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Abstract

The indexing algorithms for the high-dimensional

nearest neighbor search (NNS) with the best

worst-case guarantees are based on the random-

ized Locality Sensitive Hashing (LSH), and its

derivatives. In practice, many heuristic ap-

proaches exist to "learn" the best indexing method

in order to speed-up NNS, crucially adapting to

the structure of the given dataset. Oftentimes,

these heuristics outperform the LSH-based al-

gorithms on real datasets, but, almost always,

come at the cost of losing the guarantees of either

correctness or robust performance on adversar-

ial queries, or apply to datasets with an assumed

extra structure/model. In this paper, we design

an NNS algorithm for the Hamming space that

has worst-case guarantees essentially matching

that of theoretical algorithms, while optimizing

the hashing to the structure of the dataset (think

instance-optimal algorithms) for performance on

the minimum-performing query. We evaluate the

algorithm’s ability to optimize for a given dataset

both theoretically and practically. On the theo-

retical side, we exhibit a natural setting (dataset

model) where our algorithm is much better than

the standard theoretical one. On the practical side,

we run experiments that show that our algorithm

has a 1.8x and 2.1x better recall on the worst-

performing queries to the MNIST and ImageNet

datasets.

1. Introduction

In the nearest neighbor search (NNS) problem, we are to

preprocess a dataset of points P so that later, given a new

query point q, we can efficiently report the closest point

p⇤ 2 P to q. The problem is fundamental to many high-
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dimensional geometric tasks, and consequently to modern

data analysis, with applications from computer vision to in-

formation retrieval and others (Shakhnarovich et al., 2006).

See surveys (Wang et al., 2015; Andoni et al., 2018).

Depending on whether the algorithm has worst-case theoret-

ical guarantees, the indexing solutions for the NNS problem

are essentially split into two categories. The first category

of algorithms, with theoretical guarantees, are usually based

on randomized space partitions, namely Locality-Sensitive

Hashing (LSH), and its derivatives—conceptually similar to

the random dimension reduction (Johnson & Lindenstrauss,

1984). In order to provide a worst-case guarantee, one fo-

cuses on the c-approximate version, for some approximation

c > 1, where one has to report a point p 2 P at distance at

most cr as long as kq�p⇤k  r. For example, in the case of

the d-dimensional Hamming space H
d = {0, 1}d, the origi-

nal LSH paper (Har-Peled et al., 2012) gives an algorithm

with O(n⇢d) query time and O(n1+⇢ + nd) space where

⇢ = 1/c, which is optimal for LSH algorithms (O’Donnell

et al., 2014). Crucially, the algorithm guarantees that, if

there exists a point p⇤ at distance at most r, then the data

structure returns a point at distance at most cr with probabil-

ity at least, say, 90% over the randomness of the algorithm

(termed success probability).

Algorithms from the second category are based on the idea

of finding (learning) the best possible space partition (hash-

ing) for the given dataset, which, in practice, is usually

"nicer" than a worst-case one. For example, PCA trees use

partitions based on the Principal Component Analysis of the

dataset (Sproull, 1991; McNames, 2001; Verma et al., 2009;

Abdullah et al., 2014; Keivani & Sinha, 2018), although

many more methods exist; see survey (Wang et al., 2015)

for some of them as well as more recent (Dong et al., 2020).

While usually more efficient in practice, such algorithms

come at the cost of losing the worst-case guarantees. Most

often, the correctness is not guaranteed per query: there

are (adversarial) queries on which the data structure will

fail. Alternatively, the runtime may devolve into a (naïve)

linear scan. To address such issues, one approach has been

to prove guarantees assuming the dataset has extra structural

properties: e.g., that it has low doubling dimension, or that

it is generated according to a random model.

Bridging the gap between these two categories of algorithms
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has been recognized as a big open question in Massive Data

Analysis, see e.g. the National Research Council report

[Section 5] (NRC13, 2013) in the closely-related setting of

random dimension reduction. We summarize this challenge

as the following "instance optimality" question:

Challenge 1.1. Develop NNS algorithms that adapt opti-

mally to the input dataset, while retaining provable guaran-

tees for all, including adversarial, queries.

We address the above challenge in this paper. Before delving

into our specific results, we comment on two non-answers.

First, a recent line of research led to data-dependent hash-

ing algorithms that similarly have worst-case guarantees

(Andoni et al., 2014; Andoni & Razenshteyn, 2015; Andoni

et al., 2015), improving, for example, the original exponent

⇢ of (Har-Peled et al., 2012) to ⇢ = 1
2c�1 + o(1). While

this line of work shows that adapting to the dataset can im-

prove the performance for a worst-case dataset, it does not

seek to improve the performance further if the dataset is

"nice". Second, a straight-forward solution to the challenge

could be to run both a practical heuristic and a theoretically-

guaranteed algorithm (timing out the latter one if needed).

Such a solution however still does not seek to improve the

performance for all, especially adversarial, queries.1

We also note that it generally seems hard to adapt the heuris-

tic algorithms to have theoretical guarantees for all queries.

Most such algorithms learn the best partition, yielding a

deterministic index2—i.e., building a few indexes does not

help failed queries (in contrast to the LSH-based randomized

indexes). At the same time, it is known that the determin-

istic algorithms are unlikely to yield worst-case guarantees

(Panigrahy et al., 2010). In particular, it is usually possible

(and easy) to construct an adversarial query, by planting

it "on the other side" of the part containing its near neigh-

bor - guaranteeing failure. Hence, a solution for the above

challenge should involve randomized partitions (as LSH

does).

1.1. Our Results

We address Challenge 1.1 in the case of (approximate) NNS

problem under the Hamming space3, for which we design

an algorithm that adapts to the dataset’s potential struc-

ture, while maintaining the performance guarantees for all

queries. Our algorithm should be seen from the perspective

of instance optimal algorithms: an algorithm that is the best

1In particular, that would merely split the queries into two
classes: those on which the heuristic is successful with improved
performance, and those on which it is not and hence the perfor-
mance is that of a worst-case theoretical algorithm.

2While some use randomization, it is usually used to find the
optimal partition (e.g., via SGD), but not to randomize the partition
itself.

3See discussion of the Euclidean space in Appendix A.

possible, within a class of algorithms, for the given dataset.

Our algorithm directly optimizes the performance for all

possible queries, for the given fixed dataset. We obtain the

following properties (see Theorem 3.1 in Section 3):

1. Correctness: For any query q, the algorithm is guar-

anteed to return the c-approximate near neighbor with

success probability at least Ω(n�⇢) for some ⇢  1/c,
the exponent obtained by the optimal LSH (Har-Peled

et al., 2012; O’Donnell et al., 2014). (Probability is

over the randomness of the algorithm only.)

2. Performance: The query time is O(d2) and the space

is O(n), and the preprocessing time is O(n · poly(d)).
Note that, as is standard for LSH algorithms, we can

boost the success probability to, say, 90% by repeating

the algorithm for O(n⇢) times, obtaining the usual

tradeoff of O(n⇢ · poly(d)) query time and O(n1+⇢ +
nd) space overall (but for smaller ⇢).

3. Data-adaptive: The algorithm adapts to the input

dataset, and can obtain better success probability for

"nicer" datasets. In fact, under certain conditions,

the algorithm is "instance optimally" adaptive to the

dataset.

We now discuss the last claim of data-adaptivity. The ideal

goal would be to obtain an instance-optimal algorithm. Our

algorithm becomes instance-optimal (in a precise sense de-

scribed in the next section), if we are given optimal values

for certain parameters ⇢ during the construction. Alas, we

do not know how to compute these parameters efficiently

(and thus do not achieve instance optimality).

Instead, we evaluate the last claim by showing that our

algorithm achieves theoretical and practical improvements

over the only other NNS algorithms with similarly strong

guarantees for Hamming space (standard LSH indexes) for

a range of parameters. On the theoretical side, we formulate

a concrete model for the dataset, for which our algorithm

improves on the success probability for all queries. We

specifically consider the case where the dataset is a mixture

model: it is composed of several clusters, where each point

is generated iid. We note that our algorithm is not designed

specifically for this model; instead it is a natural theoretical

model for "nicer" datasets to evaluate improvement of an

algorithm. See Section 4 and Section D in supplemental

material.

On the practical side, we run experiments that show that our

algorithm has a 1.8x better recall on the worst-performing

queries to the MNIST dataset, and a 2.1x better recall on

the bottom tenth of queries to the ImageNet dataset. See

Section 5.
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1.2. Technical Description of our Algorithm

We now give an overview of our main algorithm and the

tools involved. Our algorithm is based on the LSH Forest

method (Bawa et al., 2005) for Hamming space, in which

the dataset is iteratively partitioned according to the value in

a coordinate, thereby progressing down the constructed tree.

In particular, beginning with the entire dataset in the root of

an LSH tree, in each node, we pick a random hash function

and use it to partition the dataset. The partitioning stops

once the dataset becomes of size  C for some constant C,

termed stopping condition. Otherwise, we recurse on each

new part (child of the current node in the tree).

The key new component of our algorithm is that, in each

node, we optimize for the best possible distribution over

hash functions, for the given dataset. In particular, in each

node, we solve an optimization to produce a distribution

⇡, over coordinates [d], that maximizes the probability of

success over all (worst) possible queries. Following this

optimization, we draw a coordinate from the optimized

distribution ⇡, hash the dataset on the resulting coordinate

(to produce two children corresponding to bits 0 and 1 at

that coordinate). We then recurse on each of the hashed

datasets (children) until the current dataset is less than a

fixed constant (stopping condition). The formal algorithm,

BUILDTREE, is described in Alg. 1.

