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PRESERVATION OF ABSOLUTELY CONTINUOUS
SPECTRUM FOR CONTRACTIVE OPERATORS

© C. LIAW, S. TREIL

Contractive operators 7' that are trace class perturbations of a unitary
operator U are treated. It is proved that the dimension functions of the
absolutely continuous spectrum of 7', T, and of U coincide. In particular,
if U has a purely singular spectrum, then the characteristic function 6 of T’
is a two-sided inner function, i.e., 6(§) is unitary a.e. on T. Some corollaries
to this result are related to investigations of the asymptotic stability of the
operators 7' and T (the convergence T" — 0 and (7)™ — 0, respectively,
in the strong operator topology).

The proof is based on an explicit computation of the characteristic
function.

Notation

D  The open unit disk in the complex plane C, D :={z € C: |z| < 1}.
T  The unit circle in C, T = JD.
m  The normalized (m(T) = 1) Lebesgue measure on T.

I, I  The identity operator; in most situations, where it is clear from the

context we will skip the index, denoting the space where the operator
acts.
&1 The trace class.

Karueswie caosa: Trace class perturbations, contractive operators, dimension function,
absolutely continuous spectrum.
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Sy The Hilbert—Schmidt class.
H?  The Hardy space H?; we will also use the symbol H?(E) for the vector-
valued H? functions with values in a Hilbert space E.
z — &<z € D approaches € € T nontangentially; the aperture of the nontan-
gential approach regions is assumed to be fixed (but it is not essential).

All Hilbert spaces in this paper are separable, and all operators act between
Hilbert spaces (or on the same Hilbert space). By a measure we always mean
a finite Borel measure on T.

The term a.e. always means a.e. with respect to the Lebesgue measure on T.
For a.e. with respect to a different measure the term p-a.e. is used.

§1. Introduction and main results

Recall that a unitary operator U on a separable Hilbert space is unitarily
equivalent to multiplication by the independent variable £ in the von Neumann
direct integral of Hilbert spaces,

N = [(@B@©du(e). (1.1)
T

The dimension function

N(&) = Ny(§) = dim E(¢)

is a unitary invariant of the operator U: together with the spectral type [u]
of u, which is the class of all measures mutually absolutely continuous with
1, they completely determine the operator U up to unitary equivalence. The
function Ny is often called the spectral multiplicity function, and we will use
this term.

For definiteness, we assume that N () = 0 whenever the Lebesgue density
w = du/dm of p vanishes (note that p({{ € T: w(§) = 0}) = 0).

The multiplicity of the absolutely continuous (a.c.) part of U is, by definition,
the function N a.e. with respect to the Lebesgue measure on T.

Now, we introduce the notion of spectral multiplicity (of the a.c. spectrum)
for a contraction. Recall that any contraction 7' can be uniquely decomposed
in the direct sum T = V @ Ty, where Ty is a completely nonunitary (c.n.u.)
contraction, and V' is unitary (either of these terms can be 0). The spectral
multiplicity of the a.c. spectrum of V' is precisely the dimension function N,,
considered a.e. with respect to Lebesgue measure.

As for the c.n.u. part Ty, the rank of the defect functions A(§) and A.(§),
& €T, see (1.2) below, is often interpreted as the dimension functions for the
a.c. spectrum of a c.n.u. contraction; in this paper we use this interpretation.
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Let us recall the main definitions. Recall that a completely nonunitary con-
traction Tp is uniquely determined (up to unitary equivalence) by its charac-
teristic function 6 = 6. , cf. [15], which is an analytic operator-valued function
on the unit disk D whose values are strict contractions 6(z): ® — D,; here ©
and ©, are some auxiliary Hilbert spaces.

The characteristic function is defined up to constant unitary factors (possibly
between different spaces) on both sides, so each such equivalence class corre-
sponds to a collection of unitarily equivalent c.n.u. contractions. We should also
mention that for a general contraction T' = V @ Tj, its characteristic function
coincides with the characteristic function of its purely contractive part Tj.

Recall also that any bounded analytic function F' with values in B(9D;9,)
has nontangential boundary values in the strong operator topology a.e. on T,
and that F(z), z € D can be represented as the Poisson extensions of these
boundary values. So for the characteristic function # we denote its boundary
values by 0(¢), ¢ € T, and we will treat 6 as a function defined on D and
a.e.on T.

