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Abstract

We show improved data structures for the high-dimensional

approximate nearest neighbor search problem (ANN) for `p
distances for “large” values of p and for generalized Ham-

ming distances. The previous best data structures proceeded

by embedding a metric of interest into the `∞ space or an

`∞-direct sum with simple summands, and then using data

structures of Indyk (FOCS 1998, SoCG 2002) for `∞-ANN.

In contrast to this, we bypass the embedding step and pro-

ceed by extending the technique underlying the `∞ data

structures to handle `p and generalized Hamming distances

directly. The resulting data structures are randomized, in

contrast to Indyk’s result for `∞-ANN, and replicate input

points, in contrast with Locality Sensitive Hashing. This

leads to ANN data structures with significantly improved

approximations over those implied by embeddings, as well

as those obtained using all known approaches based on ran-

dom space partitions. .

1 Introduction

The c-approximate near neighbor problem (ANN, from
now on) is defined as follows. Given a dataset P of
n points lying in a metric space M = (X, dX) and a
parameter r > 0, build a data structure that, given
a query point q 2 X within distance at most r from
the dataset P , returns any data point within distance
cr from the query q. The ANN problem has a wide
range of applications (see [13, 3] for an overview), and
at the same time, gives rise to a vast array of theoretical
literature (see surveys [6, 4] as well as theses [1, 27]). In
this paper, we focus on the high-dimensional case of the
ANN problem, where we allow the parameters of a data
structure to depend on the “dimension”1 of the metric
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1Depending on the context, dimension can be defined differ-

ently, but generally captures the description size of the query. If
X is finite, the dimension is commonly defined as log |X|. If M

space M only polynomially.
In 1998, two seminal works on high-dimensional

ANN were published:

1. Indyk and Motwani [21, 16] formulated a general
framework based on random space partitions of the
ambient metric space (termed Locality-Sensitive
Hashing or LSH), and used it to obtain ANN data
structures for `1 and `2 distances;

2. Indyk [17, 18] showed a deterministic data struc-
ture for the `1 distance based on a certain geo-
metric decomposition procedure which is notably
not a space partition. Later in 2002, Indyk fur-
ther extended this result [19] to handle `1-direct
sums, where the summands admit efficient ANN
data structures.

The paper of Indyk and Motwani [21] pioneered the
use of randomized space partitions for ANN, and has
since become the foundation of an immense body of
work. Since then, the quality of (data-obliviouis and
data-dependent) random space partitions for `1 and
`2 has improved, various extensions of [21] have been
explored, and a number of impossibility results have
been proved (for an overview, we refer to the recent
survey [6]).

The key insight of [21] is to design a distribution
over space partitions of `1/`2, such that the following
event occurs with non-negligible probability: the (un-
known) query point q and the near neighbor p 2 P ,
which are within distance r, lie in the same part of the
partition, while only a negligible fraction of points in
P which are farther than cr from q fall in the same
part as q.2 During preprocessing, the data structure
samples a random partition from the distribution and
places dataset points into their corresponding parts; on
a query, the data structure scans through the part of
the partition where q lies, and outputs an approximate
near neighbor if one is found (which is guaranteed to

is a normed space defined on R
d, then the dimension is d. If M

is a Riemannian manifold, then the dimension of M is a part of
the definition etc.

2In particular, [21] set parameters so that at most O(1) points

from P which are farther than cr from q fall in the same part as
q
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occur if the event holds). We note that the polynomial
space and time overhead comes from repeating the data
structure in order to increase the success probability.

For metric spaces beyond `1 and `2, this approach
of ANN via randomized space partitions has been
vastly generalized to yield state-of-the-art ANN data
structures for general d-dimensional normed spaces.
The generalization follows from building a distribution
over space partitions from an upper bound on the
metric spectral gap [25, 26]; however, even for `1,
the approach fails to give an approximation better
than O(log d). In constrast, the data structure of [17]
achieves approximation O(log log d) for `1, thus, the
landscape of ANN data structures for general metric
spaces (even for general normed spaces) is far from being
understood completely.

On a technical level, the data structure for `1 of
[18] is fundamentally different. Most notably, the poly-
nomial space overhead is inherent throughout the entire
execution since points are constantly being replicated,3

and the data structure is fully deterministic (see Sec-
tion 1.2.1 for a more detailed discussion). Because of the
universality of `1 and product spaces, the data struc-
tures of Indyk [17, 18, 19] has enabled a number of new
ANN results: for Hausdorff [14], Frechet [19], edit [20],
Ulam distances [5], `p norms [1], and general symmet-
ric norms [9]. However, the main contributions of these
papers are in their use of metric embeddings as reduc-
tions to the `1 case; the insights of [18, 19] are applied
in a black-box fashion. This state of affairs is somewhat
unsatisfactory both from the conceptual level, as well as
from the quantitative point of view. In particular, one
may hope to bypass the embedding step altogether and
obtain better data structures by using the (extension
of) techniques from [18, 19] for geometries other than
`1.