The main technical challenge is to compute the optimal dis-

tribution ⇡, for which we use a two-player game to solve a

min-max problem. Note that this is a question of efficiency—

it is easy to compute the optimal ⇡ in exponential time (and

an instance optimal algorithm in general)—and hence our

goal is to do so in polynomial time. Specifically, our method

directly optimizes for robustness by computing solutions to

a min-max optimization. In particular, we seek the distri-

bution over hashes that maximizes the recall on the mini-

mum performing queries. What are the exact quantities we

want to optimize at a given node? Consider a distribution

⇡ 2 ∆[d] over hash functions, and a query/near neighbor

pair p, q 2 H
d. The true instance optimal, min-max, objec-

tive function at each node is the following:

Pr
Alg

[success] =

X

i2[d]

⇡i Pr
Alg

[success | hash coordinate i, bit qi] · {pi = qi}

which is a function of the success probability on the remain-

der of the dataset, Pr[success | hash coord. i, bit qi]. How-

ever, exactly computing the probability of success on the

remainder of the tree appears computationally intractable,

as one would need to have considered all possible subsets

of hashes (exponential in dimension). Instead, we approx-

imate the recursive probabilities by using a lower bound

on the probability of success in the remainder of the tree.

In fact, there’s already a natural candidate for such a lower

bound: the success probability of the standard LSH, which

hashes on uniformly-random coordinate(s). Hence, our op-

timization becomes as follows, where the maximum is over

distributions ⇡ 2 ∆[d], ni,pi
is the size of the dataset after

hashing on coordinate i, bit pi, and for a chosen parameter

⇢ 2 (0, 1), the optimization program we solve is:

max
⇡2∆[d]

min
p2P

q:kp�qkr

d
X

i=1

⇡in
�⇢
i,pi

{pi = qi} (1)

Notably, if we set ⇢ = ⇢i(q) for each i 2 [d], where

n
�⇢i(q)
i,pi

= Pr[success | hash coordinate i, bit pi], we ob-

tain exactly the instance optimal objective. We don’t know

the values of ⇢i’s but can use an upper bound instead:

⇢i  1/c. (In fact, one can compute directly an upper bound

using any data-independent distribution ⇡—e.g., even uni-

form distribution ⇡ sometimes yields better estimates than

1/c.)

We solve the min-max program from Eqn. (1) by finding

a Nash equilibrium in an equivalent two-player zero sum

game, in which the worst-performing queries are iteratively

presented to a "player" who learns hash functions to max-

imize the success probability on those queries. The main

question is under what circumstances can we find such a

Nash equilibrium efficiently? In the case of our hash/query

game, although there are exactly d hash functions available

to hash player, there are n
�

d
r

�

—potentially exponential in

d—many query/NN pairs available to the query player.

Nonetheless, it turns out we can approximately solve this

game efficiently, in n · poly(d) time! We use a repeated-

play dynamic from (Freund & Schapire, 1999) in which

the hash player performs the multiplicative weights update

and the query player chooses the query that minimizes their

loss on the hash distribution most recently played by the

hash player. Indeed, while the complexity of the game

is polynomial in the number of hash player strategies, it is

essentially independent of the number of possible queries, as

we have reduced the query player’s complexity contribution

to that of a single minimization (see details in Sec 3.1 and

Sec. B, Supplemental Material).

1.3. Other Related Work

This paper focuses on indexing NNS algorithms, which

can be contrasted to the sketching algorithms; see (Wang

et al., 2015). In the latter, the goal is to produce the small-

est possible sketch for each point in order to speed-up a

linear scan over the dataset (of sketches). Such solutions

have a query time (at least) linear in n, in contrast to the

indexing algorithms, which are sublinear, typically n⇢ for

⇢ < 1. Furthermore, one can often combine the two: use

the indexing NNS algorithm to filter out all but a smaller
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set of candidate points and then use (preprocessed) sketches

for faster distance evaluations on them (Wu et al., 2017;

Johnson et al., 2019).

We also note that there exist other practical NNS algorithm,

which do not directly fit into the "learning to hash" paradigm

alluded to before. For example, the algorithm from (Malkov

& Yashunin, 2018) builds a graph on the dataset, such that

a future query will perform a graph exploration to reach

the nearest neighbor. While very competitive in practice, it

again provides no guarantees. It remains a formidable chal-

lenge to derive theoretical guarantees for such algorithms.

2. Preliminaries

We label the dataset as P ⇢ {0, 1}d = H
d where |P | =

n. Formally, we solve the c-approximate near neighbor

problem, where, given a threshold r > 0, and approximation

c > 1, we need to build a data structure on P so that, given

a query q, we return a point p 2 P with kq � pk1  cr, as

long as there exists a point p⇤ with kq � p⇤k1  r. In that

case, for the given q, we call such a point p⇤ a near neighbor

of q, and p an approximate near neighbor.

Definition 2.1. For a given query q and a near neighbor

p⇤, we consider an LSH tree to be successful on that pair if

when the query algorithm halts on a node v, q and p⇤ are

both in the bucket at node v. The probability with which it

happens (over the randomness of the algorithm) is referred

to as success probability, denoted Pr[success].

Our algorithm builds a tree top-down, from a node to its

children partitioning the dataset according to the chosen

hash function. For a node v, we use P v ⇢ P to denote

the set of dataset points that reached the node v (have been

hashed to v according to the hash function of the ancestors of

v). We also call P v as the "bucket" at v, and let nv = |P v|.
Each (internal) node v has an associated hash function used

to partition P v , which is described by the coordinate i 2 [d]
by which we partition P v. In particular, P v

i,b indicates the

subset of datapoints in P v that have bit b at coordinate i. The

node v splits P v into P v
i,0 and P v

i,1. We let ni,v := |P v
i,qi

|.

Definition 2.2. A coordinate i 2 [d] is called ✏-balanced

for the dataset P v and 0  ✏  0.5 if:

max(|P v
i,0|, |P

v
i,1|) = (1� ✏)|P v|.

For the analysis that follows, we make the trivial assump-

tion that hashing is done without replacement (i.e. once a

coordinate i is used to hash, it is never used again in a tree

descendant).

Notation. For two vectors x, y 2 R
d, we denote their

element-wise product by x� y 2 R
d. We denote the trans-

pose of a vector x by x0. For a vector x, we denote its i-th

coordinate by x(i) or xi. Let ei be the i-th standard basis

vector.

3. Main Algorithm

We now present and analyze our LSH forest algorithm with

hash functions adapting to the given dataset. We then show

that our algorithm (1) is correct, and (2) has worst-case per-

formance guarantees. We show our algorithm has improved

performance in experiments in Section 5 and Section F, and

on "nice" datasets in Section 4 and Section D (Supplemental

Material).

We present our pre-processing algorithm in Alg. 1. The

algorithm is an LSH forest algorithm, where, beginning

with the entire dataset at the root, we construct the tree by

performing a min-max optimization at the current node to

compute the best distribution over hashes, picking a random

hash function from this optimized distribution, and recursing

on the hashed datasets until the datasets are of constant size.

The main component of the algorithm is to compute the

optimal distribution for the given node, described in Alg. 3.

Specifically, for this goal, we setup a min-max optimization,

Eqn. (1), which we solve efficiently by iterating a two-player

zero sum game (see Section 3.1).

Our main correctness and worst-case performance guaran-

tee is in the following theorem. We remark that the main

algorithm requires an input parameter ⇢, which we discuss,

along with an interpretation of the probability guarantee, in

Section 3.2.

Theorem 3.1 (Correctness and Runtime). Fix stopping

condition C � 1 to be a constant, and query algorithm

parameter m > 1. Suppose there exists a ⇢ 2 (0, 1),
such that for any node v, there is a distribution ⇡v over

hash functions such that for any query/near neighbor pair

q, p⇤ 2 H
d, both hashing into node v, such that fewer

than 1
m fraction of the bucket P v are approximate near

neighbors of q, Ei⇠⇡v
[ {p⇤i = qi} · f�⇢

i,p⇤

i ,v
] � 1 where

fi,p⇤

i ,v
= |P v

i,p⇤

i
|/|P v|. Then, using ⇢ as the exponent pa-

rameter, Algorithm 1 constructs a tree that satisfies:

Pr
Alg

[success on q, p⇤] � n�⇢ � 2✏d,

where ✏ > 0 is the input parameter. Furthermore, ⇢  �/c
for � = 1

1�1/m .

The pre-processing time to construct a single tree as in

Algorithm 1 is O
⇣

1
✏2
nd2 ln2 d

⌘

, and the resulting query

time by Algorithm 2 is O
�

md2
�

.

