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Contra
tive operators T that are tra
e 
lass perturbations of a unitary

operator U are treated. It is proved that the dimension fun
tions of the

absolutely 
ontinuous spe
trum of T , T ∗, and of U 
oin
ide. In parti
ular,

if U has a purely singular spe
trum, then the 
hara
teristi
 fun
tion θ of T

is a two-sided inner fun
tion, i.e., θ(ξ) is unitary a.e. on T. Some 
orollaries

to this result are related to investigations of the asymptoti
 stability of the

operators T and T ∗
(the 
onvergen
e Tn → 0 and (T ∗)n → 0, respe
tively,

in the strong operator topology).

The proof is based on an expli
it 
omputation of the 
hara
teristi


fun
tion.

Notation

D The open unit disk in the 
omplex plane C, D := {z ∈ C : |z| < 1}.
T The unit 
ir
le in C, T = ∂D.
m The normalized (m(T) = 1) Lebesgue measure on T.

I
D
, I The identity operator; in most situations, where it is 
lear from the


ontext we will skip the index, denoting the spa
e where the operator

a
ts.

S1 The tra
e 
lass.

Êëþ÷åâûå ñëîâà: Tra
e 
lass perturbations, 
ontra
tive operators, dimension fun
tion,

absolutely 
ontinuous spe
trum.
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S2 The Hilbert�S
hmidt 
lass.

H2
The Hardy spa
eH2

; we will also use the symbolH2(E) for the ve
tor-
valued H2

fun
tions with values in a Hilbert spa
e E.

z → ξ∢ z ∈ D approa
hes ξ ∈ T nontangentially; the aperture of the nontan-

gential approa
h regions is assumed to be �xed (but it is not essential).

All Hilbert spa
es in this paper are separable, and all operators a
t between

Hilbert spa
es (or on the same Hilbert spa
e). By a measure we always mean

a �nite Borel measure on T.

The term a.e. always means a.e. with respe
t to the Lebesgue measure on T.

For a.e. with respe
t to a di�erent measure the term µ-a.e. is used.

�1. Introdu
tion and main results

Re
all that a unitary operator U on a separable Hilbert spa
e is unitarily

equivalent to multipli
ation by the independent variable ξ in the von Neumann

dire
t integral of Hilbert spa
es,

N :=

ˆ

T

⊕E(ξ)dµ(ξ). (1.1)

The dimension fun
tion

N(ξ) = N
U

(ξ) := dimE(ξ)

is a unitary invariant of the operator U : together with the spe
tral type [µ]
of µ, whi
h is the 
lass of all measures mutually absolutely 
ontinuous with

µ, they 
ompletely determine the operator U up to unitary equivalen
e. The

fun
tion N
U

is often 
alled the spe
tral multipli
ity fun
tion, and we will use

this term.

For de�niteness, we assume that N(ξ) = 0 whenever the Lebesgue density

w = dµ/dm of µ vanishes (note that µ({ξ ∈ T : w(ξ) = 0}) = 0).
The multipli
ity of the absolutely 
ontinuous (a.
.) part of U is, by de�nition,

the fun
tion N a.e. with respe
t to the Lebesgue measure on T.

Now, we introdu
e the notion of spe
tral multipli
ity (of the a.
. spe
trum)

for a 
ontra
tion. Re
all that any 
ontra
tion T 
an be uniquely de
omposed

in the dire
t sum T = V ⊕ T0, where T0 is a 
ompletely nonunitary (
.n.u.)


ontra
tion, and V is unitary (either of these terms 
an be 0). The spe
tral

multipli
ity of the a.
. spe
trum of V is pre
isely the dimension fun
tion N
V


onsidered a.e. with respe
t to Lebesgue measure.

As for the 
.n.u. part T0, the rank of the defe
t fun
tions ∆(ξ) and ∆∗(ξ),
ξ ∈ T, see (1.2) below, is often interpreted as the dimension fun
tions for the

a.
. spe
trum of a 
.n.u. 
ontra
tion; in this paper we use this interpretation.
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Let us re
all the main de�nitions. Re
all that a 
ompletely nonunitary 
on-

tra
tion T0 is uniquely determined (up to unitary equivalen
e) by its 
hara
-

teristi
 fun
tion θ = θ
T0
, 
f. [15℄, whi
h is an analyti
 operator-valued fun
tion

on the unit disk D whose values are stri
t 
ontra
tions θ(z) : D → D∗; here D

and D∗ are some auxiliary Hilbert spa
es.

The 
hara
teristi
 fun
tion is de�ned up to 
onstant unitary fa
tors (possibly

between di�erent spa
es) on both sides, so ea
h su
h equivalen
e 
lass 
orre-

sponds to a 
olle
tion of unitarily equivalent 
.n.u. 
ontra
tions. We should also

mention that for a general 
ontra
tion T = V ⊕ T0, its 
hara
teristi
 fun
tion


oin
ides with the 
hara
teristi
 fun
tion of its purely 
ontra
tive part T0.

Re
all also that any bounded analyti
 fun
tion F with values in B(D;D∗)
has nontangential boundary values in the strong operator topology a.e. on T,

and that F (z), z ∈ D 
an be represented as the Poisson extensions of these

boundary values. So for the 
hara
teristi
 fun
tion θ we denote its boundary

values by θ(ξ), ξ ∈ T, and we will treat θ as a fun
tion de�ned on D and

a.e. on T.

For a 
hara
teristi
 fun
tion θ, its defe
t fun
tions are de�ned a.e. on T as

∆ := (I − θ∗θ)1/2, ∆∗ := (I− θθ∗)1/2. (1.2)

Theorem 1.1. Let U be a unitary operator (on a separable Hilbert spa
e),

and let K be a tra
e 
lass operator su
h that T = U +K is a 
ontra
tion. If

T = V ⊕ T0 is the de
omposition of T into unitary and 
ompletely nonunitary

parts, and θ is the 
hara
teristi
 fun
tion of T , then

rank∆(ξ) = rank∆∗(ξ), (1.3)

N
U
(ξ) = N

V
(ξ) + rank∆(ξ) (1.4)

a.e. on T.