For a characteristic function 0, its defect functions are defined a.e. on T as

A= T—0"0)2, A, = (I—00%)"/2. (1.2)

Theorem 1.1. Let U be a unitary operator (on a separable Hilbert space),
and let K be a trace class operator such that T = U + K is a contraction. If
T =V @& Ty is the decomposition of T into unitary and completely nonunitary
parts, and 0 is the characteristic function of T, then

rank A(§) = rank A, (), (1.3)
N, () = N, (€) + rank A()

a.e. on T.

We should mention that there is a large body of work studying the abso-
lutely continuous spectrum in the case when the perturbed operator is not
unitary /selfadjoint, see for example [8-10,14,17]. However, these papers were
mostly concerned with the existence of the wave operators, and we are not
sure if it is possible to easily get our result from there. In particular our re-
sult covers the case when the spectrum of the perturbed operator is the whole
closed unit disk, and a typical assumption in results about wave operators is
the “thinness” of the spectrum.

Even if we assume that the spectrum is not the whole unit disk (for example
if the unitary operator has purely singular spectrum [11]), a rigorous translation
from one language to the other would be not much simpler than our self-
contained presentation; and we would need to use some highly nontrivial results
from very technical papers.
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Corollaries 1.2, 1.3, 1.4 below concern the asymptotic stability of the per-
turbed operator. Some of these results might be known to experts. Let, like in
Theorem 1.1, T'= U + K be a contraction, let U be unitary, and let K € &;.
Let also T'=V @ T be the decomposition of 7" into unitary and completely
nonunitary parts, and let 6 be the characteristic function of 7'

Corollary 1.2. IfU has purely singular spectrum (i.e., if u is purely singular),
then 0 is a two-sided inner function, meaning that 0(§) is a unitary operator
a.e. on T.

Corollary 1.3. If U has purely singular spectrum, then Ty and T} are asymp-
totically stable, meaning that T — 0 and (T§)™ — 0 in the strong operator
topology as n — oo.

Corollary 1.4. If T is asymptotically stable, i.e., if T™ — 0 in the strong
operator topology as n — oo, then U has purely singular spectrum.

Note that in the corollaries above the spectrum of 17" does not fill the unit disk
(see [11] for Corollaries 1.2, 1.3, and [16] for Corollary 1.4), so the results about
wave operators can be used to prove the corollaries. However, as we mentioned
above, such a proof relies on some highly technical nontrivial papers. Moreover,
we expect that presented with all the details it will not be significantly shorter
than our self-contained paper.

Remark 1.5. We should mention that under the assumptions of any of the
above corollaries the operator T belongs to the class of so-called Cy-contrac-
tions, meaning that there exists a function ¢ € H* such that ¢(7p) = 0. The
theory for this operator class is well developed, but not directly relevant for
our paper, so, we will omit further discussion.

Our proof of the main result (Theorem 1.1) is slightly lengthy but mostly ele-
mentary: after some simple operator-theoretic arguments, we reduce everything
to a particular case, see Lemma 2.1 below. We then express the characteris-
tic function € in terms of the Cauchy—Herglotz transform of some &;-valued
measure, see §3. The proof of the theorem is then obtained by analyzing the
boundary values of 6, which is pretty straightforward, see §4.

We prove Corollaries 1.2 through 1.4 in Subsection 4.3.

§2. Some reductions

Recall that an operator T is called a strict contraction if ||Tx|| < ||z for all
x # 0; clearly in this case ||T']| < 1.
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Lemma 2.1. Let T = U + K, where U is unitary, K € &1, and ||T|| < 1 (all
operators act on a Hilbert space H). Then T can be represented as

T =U;, + B(I - I)B*Uy, (2.1)

where Uy is unitary, U —U; € &1, B: © — H is an isometry from an auziliary
Hilbert space ©, and I' =T > 0 is a strict contraction such that I —T € &;.

In the proof of the above Lemma 2.1 we will use the following trivial fact.

Lemma 2.2. Let ||T]| < 1, and let | Tz|| = ||z|| # 0. Then for any y L x we
have Ty 1 Tx.

We leave the proof of this lemma as an exercise for the reader.
We will need one more simple lemma.

Lemma 2.3. Let R = 1+ K, where K € &1. Then one can write a polar
decomposition R = V|R|, where |R| := (R*R)"? and V is unitary, such that
IRl —1€&; andV —1¢€ &;.

