the number of k-dimensional multi-indices J with
|J| < dis at most k¢ for d > 2. [ |

Proof of Proposition 13, part (ii). We have
| TruncHighy,, [f] — f||, < || — Highg[f]ll; + |[Highy[f]1 {|[Lowa[f]| > 7}[l,
< [Lowal ][I, + [|Highg[f]ll, | /Pr[[Lowal ]| > 7]
< [Lowalf)l; + 1l /Pr[Lowalf]| > 7]

< |[Lowalf]ll; + [1fllo Pr [|Lowalf]| > 7]/*,

25



HSU SANFORD SERVEDIO VLATAKIS-GKARAGKOUNIS

where the first inequality is by the triangle inequality and the definition of TruncHigh, ., the second
is Cauchy-Schwarz, and the third is monotonicity of norms and ||High,[f]||, < [/ f]|,- We once
again use Fact 26 and 7 to obtain

d 8
|| TruncHighy , [f] = ||, < p+ | fllyexp <—§ <4elog(3k) + glog (L H[J;H?)))

C.3. Proof of exponential decay of 7; for Lemma 10
Fact 30 For any fixed i > 1 and

, /2
ILowalfoll, 8c. (4| fiy],
= ———————= | 4deIn(3k —1 — <
= g\ ORI s L

from (), if || fi-1lloo < 3. then 7; < 57 for a = |Lowg[folll5?%° (721n k)¥/2. In addition, T >
[[Lowal folll,.

Proof. We first consider the case where ¢ = 1. A sufficiently large choice of k yields the following:

3e 1 d/2
71 = ||Lowqa[fo]ll5 <4e In3k + 8eln4 + "l In (|L0Wd[f0]||>) [l foll, = 1]
2
1000 "
< ||Lowg[ folll5 (111nkz+ 61/125d> [4eln3k +8eln4 < 11lnk; Inz < z]
[Lowalfolll
19 d/2
< ||Lowg[ folll5 ( /1554 In k) Vo > 1, 111Ink + 1000ex < 12z In k]
[Lowa[fo]ll,

(6%
= ILowalfoll3** (121 k)2 < .

Observe that 71 > ||Low[fo]||, for sufficiently large &, because the base of the exponent will always
be at least 1.
For fixed ¢ > 2, we prove 7; < _%; by bounding 7-. Using the assumption that || f;_1[|, <

I fim1lloo < 5

. d/2
n 1 (4eIn(3k) + 3 (4 | fi_y]l,) — In||Towalfoll, |/
7 40-Dd \ deln(3k) + 52 In(44 || fol|,) — In|[Lowa[fo] |l
1 [IndG+Dd\Y2 i N2 1
< < - < < — .
— 4(i-1)d ( In 49 ) — <1611> — 4id/2 — 9i—1 u

C.4. Proof of convergence of f;’s in Lemma 10

The proof of Lemma 10 constructs a sequence of functions fy, f1,--- € L?(N(0,I})) with the
following properties for any a, b, and ¢ having b > 4 and ¢ < 2:

1. For all i, Hfi—&-l — lel S %

26



NEAR-OPTIMAL SQ LOWER BOUNDS FOR AGNOSTICALLY LEARNING INTERSECTIONS OF HALFSPACES

2. For all i,

3. Timysee [Lowa( /)|, = 0.

We now prove that such a sequence has a limit in L?(N(0, I,)) with the desired properties, as given
in the following proposition.

Proposition 31 For the sequence described above, there exists some f* € L*(N(0, I},)) such that
Lowa(f*) =0, lf*|loe < ¢ and || f* = fill, < 3¢ for all .

Towards the proof of Proposition 31, we first show that properties (1) and (2) imply an additional
property about L? distances between iterates.

Lemma 32 Forall i,

firr — filly < /2.
2 b

Proof. By the triangle inequality we have || fi11 — fi|| o < 2c, and from this the bound is immediate
from Holder’s inequality:

| fis1 = filly < \/Hfi+1 — filloo I fix1 = fill; < \/ 2¢ %' u

The following is immediate from Lemma 32 and the fact that L?(A/(0, I;.)) is complete (because
it is a Hilbert space).

Corollary 33 The sequence fo, f1,... is a Cauchy sequence in L*(N(0,1;)) and converges to
some f* € L2(N(0, I;)).

Before completing the proof of Proposition 31, we recall the following topological fact
concerning functional spaces L? and L.

Lemma 34 For any probability measure 11 on RF and any o > 0,
In:={fe€ L) |Ifll < o} is a closed set in L% ().