We should mention that there is a large body of work studying the abso-

lutely 
ontinuous spe
trum in the 
ase when the perturbed operator is not

unitary/selfadjoint, see for example [8�10, 14, 17℄. However, these papers were

mostly 
on
erned with the existen
e of the wave operators, and we are not

sure if it is possible to easily get our result from there. In parti
ular our re-

sult 
overs the 
ase when the spe
trum of the perturbed operator is the whole


losed unit disk, and a typi
al assumption in results about wave operators is

the �thinness� of the spe
trum.

Even if we assume that the spe
trum is not the whole unit disk (for example

if the unitary operator has purely singular spe
trum [11℄), a rigorous translation

from one language to the other would be not mu
h simpler than our self-


ontained presentation; and we would need to use some highly nontrivial results

from very te
hni
al papers.
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Corollaries 1.2, 1.3, 1.4 below 
on
ern the asymptoti
 stability of the per-

turbed operator. Some of these results might be known to experts. Let, like in

Theorem 1.1, T = U +K be a 
ontra
tion, let U be unitary, and let K ∈ S1.

Let also T = V ⊕ T0 be the de
omposition of T into unitary and 
ompletely

nonunitary parts, and let θ be the 
hara
teristi
 fun
tion of T .

Corollary 1.2. If U has purely singular spe
trum (i.e., if µ is purely singular),

then θ is a two-sided inner fun
tion, meaning that θ(ξ) is a unitary operator

a.e. on T.

Corollary 1.3. If U has purely singular spe
trum, then T0 and T ∗
0 are asymp-

toti
ally stable, meaning that T n
0 → 0 and (T ∗

0 )
n → 0 in the strong operator

topology as n → ∞.

Corollary 1.4. If T is asymptoti
ally stable, i.e., if T n → 0 in the strong

operator topology as n → ∞, then U has purely singular spe
trum.

Note that in the 
orollaries above the spe
trum of T does not �ll the unit disk

(see [11℄ for Corollaries 1.2, 1.3, and [16℄ for Corollary 1.4), so the results about

wave operators 
an be used to prove the 
orollaries. However, as we mentioned

above, su
h a proof relies on some highly te
hni
al nontrivial papers. Moreover,

we expe
t that presented with all the details it will not be signi�
antly shorter

than our self-
ontained paper.

Remark 1.5. We should mention that under the assumptions of any of the

above 
orollaries the operator T0 belongs to the 
lass of so-
alled C0-
ontra
-

tions, meaning that there exists a fun
tion ϕ ∈ H∞
su
h that ϕ(T0) = 0. The

theory for this operator 
lass is well developed, but not dire
tly relevant for

our paper, so, we will omit further dis
ussion.

Our proof of the main result (Theorem 1.1) is slightly lengthy but mostly ele-

mentary: after some simple operator-theoreti
 arguments, we redu
e everything

to a parti
ular 
ase, see Lemma 2.1 below. We then express the 
hara
teris-

ti
 fun
tion θ in terms of the Cau
hy�Herglotz transform of some S1-valued

measure, see �3. The proof of the theorem is then obtained by analyzing the

boundary values of θ, whi
h is pretty straightforward, see �4.

We prove Corollaries 1.2 through 1.4 in Subse
tion 4.3.

�2. Some redu
tions

Re
all that an operator T is 
alled a stri
t 
ontra
tion if ‖Tx‖ < ‖x‖ for all

x 6= 0; 
learly in this 
ase ‖T‖ 6 1.
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Lemma 2.1. Let T = U +K, where U is unitary, K ∈ S1, and ‖T‖ 6 1 (all

operators a
t on a Hilbert spa
e H). Then T 
an be represented as

T = U1 +B(Γ− I)B∗U1, (2.1)

where U1 is unitary, U−U1 ∈ S1, B : D → H is an isometry from an auxiliary

Hilbert spa
e D, and Γ = Γ∗ > 0 is a stri
t 
ontra
tion su
h that I− Γ ∈ S1.

In the proof of the above Lemma 2.1 we will use the following trivial fa
t.

Lemma 2.2. Let ‖T‖ 6 1, and let ‖Tx‖ = ‖x‖ 6= 0. Then for any y ⊥ x we

have Ty ⊥ Tx.

We leave the proof of this lemma as an exer
ise for the reader.

We will need one more simple lemma.

Lemma 2.3. Let R = I + K, where K ∈ S1. Then one 
an write a polar

de
omposition R = V |R|, where |R| := (R∗R)1/2 and V is unitary, su
h that

|R| − I ∈ S1 and V − I ∈ S1.

Remark. The term |R| in the polar de
omposition is uniquely determined.

The unitary operator V is uniquely determined if and only if kerR = {0}
(sin
e R is a Fredholm operator of index 0, this happens if and only if RanR is

the whole spa
e). Formally the above Lemma 2.3 means that for some 
hoi
e

of the unitary operator V we have I − V ∈ S1; while this is not essential for

the proof, one 
an see from the proof that in fa
t, all possible 
hoi
es of V
satisfy I− V ∈ S1.

Proof of Lemma 2.3. First, we 
onsider the 
ase when R is invertible (whi
h

happens if and only if kerR = {0}). In this 
ase, |R| is trivially invertible and

V is unique and is de�ned by V = R|R|−1
.

We know that R ∈ I + S1, so trivially |R|2 = R∗R ∈ I + S1, and so

|R| ∈ I+S1. Sin
e |R| is invertible, it is easy to see that |R|−1 ∈ I+S1, and

therefore V = R|R|−1 ∈ I+S1.