In this paper, we make the first step towards
that goal. We develop techniques for designing ANN
data structures extending [18, 19], going beyond the
approach of space partitions. We obtain improved ANN
data structures for two metric spaces of interest: for
`p distances for “large” values of p and for generalized
Hamming distances, defined as the `1-direct sum of
several copies of a “small” metric space. The new data
structures proceed by far-reaching generalizations of the
Indyk’s approach.

1.1 Results We obtain improved ANN data struc-
tures for two classes of metrics.

3In this precise sense, the data structure for `∞ is not based
on space partitions.

`p distances. Below is the main result that we
show for ANN over `p norms.

Theorem 1.1. Fix d 2 , ↵ 2 (0, 1/2]. For any n 2
there exists a ANN data structure over `dp for n-point
datasets with space O(dn1+↵) and query time O(dn↵),
achieving approximation:

c = O↵

⇣

log p · log2/p d
⌘

.

To put our result in context, we compare to the best
known algorithms for `p. There are two incomparable
results from the prior work. The first one uses the ap-
proach of randomized space partitions from [8, 7] and
yields O(p) approximation; we note that this bound is
best possible via that approach4. The second one uses
a randomized embedding of the `dp norm into the `d1
space using exponential random variables [1, 10] and
then uses the ANN data structure for `1 [18], and
eventually yields a O(log log d)-approximation. Hence
the former approach is better if p ⌧ log log d, while
the reduction to `1 is superior whenever p� log log d.
Our Theorem 1.1 improves the state-of-the art when-
ever log p · log2/p d . p (in particular, when p �
log log d/(log log log d)1�↵, for arbitrary ↵). For in-
stance, if p ⇡ log log d, then both of the previous results
give approximation around log log d, while the approx-
imation obtained from Theorem 1.1 is O(log log log d).
We note that our data structure has exponential prepro-
cessing time (also the case for the O(p) approximation
from [8, 7])

Generalized Hamming distances. The Gener-
alized Hamming (GH) distance is defined as the `1-
direct sum of d copies of a finite metric space Z (which
we think of being small). More precisely, the space con-
sists of tuples (u1, u2, . . . , ud), where ui 2 Z. The dis-
tance between two tuples is defined as follows:

d((u1, . . . , ud), (v1, . . . , vd)) =

d
X

i=1

dZ(ui, vi).

The GH distance is a generalization of the usual Ham-
ming distance, where Z is the uniform metric over a fi-
nite set, and has many natural applications where Ham-
ming distance over some finite alphabet does not cap-
ture well that some characters are more “similar” than
others (e.g., nucleotides or amino-acids [15]).

We prove the following theorem for ANN under the
Generalized Hamming distance.

Theorem 1.2. Fix d 2 , a finite metric space (Z, dZ)
whose distances are between 1 and R 2 �0, as well

4It follows from the result of Matousek [24].
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as the parameter ↵ 2 [0; 1/2). For any n 2 ,
there exists a data structure for ANN over `d1(Z) for
n-point datasets using space poly(d,R, |Z|) · n1+↵ and
query time poly(d,R)·|Z|poly(R,log |Z|,1/↵) ·n↵, achieving
approximation:

c = O↵ (log log |Z|+ logR) .(1.1)

While there are no specialized algorithms for the
ANN under GH distance, the existing techniques yield
two different approaches, via random partitions and
via `1 embeddings. First, one can obtain O(log |Z|)
approximation by embedding `d1(Z) into `1 using the
Bourgain’s embedding [12] and then using any ANN
under `1 [6] (based on random space partitions). The
second approach obtains O(log log n) approximation by
embedding `1(Z) into `1(Z) using exponential random
variables [1, 10] and then using ANN under `1-direct
sums of simple metrics [19]. Our Theorem above
obtains approximation O(log log |Z|), for the case when
aspect ratio R is bounded by poly(log |Z|)5, which yields
exponential improvement over what can be obtained
using space partitions. Crucially, our approximation is
independent of n and d, unlike the reduction to `1(Z),
and is thus better for the case of a fairly small metric
Z.

Let us note as a side remark, that it is likely that the
approximation O(log log d) is tight for `1-ANN [2, 22].
Thus, it is unlikely one can obtain our results merely by
improving the `1 data structures.