3.1. Min-Max Optimization Analysis

To solve the min-max optimization, Eqn. (1), efficiently,

we iterate a two-player zero-sum game (Def. 3.8). In this



Learning to Hash Robustly, Guaranteed

Algorithm 1 Build Tree

1: Input: dataset P v, exponent parameter ⇢, stopping

condition C, approximation ✏

2: create an empty node v
3: set v.dataset = P v

4: if |P v| > C then

5: set ⇡v = MinMaxOpt(P v, ⇢, ✏) { ⇡v 2 ∆[d] }

6: draw i ⇠ ⇡v

7: set v.coordinate = i
8: set v.left_child = BuildTree(P v

i,0, ⇢,C, ✏)

9: set v.right_child = BuildTree(P v
i,1, ⇢,C, ✏)

10: end if

11: Return v

Algorithm 2 QueryTree

1: Input: query q 2 H
d, node v, query algorithm parame-

ter m, stopping condition C
2: P v = v.dataset

3: Select m uniform random points from the current

bucket.

4: If one of these points is an approximate near neighbor,

then return it.

5: Otherwise,

6: if |P v| > C then

7: if q(v.coordinate) = 0 then

8: Return QueryTree(q,v.left_child, m, C)

9: else

10: Return QueryTree(q,v.right_child, m, C)

11: end if

12: else

13: if approximate near neighbor is in dataset then

14: Return approximate near neighbor

15: else

16: Return Ø

17: end if

18: end if

Algorithm 3 Min-Max Optimization

1: Input: node v, query parameter ⇢, query parameter m,

approximation ✏

2: initialize weights/distribution ⇡0 = w0 = d ·
1
d

3: T = 10 ln d
✏2

4: � = 1�
q

ln d
T

5: for t = 1, ..., T do

6: yt = argminy
�

⇡0
t�1A

⇢
vy
�

{query player minimiza-

tion}

7: wt+1 = wt � �`⇢,v(⇡t�1,yt) {hash player update}

8: ⇡t =
wtPd

i=1 wt(d)
{normalize weights}

9: end for

10: Return ⇡T

game, the "hash" player selects a distribution over coordi-

nates to hash the dataset on, and the "query" player selects a

query/nearest neighbor pair adversarially for the least proba-

bility of success at the end of the tree. Using this method, we

can find an approximate solution to the min-max program

in the following runtime.

Theorem 3.2 (Solving the Min Max Optimization). For any

desired ✏ > 0, there exists an algorithm (Algorithm 3) that

solves the min-max optimization in Eqn. (1) for the node v,

up to an additive approximation ✏ > 0 in O( 1
✏2
nvd ln

2 d)
time.

The algorithm we describe for this problem exploits results

for two-player games. To understand the theorem, we intro-

duce some relevant notions from game theory.

Definition 3.3. A (simultaneous) two-player game is when

two actors (players) are each able to play a weighted mix-

ture of actions (as in Definition 3.4), without knowledge of

the other players mixture, where each action incurs a re-

ward that is a function of the mixtures of both players. The

game is characterized by two reward matrices R,C (one for

each player) whose entries are indexed by pairs of single

actions. The reward for each player is a function of these

matrices (as in Definition 3.5). This game is called iterated

if the game is repeated in sequential rounds.

Definition 3.4. Suppose a player in a two-player game has

N actions available to them. One such action is called a

pure strategy, and is represented by a standard basis vector

ei for i 2 [N ]. Further, a mixed strategy s 2 [0, 1]N is a

convex combination of these pure strategies.

Definition 3.5. Suppose the first player plays a mixed strat-

egy x 2 [0, 1]N , and the second player plays a mixed strat-

egy y 2 [0, 1]M . The reward or payoff for the first player

(whose reward matrix is R) is x0Ry, and for the second

player (whose reward matrix is C) it is x0Cy. We call the

first player, whose strategy left-multiplies their reward ma-

trix, the row player, while the second player, whose strategy

right-multiplies their reward matrix, is the column player.

Definition 3.6. (Daskalakis, 2011) Consider a two player

game where the row player has N possible pure strategies,

and the column player has M possible pure strategies. Sup-

pose that the row player has reward matrix R 2 R
N⇥M ,

and the column player has reward matrix C 2 R
N⇥M . (A

two player game is called zero-sum when R = �C). Then,

a pair of mixed strategies (x0, y0) for x0 2 R
N , y0 2 R

M

is considered an ✏-approximate Nash equilibrium if and

only if the following two conditions hold:

1. x0
0Ry0 � maxx x

0Ry0 � ✏,

2. x0
0Cy0 � maxy x

0
0Cy � ✏,

where x, y are taken from the convex hull of available strate-

gies to each player.
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Definition 3.7. Suppose we are performing min-max op-

timization at node v in an LSH tree with a given expo-

nent ⇢. We define the matrix A⇢
v to be the payoff ma-

trix for that node. The entries of this matrix A⇢
ij,v cor-

respond to a query/near-neighbor pair (q, p⇤) (indexed j)

and dimension i. These entries in particular are: A⇢
ij,v :=

|P v
i,qi

|�⇢ · {qi = p⇤i }. Note that this matrix is exponentially

large, and so is never written explicitly.

Definition 3.8. The hash/query zero sum game is a two-

player zero sum game at a given node v with exponent ⇢.

In this game, the hash player has reward matrix R = A⇢
v

and the query player has reward matrix C = �A⇢
v. In this

case, the hash player has N = d possible pure strategies

(coordinates to hash on), while the query player has M =
n
�

d
r

�

many pure strategies, as this is the number of possible

query/near-neighbor pairs.

For our problem, the hash and query players iterate the

above two-player zero-sum game. By the celebrated min-

max theorem of Nash, there exists a pair of mixed strategies

for the hash and query players (i.e. distributions over pure

strategies) in the aforementioned game for which no player

can improve their reward by deviating from them (a Nash

equilibrium) (Nash, 1950) . To reach this equilibrium, the

hash player selects strategies according to the multiplica-

tive weights update rule with the subsequently defined loss

function.

Definition 3.9. Suppose a player in some game has avail-

able to them N pure strategies. Fix some parameter

� 2 (0, 1). The multiplicative weights update (MWU)

method is a method for choosing a mixed strategy over

these N possible actions so as to minimize one’s loss on a

sequence of loss vectors. In particular, suppose a player

suffers a sequence of losses `s(x) for s = 1, ..., T . Let

⇡s be their distribution over strategies at round s. For the

MWU update rule, the player initializes a set of weights

to wi,1 = 1
N for all i 2 [N ] at round 1. In subsequent

rounds t > 1, the player updates these weights accord-

ing to wi,t+1 = wi,t � �M�Rt(i). Ultimately, the proba-

bility of sampling the strategy with index i at round t is

⇡s(i) =
wi,tP

j2[N] wj,t
.

Definition 3.10. For node v in the LSH tree, ⇢ 2 (0, 1),
distribution ⇡ 2 ∆[d], query/NN pair y = (q, p⇤) indexed

by j, and i 2 [d], the loss vector for the hash player in a

round of game 3.8, `⇢,v(⇡, y) 2 [0, 1]d, has entries:

`⇢,v(⇡, y)i = 1�A⇢
ij,v

Recall that the query player selects the single query/NN

pair with the least probability of success on the most recent

hash distribution. This can be thought of as an example of

the so-called "Follow-the-Leader" (FTL) strategy selection

(see (Kalai & Vempala, 2005)). Notably, although FTL

strategies on their own do not guarantee convergence to a

Nash equilibrium, the query player may implement FTL (as

in Definition 3.11) to achieve convergence, exactly because

the hash player uses MWU.

Definition 3.11. Let the payoff matrix be A⇢
v, Q the set of

possible query/near-neighbor pairs y, and `
q
t (y) the loss

functions at round t of the game. The following equation

is defined as the query player minimization (which is an

instance of a best-response oracle):

argmax
y

`
q
t (y) = argmin

y
⇡0
tA

⇢
vy

Theorem 3.12 ((Freund & Schapire, 1999)). Consider the

the hash/query zero sum game (3.8). Suppose the hash

player uses MWU to select strategies with losses as in

Definition 3.10. Suppose the query player plays its best-

response as in the query player minimization (Definition

3.11). Let M = n
�

d
r

�

be the total number of possible

query/NN pairs to the given dataset (recall this is super-

polynomial in dimension). Suppose T rounds of this iter-

ated game have been executed, and let x1, ..., xT 2 [0, 1]d

and y1, ..., yT 2 {ei}
M
i=1 be the mixed row (hash) and pure

column (query) player strategies from these rounds, respec-

tively. Then, for a universal constant K > 0, the pair of

strategies
⇣

1
T

PT
t=1 xt,

1
T

PT
t=1 yt

⌘

for the hash and query

players, respectively, is a K
p
ln dp
T

-approximate solution to

max⇡ miny ⇡
0A⇢y (and Nash equilibrium in game 3.8).

Theorem 3.2 follows from this theorem, and that the query

player minimization can be solved in time O(nvd ln d)
(Alg. 4, Supplemental Material).

3.2. Discussion of the Success Probability Guarantee

For any query/near neighbor pair q, p⇤ 2 H
d,

Theorem 3.1 requires a parameter ⇢ that satisfies:

Ei⇠⇡t
[ {p⇤i = qi} · f

�⇢
i,p⇤,v] � 1 for all nodes v in the tree

that contain q, p⇤ (with fewer than 1
m approximate near

neighbors of q), in which case we can lower bound their

success probability by n�⇢. The second inequality in the

theorem states that this ⇢ can always upper bounded by

�/c ⇡ 1/c (the upper bound for theoretical LSH). A prac-

ticioner may interpret this exponent in the following way:

provided that your parameter choice ⇢ is an upper bound

for the least possible ⇢ such that this condition (3.2) holds,

then you are guaranteed n�⇢ performance. Further, as the

practicioner also may choose c (as in the (c, r)-ANN prob-

lem), they may tune this ⇢ aggressively to achieve maximal

improvement, and then set c = 1
⇢

to obtain worst-case guar-

antees.