Now, we 
onsider the general 
ase. Sin
e for a 
ompa
t K the operator I+K
is Fredholm of index 0, the range of R is 
losed, and dimkerR = dimkerR∗ <
∞ (and RanR = (kerR∗)⊥). Take any invertible operator

R1 : kerR → kerR∗
(su
h an operator exists and has �nite rank, be
ause

dimkerR = dimkerR∗ < ∞). De�ne R̃ := R + R1. By the 
onstru
tion, R̃ is

invertible, and maps (kerR)⊥ onto RanR = (kerR∗)⊥ and kerR onto kerR∗
.

Note also that R̃− I ∈ S1.

If we denote by R0 the restri
tion of R to (kerR)⊥ (with target spa
e re-

stri
ted to RanR = (kerR∗)⊥), we 
an see that |R̃| in the de
omposition
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(kerR)⊥ ⊕ kerR has the blo
k diagonal form

|R̃| =

(
|R0| 0
0 |R1|

)
. (2.2)

Consider the polar de
omposition R̃ = V |R̃|; sin
e R̃ is invertible, V is uniquely

de�ned by V = R̃|R̃|−1
. As we dis
ussed above in the beginning of the proof,

sin
e R̃ is invertible, we have V ∈ I + S1. We also know that |R̃| ∈ I + S1,

and so |R| ∈ I +S1, be
ause |R| di�ers from |R̃| by a �nite rank blo
k |R1|,
see (2.2) above.

The fa
t that R̃ maps (kerR)⊥ onto RanR = (kerR∗)⊥ and kerR onto

kerR∗
and the blo
k diagonal stru
ture (2.2) imply that V also maps (kerR)⊥

onto RanR = (kerR∗)⊥ and kerR onto kerR∗
. Therefore R = V |R|, so we

have 
onstru
ted the desired polar de
omposition. �

Proof of Lemma 2.1. We will prove a �dual� formula to (2.1), namely the

formula

T = U1 + U1B(Γ− I)B∗; (2.3)

applying this formula to the adjoint T ∗ = U∗+K∗
and then taking the adjoint

we will get (2.1).

The identity U +K = U(I+U∗K) means that it is su�
ient to prove (2.3)

for the parti
ular 
ase where U = I.

So, let T = I +K with ‖T‖ 6 1, and let K ∈ S1. Denote D1 := (kerK)⊥.
Clearly

(I+K)x = x ∀x ∈ D
⊥
1 ,

and therefore by Lemma 2.2

(I+K)D1 ⊂ D1.

Then KD1 ⊂ D1, and we 
an treat K as an operator on D1.

So, we restri
t our attention to D1. Denote

R = (I+K)
∣∣∣
D1

.

By Lemma 2.3 we 
an write a polar de
omposition R = V |R| of R with

unitary V su
h that

|R| − I
D1

∈ S1, V − I
D1

∈ S1.

Denote D2 := D1 ⊖ ker(|R| − I
D1

). Then trivially, Γ = |R|
∣∣∣
D2

is a stri
t


ontra
tion on D2, Γ = Γ∗
, and Γ− I

D2
∈ S1.
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Now gathering everything together we see that

I
H
+K = U1 + U1PD2

(Γ− I
D2

)P
D2

,

where

U1x =

{
V x x ∈ D1,

x x ∈ H \D1.

Note that D1 is a redu
ing subspa
e for U1, and so the 
ondition V −I
D1

∈ S1

implies that U1 − I
H

∈ S1. Thus we have proved formula (2.3) for the 
ase of

U = I (with D = D2 and B being the embedding of D2 into H).

If D is an abstra
t spa
e, dimD = dimD2, then taking an isometry

B : D → H, RanB = D2,

we 
an rewrite the above identity as

I
H
+K = U1 + U1B(B∗ΓB− I

D
)B∗

so the general �abstra
t� form of (2.3) is proved for U = I.
As we dis
ussed in the beginning of the proof, this proves (2.3) for the general


ase, and so formula (2.1). Lemma 2.1 is proved. �

�3. Chara
teristi
 fun
tions

3.1. Operator-valued spe
tral measures and spe
tral representation.

An operator-valued measure µ on T is a 
ountably additive fun
tion de�ned

on Borel subsets of T with values in the set of nonnegative selfadjoint opera-

tors. This de�nition means that an operator-valued measure is always �nite,

i.e., that µ(T) is a bounded operator.

Let U be a unitary operator on H, let an operator B : D → H have trivial

kernel, and let RanB be star-
y
li
 for U . De�ne the operator-valued spe
tral

measure µ = µ
U
(with values in B(D)) as

µ(E) = B∗E(E)B, (3.1)

for any Borel E ⊂ T; here E = E
U
is the (proje
tion-valued) spe
tral measure

of U . An equivalent de�nition is that µ is unique operator-valued measure su
h

that

B∗UnB =

ˆ

T

ξndµ(ξ) ∀n ∈ Z,

or equivalently,

B∗(I − zU∗)−1B =

ˆ

T

1

1− zξ
dµ(ξ) =: Cµ(z) ∀z ∈ C \ T. (3.2)
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The operator U is unitarily equivalent to the multipli
ation operator Mξ by

the independent variable ξ in the weighted spa
e L2(µ).
We re
all that the weighted spa
e L2(µ) with the operator-valued measure µ

is de�ned as follows. First the inner produ
t in L2(µ) is introdu
ed on fun
tions

of the form f = ϕx, where ϕ is a s
alar-valued measurable fun
tion and x ∈ D:

(ϕx, ψy)
L2(µ)

:=

ˆ

T

ϕ(ξ)ψ(ξ) (dµ(ξ)x,y)
D
.