1.2 Techniques

1.2.1 List decompositions The main technical in-
gredient in the work of Indyk [18] is a decomposition
lemma that shows that any n-point dataset P ⇢ d

without a dense cluster of points can be decomposed in
a way that allows building a decision tree for the ANN
problem with low space and time complexity. Specif-
ically, if no subset of P of diameter ∆ = O(log log d)
contains more than n

2 points, then P can be covered
with disjoint sets L,M1,M2, R ⇢

d such that

• the sets are basis-aligned slabs, i.e., for some coor-
dinate k 2 [d], and some value ⌧ , L = {x : xk  ⌧},
M1 = {x : ⌧ < xk  ⌧ + 1}, M2 = {x : ⌧ + 1 <
xk  ⌧ + 2}, R = {x : xk > ⌧ + 2};

• L and R each contain at least 1/(4d) fraction of the
points in P ;

5Let us note that the hard example for the Bourgain’s theorem

is the shortest-path metric of a constant-degree expander, which
has logarithmic aspect ratio R.

• the middle slabs are not too large; in particular

|P \ (L[M1 [M2)|
2 + |P \ (M1 [M2 [R)|2  n2.

Then, a decision tree data structure recursively builds
two decision tree data structures for the (overlapping)
sets P1 = P \(L[M1[M2) and P2 = P \(M1[M2[R).
Each set contains at most (1� 1/(4d))n points, which
implies a bound of O(d log n) on the depth of the tree.
The upper bound |P1|

2 + |P2|
2  n2 implies that the

total space is O(n2). For a query point q, we query
the P1 data structure if q 2 L [M1, and we query P2

otherwise. The definition of the sets guarantees that,
during this query procedure, q is never separated from
any x 2 P such that kx� qk1  1 (we consider r = 1).
If, on the other hand, P contains a dense cluster, then
we can store a single point from it, and recurse on points
outside of it. Let us note that the sets P1 and P2 do
not form a partition of P , but, rather, they overlap, and
this is absolutely crucial for the overall result.

Our results build on this basic tool, and generalize
it in several directions. We consider decompositions
defined by a list L of tuples (Lj ,Mj,1,Mj,2, Rj)

`
j=1,

which induce overlapping sets Pj = P\(Lj[Mj,1[Mj,2)
(for j  `), and P`+1 = P\(M`,1[M`,2[R`). The tuples
satisfy similar properties as above: |Pj |/|P | is bounded

away from 1,
P`+1

j=1 |Pj |
2  n2, and a description of

each Pj can be efficiently stored. This structure defines
a natural decision tree, analogous to the construction
above. Working with lists allows a finer control of
the sizes of the Pj . Additionally, we allow these list
decompositions to be randomized, and we allow the
query point q to be separated from a near neighbor x
with low probability. The randomization is crucial for
our results for generalized Hamming distances and `p
norms.

1.2.2 Generalized Hamming distances The data
structure for generalized Hamming distances combines
list decompositions with a coordinate sampling strategy,
thus drawing on techniques previously used for the `d1
and `d1 norms. Recall that a generalized Hamming
distance is defined as `d1(Z), i.e., the `1-product of d
copies of a finite metric Z. We assume that distances
between distinct points in Z lie in the interval [1, R].
As an initial building block, consider the special case of
ANN where near neighbors lie at distance r = Θ(dR/c)
and c = O(log log |Z|) is the approximation factor. To
build a randomized list decomposition of an n-point set
P ✓ Zd, we first sample a multiset S of m coordinates
in [d] and project the points in P to the coordinates in
S, treating this projected space as `m1 (Z). A standard
application of Hoeffding’s inequality shows that, as
long as m is a large enough constant relative to c,
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any pair of points in `d1(Z) have distances which are
approximately preserved with constant probability by
the projection. In particular, the distance between any
query point q and a near neighbor x 2 P of q is preserved
with constant probability. Moreover, if P does not
contain a dense cluster of radius cr, then, with constant
probability, the projection of P does not contain dense
clusters of slightly smaller radius. Assuming that P
does not contain a dense cluster, we may adapt Indyk’s
decomposition for `d1 to obtain a list decomposition
of the projected P ⇢ `m1 (Z) into sets of size 15n/16.
The sets are defined as pre-images of shells in `m1 (Z),
and, since this is a metric space of size polynomial
in |Z|, membership can be decided efficiently. The
list decomposition separates a query point q and its
near neighbor x only with small constant probability,
where all the randomness comes from the sampling of
coordinates. This list decomposition allows us to build
a randomized decision tree: if there is a dense cluster in
P , then we remember a single point in it, and recursively
build a decision tree for the points outside the cluster;
if there is no dense cluster, we recursively build decision
trees for all the sets defined by the list decomposition.