Remark. The term |R| in the polar decomposition is uniquely determined.
The unitary operator V is uniquely determined if and only if ker R = {0}
(since R is a Fredholm operator of index 0, this happens if and only if Ran R is
the whole space). Formally the above Lemma 2.3 means that for some choice
of the unitary operator V we have I — V € &;; while this is not essential for
the proof, one can see from the proof that in fact, all possible choices of V'
satisfy I - V € G;.

Proof of Lemma 2.3. First, we consider the case when R is invertible (which
happens if and only if ker R = {0}). In this case, |R| is trivially invertible and
V is unique and is defined by V = R|R|™L.

We know that R € I+ &y, so trivially |R|? = R*R € I+ &1, and so
|R| € I+ &. Since |R| is invertible, it is easy to see that |R|~ € I+ &1, and
therefore V = R|R|™! € I+ &;.

Now, we consider the general case. Since for a compact K the operator I+ K
is Fredholm of index 0, the range of R is closed, and dim ker R = dim ker R* <
o~ (and RanR =  (ker R*)}). Take any invertible operator
Ri: ker R — ker R* (such an operator exists and has finite rank, because
dimker R = dim ker R* < oo) Define R := R+ Ry. By the construction, R is
invertible, and maps (ker R)* onto Ran R = (ker R*)* and ker R onto ker R*.

Note also that R — I € S;.

If we denote by Ry the restriction of R to (ker R)* (with target space re-
stricted to Ran R = (ker R*)1), we can see that |R| in the decomposition
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(ker R)* @ ker R has the block diagonal form
5 _ (Rl 0
|R| = ( 0 |Ril) (2.2)

Consider the polar decomposition R= V\]:’;| since R is invertible, V' is uniquely
defined by V = R|R|~!. As we discussed above in the beginning of the proof,
since R is invertible, we have V € I+ &;. We also know that |R| € I + &,
and so |R| € I+ &1, because |R| differs from |R| by a finite rank block |R;],
see (2.2) above.

The fact that R maps (ker R)* onto Ran R = (ker R*)* and ker R onto
ker R* and the block diagonal structure (2.2) imply that V also maps (ker R)*
onto Ran R = (ker R*)* and ker R onto ker R*. Therefore R = V|R|, so we
have constructed the desired polar decomposition. U

Proof of Lemma 2.1. We will prove a “dual” formula to (2.1), namely the
formula

T=U,+U,B(I' -I)B%; (2.3)
applying this formula to the adjoint T* = U* 4+ K* and then taking the adjoint
we will get (2.1).

The identity U + K = U(I4+ U*K) means that it is sufficient to prove (2.3)
for the particular case where U = 1.

So, let T'=1+ K with ||T]| < 1, and let K € &;. Denote ®; := (ker K)* .
Clearly

I+ K)x=a Vaedi,

and therefore by Lemma 2.2
I+ K)D; C 9.
Then K®; C D1, and we can treat K as an operator on 7.
So, we restrict our attention to ®;. Denote

R=(I+K
I+K)|

By Lemma 2.3 we can write a polar decomposition R = V|R| of R with
unitary V such that

Rl -1, €&, V-I €6,

Denote ©y := D1 © ker(|R| — Ly ). Then trivially, I' = [R] o is a strict
contraction on ®o, I' =T and I" — I92 € 6. ’
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Now gathering everything together we see that

L, +K=U+UPy (T —I )P

Do ) Da?
where

r xTEH\D;.
Note that ©; is a reducing subspace for Uj, and so the condition V' — I®1 SNGH

\% Ky
Ula::{ r x e,

implies that Uy — I, € &1. Thus we have proved formula (2.3) for the case of
U =1 (with ©® = ©5 and B being the embedding of D4 into H).
If ® is an abstract space, dim® = dim D, then taking an isometry

B: D9 —-%H, RanB =9,,
we can rewrite the above identity as
L,+K=U+UBBTB-1,)B"
so the general “abstract” form of (2.3) is proved for U = I.

As we discussed in the beginning of the proof, this proves (2.3) for the general
case, and so formula (2.1). Lemma 2.1 is proved. O

§3. Characteristic functions

3.1. Operator-valued spectral measures and spectral representation.
An operator-valued measure p on T is a countably additive function defined
on Borel subsets of T with values in the set of nonnegative selfadjoint opera-
tors. This definition means that an operator-valued measure is always finite,
i.e., that u(T) is a bounded operator.