This inner produ
t is then extended by linearity to the set of all (�nite) linear


ombinations of su
h fun
tions. Su
h linear 
ombinations (of 
ourse, modulo

the 
lass of fun
tions of norm 0) form an inner produ
t spa
e, and its 
omple-

tion is, by de�nition, the weighted spa
e L2(µ).
The unitary operator V : H → L2(µ) su
h that Mξ = VUV∗

is also well

known. Namely, for x ∈ D,

V[ϕ(U)Bx] = ϕ( · )x ∈ L2(µ).

3.2. Tra
e 
lass operator-valued measures, spe
tral representation

and the spe
tral multipli
ity fun
tion. The representation of a unitary

operator as a multipli
ation operator in the weighted spa
e L2(µ) with opera-

tor-valued measure looks like �abstra
t nonsense�, and the model looks more


ompli
ated than the original obje
t. However, when the measure µ takes val-

ues in the set S1 of tra
e 
lass operators, all obje
ts are signi�
antly simpli�ed.

If µ takes values in the set S1 of tra
e 
lass operators, we 
an de�ne the

s
alar-valued measure µ as µ := trµ. In this 
ase the operator-valued mea-

sure µ 
an be represented as

dµ = Wdµ,

where ‖W (ξ)‖ 6 ‖W (ξ)‖
S1

= 1 µ-a.e. on T.

It is not hard to see that in this 
ase the measure µ = trµ is a s
alar

spe
tral measure of the operator U that 
an be used in the von Neumann

dire
t integral (1.1). The inner produ
t in the weighted spa
e L2(µ) 
an be


omputed (for measurable fun
tions f and g) as

(f, g)
L2(µ)

=

ˆ

T

(
W (ξ)f(ξ), g(ξ)

)
D
dµ(ξ).

The weighted spa
e L2(µ) in this 
ase 
onsists of all measurable fun
tions

for whi
h ‖f‖
L2(µ)

< ∞ (the obvious quotient spa
e over the set of fun
tions

of norm 0 should be taken).
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It is also not hard to see that in this 
ase the dimension fun
tion N
U
(ξ) 
an

be 
omputed as

N
U
(ξ) = rankW (ξ), µ-a.e.

(re
all that we assume that RanB is star-
y
li
 for U).

We have presented pre
isely the fa
t we will need; an interested reader 
an

�nd more details in [6℄.

3.3. Chara
teristi
 fun
tion via the Cau
hy�Herglotz integral of a

tra
e 
lass measure. De�ne the Cau
hy transforms,

Cµ(z) :=

ˆ

T

dµ(ξ)

1− zξ
, C1µ(z) :=

ˆ

T

zξ

1− zξ
dµ(ξ), C2µ(z) :=

ˆ

T

1 + zξ

1− zξ
dµ(ξ).

In [7℄ we obtained formulas (3.4), (3.5) below for the 
hara
teristi
 fun
tion

θ = θ
Γ
of the operator

T
Γ
= U +B(Γ− I)B∗U, (3.3)

where B is an isometry a
ting from D → H and Γ (and therefore Γ∗
) is a stri
t


ontra
tion.

Re
all that for a 
ontra
tion Γ the defe
t operator D
Γ
is de�ned by D

Γ
:=

(I− Γ∗Γ)1/2.
The 
hara
teristi
 fun
tion θ = θ

Γ
of T

Γ
was proved to be given by

θ
Γ
(z) = −Γ +D

Γ∗
F1(z)

(
I− (Γ∗ − I)F1(z)

)−1
D

Γ
(3.4)

= −Γ +D
Γ∗

(
I− F1(z)(Γ

∗ − I)
)−1

F1(z)DΓ
, (3.5)

where F1(z) = C1µ(z). Here the measure µ was given by (3.1), or equivalently

by (3.2).

This formula was proved in [7℄ for the 
ase of �nite rank perturbations.

However, the only pla
e where the �nite rank was used in the proof was in

the de�nition of the measure µ, whi
h was in that 
ase expressed expli
itly

via the s
alar spe
tral measure in the von Neumann dire
t integral (1.1) and

the matrix of the operator B. Su
h an expli
it expression is not possible in

the general 
ase, but what one really needs for the proof of the formula, is the

identity

zB∗(I
H
− zU∗)−1U∗B = C1µ(z) =: F1(z). (3.6)

For 
onvenien
e, we in
lude the proof of (3.4), (3.5), and (3.6) in �5.

Moving forward, we would like to express the 
hara
teristi
 fun
tion θ in

terms of the Cau
hy�Herglotz integral C1µ̃ of some S1-valued measure µ̃: this
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will allow us to express the defe
t fun
tions ∆ := (I− θ∗θ)1/2 and ∆∗ :=

(I− θθ∗)1/2 .
First, we express θ in terms of F2 := C2µ. Using the fa
t that Γ = Γ∗

, we


an rewrite (3.4) as

θ
Γ
= D

Γ

(
−D−1

Γ
ΓD−1

Γ
+ F1 (I− (Γ− I)F1)

−1
)
D

Γ

= D−1
Γ

(
−Γ + Γ(Γ− I)F1 +D2

Γ
F1

)
(I− (Γ− I)F1)

−1 D
Γ
;

note that while the operator D−1
Γ

is unbounded, it is densely de�ned, and the

above identity 
an be understood as an identity for bilinear forms on a dense

linear submanifold D× RanD
Γ
⊂ D×D.