The construction above handles the case when far
points at distance cr are within a constant factor of
the maximal possible distance dR in `d1(Z). We reduce
the general case to this maximal distance case by
constructing a randomized embedding of `d1(Z) into
`d1
1 (Y ), where Y is a metric space with distances in
[1, R], and d1 and |Y | are slightly larger than d and |Z|,
respectively. The embedding has constant distortion,
and maps pairs of points at distance cr in `d1(Z) to
points at distance Θ(d1/R). This allows us to use the
data structure for the maximal distance case, with the
number of coordinates m sampled depending also on R.

1.2.3 `p distances While the data structure for `dp
also relies on randomized list decomposition, the ran-
domization is not due to coordinate sampling. Similarly
to [8], we consider a distributional version of the prob-
lem, where a pair (x, q) of a query point q 2 d and a
dataset point x that is a near neighbor of q (i.e., at dis-
tance at most 1 from it) is sampled from a distribution
µ. At a high level, solving this distributional problem
for any distribution µ will imply the randomized data
structure for the usual worst-case setting, via von Neu-
mann’s minimax theorem (see the proof of Theorem 3.1
for an illustration of this). We note, however, that his
black-box use of the minimax theorem gives data struc-
tures that require exponential time pre-processing of the
dataset, similarly to the data structures in [8].

To solve the distributional problem, it is sufficient to
construct a (deterministic) list decomposition L for any

distribution µ with left marginal ⇢ (i.e., the distribution
on dataset points) such that any set Pj induced by L
has small measure with respect to ⇢, the probability
that the pair (x, q) ⇠ µ is separated is an arbitrarily
small constant, and the sets Pj do not overlap too

much with respect to ⇢, i.e.,
P`+1

j=1 ⇢(Pj)
2  1. In the

case of `d1, Indyk’s decomposition guarantees such a
decomposition as long as there is no ball of radius ∆ =
O(log log d) whose measure is bigger than 1/2 under ⇢.
Our goal is to, instead, get a decomposition assuming
that there is no ball of radius ∆ = O((log p)(log d)1/p)
and measure 1/2 under ⇢. This, however, appears to be
insufficient with our methods, and, instead, we prove
the existence of a good list decomposition assuming
that the marginal of ⇢ on any �d coordinates, for
� = Ω(1), does not contain a `�dp ball of radius ∆

and measure 1/2. Despite this qualitatively stronger
assumption, we can still use the list decomposition to
build an efficient data structure. In particular, when
a list decomposition exists, we recursively build a data
structure on the sets defined by it. When one does not
exist, then the assumption is violated, and some �d-
coordinate subspace contains a dense cluster; we can
then recurse on both the points outside the cluster,
and on the points inside the cluster, projected to the
remaining (1� �)d coordinates. In both recursive calls,
we are making progress, either by decreasing the dataset
size, or decreasing the dimension of the problem. This
allows us to still bound the approximation factor, and
the space and time complexity of the data structure.

2 List Decompositions

This section sets up some of the main definitions we
will need in order to define and analyze the ANN data
structures. For now, we use X to denote an arbitrary
finite subset of points. It is useful to think of X as
a discretization of the universe from which the input
pointset will be drawn. In the following definitions it
will also be useful to think of the measure ⇢ as the
empirical measure of an n-point set P , i.e., the measure
given by ⇢(x) = 1

n for every x 2 P .

Definition 2.1. (List Decompositions) Let ⇢ be a
probability distribution supported on X. For ` 2 , a
list decomposition L of length ` with respect to ⇢ is
given by a list of quadruples of disjoint subsets of X,
L = {(Li,Mi,1,Mi,2, Ri)}i2[`]. We have L1 [ M1,1 [
M1,2 [R1 = X, and, moreover, for every i 2 [`� 1], we
have

⇢(Li)  ⇢(Ri) and

Li+1 [Mi+1,1 [Mi+1,2 [Ri+1 = Mi,1 [Mi,2 [Ri,

We denote the query map of L as QL : X ! [` + 1]
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defined by:

QL(q) =
⇢

min {i 2 [`] : q 2 Li [Mi,1} 9i 2 [`] : q 2 Li [Mi,1

`+ 1 q 2M`,2 [R`

A list decomposition generalizes the `d1 algorithm
of Indyk [18], in the case an underlying point-set
does not contain a dense ball. Notice that a list
decomposition L corresponds to a nested sequence of
overlapping subsets of X. Namely, (L1,M1,1,M1,2, R1)
first partitions X into four sets, where L1 is smaller
than R1 with respect to ⇢. After that, the subsequent
quadruple (L2,M2,1,M2,2, R2) is a partition of M1,1 [
M1,2 [ R1, and the process continues. Therefore, if
L = {(Li,Mi,1,Mi,2, Ri)}i2[`] is a list-decomposition of
X with respect to some distribution ⇢, the collection
{L1, L2, . . . , L`} are disjoint subsets of X.