Let U be a unitary operator on H, let an operator B: ® — H have trivial
kernel, and let Ran B be star-cyclic for U. Define the operator-valued spectral
measure fr = i (with values in B(D)) as

w(E) = B'E(E)B, (3.1)

for any Borel E'C T; here & = £, is the (projection-valued) spectral measure
of U. An equivalent definition is that p is unique operator-valued measure such
that

B*U"B = /ﬁndu(g) Vn € Z,
T

or equivalently,

B*(I— :U")'B = / 1 fzzdu(g) —Cu(z) VzeC\T. (3.2
T
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The operator U is unitarily equivalent to the multiplication operator Mg by
the independent variable ¢ in the weighted space L?(p).

We recall that the weighted space L?(u) with the operator-valued measure g
is defined as follows. First the inner product in L?(g) is introduced on functions
of the form f = ¢x, where ¢ is a scalar-valued measurable function and x € ©:

(ox.0) = [ POTE (du©xy),

T

This inner product is then extended by linearity to the set of all (finite) linear
combinations of such functions. Such linear combinations (of course, modulo
the class of functions of norm 0) form an inner product space, and its comple-
tion is, by definition, the weighted space L?(u).

The unitary operator V: H — L?(u) such that Mg = VUV* is also well
known. Namely, for z € O,

V[p(U)Bz] = ¢(- )z € L*(p).

3.2. Trace class operator-valued measures, spectral representation
and the spectral multiplicity function. The representation of a unitary
operator as a multiplication operator in the weighted space L?(u) with opera-
tor-valued measure looks like “abstract nonsense”, and the model looks more
complicated than the original object. However, when the measure p takes val-
ues in the set & of trace class operators, all objects are significantly simplified.

If p takes values in the set &1 of trace class operators, we can define the
scalar-valued measure p as p := tr . In this case the operator-valued mea-
sure p can be represented as

dp = Wdp,

where [W(&)[| < [W(&)llg,

It is not hard to see that in this case the measure p = trp is a scalar
spectral measure of the operator U that can be used in the von Neumann
direct integral (1.1). The inner product in the weighted space L?(u) can be
computed (for measurable functions f and g) as

— [W(©£©.9©) dnl®)

T

=1 p-a.e. on T.

(fs g)LQ(M)

The weighted space L?(u) in this case consists of all measurable functions
for which || f|| 2y < (the obvious quotient space over the set of functions

of norm 0 should be taken).
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It is also not hard to see that in this case the dimension function N, (¢) can
be computed as

N, (§) = rank W(E), p-ae.

(recall that we assume that RanB is star-cyclic for U).
We have presented precisely the fact we will need; an interested reader can
find more details in [6].

3.3. Characteristic function via the Cauchy—Herglotz integral of a
trace class measure. Define the Cauchy transforms,

cu) = [ f‘_‘(i Cnl) = [ 1iigdu(€)7 Conle) = [ ifjgdu@.
T T T

In [7] we obtained formulas (3.4), (3.5) below for the characteristic function
0 = 0. of the operator

T, =U+B(l - I)B*U, (3.3)

where B is an isometry acting from ® — H and I' (and therefore I'*) is a strict
contraction.

Recall that for a contraction I' the defect operator Dy, is defined by D, :=
(I —I*T)1/2.

The characteristic function 6 = 6. of T}, was proved to be given by

0.(2) = —T + D . Fi(2) (1 (- I)Fl(z)> D (3.4)

T

(3.5)

-1
=T+ D (I- R -1) Fi()Dy,

where F(z) = Cipu(z). Here the measure g was given by (3.1), or equivalently
by (3.2).

This formula was proved in [7] for the case of finite rank perturbations.
However, the only place where the finite rank was used in the proof was in
the definition of the measure p, which was in that case expressed explicitly
via the scalar spectral measure in the von Neumann direct integral (1.1) and
the matrix of the operator B. Such an explicit expression is not possible in
the general case, but what one really needs for the proof of the formula, is the
identity

zB*(L,, — 2UTIUB = Cu(z) =: Fi(2). (3.6)
For convenience, we include the proof of (3.4), (3.5), and (3.6) in §5.

Moving forward, we would like to express the characteristic function 6 in
terms of the Cauchy—Herglotz integral Ci s of some G1-valued measure p: this
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will allow us to express the defect functions A = (I — 9*«9)1/2 and A, =
(I—66%)2.