Proof. Consider any functional sequence (f;,)nen in I, such that f, — fin L?(u) as n — oo. It
is clear that the limit f belongs to L?(u) since L?(1) is, by itself, closed. Thus, it suffices to prove
that Pry, [|f(z)] < a] = 1. Fixanye > 0andn € N.

2o [Ifx)] > a+e] =Pr{|f(x)| >a+e A [fulx)] < o]
< Pr{f(x) = fu(x)| > €]

1

< —

2
[ 156~ suoPante) = U=foll

The final step follows from Chebyshev’s inequality. By assumption, we have ||f — f,]l2 — 0 as
n — oo. For every € > 0, we have Pr [|f(x)| > o +¢] = 0. Hence, || f|loc <aand f € [,. N

Lemma 35 f* satisfies the properties given in Proposition 31.
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Proof. Let B; = {g € L*(N(0,1)) : |lg— fill, < 2\/2;-6} be the closed set containing all
functions in a small L2-ball around the i-th iterate. Note that Biy1 C B for all ¢ > 0 and that
>0 Bi = {f*}. We prove each property of Proposition 31.

1. Suppose that || Low,(f*)||, > € for any fixed e > 0. For any sufficiently large 4,

€ €

177 = filla 2 [ILowa(f") — Lowa(fi) 5 = [ILowa(f")ll; — [Lowa(fi)ll; 2 € = 5 = 5.

This would mean that exists some ' such that || f* — fy[|, > 2,/ %, but then f* would lie
outside B;s, which is a contradiction.

2. LetI = {g € L*(N(0,I})) : |9l < c}. By Lemma 34 (with o = N(0, I)), I is closed in
L?(N(0,1})) and fy, f1,. .. is a sequence in I with limit f* € L?(N(0, I})), we must have
that f* € I as well. Thus, || f*[|,, < ¢

3. Fix any 7 > 0. Choose some i’ > 4 such that b > 182%. Because f* € By, it follows that

[ = 7l < i = £l < 20/% < 22 Thus,

: _1 2a 2a

* - 1

Appendix D. Supporting proof for Section 4
D.1. Existence of a hard-to-weak-learn intersection of halfspaces (Proof of Corollary 16)

Corollary 16 For sufficiently large n, for all ¢ > m, there is a distribution D over intersections
of ¢'°' halfspaces such that for a target function f ~ D, any MQ algorithm A making at most q

queries to f has expected error at least O(\l/ogq (where the expectation is over f ~ D and any

internal randomness of A, and the the accuracy is with respect to N'(0, I,)).

Proof. In the proof of Lemma 15, D,¢tua is a distribution which is supported on intersections of
finitely many halfspaces. In more detail, for A = ¢'°°In 2 and some M > A (the exact value is not
important for our purposes), a draw of f ~ D,y is defined in the proof of Theorem 2 of De and
Servedio (2021) to be an intersection of H¢ < M halfspaces from a fixed collection {h1,...,h},
where each halfspace h; is independently included in the intersection with probability ﬁ Note that
the expected number of halfspaces included in f is E [H¢| = A.

We define D to be the conditional distribution of D,ctyua1 conditioned on f ~ Dyetyal being an
intersection of at most ¢'°! halfspaces By Markov’s inequality, we have that H¢ < ¢'%' In2 < ¢!
with probability at least 1 — 5 We bound the expected accuracy of the class1fer h returned by A for
random f ~ D by comparing it to the expected error of a random f ~ Dyctyal:

fwg,r;‘\,x [h(X) 7é f(x>] = fNDaELhA,X [h(X) 7£ f(X) ’ Hf < qul}
B f~Da£fal,A,x[ (x) # f(x), Hy < q""']
% g an MO F IO = > ]

S 1 O(logqg) 1 S 1 O(loggq)
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O(log g

where in the last line we used that % =~ ) (with room to spare) since g > m. |

Appendix E. Supporting lemmas and proofs for Section 5

In what follows we describe our approach to strengthen the SQ lower bounds from Section 4; the
lower bounds from Section 3 can be similarly strengthened in an entirely analogous fashion. Recall
the intersection k + 1 halfspaces over R™*! obtained by taking the intersection of

* the k halfspaces identified in Lemma 17 over R™*; and

* an origin-centered halfspace orthogonal to the (m + 1)-st coordinate basis vector.