We highlight an important note regarding the dimensions

dependence of the algorithm that appears in Section A of

the Supplement. Crucially, although in the worst-case we
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require Ω( ln d
✏2

) rounds to solve the main min-max game, we

can halt the optimization with a data-dependent approxima-

tion guarantee.

4. Improvement on Datasets Generated from

a Mixture Model

We now describe a data model in which our algorithm prov-

ably performs much better than the standard, optimal LSH

(Har-Peled et al., 2012; O’Donnell et al., 2014). Note this

is the only other implementable algorithm for NNS in Ham-

ming space with worst-case guarantees. In particular, recall

that the LSH from (Har-Peled et al., 2012) simply sam-

ples coordinates at random (which would correspond to the

LSH Forest with a uniform distribution ⇡ in each node). To

simplify the analysis, we assume the data are in the high-

dimensional limit — specifically where d � ln(n), with

n � d (e.g. n = poly(d)), and d ! 1.

We consider a mixture model, where each component has

independently chosen (heterogeneous) coordinates. Specif-

ically, consider a dataset P where each point x 2 P is

generated randomly such that each coordinate i 2 [d] is

drawn independently according to xi ⇠ Bernoulli(✏i), for

some fixed ✏i 2 (0, 1). This model has been studied before,

e.g., in (Dubiner, 2012) (but, for random queries, not worst-

case like we do here). There are settings of the ✏i’s where

the uniform distribution is still optimal for the independent

Bernoulli above (e.g. ✏i = 1/2 for all i 2 [d]).

To maximally simplify the model, we consider the case

where the coordinates [d] can be partitioned into two sets

S1, S2 ⇢ [d] that are ✏i-balanced, for 0 < ✏1 < ✏2  1
2

respectively. In particular, pj ⇠ Bernoulli(✏i), if j 2 Si,

for each p 2 P . Further, we assume the cardinalities of

these sets satisfy |Si| � k, where k is the number of hashes

chosen by the algorithm (tree depth). Note that although we

analyze the case of two such sets, the argument generalizes

to many sets (at least a constant number of sets with respect

to dimension). The sizes of these sets change as hashing is

performed, so we denote these sets relative to a node v in

the LSH tree by Sv
i .

Finally, our model is defined simply as a mixture of two

clusters each from (essentially) a heterogeneous-coordinates

distribution as above. In particular, the second cluster is ob-

tained by planting a point pa = 0d and
p
d points next

to the point pa. These points are generated i.i.d. at dis-

tance r + 1 from pa, where the coordinates on which they

each differ from pa are all in S1. Note that in the high-

dimensional limit, these additional points will not affect

the balances of the coordinates for subsets larger than d
(as these planted points compose at most O(1/

p
d) ! 0

fraction of the bucket).

We show that, in such a model, our algorithm obtains im-

proved performance over uniform hashing: see informal

Theorem 4.1 below. The formal statements/proofs for stan-

dard LSH (Indyk & Motwani, 1998) in Theorem D.1 and for

LSH Forests (Bawa et al., 2005) in Theorem D.2. We note

that, interestingly, in the simpler setting of just one cluster,

uniform hashing remains essentially optimal (Theorem E.1).

Theorem 4.1 (Informal). In the above mixture model, trees

constructed and queried with Algorithms 1 and 2 obtains a

factor of Ω
⇣

exp(Ω(
p
ln d))

⌘

improvement on the minimum

query over LSH forests (Bawa et al., 2005) and standard

LSH (Indyk & Motwani, 1998) with exponent parameters

⇢ 2 (0.1, 1) and ⇢ 2 (0.2, 0.8), respectively, and query

parameter m = 0.

Our algorithm obtains improvement over uniform hashing

because the optimized distributions in this setting place

more weight on the more balanced coordinates (where the

Bernoulli parameter is closer to 1/2). By design, the worst-

case query in this data model is the query with bits flipped

on only the coordinates that differentiate the planted pa from

its approximate near neighbors. Therefore, placing more

weight on the balanced coordinates quickly separates points

in the "hard" cluster from the "easy" cluster, as compared to

uniform hashing.

5. Experiments

We demonstrate the practicality and performance of our al-

gorithm on the canonical ImageNet and MNIST datasets.

In this section, we display results for the first 750 images

of MNIST’s training dataset (Chris Burges, 2021), and on

the first 624 images of ImageNet’s 3x8x8 validation subset

(Deng et al., 2009). We performed additional experiments

on the entire MNIST dataset and a 100,000-point subset of

ImageNet’s training set, which can be found in section F. We

note that we expect the improvement to be more substantial

with larger datasets with a scaled-up algorithm. This is be-

cause LSH-type algorithms have success probability/query

time of the form n⇢, and our experiments already show that

our algorithm obtains an improved exponent ⇢. More specif-

ically, small experiments allowed for the minimum success

probability to be greater than 1
100 . In this case, only roughly

100 trees were needed to resolve this minimum.

For both MNIST and ImageNet, the dataset was binarized

using a threshold. In particular, all pixel values below a

threshold pixel value were set to 0, and the complement is

set to 1 (a threshold of 16 for ImageNet, and 1 for MNIST).

The implementation details can be found in Section G, Sup-

plemental Material. For the small subsets, we ran our al-

gorithm with radius r = 5 for ImageNet and MNIST. Two

additional parameters are listed for the experiments - the

number of rounds T the game was executed for, and the

base � 2 (0, 1) used for MWU.
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We compare trees generated by our algorithm to LSH forests

(uniformly sampling coordinates). The algorithms with best

(average-case) empirical performance on specific datasets

for nearest neighbor search have no guarantees (correctness,

or performance). Due to this, when measured with respect to

our property of interest – minimal success probability over

all queries – all such algorithms without theoretical guaran-

tees collapse, i.e., achieve 0 success probability on the worst

query. Our goal is different: we want the best algorithm

among those guaranteed to do well on all possible datasets

and queries. Therefore, we compare our algorithm only to

those that are both implementable and have guarantees for

the worst query. This is just uniform LSH.

To assess the performance of our algorithm in these settings,

for MNIST, we sample 100 points uniformly at distance

r = 10 from each point in the dataset. For ImageNet, we

sampled 2 points at distance r = 5 from each point, and

computed success probability similarly. We sample 110
trees for a range of parameters, and estimate the probability

of success for each query/NN pair by computing the fraction

of trees which co-locate the pair in their final bucket. In

these experiments, we do not sample pivots as in Algorithm

2 to more directly compare the quality of the optimized hash

functions to uniform ones.

The experiments show that our algorithm with certain param-

eters produces trees with a 1.8⇥ improvement over uniform

hash trees in the success probability for the minimum query

for MNIST (Table 2 and Figure 2), and 2.1⇥ improvement

for the bottom tenth percentile of queries to ImageNet (Table

1). These success probability improvements are accompa-

nied by large query time improvements for both datasets

(Table 3).

One might ask - what kinds of distributions will our opti-

mization produce in practice to obtain this improvement? To

answer this question, we show the distributions produced by

the min-max optimization in Algorithm 3 at the root of the

MNIST dataset for two settings of the exponent parameter ⇢

(see Figure 1). For MNIST, the distributions that produced

the greatest improvement over uniform hashing placed more

weight on pixels towards the center of the image (and signif-

icantly less weight in the corners). A factor that contributes

to this phenomenon is that coordinates closer to the center

of the image are much more balanced, and hence are favored

by the optimization.

Table 1. Success Probability on Random Queries to a subset of

ImageNet.

Parameters Bottom 10% Average

Uniform 0.275 0.621

⇢ = 1, T = 3000, � = 0.68 0.576 0.772

Table 2. Success Probability on Random Queries to a subset of

MNIST.

Parameters Minimum Average

Uniform 0.35 0.737

⇢ = 1, T = 3000, � = 0.68 0.6 0.877

⇢ = 0.83, T = 3000, � = 0.68 0.63 0.878

⇢ = 0.25, T = 1600, � = 0.88 0.42 0.834

⇢ = 0.1, T = 1600, � = 0.88 0.36 0.785

(a) Example MNIST Digits

(b) ρ =
5

6
, T = 3000, β = 0.68

(c) ρ =
1

4
, T = 1600,β = 0.88

Figure 1. Scaled and centered distributions produced by Algorithm

3 for the MNIST dataset (optimized for the entire dataset)
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Figure 2. Histogram of Recall for 75,000 Random Queries to

MNIST. Algorithm parameter settings ρ =
5

6
, T = 3000,

β = 0.68.

6. Discussion

Challenges for designing instance optimal NNS algo-

rithms. An ideal goal for data-aware NNS would be an

instance-optimal algorithm: one that achieves the best pos-

sible performance among all possible algorithms. To avoid

hard computational complexity issues, it is only reasonable

to ask for all possible algorithms from a restricted class of

algorithms C, for as large class C as possible.

We considered the class C of, essentially, (random) decisions

trees, where each node is a coordinate cut (in the Hamming

space). Our algorithms is instance optimal as long as the

algorithm knows the correct parameters ⇢ at each node.