Sin
e F1 = (F2 − I)/2, we 
an 
ontinue

θ
Γ
= D−1

Γ

(
−2Γ + (I− Γ)(F2 − I)

)(
2I − (Γ− I)(F2 − I)

)−1
D

Γ

= D−1
Γ

(
−(I+ Γ) + (I− Γ)F2

)
(I− Γ)D−1

Γ
[
D−1

Γ

(
(I+ Γ)− (Γ− I)F2

)
(I− Γ)D−1

Γ

]−1
;

note that for a stri
t 
ontra
tion Γ = Γ∗ > 0 the operator (I − Γ)D−1
Γ

=

(I−Γ)1/2(I+Γ)−1/2
is bounded, so the above expression is again well de�ned.

Using the identity

D−1
Γ

(I − Γ)(I + Γ)D−1
Γ

= I,

we 
an rewrite θ
Γ
as

θ
Γ
= (βF2β − I) (βF2β + I)−1,

where

β = β∗ := D−1
Γ

(I− Γ).

De�ne the measure µ̃ := βµβ. Then, trivially, C2µ̃ = βC2µβ = βF2β, so

θ =
C2µ̃− I

C2µ̃+ I
(3.7)

(we write it as a fra
tion to emphasize that the terms 
ommute). Note that

for z ∈ D we have Re(C2µ̃(z) + I) > I, so the operator C2µ̃(z) + I is invertible

and the right-hand side of (3.7) is well de�ned.

Finally, under our assumptions that Γ = Γ∗
is a stri
t 
ontra
tion and

I− Γ ∈ S1, the formula

β = D−1
Γ

(I − Γ) = (I− Γ)1/2(I+ Γ)−1/2
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shows that β ∈ S2 (the Hilbert�S
hmidt 
lass). Therefore, the measure µ̃ is

S1-valued.

�4. Proof of the main results

4.1. Proof of Theorem 1.1: the prin
ipal 
ase. In this subse
tion we

prove Theorem 1.1 for the main spe
ial 
ase when

T = U +B(Γ− I)B∗U,

where RanB is star-
y
li
 for U and Γ = Γ∗ > 0 is a stri
t 
ontra
tion, I−Γ ∈
S1. The general 
ase 
an easily be obtained from this by using Lemma 2.1, see

Subse
tion 4.2 below.

4.1.1. Some te
hni
al lemmas. The fun
tion θ is de�ned in the open unit

disk D. Sin
e it is a bounded analyti
 operator-valued fun
tion, it possesses

nontangential boundary values

θ(ξ) := lim
z→ξ∢

θ(z), ξ ∈ T

(in the strong operator topology) a.e. on T.

Lemma 4.1. The fun
tion I− θ is invertible a.e. on T.

Proof. One 
an see from (3.7) that

(I− θ(z))−1 = (C2µ̃(z) + I)/2 = Cµ̃(z) (4.1)

for z ∈ D. As we dis
ussed at the end of �3, the measure µ̃ is S1-valued, so it


an be represented as

dµ̃ = Wdµ,

where the s
alar measure µ is given by µ = tr µ̃. In this 
ase

‖W (ξ)‖
S2

6 ‖W (ξ)‖
S1

= 1 µ-a.e. on T.

The spa
e S2 is a Hilbert spa
e, so by Lemma 4.2 below the nontangential

boundary values of Cµ̃ exist a.e. on T. Note that for our purposes it is suf-

�
ient that the boundary values exist in the strong operator topology, while

Lemma 4.2 states that the boundary values exist in the (mu
h stronger) topol-

ogy of S2.

Formula (4.1) means that for all z ∈ D we have

Cµ̃(z)(I − θ(z)) = (I− θ(z))Cµ̃(z) = I,

and taking the nontangential boundary values we 
on
lude that the same iden-

tities are ful�lled a.e. on T. But this exa
tly means that I − θ is invertible

a.e. on T. �
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Lemma 4.2. Let µ be a (�nite) Borel measure on T, and let f ∈ L2(µ;E)
(where E is a Hilbert spa
e). Then the nontangential boundary values

[Cfµ](ξ) = lim
z→ξ∢

[Cfµ](z), ξ ∈ T

(in the norm topology of E) exist a.e. on T.

Proof. We use the well-known result ([1, Theorem 1.1℄, see also [3, Proposi-

tion 10.2.3℄) that for a measure µ the operator Vµ,

Vµf(z) :=
[Cfµ](z)

[Cµ](z)
, f ∈ L2(µ),

is a bounded operator from L2(µ) to the Hardy spa
e H2
, ‖Vµ‖L2(µ)→H2 6

C(µ).1

The operator Vµ is de�ned on s
alar-valued fun
tions, but the same formula

de�nes an operator on the ve
tor-valued spa
e L2(µ;E). Take f ∈ L2(µ;E).
Applying the s
alar estimate to ea
h 
oordinate of f , we 
on
lude that

‖Vµf‖H2(E)
6 C(µ)‖f‖

L2(µ;E)
, f ∈ L2(µ;E).

It is well known that for g ∈ H2(E) the nontangential boundary values (in

the norm topology of E) exist a.e. on T. It is also well known that (�nite

and nonzero) nontangential boundary values of Cµ exist a.e. on T. Sin
e for

f ∈ L2(µ;E) we have

[Cfµ](z) = Vµf(z) · [Cµ](z),

we immediately get the 
on
lusion of the lemma. �

4.1.2. Computing the defe
t fun
tions. Re
all that the spe
tral measure µ̃ is

represented as dµ̃ = Wdµ, where µ = tr µ̃. Denote by w the Lebesgue density

of µ (i.e., of its absolutely 
ontinuous part), w := dµ/dm.

Proposition 4.3. The defe
t fun
tions ∆ and ∆∗ 
an be 
omputed as

∆(ξ)2 = (I− θ(ξ)∗)W (ξ)w(ξ)(I − θ(ξ)), (4.2)

∆∗(ξ)
2 = (I− θ(ξ))W (ξ)w(ξ)(I − θ(ξ)∗) (4.3)

a.e. on T.