This intersection of k+1 halfspaces f : R™*1 — {—1,1} can be written as f(z1, ..., Tmi1) =
fi(z1, ..., zm) A fo(me1), where f1 : R™ — {—1, 1} is the intersection of k halfspaces given in
Lemma 17, fo : R — {—1, 1} is the sign(-) function which outputs 1 on an input z iff z > 0, and
the “A” of two values from {—1,1} is 1 iff both of them are 1.

The following lemma gives a lower bound on the approximate degree of f in terms of the
approximate degrees of f; and fo.

Lemma 36 Let z; and zo be independent random variables in R™ and R™2, respectively. Fix any
e > 0and g;: R" — {—1,1} for i € {1,2} with ¢ := min{Pr,, [g1(z1) = 1], Pry,[g2(z2) =
1]} > 0. Then the function g: R™*"2 — {—1 1} defined by g(z1,22) := g1(21) A g2(22) has
L' (ce)-approximate degree at least max{dy, da} (with respect to the joint distribution of (z1,z3)),
where d; is the L' e-approximate degree of g; (with respect to the marginal distribution of z;).

Proof. Assume without loss of generality that d; > ds. For a {—1, 1}-valued function h, let b’ =
BEL (so B’ is the {0, 1}-valued version of h). We observe that ¢ = min{E,, [¢](z1)], E4, [g5(22)]},
and that d; is the L' (¢/2)-approximate degree of g!.

Let d be the L' (ce/2)-approximate degree of ¢’, and let p’ be a degree-d polynomial over
R™ "2 satisfying E,, 4,[|9'(21,22) — p'(z1,22)|] < ce/2. For this polynomial p,

min Eleg'(zl,zQ) —p/(zl,ZQ)H <Ez 2 [|g’(z17zg) —p’(zl,zQ” .
z2€R™2:g (22)=1
Ezl,zz Hgl(zla Z2) - p/(zh Z2)H

€
< —.
c 2

So there exists zo € R™2 such that

DO

B [|9' (21, 22) — 1/ (21, 22)|] = Ea, [|91(21) — P/ (21, 22)|] <
Letting p = 2p’ — 1, since g = 2¢' — 1, there exists 2o € R™2 such that

By [l9(21, 22) — p(z1, 22)|] = 2By, [| 91 (21) — P (21, 22)|] < €.

Since p(-, 22) is a polynomial over R™* of degree at most d, it follows that the L! (¢/2)-approximate
degree of g} is at most d. Hence d > d; = max{dy,ds}. Since the L' (ce/2)-approximate degree
of ¢ (which is d) is the same as the L' (ce)-approximate degree of g, the lemma is proved. |

By Lemma 17, the L' £-approximate degree of f; is at least Q(log(k)/ log log k), and hence so
isits L' (4¢)-approximate degree (for ¢ < 1/8). A lower bound on the L' (4¢)-approximate degree
of fs is given by the following result of Ganzburg (2002).
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Lemma 37 For any € > 0, the L' e-approximate degree of the sign(-) function is Q(1/€?).

Lemma 37 (presented as Corollary B.1 of Diakonikolas et al. (2021b)) is a direct consequence
of Theorem 1 of Ganzburg (2002) and Theorem 4 of Vaaler (1985).

We are now almost ready to apply Lemma 36 to our intersection of k + 1 halfspaces obtained
via fi (from Lemma 17) and f5 (the sign function). We just need to ensure that each of f; and fo
takes value +1 with sufficient probability. First, observe that f1 satisfies Prynr(0,7,,)[f1(%) = 1] >
1/4, since otherwise the 1/2-approximate degree of f would be zero, as witnessed by the constant
—1 function. Moreover, Pry r0,1)[f2(x) = 1] = 1/2 by symmetry of A/(0,1). So, we have
established that both f; and f, take value +1 with probability at least 1/4, and that also they have
(4¢)-approximate degrees Q(log(k)/loglog k) and Q(1/€?), respectively. Therefore, Lemma 36
implies a lower bound on the L' e-approximate degree of f, as stated in the following lemma.

Lemma 38 For any k = 20n™*) and any € > 0, there is an intersection of k + 1 halfspaces

f:R™H 5 111} with L' e-approximate degree Q(log)fgogk + 6%) where m = O(n%49),

Lemma 38 and Lemma 6 together imply Theorem 18.

Theorem 18 (Formal version of Theorem 1) For any k = 200”*%) and any € > n~¢ for a
suitably small absolute constant ¢ > 0, any SQ algorithm that agnostically learns intersections of

. . . . Q@1 .
k halfspaces to excess error € under Gaussian marginals requires either 2™ ) queries or at least
2
one query of tolerance n~—(108(k)/loglogk+1/¢%)
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