It would be natural to try to extend the class C to include

other possible hashes (node decision functions), most no-

tably hyperplane cuts for the Euclidean space, and ball cuts

(for both Hamming and Euclidean spaces). Such hashes are

popular for practical and theoretical LSH algorithms.

There are some challenges in extending our algorithm to

the above settings. Specifically, while one can efficiently

extend the algorithm in this paper to other hash functions

and metrics, the runtime must depend polynomially either

on the number of possible hash functions or the number of

possible queries. Indeed, one can solve the two-player game

by implementing MWU strategy selection for the player

with polynomially many strategies (in the dataset size), and

FTL for the other player. Alas, both for hyperplane and ball

cuts the number of hash functions and queries are essentially

exponential in d. It may be possible to reduce the number

of hash functions/queries by making an assumption: e.g.,

consider ball cuts with centers at dataset points, or assume

queries come from a distribution.

Euclidean distance case. While we focus on Hamming

distance in this work, it is possible to extend our algorithm

to Euclidean space. In particular, it is a classic result that

one can embed Euclidean space `2 into `1 and hence Ham-

ming space, up to appoximation arbitrarily close to 1 (Figiel

et al., 1977). In particular, one can observe that the result-

ing algorithm would correspond to picking Θ(d) random

hyperplanes and then optimizing only with respect to them.

This can be seen as another approach to optimize over large

classes of hash functions: not optimize with respect all

hashes, but with respect to only Θ(d) (or perhaps poly(d))
randomly-chosen hashes. We leave this direction of explo-

ration for future research.

Pre-processing. Recall that the runtime for pre-

processing of our algorithm is n · poly(d) · 1
✏2

, where

✏ is the approximation factor in the min-max game. To

closely approximate the optimum success probability,

we need to set ✏ to be on the order of (ideally less

than) the optimum. Therefore, an equivalent runtime is

n · poly(d) · (Pr[success])�2 = n1+O(⇢) · poly(d).

We also note that, for our algorithm, one can tradeoff query

time improvement for faster pre-processing, without sacrific-

ing the worst-case guarantee. In particular, one can optimize

on any subset of nodes and hash uniformly otherwise (e.g.

only optimize on the final levels of the trees), while retaining

the lower bound in Theorem 3.1. We obtained improvement

over uniform hashing with this approach for datasets with

⇡ 105 points (see Section F).
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Supplement to "Learning to Hash Robustly,

with Guarantees"

Preface

We briefly outline the structure of the supplement. We high-

light the Further Discussion in Section A, which includes,

among other discussion points, the important note which

describes how to obtain an approximation guarantee for the

main min-max game that is specific to the given dataset.

In particular, a practitioner can halt the game in orders of

magnitude fewer iterations than the worst-case and retain

this optimization guarantee.

In Section B, we describe an algorithm for efficiently im-

plementing the query player minimization. In Section C,

we derive the main correctness and performance theorem.

In Section D, we describe a data model and prove for that

model that our algorithm can perform much better than uni-

form hash functions on the worst-case queries. In Section

E, we demonstrate that for LSH forests and a reasonable

LSH variant, the uniform distribution is optimal for a sin-

gle cluster with independent coordinates. In Section F, we

demonstrate the practicality and performance of our algo-

rithm with a variety of additional experiments. In Section

G, we include hardware details for our experiments and the

link to the code used to generate our empirical results.
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A. Further Discussion

Convergence of the min-max game. The number of

steps to convergence depends as 1/✏2 on the error ✏ to suc-

cess probability. As noted above, ✏ must be of the order

Pr[success] hence quite small, and it is normal to wonder

whether this step can be sped-up. As we discuss below, the

game can be stopped much earlier, in a data-aware way,

while retaining the theoretical guarantees.

Indeed, in our experiments, we used far fewer iterations than

are required by Theorem 3.2. We used 3000 iterations, while

the theoretical bound requires at least
64 ln(784)

✏2
� 42, 000

iterations to achieve a 0.1-approximation to the optimum.

How can we show that the distributions are converged with

much fewer iterations than the worst-case bound? In general,

how might a practitioner improve our algorithm’s polyno-

mial dependence on the dimension? In the proof of Theorem

3.12 from (Freund & Schapire, 1999), the proximity to a

Nash equilibrium is bounded by the regret of hash player

(where regret is defined below).

Definition A.1. Suppose a player in a two-player zero-sum

game has played a sequence of mixed strategies x1, ..., xT

up to time T , each of which has experienced some loss

according to the functions `s(x) for s 2 1, ..., T . Then, that

player’s regret is defined as follows.

Regret(x1, ..., xT ) :=

T
X

s=1

`s(xs)�min
x

T
X

s=1

`s(x) (2)

Therefore, a practitioner can simply halt the game when the

regret of the hash player is less than their desired approxi-

mation threshold.

We demonstrate this data-dependent bound for our exper-

imental setup. Consider the distribution at the root of a

700-point ImageNet subset for an experiment with ⇢ = 1,

T = 3000, and � = 0.4. For the hash player, we compute

the best distribution in hindsight by solving the following

linear program:

min
⇡

1

T

T
X

t=1

(1� Pr
⇡
[success on (pt, qt)]) (3)

= min
⇡

0

@1�
T
X

t=1

d
X

i=1

⇡i {pti = qi} · n
�⇢
i,t

1

A (4)

= 1�max
⇡

X

i

⇡i

 

X

t

{pti = qi} · n
�⇢
i,t

!

(5)

Where ⇡ is constrained to ∆[d].

Solving this program gives that the best distribution in hind-

sight had loss 0.99795, meaning that the optimal hash strat-

egy had success probability 0.00205. Meanwhile, the loss

incurred by the hash player is 0.99812. Therefore, the

query/hash strategies are within 0.000169 of the game’s

value, which in this case is within 10% of the optimal strat-

egy in 14⇥ fewer iterations than required in the worst-case!

Instance optimal algorithms with many queries and

hashes. It is still conceivable to design an efficient al-

gorithm for instance optimal hashing even when there are

exponentially many queries and hash functions. Intuitively,

say, from the perspective of the hash function distribution,

we do not actually need the optimal distribution—merely a

sample from it. In fact, if Karlin’s weak conjecture holds

(Karlin, 1962), namely that both players can use FTL to

achieve sublinear regret, then neither player must explicitly

consider all of their exponentially many strategies! There is

some hope that this conjecture is true (see (Abernethy et al.,

2021)).

Effect of the parameter ⇢ to the algorithm. Depending

on the exponent ⇢ chosen for the optimizations in the exper-

iments, the distributions returned by the min-max optimiza-

tion in Algorithm 3 could be qualitatively quite different. In

the experiment with exponent ⇢ = 5
6 (Figure 1), the distribu-

tion at the root placed a large amount of weight on the most

balanced bits. However, when the exponent was decreased

to ⇢ = 1
10 , the optimal distribution (roughly) uniformly

weighted many balanced and unbalanced bits.

We illustrate why the optimal distributions might be very

different depending on input ⇢ with the following exam-

ples. Suppose there are two groups of bits with balances

0.1,0.5, respectively, and with sizes 5r,r for queries at ra-

dius r. Then, the optimal distribution will have less weight

on the more balanced group, as the worst-case query with

have all r of the more balanced bits flipped. Suppose in-

stead that the two groups have balances 0,0.5, with sizes

r,100r, respectively. Then, the optimal distribution will

place no weight on the first, unbalanced group, as these bits

make no progress on hashing the dataset, while the second

group is sufficiently large that you can increase the weight

on that group without increasing the probability of failure

substantially.

Theorems D.1 and D.2 show large improvement over uni-

form hashing by exploiting the nice structure of the dataset

to isolate the cluster later down the tree. There we make an

assumption that the coordinates differentiating the cluster all

appear in the less-balanced group. We expect that, in prac-

tice, with sufficiently "diverse" data, a given dataset might

consist of many clusters whose differentiating coordinates

are spread across balances. (Note we still see theoretical

improvement in this case.) The function of these clusters

is really to introduce adversarial quality to the dataset so

that the current balances at the root (or a nearby descendant)

do not indicate the true difficulty of hashing on a particular
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coordinate. In this case, the worst-case queries are not those

with the most balanced coordinates flipped, but rather those

embedded in these adversarial clusters. In effect, the worst-

case analysis of the LSH tree is reduced to average-case

analysis (as the differentiating coordinates are likely spread

across a large spectrum of balances).

Recall that with the "correct" objective values our algorithm

is exactly instance-optimal. Given the discussion above, this

suggests that there might be a different choice of objective

values in our min-max game that more closely approximates

instance-optimality. In particular, rather than setting a single

exponent ⇢ for the entire algorithm, this parameter should

vary for each possible bucket, and should be tuned reflect

the difficulty of hashing uniformly on that bucket. In other

words, while our algorithm optimizes for the snapshot of a

dataset at a given node, an instance optimal algorithm must

be able to look ahead and use information about what the

buckets will look like in future nodes.

As we showed in section E, if the coordinate balances remain

constant throughout the hash tree (in which case the bucket

looks identical to the optimizer at every node), it may not be

possible to improve over uniform at all! Therefore, to guar-

antee improvement over uniform sampling, we need that the

balance profiles of the coordinates change throughout the

hash tree. This is likely what occurred in our experiments -

namely, which coordinates were balanced early in the tree

were distinct from (or independent of) which coordinates

were balanced later down the tree. To exploit this feature of

a dataset in practice, one may try to obtain a better lower

bound on the probability of success than merely n�⇢, for

⇢ from the uniform LSH—e.g., by setting up a convex pro-

gram and relaxing it. This is an interesting route for future

work.