1

In fa
t, it is well known and not hard to show that for a probability measure µ

the operator Vµ is a 
ontra
tion. Simple s
aling then allows one to get the estimate

‖Vµ‖
L2(µ)→H2

6 µ(T)−1/2
.
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Proof. Let Pµ̃ be the Poisson extension of the measure µ̃. Trivially,

Pµ̃ = Re F̃2,

where F̃2 = C2µ̃. The representation dµ̃ = Wdµ implies that the nontangential

boundary values of Pµ̃ exist and 
oin
ide withWw a.e. on T; the nontangential

boundary values exist a.e. in the S2 norm, 
f. Lemma 4.2 above, but for our

purposes taking limits in the strong operator topology will su�
e.

So, we have

Pµ̃ = Re F̃2 = Re[(I + θ)(I− θ)−1].

Computing we get (for z ∈ D)

Pµ̃ = Re[(I+ θ)(I− θ)−1] =
1

2
[(I+ θ)(I− θ)−1 + (I− θ∗)−1(I+ θ∗)]

=
1

2
(I− θ∗)−1 [(I− θ∗)(I+ θ) + (I+ θ∗)(I− θ)] (I− θ)−1

=
1

2
(I− θ∗)−1[2I− 2θ∗θ](I− θ)−1

= (I− θ∗)−1[I− θ∗θ](I− θ)−1.

Taking the nontangential boundary values, we obtain

Ww = (I− θ∗)−1[I− θ∗θ](I− θ)−1 = (I− θ∗)−1∆2(I − θ)−1

a.e. on T. Sin
e the fun
tion I − θ is invertible a.e. on T by Lemma 4.1, this

identity is equivalent to (4.2).

To get (4.3), we simply need to repeat the above 
al
ulation with the order

of θ and θ∗ inter
hanged, namely

Pµ̃ = Re[(I+ θ)(I− θ)−1] =
1

2
[(I− θ)−1(I+ θ) + (I+ θ∗)(I− θ∗)−1]

=
1

2
(I− θ)−1 [(I + θ)(I− θ∗) + (I − θ)(I+ θ∗)] (I− θ∗)−1

=
1

2
(I− θ)−1[2I − 2θθ∗](I− θ∗)−1

= (I− θ)−1[I− θθ∗](I− θ∗)−1.

Taking boundary values again, we get

Ww = (I− θ)−1∆2
∗(I− θ∗)−1

whi
h is equivalent to (4.3) be
ause I− θ is invertible a.e. on T. �
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4.1.3. Completion of the proof of the prin
ipal 
ase. As we dis
ussed above

in Subse
tion 3.2, the dimension fun
tion N 
an be 
omputed as N(ξ) =
rankW (ξ) µ-a.e. By Lemma 4.1 the fun
tion I − θ is invertible a.e. on T, so

the 
on
lusion of Theorem 1.1 (in the 
ase we are 
onsidering) immediately

follows from identities (4.2), (4.3). �

4.2. Proof of Theorem 1.1: the general 
ase. A

ording to Lemma 2.1,

the operator T 
an be represented as

T = U1 +B(Γ− I)B∗U1

where, as in Subse
tion 4.1, we have U−U1 ∈ S1, Γ = Γ∗
is a stri
t 
ontra
tion,

and I− Γ ∈ S1. Note that RanB is not ne
essarily star-
y
li
 for U . Denote

H0 := span{Un
1 RanB : n ∈ Z}, H1 := H⊥

0 .

The subspa
es H0, H1 are redu
ing for both U1 and T ; moreover T |H1 = U1|H1

is trivially unitary and T |H0 is a 
ompletely nonunitary 
ontra
tion on H0,

see [7, Lemma 1.4℄.

Denote V := U1|H1 , U0 := U1|H0 , T0 := T |H0 (with the target spa
e also

restri
ted to the spa
es H0, H1 respe
tively). Clearly

T0 = U0 +B(Γ− I)B∗U0

and RanB is star-
y
li
 for U0. Re
all that, as we dis
ussed in �1, the 
hara
-

teristi
 fun
tion of the 
ontra
tion T 
oin
ides with the 
hara
teristi
 fun
tion

of its 
ompletely nonunitary part T0. Therefore, by the dis
ussion in Subse
-

tion 4.1,

rank∆(ξ) = rank∆∗(ξ) = N
U0
(ξ) a.e. on T,

whi
h gives us (1.3). Adding N
V
(ξ) to both parts, and noti
ing that

N
V
(ξ) +N

U0
(ξ) = N

U1
(ξ),

we get

rankV (ξ) + rank∆(ξ) = N
U1
(ξ) a.e. on T.

The above formula is exa
tly identity (1.4) with N
U1

(ξ) instead of N
U
(ξ). But

U −U1 ∈ S1, so by the 
lassi
al Kato�Rosenblum theorem (or, more pre
isely

Birman�Krein theorem

2

[2℄) the identity N
U
(ξ) = N

U1
(ξ) holds true a.e. on T,

so (1.4) is ful�lled. Thus Theorem 1.1 is proved in full generality. �

2

The statement that we are using, about the preservation of the absolutely 
ontinuous

parts of a unitary tra
e 
lass perturbations of unitary operators, �rst appeared in [2℄, whi
h

should be a proper referen
e. It also 
an be obtained via linear fra
tional transformation

from an appropriate version (di�eren
e of resolvents is of tra
e 
lass) of the Kato�Rosenblum

theorem for selfadjoint operators due to S. T. Kuroda [4, 5℄.
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4.3. Proof of the 
orollaries. As in Theorem 1.1, let U be a unitary opera-

tor, let K ∈ S1, and let T = U+K. Further let θ be its 
hara
teristi
 fun
tion
and let T = V ⊕ T0 be the de
omposition of T into unitary and 
.n.u. parts.