For a list-decomposition L, we will build a
data structure that proceeds by decomposing the
dataset P into ` + 1 (possibly overlapping) subsets
P1(L), . . . , P`+1(L) ⇢ P according to

Pi(L) =

⇢

P \ (Li [Mi,1 [Mi,2) i 2 [`]
P \ (R` [M`,1 [M`,2) i = `+ 1

.(2.2)

Then, on a particular query q 2 X, the data struc-
ture will search for the dataset point within the set
PQL(q)(L).

The next definition allows us to control the blow-up
in space complexity resulting from the overlap between
the sets Pi(L).

Definition 2.2. (�-bounded overlap) Let ⇢ be a
probability distribution over X, and for ` 2 , let
L = {(Li,Mi,1,Mi,2, Ri)}i2[`] be a list decomposition of
length ` with respect to ⇢. For � 2 �0, we say that L
has a �-bounded overlap with respect to ⇢ when

`+1
X

i=1

⇢(Pi(L))
1+�  1.

The following definition requires that the sets Pi(L)
have measure bounded away from 1, so that we can
guarantee that any application of the data structure
defined by the list decomposition significantly decreases
the number of points that need to be processed.

Definition 2.3. (⇠-progress) Let ⇢ be a probabil-
ity distribution over X, and for ` 2 , let L =
{(Li,Mi,1,Mi,2, Ri)}i2[`] be a list decomposition of
length ` with respect to ⇢. For ⇠ 2 (0, 1), we say that L
makes ⇠-progress for ⇢ if ⇢(Pi(L))  1� ⇠ holds for all
i 2 [`+ 1].

The final definition we need is that of splitting of
points. We emphasize that there will be an asymmetry
between dataset and query points in the next definition.

Definition 2.4. (split points) Let ⇢ be a probabil-
ity distribution over X, and for ` 2 , let L =
{(Li,Mi,1,Mi,2, Ri)}i2[`] be a list decomposition of
length ` with respect to ⇢. Let (x, y) 2 X ⇥X be points,
we say that L splits (x, y) if there exists i 2 [`] such
that 1) x 2 Li and y 2 Mi,2 [ Ri, or 2) x 2 Ri and
y 2 Li [Mi,1.

Definition 2.4 will measure the failure events of the data
structure. Specifically, notice that if x 2 P is any
dataset point and q 2 X is a query close to x, then
(x, q) is split if and only if

x /2 PQL(q)(L).

To see the first direction, notice that if there exists
i 2 [`] where x 2 Li and q 2Mi,2 [Ri, then QL(q) > i.
Since, for every i0 > i, Li0 [ Mi0,1 [ Mi0,2 [ Ri0 ⇢
Mi,1 [ Mi,2 [ Ri and is disjoint from Li, we have
x /2 PQL(q)(L). (The argument for when (x, q) are split
because x 2 Ri and q 2 Li [Mi,1 follows similarly).

For the other direction, suppose that (x, q) are not
split, which means every i 2 [`] satisfies x 2Mi,1[Mi,2[
Ri whenever q 2 Mi,2 [ Ri and x 2 Li [Mi,1 [Mi,2

whenever q 2 Li [Mi,1. Let i⇤ = QL(q), and notice
that for every i < i⇤, q 2 Mi,2 [ Ri, which means
x 2 Mi,1 [Mi,2 [ Ri = Li+1 [Mi+1,1 [Mi+1,2 [ Ri+1.
As a result, x 2 Li⇤ [Mi⇤,1 [Mi⇤,2 [Ri⇤ . By definition
of i⇤, if i⇤ < ` + 1, then q 2 Li⇤ [ Mi⇤,1 so that
x 2 Li⇤ [Mi⇤,1[Mi⇤,2; on the other hand, if i⇤ = `+1,
then q 2 M`,2 [ R`, so x 2 M`,1 [ M`,2 [ R`. In
conclusion, we have that in the event that (p, q) are
not split, we maintain the promise that p is inside
the (proper) subset of dataset points which the data
structure will query given q.

For the rest of this document, for any probability
distribution ⇢ supported on X, as well as ` 2 and
� 2 �0, let

L(⇢, `,�, ⇠) =
8

<

:

L :
L is a list decomposition of length `

with respect to ⇢ with �-bounded overlap
and ⇠-progressing

9

=

;

.

We may now re-state the theorem of [18], which
results in a data structure for ANN over `d1 with
approximation O(log1+� log d).