B. Implementing Query Player Minimization

The implementation of the MWU strategy selection is fairly

self-explanatory, but how should we efficiently perform the

query player minimization? We now show that the query

player minimization is efficiently implementable and prove

the runtime of the entire pre-processing procedure.

Proof of Theorem 3.1 (Pre-processing Time). The query

player minimization (step 6 of Algorithm 3) can be

implemented exactly using Algorithm 4.

Suppose the current node is v, and the current bucket is of

size nv . By theorem 3.2, a single min-max optimization can

be solved in time O( 1
✏2
nvd ln

2 d). In a given layer of the

tree, each node contains a bucket that is disjoint from all

other buckets in that layer. Therefore, the total runtime for

the algorithm on a single layer of the tree is O( 1
✏2
nd ln2 d).

Further, there are at most d layers in the tree, as we hash

Algorithm 4 Query Player Minimization

1: Input: ⇡v , v, ⇢

2: Output: (min query)

3: {⇡v - distribution over coordinates for node v}

4: compute objective values n�⇢
i,b for i 2 [d] and b 2 {0, 1}

5: (min probability) = 1
6: (min query) = None

7: for j = 1, ..., nv do

8: set uj 2 R
d to the objective values for the given

datapoint.

9: compute sj = uj � ⇡v

10: sort sj , while tracking the positions of the original

coordinates

11: Set the top r values in the sorted list to 0 and sum the

remaining values (call this sum zj)

12: if zj < (min probability) then

13: set (min probability) = zj
14: set (min query) to the current datapoint j with the

top r coordinates flipped.

15: end if

16: end for

without replacement when we progress to the next layer.

This gives the pre-processing time in the theorem.

C. Proof of Theorem 3.1 (Success Probability)

We now prove the success probability guarantee as in Theo-

rem 3.1. Let � = 1
m for chosen tradeoff parameter m > 0.

In particular, suppose we are given a dataset with a datapoint

p⇤ and a query q with kp⇤ � qk1  r. Recall that we want

to guarantee that when the querying procedure terminates

(Algorithm 2), the probability that the pair of points collide

on the final bucket is at least n�⇢ � n� �
c , for ⇢ satisfying

Ei⇠⇡t
[ {p⇤i = qi} · f

�⇢
i,p⇤,v] � 1 on all nodes v in the LSH

tree (where fi,p⇤,v = |P v
i,p⇤ |/|P v|).

Proof. The proof is by induction over the size of the dataset.

Fix any query/NN pair q, p⇤ 2 H
d. For the base case assume

the size of the dataset is |P | = 1. Then, by assumption that

there is a near neighbor in the dataset, and as the stopping

condition is reached (1  C for all choices of C), the

probability of success is exactly 1.

We now prove the induction step of the claim. Consider the

tree of possible hashes from the given dataset, with each

child corresponding to a hash event. Note this is a d-ary tree.

Consider a dataset of size nv at some node v in the tree, with

some children that have additional optimizations performed

and perhaps some children that don’t. Suppose all children

have size ni,v < nv. If not, we re-direct this argument to

the child with ni,v = nv. If this child also has children
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of size nv, then we again focus on the grandchild node,

repeating this recursion until we reach a descendant node

with children all of size strictly less than nv. We can then

"unpeel" the argument to prove the inductive hypothesis for

the original node using the same calculation as below.

Assume for induction that the optimizations in the children

(one child for each i 2 [d]) produce a distribution that

has minimum probability of success greater than n�⇢
i,v for

all queries with ni,v < nv. The current node optimizes

assuming the children have probability of success {n�⇢
i,v }i.

We follow a similar approach to (Andoni et al., 2017) to

prove lower bounds with uniform hashing.

For the first inequality, recall by the theorem assump-

tion, there exists a distribution over hashes ⇡v such that

Ei⇠⇡v [ {p⇤i = qi} · f
�⇢
i,p⇤

i ,v
] � 1. Then, we have the follow-

ing by the induction hypothesis:

Pr[success] =
X

i

⇡v,i {p⇤i = qi} · Pr[success | P
v
i ]

(6)

�
X

i

⇡v,i {p⇤i = qi} · n
�⇢
i,v (7)

= n�⇢
v · Ei⇠⇡v [ {p⇤i = qi} · f

�⇢
i,p⇤

i ,v
] (8)

� n�⇢
v (9)

This completes the proof for the first guarantee of the

success probability.

To ensure the second inequality in the theorem holds

(namely ⇢  �
c ), we follow the strategy suggested in (An-

doni et al., 2017) to handle datasets with many approximate

near neighbors. In particular, we select points uniformly

at random at each node and compare these to our query,

halting the query procedure if an approximate near neighbor

is found. Suppose then for the node v in the LSH tree, the

current bucket P v has � �nv points at distance less than cr
from the query. Then, with constant probability, selecting

m = Θ( 1
�
) (as the algorithm parameter) random points in

the dataset will include one such near point. Note that this

is why the query time in Theorem 3.1 is md2, as a single

query comparison takes d time and there are at most O(md)
comparisons at query time. Now suppose to the contrary

that fewer than (1� �)nv points are at distance less than cr
from all queries.

For the second inequality in the theorem (⇢  �
c ), we note

for randomized hash function h with distribution ⇡ 2 ∆[d],

where we let ⇢0 = �
c :

Pr[success] = Pr
i⇠⇡

[success on P v
i,qi ] (10)

� Pr
i⇠⇡

[success on P v
i,qi , and p⇤i = qi] (11)

= Pr[success on P v
i,qi | p

⇤
i = qi] · Pr

⇡
[p⇤i = qi]

(12)

� E[n�⇢0

i,v ] · Pr
i⇠⇡

[p⇤i = qi], (13)

where the fourth step follows by the induction assumption.

If we choose h to be distributed uniformly, then applying

Jensen’s inequality we get:

Pr[success] �
✓

1� r

d

◆

· E[n�⇢0

i,v ] (14)

�
✓

1� r

d

◆

0

@

X

p2Pv

Pr[p⇤i = pi]

1

A

�⇢0

(15)

�
✓

1� r

d

◆✓

�nv

nv
+

(1� �)nv

nv
(1� cr

d
)

◆�⇢0

· n�⇢0
v

(16)

The third line is because we assume at most � fraction of

points are at distance at most cr, and at least 1� � fraction

are at distance at least cr. To complete the proof, we now

show the last formula is lower bounded by n�⇢0
v .

(1� r

d
)

✓

�nv

nv
+

(1� �)nv

nv
(1� cr

d
)

◆�⇢0

� 1

(17)

(=

✓

�nv

nv
+

(1� �)nv

nv
(1� cr

d
)

◆�⇢0

� 1

1� r
d

(18)

(= ⇢0 � ln(
1

1� r
d

) ln�1

 

1

� + (1� �)(1� cr
d )

!

(19)

(= ⇢0 � ln(
1

1� r
d

) ln�1

 

1

1� (1� �) crd

!

(20)

Note that 1
(1��)c � ln( 1

1� r
d
) ln�1

⇣

1
1�(1��) cr

d

⌘

, and so we

can set ⇢0 � 1
(1��)c . As the true probabilities of success are

greater than the "lower bound" objective by the induction as-

sumption in both inequalities, the true probability of success

is greater still than n�⇢
v (or n�⇢0

v in the second inequality),

proving the theorem.



Learning to Hash Robustly, Guaranteed

D. Formal Treatment of Mixture Model

In the theorems that follow, we consider the mixture model

where there are two disjoint sets of coordinates of equal

size with homogenous balances. While we assign specific

attributes to these sets, the proof method can apply to general

instances of this mixture model with many sets of different

balances and sizes - naïvely, by taking weighted averages

of these quantities. Thus, we do not require these specific

parameter settings to show improvement.

We first define the uniform LSH algorithm (Indyk & Mot-

wani, 1998) for the general ANN problem. In this algorithm,

for a chosen approximation factor c, a fixed number of hash

functions are chosen such that the probability of success

for the algorithm, for any query at distance r from its near

neighbor, is exactly n�⇢ where ⇢ =
ln(1� r

d )

ln(1� cr
d ) .

Theorem D.1. Suppose we are given a dataset drawn ac-

cording to the above data model, with r = d/
p
ln d, n = d6,

✏1 = 0.3, ✏2 = 0.5, |S1| = |S2| =
d
2 . Then with prob-

ability 0.99 over the data distribution, trees constructed

and queried with Algorithms 1 and 2 with algorithm query

parameter m, exponent parameter ⇢ 2 (0.1, 1) until the

bucket size is d, and after that ⇢ = 0 until stopping

condition C = 1, where ku , ln(nd ) ln
�1(1/✏1) and

✏̄ ,
ln(1� r

d )

ln(1�(1� 1
m ) r+1

d )
� ln(1� r

d )

ln(1� r+1
d )

, has success probability

at least d�✏̄(1� 1p
ln(d)

)�ku = Ω

⇣

d�✏̄ exp(Ω(
p
ln d))

⌘

times greater than uniform LSH on the minimum query

for ANN with approximation factor c = 1 + 1
r .