Re
all that a bounded analyti
 operator-valued fun
tion θ on the unit disk is


alled inner if its boundary values θ(ξ) are isometries a.e. on T. The fun
tion θ
is 
alled ∗-inner (or 
o-inner) if the fun
tion z 7→ θ(z)∗ is inner, whi
h means

that the operators θ(ξ)∗ are isometries a.e. on T.

Finally, the fun
tion θ is 
alled two-sided inner if it is both inner and ∗-inner,
whi
h means that the boundary values θ(ξ) are unitary a.e. on T.

Proof of Corollary 1.2. Let U have purely singular spe
trum, whi
h means

that N
U
(ξ) = 0 a.e. on T. Then equation (1.4) informs us that rank∆(ξ) = 0

a.e. on T, and by (1.3), we see that also rank∆∗(ξ) = 0 a.e. on T. Therefore,

by the de�nition of the defe
t fun
tions ∆ and ∆∗, we see that θ(ξ) is unitary
a.e. on T, i.e., that θ is double inner. �

For the proofs of Corollaries 1.3 and 1.4, re
all the following result.

Proposition 4.4 (see, e.g., [15, Proposition VI.3.5℄). For a 
.n.u. 
ontra
-

tion T0 we have:

(i) T0 is asymptoti
ally stable if and only if its 
hara
teristi
 fun
tion θ
is ∗-inner ;

(ii) T ∗
0 is asymptoti
ally stable if and only if its 
hara
teristi
 fun
tion θ

is inner.

Proof of Corollary 1.3. This follows immediately from Corollary 1.2 and

the �if� dire
tion of both items in Proposition 4.4. �

Proof of Corollary 1.4. Let T be asymptoti
ally stable.

Then its unitary part is trivial (V = 0). In parti
ular, the dimension fun
tion

of its absolutely 
ontinuous part N
V
(ξ) is trivial, i.e., N

V
(ξ) = 0 for a.e. ξ ∈ T.

From the asymptoti
 stability of T we further dedu
e that T is a 
.n.u. 
on-

tra
tion. In parti
ular, T = T0 is asymptoti
ally stable. So Proposition 4.4

implies that θ is ∗-inner. Therefore, we have rank∆∗(ξ) = 0 for a.e. ξ ∈ T and

so by (1.3) rank∆(ξ) = 0 for a.e. ξ ∈ T.

Invoking (1.4), we see that N
U
(ξ)=N

V
(ξ)+rank∆(ξ)=0 for a.e. ξ∈T. �

�5. Appendix: Derivation of the 
hara
teristi
 fun
tion

Mainly for the sake of self-
ontainment, we in
lude a proof of the formulas for

the 
hara
teristi
 fun
tion in (3.4) and (3.5) following that of [7, Theorem 4.2℄

where the formula was proved in the matrix 
ase. We also prove (3.6) at the

end of this se
tion.
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Re
all that for a 
ontra
tion T its defe
t operators D
T
and D

T ∗
are given by

D
T
= (I − T ∗T )1/2, D

T ∗
= (I− TT ∗)1/2,

and the defe
t spa
es are de�ned as

D
T
= ClosRanD

T
, D

T ∗
= Clos RanD

T ∗
.

Re
all that a

ording to [15, Chapter VI℄ the abstra
t 
hara
teristi
 fun
tion

θ̃ = θ̃
T

of the operator T is an analyti
 fun
tion in the unit disk D whose

values are stri
t 
ontra
tions θ̃(z) : D
T
→ D

T ∗
whi
h is given by the formula

θ̃
T
(z) = (−T + zD

T ∗
(I

H
− zT ∗)−1D

T
)
∣∣∣
DT

.

Usually in the literature the 
hara
teristi
 fun
tion is treated as the equiva-

len
e 
lass of all fun
tions obtained from θ̃ by right and left multipli
ation by


onstant unitary operators. But sometimes it is more 
onvenient, as we will

do, to pi
k a 
on
rete representation in this equivalen
e 
lass. Namely, if D

and D∗ are abstra
t Hilbert spa
es of appropriate dimensions, and

V : D
T
→ D, V∗ : DT ∗

→ D∗ (5.1)

are unitary operators (the so-
alled 
oordinate operators), then, a

ording to,

e.g., [12, Theorem 1.2.8℄ or [13, Theorem 1.11℄, the representation of the 
har-

a
teristi
 fun
tion 
orresponding to the identi�
ation (5.1) is given by

θ(z) = V∗θ̃(z)V
∗ = V∗(−T + zD

T ∗
(I

H
− zT ∗)−1D

T
)V ∗. (5.2)

Consider a 
ontra
tion T = T
Γ
= U +B(Γ − I)B∗U from (3.3) where B is

an isometry a
ting from D to H. In this 
ase

D
T
= U∗BD

Γ
B∗U, D

T ∗
= BD

Γ∗
B∗. (5.3)

If Γ (and therefore Γ∗
) is a stri
t 
ontra
tion, the defe
t spa
es are

D
T
= Ran(U∗B) = U∗ RanB, D

T ∗
= RanB,

so

V = B∗U, V∗ = B∗
(5.4)

is a natural 
hoi
e for the 
oordinate operators (this is exa
tly the 
hoi
e that

was made in [7℄). Note that in this 
ase D∗ = D.

By the de�nition of T , using (5.4) we get

V∗TV
∗ = B∗TU∗B

∣∣∣
D

= B∗BΓB∗UU∗B

∣∣∣
D

= Γ,

and therefore (5.2) 
an be rewritten as

θ(z) = −Γ +B∗zD
T ∗

(I
H
− zT ∗)−1D

T
U∗B. (5.5)
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For mu
h of the remainder of this se
tion we in
lude the spa
e on whi
h identity

operators a
t, for 
lari�
ation.