First, we express 6 in terms of Fb := Cop. Using the fact that I' = I'*, we
can rewrite (3.4) as

—1 —1 —1
0. =D, (—DF ID' + Fy (I- (T~ DF) ) D

= D! (—r +D( - I)F + DI%Fl) (I-(T-T)F) ' D

note that while the operator D; 1'is unbounded, it is densely defined, and the

above identity can be understood as an identity for bilinear forms on a dense
linear submanifold © x Ran D, C D x D.
Since Fy = (F» —1I)/2, we can continue

6. =D (—2P F(I-T)(F — 1)) (21 SO -D)(B - I)>_1DF

= D! (—(I +T)+(I— F)Fg) 1-T)D!
[D;l ((I +T) — (T - I)FQ) (I1— F)Dgl} o
note that for a strict contraction I' = I'* > 0 the operator (I — F)DI:1 =
(I-T)Y2(I+T)"'/2 is bounded, so the above expression is again well defined.
Using the identity
DMI-T)I+T)D ' =1,

we can rewrite GF as

b = (BRB 1) (BRA+D) ",
where
B=pB" =D '(I-T).
Define the measure g := BuB3. Then, trivially, Copt = BCopu8 = BEL3, so
Cop — 1
- Cop+1
(we write it as a fraction to emphasize that the terms commute). Note that

for z € D we have Re(Copm(2) +1I) > I, so the operator Copi(z) + I is invertible
and the right-hand side of (3.7) is well defined.

Finally, under our assumptions that I' = I'* is a strict contraction and
I-T € &y, the formula

B=D'I-T)=(I-D)/1+T)'/?

(3.7)
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shows that 3 € Gy (the Hilbert-Schmidt class). Therefore, the measure p is
S1-valued.

§4. Proof of the main results

4.1. Proof of Theorem 1.1: the principal case. In this subsection we
prove Theorem 1.1 for the main special case when

T =U +B(I - I)B*U,

where Ran B is star-cyclic for U and I' = I'* > 0 is a strict contraction, I-T" €
G1. The general case can easily be obtained from this by using Lemma 2.1, see
Subsection 4.2 below.

4.1.1. Some technical lemmas. The function € is defined in the open unit
disk D. Since it is a bounded analytic operator-valued function, it possesses
nontangential boundary values

0€) = Tim 0(z), €T
(in the strong operator topology) a.e. on T.
Lemma 4.1. The function I — 0 is invertible a.e. on T.
Proof. One can see from (3.7) that
(I-0(2))"" = (C2a(2) +1)/2 = Ch(2) (4.1)

for z € D. As we discussed at the end of §3, the measure p is G1-valued, so it
can be represented as

dp = Wdp,
where the scalar measure p is given by g = tr g. In this case

IW©lls, <IWElg, =1 pac.onT.

The space G4 is a Hilbert space, so by Lemma 4.2 below the nontangential
boundary values of Cp exist a.e. on T. Note that for our purposes it is suf-
ficient that the boundary values exist in the strong operator topology, while
Lemma 4.2 states that the boundary values exist in the (much stronger) topol-
ogy of Gs.

Formula (4.1) means that for all z € D we have

Cr(z)I—-0(z)) = XI-0(2))Cp(z) =1,
and taking the nontangential boundary values we conclude that the same iden-

tities are fulfilled a.e. on T. But this exactly means that I — @ is invertible
a.e.on T. n



PRESERVATION OF A.C. SPECTRUM 243

Lemma 4.2. Let 1 be a (finite) Borel measure on T, and let f € L*(u; E)
(where E is a Hilbert space). Then the nontangential boundary values

[Cful(E) [Cful(z), €T

= lim
z—E<
(in the norm topology of E) exist a.e. on T.

Proof. We use the well-known result (|1, Theorem 1.1|, see also |3, Proposi-
tion 10.2.3]) that for a measure p the operator V,,

Vi (2) = % J e (),

is a bounded operator from L?(u) to the Hardy space H?, ||V,]|
C(p).!

The operator V, is defined on scalar-valued functions, but the same formula
defines an operator on the vector-valued space L?(u; E). Take f € L?(u; E).
Applying the scalar estimate to each coordinate of f, we conclude that

Vif Uy < COMSl gy F € L205 E).

<
LA () —H?

It is well known that for ¢ € H?(E) the nontangential boundary values (in
the norm topology of F) exist a.e. on T. It is also well known that (finite
and nonzero) nontangential boundary values of Cu exist a.e. on T. Since for
f € L*(w; F) we have

Crul(z) = Vuf(2) - [Cul(2),

we immediately get the conclusion of the lemma. (]

4.1.2. Computing the defect functions. Recall that the spectral measure g is
represented as dpg = Wdp, where p = tr . Denote by w the Lebesgue density
of p (i.e., of its absolutely continuous part), w := du/dm.