Proof of Theorem D.1. We must first understand what it

means for a query to be "worst-case" for the standard uni-

form LSH. In particular, this algorithm in its original for-

mulation uses a fixed number of uniform hash functions,

and so the probability of success is the same for all queries

at a fixed distance from their near neighbor. To define the

probability of success for uniform LSH as applied to our

data model, we divide the potential queries to this dataset

into two classes. In the first class, we consider queries to

any arbitrary point (not equal to pa and its cluster), which

all require an equal number of hashes to reach expected

bucket size 1. In the second, we consider queries to pa with

bits flipped on the coordinates that differentiate pa from its

planted approximate near neighbors. For the second class

to be "worst-case" we need that the probability of success

for queries in this class are less than the first.

The probability of success for the second class is exactlyp
d
�⇢u

where ⇢u =
ln(1� r

d )

ln(1� r+1
d )

. We can lower bound this

success probability by
p
d
� 1

1+O( 1
r
) � 1

d1/2+o(1) .

The probability of success for the first class is lower bounded

by n�0.5/c0 where c0r is the average distance between two

points (chosen iid from the model). We can compute this

distance as c0r = d
2 · 2(1 � ✏1)✏1 + d

2 · 2(1 � ✏2)✏2 =
d(1� ✏1)✏1+ d(1� ✏2)✏2. As we have set n = d6, we have

that the probability of success for this first class is,

ln Pr[success | for phase 1] � �6
0.5
0.46d

r

ln d (21)

> �7
r

d
ln d (22)

= �7
p
ln d (23)

() Pr[success | for phase 1] � exp(�7
p
ln d) (24)

� exp(�0.5 ln d) (25)

=
1p
d

(26)

⇡ Pr[success | for phase 2] (27)

proving that the second class queries are indeed worst-case

in the high-dimensional limit.

Because the distribution for the optimized hash functions are

maximal for their objective (by definition), we can choose

any distribution we’d like and derive a lower bound for the

performance of a single optimized hash distribution. We

consider distributions that are marginally uniform on each

group Si, as the planted point has a 0 on each coordinate

(and so the coordinates are symmetric across groups). Sup-

pose the optimized distribution is ⇡ = (0, 1). This is the

distribution that would be returned by our algorithm for

almost all ⇢, but certainly including e.g. ⇢ 2 (0.1, 1). To

see this, we first note that the objective function (the lower

bound for the probability of success for ⇡ = (⇡1,⇡2)) is:

Objective =
d

2
⇡1(1� ✏1)

�⇢ +
d

2
⇡2(1� ✏2)

�⇢ (28)

Then, as,

(1� 2r

d
)(1� ✏2)

�⇢ >
1

2
(1� ✏1)

�⇢ +
1

2
(1� 2r

d
)(1� ✏2)

�⇢

(29)

we conclude ⇡ = (0, 1) is the distribution returned by our

algorithm.

Suppose we choose ku hash functions to reach d/n fraction

of points remaining in the original dataset. The probability

of success for the uniform distribution on the worst-case

query on reaching this fraction is (1� r
d )

ku .

As a uniform hash function reduces the dataset to at least ✏1
fraction of the original dataset size, ku � ln(nd ) ln

�1(1/✏1).

Meanwhile, for the worst-case query, as we have assumed

all of the coordinates that differentiate the cluster center pa
from its approximate near neighbors are in S1, and therefore

all the flipped coordinates of the worst-case query are in S1,
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the probability of success for this query in hashing to size d
from the root is exactly 1. In the remaining hashing from

the size d subset, the optimized algorithm has probability

at least d�⇢o , where ⇢o =
ln(1� r

d )

ln(1�(1� 1
m ) r+1

d )
, from equation

(20) in the proof of theorem 3.1.

Once the dataset is of size d, according to the uniform

(theoretical) LSH algorithm (Indyk & Motwani, 1998), the

probability of success is exactly equal to d�⇢u , where ⇢u =
ln(1� r

d )

ln(1� r+1
d )

. The total probability of success for this worst-

case query in uniform LSH is then,

Pr[success | uniform]  d�⇢u(1� r

d
)ln(

n
d ) ln�1(1/✏1)

(30)

The final advantage of our algorithm over uniform LSH

follows from these formulae.

One fact that remains to show is that in the high-dimensional

limit, the balances of the coordinates remain concentrated

at ✏.

Consider a node v in the tree that was generated by hashing

on ku coordinates. Consider an unhashed dimension i 2
[d]. Let fi,v be the balance of coordinate i at this node.

As the dataset has independently drawn coordinates, the

distribution of balances for i is independent of the previous

hashes, and so fi,v = 1
nv

·Binomial(nv, ✏i). Then, we can

apply the standard Chernoff bound:

Pr[|fi,v � ✏i| > �]  2 exp

✓

�1

3
✏inv�

2

◆

(31)

 2 exp

✓

�1

3
✏2d�

2

◆

(32)

=
1

100dk+1
(33)

Note there are a total of at most dk nodes and d coordinates

we must consider for  k possible hashes. Thus, we set the

failure probability to 1
10dk+1 so that the probability of suc-

cess on all nodes is at least (1� 1
100dk+1 )

dk+1 ⇡ e�0.01 =
0.99. Solving the previous equation for d gives the require-

ment that d � 3(k+1) ln(d)+3 ln 200
�2✏2

. For fixed, �, ✏2, and

k  ln( d
n )

ln(1�✏1)
, the left-hand-side grows faster with dimen-

sion than the right. Therefore, in the high-dimensional limit

we can drive � ! 0 while maintaining a 0.99 probability of

success.

We also show improvement over the LSH forest algorithm.

Recall that in this algorithm, for a given query, a coordinate

is chosen uniformly at random, one at a time, until the

current bucket has size less than or equal to 1.

Theorem D.2. Suppose we have a dataset drawn according

to the aforementioned data model, with d = 100r, n = d6,

✏1 = 0.3, ✏2 = 0.5, ↵1 = ↵2 = d
2 , but only one planted ap-

proximate near neighbor to pa. Then with probability 0.99
over the data distribution, trees constructed and queried

with Algorithms 1 and 2 with query parameter m = 0,

exponent parameter ⇢ 2 (0.2, 0.8) until the bucket is of

size d, and then ⇢ = 0 for the remainder of the tree until

stopping condition C = 1, where ku = ln(nd ) ln
�1(1/✏1),

has (1� r
d )

�ku times greater success probability than uni-

form LSH trees for all queries (over the randomness of the

algorithm and data model).

Proof. We first prove that the minimum-performing query

to this dataset (for uniform LSH trees) is one with all co-

ordinates flipped in S1 (on the bits differentiating an ap-

proximate near neighbor from pa). As there are r + 1 co-

ordinates for which pa differs from all other near neigh-

bors, we must hash until the single coordinate that is not

flipped in the worst-query, is flipped. The probability of

this is 1
d�k ⇡ 1

d , where k ⌧ d is the number of hashes

chosen to get the dataset to size d, and increases to 1
d�s

for s additional hashes. Then, we will need at least d
2

additional hashes to get O(1) probability of getting to

a single point, using uniform hashing. (This is because

(1� 1
d ) · · · (1� 2

d ) < (1� 2
d )

d
2 = O(1)).

The probability of success for this query doing this is (1�
r
d )

d
2 ⇡ e�r/2, which is clearly vanishing with r, and is

greater than for all queries which are not designed to have r
of the r + 1 differing coordinates flipped. Suppose we only

flip r�`+1 of these r+1 bits, for ` � 2, then the probability

of eventually hashing on one of the unflipped bits is (1 �
r
d )

d
2` ⇡ e�r/2`. Suppose pessimistically the probability of

success for other queries is 1
d (as good as randomly sampling

points) times the probability of selecting one of the differing

coordinates e�r/2`. Suppose optimistically it is e�r for

designed queries with r of the r + 1 bits flipped. Then we

just require 1
de

�r/2`(1� r
3d )

ko(1� r
d )

�ko � e�r/2 for the

designed query to be the true minimum, where ku is the

number of hash functions needed to get to bucket size d for

optimized hashing. This inequality is true for large r and

d = 100r, proving the worst-case query is as claimed.

Consider the first phase, where we hash the dataset until it

is of size d. The probability of success for the optimized

distribution on the worst-case query is exactly 1, while

for the uniform hash tree it is at most (1 � r
d )

ku , where

ku = ln( dn ) ln
�1(✏1) (as we proved in the previous theo-

rem). With very high probability, we will not have chosen

the necessary differentiating bit to separate the approximate

near neighbor from pa. Therefore, the probability for the
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remainder of the tree for uniform is (with high probabil-

ity) equal to that of our algorithm (as the datasets of size d
should be the same in expectation for both algorithms, given

the independent coordinates assumption, the probability of

success over the randomness in both the algorithm and the

data model is equal for both algorithms).

E. Uniform Distribution is Optimal for

Independent Coordinates

Suppose the data are drawn from the data model in section

D without an additional planted cluster. Suppose further

that instead of two groups, there are M groups Si with

M ⌧ d, balances ✏i 2 (0, 1
2 ], and cardinalities d/M . We

also consider the limit where r ⌧ d. For simplicity of

analysis, suppose we plant the point 0d in the dataset.