We 
ontinue to express the inverse for z ∈ D:

(I
H
− zT ∗)−1 =

(
(I

H
− zU∗)[I

H
− z(I

H
− zU∗)−1U∗B(Γ∗ − I

D
)B∗]

)−1

= X(z)−1(I
H
− zU∗)−1,

where

X(z) := I
H
− z(I

H
− zU∗)−1U∗B(Γ∗ − I

D
)B∗.

Here, we note that both I
H

− zT ∗
and I

H
− zU∗

are invertible for z ∈ D

(be
ause ‖zT ∗‖, ‖zU∗‖ 6 |z| < 1) so X(z) is invertible as well. To obtain the

expression for X(z)−1
, we apply Lemma 5.1 below with P,Q : D → H given

by P = z(I
H
− zU∗)−1U∗B and Q∗ = (Γ∗ − I

D
)B∗

to get

X(z)−1 = I
H
+ z(I

H
− zU∗)−1U∗B

×
[
I
D
− z(Γ∗ − I

D
)B∗(I

H
− zU∗)−1U∗B

]−1
(Γ∗ − I

D
)B∗;

note that Lemma 5.1 also implies that the expression in bra
kets is invertible

for z ∈ D.

Re
alling that F1(z) = zB∗(I
H
− zU∗)−1U∗B by (3.6), we obtain

(I
H
− zT ∗)−1 = (I

H
− zU∗)−1

+ z(I
H
− zU∗)−1U∗B

[
I
D
− (Γ∗ − I

D
)F1(z)

]−1

× (Γ∗ − I
D
)B∗(I

H
− zU∗)−1;

(5.6)

the expression in bra
kets is invertible for z ∈ D, be
ause it is exa
tly the

expression in bra
kets is the above formula for X(z)−1
.

Now we substitute (5.6) and (5.3) in (5.5), and again use that F1(z) =
zB∗(I

H
− zU∗)−1U∗B. After straightforward but somewhat tedious 
al
ula-

tions, we arrive at

θ(z) = −Γ +D
Γ∗

(
F1(z) + F1(z)

[
I
D
− (Γ∗ − I

D
)F1(z)

]−1
(Γ∗ − I

D
)F1(z)

)
D

Γ

= −Γ +D
Γ∗
F1(z)

[
I
D
− (Γ∗ − I

D
)F1(z)

]−1

×
(
I
D
− (Γ∗ − I

D
)F1(z) + (Γ∗ − I

D
)F1(z)

)
D

Γ

= −Γ +D
Γ∗
F1(z)

[
I
D
− (Γ∗ − I

D
)F1(z)

]−1
D

Γ
,

whi
h is exa
tly (3.4).
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Equation (3.5) is an immediate 
onsequen
e of (3.4). Indeed, we 
learly have

[
I
D
− F1(z)(Γ

∗ − I
D
)
]
F1(z) = F1(z)

[
I
D
− (Γ∗ − I

D
)F1(z)

]
,

or, equivalently,

F1(z)
[
I
D
− (Γ∗ − I

D
)F1(z)

]−1
=

[
I
D
− F1(z)(Γ

∗ − I
D
)
]−1

F1(z).

The following lemma, whi
h we have used above, 
an be regarded as a par-

ti
ular 
ase of the so-
alled Woodbury inversion formula, see [18℄, although

formally in [18℄ only the 
ase of matri
es was treated.

Lemma 5.1. Let K be a separable Hilbert spa
e and 
onsider operators P,
Q : K → H. The operators I

H
−PQ∗

and I
K
−Q∗P are simultaneously invert-

ible. In this 
ase, we have the inversion formula

(I
H
− PQ∗)−1 = I

H
+ P (I

K
−Q∗P )−1Q∗.

Proof. Assume that I
K
−Q∗P is invertible and 
ompute

(I
H
− PQ∗)(I

H
+ P (I

K
−Q∗P )−1Q∗)

= I
H
− PQ∗ + P (I

K
−Q∗P )−1Q∗ − PQ∗P (I

K
−Q∗P )−1Q∗

= I
H
+ P

(
−I

K
+ (I

K
−Q∗P )(I

K
−Q∗P )−1

)
Q∗

= I
H
.

So, I
H

+ P (I
K
− Q∗P )−1Q∗

is the right inverse of I
H

− PQ∗. To show that

it is also the left inverse (and therefore the inverse), one 
an either redu
e

(I
H

+ P (I
K
− Q∗P )−1Q∗)(I

H
− PQ∗) in a similar way, or simply take the

adjoint of the above 
omputation and then swap the roles of P and Q.

Vi
e versa, to prove the invertibility of I
K
− Q∗P from that of I

H
− PQ∗,

we simply swap the roles of P and Q∗
and those of H and K, respe
tively, and

apply the formulas we have proved. �

Proof of equation (3.6). This identity follows easily from the de�nition (3.2)

of the operator-valued measure µ. Indeed, sin
e

zU∗(I − zU∗)−1 = (I− zU∗)−1 − I,

we see that

zB∗(I − zU∗)−1U∗B = B∗(I− zU∗)−1B−B∗B

=

ˆ

T

dµ(ξ)

1− zξ
−

ˆ

T

dµ(ξ) =

ˆ

T

zξ

1− zξ
dµ(ξ). �
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Remark. Equation (3.6) also follows via a �high brow� approa
h invoking the

fun
tional 
al
ulus. Namely, for a rational fun
tion ϕ (with no poles on T),

equation (3.2) implies

B∗ϕ(U)B =

ˆ

T

ϕ(ξ)dµ(ξ).

Taking

ϕ(ξ) = ϕz(ξ) =
zξ−1

1− zξ−1
,

and using the fa
t that ξ−1 = ξ̄ for ξ ∈ T, we immediately obtain (3.6).
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