Theorem 2.1. (Main Theorem implicit in [18])
Fix d 2 and � � 0. Let n 2 and P ⇢ d be
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any subset of n points, and denote ⇢P as the empirical
probability distribution supported on P . Suppose that
for any A ⇢ d where

diam`1(A) = sup
x,y2A

kx� yk1  4dlog1+� log(4d)e,

we have |A \ P |  n/2. Then, there exists L 2
L(⇢P , 1,�, 1/(4d)) such that for all x 2 P and all q 2 d

with kx� qk1  1, L does not split (x, q).

The data structure of [18] proceeds by iteratively
applying Theorem 2.1 to decompose the points into
two sets in the case there are no clusters of n/2 points
within diameter 4dlog1+� log(4d)e,

6 and simply storing
one point in the case such a cluster exists. Hence, once
Theorem 2.1 is established, the data structure builds a
O(d log(n))-depth tree which never splits points (p, q)
when kp� qk1  1.

3 Random List Decompositions for `dp

We now present the main decomposition theorem for
`p norms, where we construct random list decomposi-
tions for point sets with a projection-resilient separation
property. By a separation property, here we mean the
property that no large fraction of the data set points
are too clustered. Informally, projection-resilient sep-
aration will mean that the points are separated, and
remain so when considering subsets of coordinates. For
example, Theorem 2.1 implies a decomposition which
does not split close points assuming that the point-set
is no more than half the dataset points lie in any set
of diameter 4dlog1+� log(4d)e. The projection-resilient
separation property (to be defined shortly) is a strength-
ening of the condition of Theorem 2.1 which enables
a random list decomposition such that points that are
close in the `p norm are split with low probability after
ruling out clusters of smaller diameter.

In order to avoid issues of measurability when prov-
ing results about distributions over d, we will again
work with a fixed and arbitrary finite set X ⇢ d, and
will always consider discrete probability distributions ⇢
whose support is X.

Definition 3.1. (�-projection-resilient (∆, ⌘)-
separation in d.) Fix d 2 , let S ⇢ [d] be any
set, and let ΠS :

d ! |S| be the projection of points
to coordinates in S. Let ⇢ be any distribution supported
on X, and let ∆ 2 �0 and ⌘,� 2 (0, 1). We say that
⇢ satisfies �-projection-resilient (∆, ⌘)-separation in

d if for every subset S ⇢ [d] with |S| � �d, and every

6Notice that the decomposition is into two sets since the length
of the list-decomposition in Theorem 2.1 is 1.

subset A ⇢ |S| of diam
`
|S|
p

(A)  ∆,

⇢
�

Π
�1
S (A)

�

= Pr
x⇠⇢

[ΠS(x) 2 A]  ⌘.

The assumption in Theorem 2.1 is equivalent to
requiring that ⇢P satisfies 1-projection resilient (∆, 1

2 )-
separation, where ∆ = 4dlog1+� log(4d)e. When � <
1, however, projection resilient separation makes the
stronger requirement that there are no dense clusters
even after projection on coordinate subspaces of large
dimension.

The rest of this section is devoted to proving
the following theorem. Due to the large number of
parameters in the theorem, we give a high level overview
of their meaning. It is useful to think of d 2
as the (fixed) ambient dimension and p 2 [1,1)
indicating the `p norm. At a high level, ✏ will upper
bound the probability that close points are split, and
1 � ⇣ the fraction of dataset points we want the list-
decompositions to be useful for. Intuitively, we want
the theorem to be useful for as many points as possible
and the probability of splitting close points small (i.e.,
having ⇣ and ✏ close to 0). Recall that parameters
of the list-decomposition `,� and ⇠ control the size
of the list, the space overhead these will incur, and
the progress we will make. The size of the list will
always be 4d, the space overhead � is specified by an
algorithm designer (typically a small constant), and the
progress ⇠ to a small constant (so it suffices to consider
O(log n) list-decompositions). However, as alluded to
earlier, these list-decompositions will only be possible
under projection-resilient separation of the dataset P ,
which are governed with parameters �, ⌘ and ∆; most
importantly, is the setting of ∆, as the approximation
obtained will depend linearly on it.

We encourage the reader to consider setting the
parameters �, ⌘, ⇠, ⇣ and � to constants, and then, ✏ to a
sufficiently small constant. Finally, this gives a setting
of the separation ∆ for which the list-decompositions
will hold.