We consider a variant of the LSH tree where a fixed number

of hash functions are selected from a chosen distribution ⇡

until the dataset of size n0, where d ⌧ n0. In a standard

LSH tree, where wi is the fraction of points remaining in

the dataset after hashing for the i-th time, we select hashes

(ko in total) such that:

ko
Y

i=1

wi =
n0

n
(34)

()
ko
X

i=1

lnwi = ln
n0

n
(35)

As ko is a random variable, we instead consider the number

of hash functions ko needed in expectation to reach the

stopping size. In other words, we compute k⇤o such that:

E

2

4

k⇤

o
X

i=1

lnwi

3

5 = ln
n0

n
(36)

In the LSH variant we propose here, we use this fixed k⇤o
number of hashes.

Theorem E.1. When the data are sampled according to the

above data model, the uniform distribution is optimal for

the worst-case query to the above LSH variant.

Proof. We derive the exact value of the number of hash

functions k⇤o . By assuming the coordinates are drawn inde-

pendently, we use the linearity of expectation to derive:

E

2

4

k⇤

o
X

i=1

lnwi

3

5 = ln
n0

n
(37)

() k⇤o = ln
n0

n
E
�1 [lnwi] (38)

= ln
n0

n

0

@

M
X

i=1

⇡i ln(1� ✏i)

1

A

�1

(39)

The last step follows from two facts. First, we only need to

consider distributions over coordinates that are marginally

uniform across coordinates in a single group. This is be-

cause the worst queries to the dataset will be to the planted

point 0d, whose balances are uniform across coordinates

of a single group. Second, because we are in the high-

dimensional limit (as in the previous section), when we

hash on a single coordinate i, the fraction of points in the

dataset that remains in the bucket is exactly 1� ✏i, as this is

the fraction of points that have a 1 at coordinate i.

Consider a query at distance r from 0d with its r coordi-

nates flipped in an arbitrary group j 2 [M ]. To begin with,

suppose M = 2. The probability of success over the entire

tree for this query is, using k⇤o total hashes:

Pr[success] =

✓

1� ⇡j
2r

d

◆k⇤

o

(40)

() ln Pr[success] = ln(
n0

n
) ln

✓

1� ⇡2
2r

d

◆

E
�1 [lnwi]

(41)

⇡ ln(
n

n0
)
2⇡2r

d
E
�1 [lnwi] (42)

/ ⇡2

⇡1 lnw1 + ⇡2 lnw2
(43)

=
⇡2

(1� ⇡2) lnw1 + ⇡2 lnw2
(44)

As the logarithm is increasing, we can compute the deriva-

tive of the RHS to understand the optimal setting of

⇡2 = 1 � ⇡1. Doing so, we find that the derivative is
d

d⇡2
(RHS) = lnw1

((1�⇡2) lnw1+⇡2 lnw2)2
< 0. Therefore, the

probability of success increases by decreasing ⇡2. Further,

if the query has its bits flipped on group S1 instead, the

probability of success is also decreasing in ⇡1. Therefore,

the optimal distribution decreases ⇡2 until the probability

of success for both types of queries are equal. Setting these

two query probabilities to be equal:

⇡2

(1� ⇡2) lnw1 + ⇡2 lnw2
=

⇡1

(1� ⇡2) lnw1 + ⇡2 lnw2

(45)
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we derive that ⇡1 = ⇡2, i.e. the uniform distribution is

optimal.

Generalizing to many groups (for increasing, non-positive

functions Fj(⇡j)):

ln Pr[success] ⇡ ln(
n

n0
)
⇡jMr

d
E
�1 [lnwi] (46)

/ ⇡j
PM

i=1 ⇡i lnwi

(47)

=
⇡j

Fj(⇡j) + ⇡j lnwj
(48)

As the logarithm is increasing, we can compute the deriva-

tive of the RHS to understand the optimal setting of ⇡j .

Doing so, we find that the derivative is d
d⇡j

(RHS) =
Fj(⇡j)�⇡jF

0

j(⇡j)

(⇡j lnwj�Fj(⇡j�1))2 < 0. Again, the probability of suc-

cess is decreasing in ⇡j . Further, the denominator is the

same regardless of where the query’s bits are flipped (i.e.

which group is chosen to flip). So, for a fixed distribution,

the log of the probability of success is proportional to the

probability of choosing the group with bits flipped for that

query. In this independent case, there are essentially M pos-

sible types of queries - one with bits flipped entirely in each

one of the groups. Suppose that for a chosen distribution,

the probability of success is higher for queries in one group

versus another. Then, by the derivative argument above, we

can increase the success probability for the worse query by

moving weight from that group to the other. Therefore, any

distribution that has this inequity is not optimal. Therefore,

the optimal distribution is such that for all j, k 2 [M ]:

⇡k
PM

i=1 ⇡i lnwi

=
⇡j

PM
i=1 ⇡i lnwi

(49)

Hence, the uniform distribution is again optimal.

F. Additional Experiments

We performed a variety of additional experiments to demon-

strate our algorithm’s effectiveness. (1) We performed a set

of experiments on the entire MNIST dataset and a 100,000-

point subset of the ImageNet dataset, (2) we measured the

query times of our algorithm on all subsets. All experiments

show our algorithm can perform much better than uniform

LSH forests.

For both large datasets, we set the stopping bucket size to

10 and c=1, while MNIST used radius r = 3 and ImageNet

used r = 2. For ImageNet, we performed experiments

on the first 100k images of the 8x8 training subset of the

dataset. The images were binarized with pixel threshold

value of 70, while MNIST was binarized with threshold

1. The MWU parameter beta was set to 0.4 in all experi-

ments on these datasets, and an aggressive update method

was used where the optimization returned the most recent

hash strategy rather than the average. We also note that for

the small subsets, the query strategies were chosen against

the average response of the hash players and were played

simultaneously, although this does not affect the solution of

the game, and may only slow down convergence.

For experiments in both large datasets, measurements were

collected from 8 trees formed by our optimized algorithm

and compared to uniform LSH trees. We sampled hash

functions uniformly until the buckets were of size 700 for

MNIST and of size 1000 for ImageNet, then we ran the

game with exponent ⇢ = 1 for 500 and 2000 rounds on

MNIST and ImageNet, respectively. Two queries were gen-

erated at random for each point of the datasets, meaning

120,000 queries were measured for MNIST and 200,000

queries were measured for ImageNet in total. It is straight-

forward to obtain additional improvement in recall/query-

times by performing the optimizations for more rounds and

by optimizing at all nodes in the tree (rather than at just

those with fewer than 700 points).

On querying, we measured the time until the near neighbor

was returned for a given query/NN pair using the “time”

library for Python. We measured the average and bottom

tenth percentile of success probabilities, which is the aver-

age recall over the bottom tenth of success probabilities for

random queries. This is a proxy for the minimum success

probability, as for some trees the success probability was too

small to be measured. This occurs because we are not using

pivots in our experiments. Our algorithms has far shorter

query times for both datasets and all subsets, particularly

for the queries with the largest query times (Table 3, 4).

Improvements in query times are consistent with improve-

ments in the recall of our algorithm over uniform hashing

(Table 5).

In Figure 1, we extracted the hash distributions over coordi-

nates produced by our optimization at the root of the LSH

trees on the MNIST subset. After scaling the distribution by

the inverse of the mean and centering the scaled distribution

to have mean 0, we constructed heatmaps for two sets of

optimization parameters. The heatmaps show that the opti-

mized distributions place more weight on the coordinates

in the center of the image (where there is more variation

among images).
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Table 3. Query Times on Random Queries to Small Subsets.

Dataset Parameters Maximum (s) Average (s⇥ 10�5)

IN Uniform 0.0013 1.32

IN ⇢ = 1, T = 3000, � = 0.68 0.00046 0.737

MNIST Uniform 0.0012 4.03

MNIST ⇢ = 1, T = 3000, � = 0.68 0.00048 1.10

MNIST ⇢ = 0.83, T = 3000, � = 0.68 0.0011 1.29

MNIST ⇢ = 0.25, T = 1600, � = 0.88 0.0033 2.15

MNIST ⇢ = 0.1, T = 1600, � = 0.88 0.0027 3.06

Table 4. Query Times on Random Queries to Large Datasets.

Dataset Hash Distribution 90th Percentile (s⇥ 10�4) Average (s⇥ 10�4)

IN Uniform 4.91 2.43

IN Alg. 3.65 2.02

MNIST Uniform 13.27 7.84

MNIST Alg. 8.66 5.24

Table 5. Success Probability on Random Queries to Large Datasets.

Dataset Hash Distribution Average Bottom 10% Average

IN Uniform 0.117 0.68

IN Alg. 0.127 0.73

MNIST Uniform 0.51 0.830

MNIST Alg. 0.66 0.893
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G. Implementation Details

A link to the experiment code repository can be found at (https://anonymous.4open.science/r/instance-optimal-lsh-

51DF/README.md). The experiments were implemented in C++, and compiled with g++-5 using the -march=native and

-O3 flags for improved runtime. In addition, our implementation was highly parallelized using OpenMP pre-proccessor

directives. Efficient matrix/vector computation was done with the Eigen library for C++ (Guennebaud et al., 2010). The

experiments were performed on an Intel(R) Xeon(R) W-2155 CPU @ 3.30GHz with 65 GB of RAM (all 20 physical cores

were used for the experiment). Query times for the small subsets were measured on a 2.3 GHz Dual-Core Intel Core i5 with

8GB of RAM. The runtime to generate 110 trees with 3000 game rounds varied, but took on average 40 hours to complete

with these hardware specs.