Proposition 4.3. The defect functions A and A, can be computed as
A(€)? = (I 0(&) )W (w(&) (T~ 6(€)), (4.2)
AL = X —0())W(©w(©) T~ 0(£)*) (4.3)

a.e. on T.

l1n fact, it is well known and not hard to show that for a probability measure p
the operator V, is a contraction. Simple scaling then allows one to get the estimate

IVl 2y e < 1(T) Y2,
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Proof. Let Ppu be the Poisson extension of the measure p. Trivially,
Pﬁ = Re FVQ,

where I, = Copt. The representation dp = Wdp implies that the nontangential
boundary values of Pu exist and coincide with Ww a.e. on T; the nontangential
boundary values exist a.e. in the G norm, cf. Lemma 4.2 above, but for our
purposes taking limits in the strong operator topology will suffice.

So, we have

Pii = Re Fy = Re[(I+0)(I—0)7"].
Computing we get (for z € D)
P =Re[I+0)1—-0)7"] = %[(I +O)(I—0)" 4+ (T—6")" YT+ 6%
= %(I — ) I -0)I+0)+ X +6)T-0)](T—-0)"
= —(I— %) 7121 — 20%9)(T — 0)~*
= (T—-0"1T—-0%0)1-06)" .
Taking the nontangential boundary values, we obtain
Ww=O-0)T-001-60)"=T-0"'A%T-0)""!

a.e. on T. Since the function I — @ is invertible a.e. on T by Lemma 4.1, this
identity is equivalent to (4.2).

To get (4.3), we simply need to repeat the above calculation with the order
of # and 6* interchanged, namely

Pii = Re[(I+ 0)(I— 6)'] = %[(1 0 T4+ 0)+ (T4 07T 0°) ]
1

= 5= ) [T+ 0)(T—60%)+ (T —0)(T+6%)]T—06%)""
= %(1 —0)" 21 — 200%](1 — 6*) !

=T-0)"'I—-0071—-06%)"".
Taking boundary values again, we get
Ww=1-6)"1A21—-6")""!

which is equivalent to (4.3) because I — @ is invertible a.e. on T. O
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4.1.3. Completion of the proof of the principal case. As we discussed above
in Subsection 3.2, the dimension function N can be computed as N(§) =
rank W () p-a.e. By Lemma 4.1 the function I — @ is invertible a.e. on T, so
the conclusion of Theorem 1.1 (in the case we are considering) immediately
follows from identities (4.2), (4.3). O

4.2. Proof of Theorem 1.1: the general case. According to Lemma 2.1,
the operator T' can be represented as

T = U, +B( — I)B*U;

where, as in Subsection 4.1, we have U —U; € G, ' = I'* is a strict contraction,
and I — ' € &;. Note that Ran B is not necessarily star-cyclic for U. Denote

Ho :=span{U'RanB :n € Z}, H,:=Hp.

The subspaces Ho, H; are reducing for both Uy and T'; moreover T'|y, = Ui |y,
is trivially unitary and 7|y, is a completely nonunitary contraction on Hj,
see [7, Lemma 1.4].

Denote V := Uily,, Uy := Ulln,, To := T|n, (with the target space also
restricted to the spaces Hg, Hi respectively). Clearly

To =Uy + B(F — I)B*U()

and Ran B is star-cyclic for Uy. Recall that, as we discussed in §1, the charac-
teristic function of the contraction 7" coincides with the characteristic function
of its completely nonunitary part 7. Therefore, by the discussion in Subsec-
tion 4.1,

rank A(§) = rank A, (§) = Ny, (&) a.e.onT,

which gives us (1.3). Adding N,,(§) to both parts, and noticing that

Nv(é‘) +NU0(£) = *NU1 (€,
we get

rank V' (£) + rank A(§) = N, (§) ae. onT.

The above formula is exactly identity (1.4) with N;; (£) instead of Ny, (). But

U —U; € &4, so by the classical Kato-Rosenblum theorem (or, more precisely

Birman-Krein theorem? [2]) the identity N, (€)= Ny, (€) holds true a.e. on T,

so (1.4) is fulfilled. Thus Theorem 1.1 is proved in full generality. O

2The statement that we are using, about the preservation of the absolutely continuous
parts of a unitary trace class perturbations of unitary operators, first appeared in [2], which
should be a proper reference. It also can be obtained via linear fractional transformation
from an appropriate version (difference of resolvents is of trace class) of the Kato—Rosenblum
theorem for selfadjoint operators due to S. T. Kuroda [4, 5].
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4.3. Proof of the corollaries. Asin Theorem 1.1, let U be a unitary opera-
tor, let K € &1, and let T'= U + K. Further let 0 be its characteristic function
and let T'=V & Ty be the decomposition of T into unitary and c.n.u. parts.