Theorem 3.1. Fix d 2 and p 2 [1,1), as well as
✏,�, ⇣ 2 (0, 1), ⌘ 2 (0, 1/100], ⇠ 2 (0, 1/20], � 2 (0, 1]
and let

∆ = 6 · dlog1+�(2p/�)e ·

✓

8 ln(8d)

✏ · (1� �)

◆1/p

.(3.3)

Let n 2 and P ⇢ X be any n point subset. Denote
⇢P as the empirical distribution of P and assume ⇢P
satisfies �-projection-resilient (∆, ⌘)-separation. Then,
there exists a subset P0 ⇢ P of size at least (1�⇣)n and
a distribution H supported on L(⇢P , 4d,�, ⇠) such that
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for every x 2 P0 and every y 2 X where kx� ykp  1,

Pr
L⇠H

[L splits (x, y)] 
10✏

⇣
.

Moreover, every set Lj ,Mj,1,Mj,2, Rj has the form {x :
a  xk  b, x 62 [i<jLi} (where we set L0 = ;) for
some coordinate k 2 [d] and reals a, b 2 .

Theorem 3.1 follows from the following lemma,
whose proof is the technical bulk of this section.

Lemma 3.2. Fix d 2 and p 2 [1,1), as well as
✏,� 2 (0, 1), ⌘ 2 (0, 1/100], ⇠ 2 (0, 1/20], � 2 (0, 1],
and let

∆ = 6 · dlog1+�(2p/�)e ·

✓

8 ln(8d)

✏ · (1� �)

◆1/p

.(3.4)

Let ⇢ be any distribution supported on X ⇢ d which
satisfies �-projection-resilient (∆, ⌘)-separation. Sup-
pose µ is a probability distribution supported on pairs
X ⇥ X whose distance in `p is at most 1 and whose
left marginal is ⇢. Then, there exists `  4d and a list
decomposition L 2 L(⇢, `,�, ⇠) which satisfies

Pr
(x,y)⇠µ

[L splits (x,y)]  10✏.(3.5)

Moreover, every set Lj ,Mj,1,Mj,2, Rj has the form {x :
a  xk  b, xk 62 Lj�1} (where we set L0 = ;) for some
coordinate k 2 [d] and reals a, b 2 .

Proof. [Proof of Theorem 3.1 assuming Lemma 3.2] We
will first apply von Neumann’s minimax theorem, and
then use Markov’s inequality to show that such a subset
P0 ⇢ P must exist. In particular, let U ⇢ X⇥X be the
convex set of all probability distributions µ supported
on pairs X ⇥X whose left marginal is exactly ⇢P . Let
m = |L(⇢P , 4d,�, ⇠)| and let V ⇢ m be the convex set
of probability distributions supported on L(⇢p, 4d,�, ⇠).
Notice that Lemma 3.2 implies

max
µ2U

min
H2V

E
L⇠H



Pr
(x,y)⇠µ

[L splits (x,y)]

�

 10✏,

whereH may simply be the distribution which is a point
mass at a deterministically chosen list-decomposition
L 2 L(⇢P , 4d,�, ⇠), specified by Lemma 3.2. Notice that
the function

E
L⇠H



Pr
(x,y)⇠µ

[L splits (x,y)]

�

=

X

L2L(⇢p,4d,�,⇠)

X

(x,y)2X⇥X

H(L) · µ(x, y) · 1{L splits (x, y)}

is linear in H for any fixed µ and linear in µ for any fixed
H. Hence, we apply von Neumann’s minimax theorem
in order to say

min
H2V

max
µ2U

E
L⇠H



Pr
(x,y)⇠µ

[L splits (x,y)]

�

 10✏.(3.6)

Fix H 2 V to the minimizer of (3.6). Suppose that there
exists a subset P 0 ⇢ P of at least ⇣n points such that
for each x 2 P 0, there exists yx 2 X with kx� yxkp  1
where

Pr
L⇠H

[L splits (x, yx)] >
10✏

⇣
.(3.7)

Then, consider the distribution µ 2 U given by letting a
sample (x,y) ⇠ µ be generated by first picking x ⇠ ⇢P ,
and if x 2 P 0, then letting y = yx, and otherwise
choosing y ⇠ B`dp

(x, 1) \ X arbitrarily. Notice that

by (3.6),

10✏ � E
(x,y)⇠µ

h

Pr
L⇠H

[L splits (x,y)]
i

� ⇣
X

x2P 0

Pr
L⇠H

[L splits (x, yx)] > 10✏,

which is a contradiction. Hence, the set of points x 2 P
for which there exists yx 2 X with kx � yxkp  1
satisfying (3.7) is smaller than ⇣n, so that letting P0 =
P \ P 0 completes the proof.

3.1 Proof of Lemma 3.2

Definition 3.3. (Bad and Good Coordinates)
Let µ be a probability distribution supported on pairs in
X ⇥ X with `p distance at most 1. For � 2 (0, 1), we
say that a coordinate k 2 [d] is �-good with respect to
µ if

E
(x,y)⇠µ

[|xk � yk|
p] 

1

(1� �) · d
.(3.8)

Otherwise, we say the coordinate k 2 [d] is �-bad with
respect to µ.