Recall that a bounded analytic operator-valued function € on the unit disk is
called inner if its boundary values (&) are isometries a.e. on T. The function 6
is called x-inner (or co-inner) if the function z — 6(2)* is inner, which means
that the operators 0(£)* are isometries a.e. on T.

Finally, the function 6 is called two-sided inner if it is both inner and *-inner,
which means that the boundary values 6(¢) are unitary a.e. on T.

Proof of Corollary 1.2. Let U have purely singular spectrum, which means
that N, (§) = 0 a.e. on T. Then equation (1.4) informs us that rank A(§) =0
a.e. on T, and by (1.3), we see that also rank A,(¢) = 0 a.e. on T. Therefore,
by the definition of the defect functions A and A, we see that §(§) is unitary
a.e. on T, i.e., that 0 is double inner. O

For the proofs of Corollaries 1.3 and 1.4, recall the following result.

Proposition 4.4 (see, e.g., [15, Proposition VI.3.5]). For a c.n.u. contrac-
tion Ty we have:

(i) Ty is asymptotically stable if and only if its characteristic function 0
1S *-Inner;

(i) Ty is asymptotically stable if and only if its characteristic function 6
1S inner.

Proof of Corollary 1.3. This follows immediately from Corollary 1.2 and
the “if” direction of both items in Proposition 4.4. O

Proof of Corollary 1.4. Let T" be asymptotically stable.

Then its unitary part is trivial (V' = 0). In particular, the dimension function
of its absolutely continuous part Ny, (§) is trivial, i.e., N,,(§) = 0 for a.e. £ € T.

From the asymptotic stability of T we further deduce that 7" is a c.n.u. con-
traction. In particular, T = T is asymptotically stable. So Proposition 4.4
implies that € is x-inner. Therefore, we have rank A, () = 0 for a.e. £ € T and
so by (1.3) rank A(§) =0 for a.e. { € T.

Invoking (1.4), we see that N, (§)=N;, (§)+rank A(§)=0 for a.e. £€T. O

§5. Appendix: Derivation of the characteristic function

Mainly for the sake of self-containment, we include a proof of the formulas for
the characteristic function in (3.4) and (3.5) following that of [7, Theorem 4.2]
where the formula was proved in the matrix case. We also prove (3.6) at the
end of this section.
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Recall that for a contraction 7' its defect operators D, and D.
D,=(1-1T"T)"% D, =@-TT")"
and the defect spaces are defined as
@T = ClosRan DT, @T* = Clos Ran DT*.

- are given by

T*

Recall that according to [15, Chapter VI] the abstract characteristic function
¢ = 6, of the operator T is an analytic function in the unit disk D whose

values are strict contractions 0(z): D, — D,. which is given by the formula

T*
Y -1

0,(2) = (=T +2D,. (1, —21")"" D) o
Usually in the literature the characteristic function is treated as the equiva-
lence class of all functions obtained from 6 by right and left multiplication by
constant unitary operators. But sometimes it is more convenient, as we will
do, to pick a concrete representation in this equivalence class. Namely, if ©

and ®, are abstract Hilbert spaces of appropriate dimensions, and
ViD, =9, Vi:D,. =D, (5.1)

are unitary operators (the so-called coordinate operators), then, according to,
e.g., [12, Theorem 1.2.8] or [13, Theorem 1.11], the representation of the char-
acteristic function corresponding to the identification (5.1) is given by

0(z) = V.0(2)V* = Vi(=T + 2D, (I, — 2T*) "' D )V*. (5.2)

Consider a contraction 7' =T, = U + B(I' = I)B*U from (3.3) where B is
an isometry acting from © to H. In this case

D,=U*BD.B*U, D,.=BD.B" (5.3)
If T (and therefore I'*) is a strict contraction, the defect spaces are
©,=Ran(U'B)=U"RanB, 9 . =RanB,
SO
V=B'U, V,=B" (5.4)

is a natural choice for the coordinate operators (this is exactly the choice that
was made in [7]). Note that in this case ©, =D.
By the definition of T, using (5.4) we get

V.TV* =B*TU*B o B*BI'B*UU*B o T,
and therefore (5.2) can be rewritten as
0(z) = —I'+B*2D_. (L, —2T")"' D, U"B. (5.5)
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For much of the remainder of this section we include the space on which identity
operators act, for clarification.
We continue to express the inverse for z € :

(L, —27%)"" = ((I,, — 2U")[1,, — 2(L,, — 2U*)"'U"B(I'"* — 1,)B*])
= X(z)_l(I,H — U7,

-1

where
X(2) =1, — 2(I,, — 2U")"'U*B(I"* — I,)B*.

Here, we note that both I, — 27" and I, — 2U" are invertible for z € D
(because ||zT*||, [|zU*|| < |z| < 1) so X(z) is invertible as well. To obtain the

expression for X (z)~!, we apply Lemma 5.1 below with P,Q: ® — H given
by P = 2(I,, — 2U*)7'U*B and Q* = (I'* — I,)B" to get

X(2) ' =1, +2(L, —2U*)"'U'B

><I®

-1
— (I —1)B*(1,, - zU*)—lU*B] (I* —1,)B%;
note that Lemma 5.1 also implies that the expression in brackets is invertible
for z € D.

Recalling that Fy(z) = 2B*(I,, — 2U*)~1U*B by (3.6), we obtain
(L, — 2T~ =@, —2U%)""

-1

+2(1,, — 2U")"'U*B|L, — (I* — IQ)Fl(z)] (5.6)
x (T —1)B*(I, —2U") "
the expression in brackets is invertible for z € I, because it is exactly the
expression in brackets is the above formula for X (z)71.

Now we substitute (5.6) and (5.3) in (5.5), and again use that Fj(z) =

zB* (L, — U “)71U*B. After straightforward but somewhat tedious calcula-
tions, we arrive at

6(z) = —T + Dy.. (Fl(z) + Fy(2) [19 (- IQ)Fl(z)} (I — IQ)Fl(z))DF
= T4 DRI, - [ TR ()] o
X (19 — (T 1) Fi(2) + (T — IQ)Fl(z)) D,
- Ig)Fl(z)} b

— T+ D F(z) [I

D I

which is exactly (3.4).
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Equation (3.5) is an immediate consequence of (3.4). Indeed, we clearly have

[I© — Fi(2)(T* — Ig)] Fi(z) = Fi(2) [Ig - ("= I@)Fl(z)} :

or, equivalently,

-1
Fi(2) [IQ (- ID)Fl(z)] - [I© R — Ig)} Fi(2).

The following lemma, which we have used above, can be regarded as a par-
ticular case of the so-called Woodbury inversion formula, see [18], although
formally in [18] only the case of matrices was treated.

Lemma 5.1. Let K be a separable Hilbert space and consider operators P,
Q: I — H. The operators L, - PQ* and I. — Q*P are simultaneously invert-
tble. In this case, we have the inversion formula

(L, - PQH =1, +PI. - Q"P)'Q"
Proof. Assume that I,. — Q*P is invertible and compute

(IH - PQ*)(IH + P(I - Q*P)_lQ*)
=1, - PQ"+ P, —Q"P)"'Q" - PQ"P(I, —Q"P)"'Q"
=IH+P( I+ (I - Q"P)(I, —QP)7) Q"
=L,.
So, I, + P, —Q"P)” 1Q* is the right inverse of I,, — PQ*. To show that
it is also the left inverse (and therefore the inverse), one can either reduce
L, + P, —Q"P)” 1Q*)(IH — PQ*) in a similar way, or simply take the
adjomt of the above computation and then swap the roles of P and Q.
Vice versa, to prove the invertibility of I. — Q*P from that of L, - PQ*,

we simply swap the roles of P and Q* and those of H and /C, respectively, and
apply the formulas we have proved. O

Proof of equation (3.6). This identity follows easily from the definition (3.2)
of the operator-valued measure p. Indeed, since

U1 —2UN) =10 —- 20" -1,
we see that
:B*(I1-:2U""'U'B=B*1-:U")"'B-B*B

:T/%_T/dm_qr/li&du@ =
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Remark. Equation (3.6) also follows via a “high brow” approach invoking the
functional calculus. Namely, for a rational function ¢ (with no poles on T),
equation (3.2) implies

B*(U)B = / H(©)dp().
T

Taking

2€71

(&) = p:(§) = W,

and using the fact that ¢! = ¢ for £ € T, we immediately obtain (3.6).
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