Lemma 3.4. For any probability distribution µ sup-
ported on pairs X ⇥ X at `p distance at most 1, and
any � 2 (0, 1), there exists at most (1� �)d coordinates
which are �-bad.

Proof. Let B ⇢ [d] be the set of �-bad coordinates.
Recall that since µ is supported on pairs at `p distance
at most 1, we have

1 � E
(x,y)⇠µ

⇥

kx� ykpp
⇤

�
X

k2B

E
(x,y)⇠µ

[|xk � yk|
p]

�
1

(1� �)d
· |B|.

Rearranging gives that |B|  (1� �) · d.
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The following lemma is the cornerstone of the ar-
gument. At a high level, we consider a distribution on
pairs µ, with left marginal ⇢, as well as a �-good coor-
dinate k and consider a particular kind of partition of

d into sets L,M,R.7 If these partitions exist, these
lead to the construction of the list decomposition prov-
ing Lemma 3.2. The next lemma assumes such par-
titions do not exist, and shows that under this case,
the marginal distribution of ⇢ projected onto the k-th
coordinate is very concentrated.8 Applying this argu-
ment to all �-good coordinates will imply that absence
of these partitions result in a low-diameter cluster with
respect to ⇢, and hence violates �-projection-resilient
(∆, ⌘)-separation.

Definition 3.5. Let ⇢ be any probability distribution
supported on X. For any k 2 [d] and � 2 (0, 1), we let
tk,�,⇢ 2 be

tk,�,⇢ = inf

⇢

t 2 : Pr
x⇠⇢

[xk  t] � �

�

.

The point m⇢ 2
S is the median point of ⇢, i.e., for

k 2 S, (m⇢)k = tk,1/2,⇢.

Note that tk,�,⇢, as a function of �, is just the inverse
of the CDF of the marginal of ⇢ on coordinate k.

Lemma 3.6. Fix any � > 0 and let s 2 �0 be any
parameter. Let ⇢ be any probability distribution over X.
Let k 2 [d], and suppose that for p � 1 and for every
⌧1 2 with ⌧1  (m⇢)k, the set

L =
�

x 2 d : xk  ⌧1
 

, and for

⌧2 =

✓

s

⇢(L)

◆1/p

,

the sets

M =
�

x 2 d : xk 2 (⌧1, ⌧1 + 2⌧2)
 

and

R =
�

x 2 d : xk � ⌧1 + 2⌧2
 

satisfy

⇢(L [M)1+� + ⇢(M [R)1+� � 1(3.9)

whenever ⇢(L) � 1/(4d), then,

E
x⇠⇢

⇥

|xk � (m⇢)k|
p
· 1
�

tk,1/(4d),⇢  xk  (m⇢)k
 ⇤

 s ·
�

6 + 2 · dlog1+�(p/�)e
�p

· ln(8d).

(3.10)

7Specifically, we will split M into two sets M1 and M2, and
use (L,M1,M2, R) as one of the tuples in the list-decomposition.

8This notion of concentration is formalized in terms upper-

bounding the p-th moment of a random variable relating the
distance from xk to the median when x ∼ ⇢.

Proof. [Proof of Lemma 3.6] The proof will proceed in
two main steps. The first is to apply an argument of
[18], where (3.9) aids in upper bounding |tk,�,⇢ � mk|
for any � 2 [1/(4d), 1/2]. Then, (3.10) will follow
from integrating the upper bound on |tk,�,⇢ � (m⇢)k|

p

over all � 2 [1/(4d), 1/2]. For the first step, let
� 2 [1/(4d), 1/2], and consider the following (iteratively
defined) sequence of numbers (i)i2 �0

and tuples of
sets {(Li,Mi, Ri)}i2 �0

:

0 = tk,�,⇢ and Li =
�

x 2 d : xk  i

 

i+1 = i + 2

✓

s

⇢(Li)

◆1/p

Mi =
�

x 2 d : xk 2 (i,i+1)
 

Ri =
�

x 2 d : xk � i+1

 

for all i 2 .

For all i � 0, the sequence (⇢(Li))i2 �0
is non-

decreasing and always bounded below by � � 1/(4d),
which means that as long as i  (m⇢)k, (3.9) holds
with (Li,Mi, Ri). Denote

i0 = max {i 2 �0 : i  (m⇢)k} ,(3.11)

Furthermore, notice that Li [Mi = Li+1 and ⇢(Mi [
Ri) = (1 � ⇢(Li)). Hence, we apply (3.9) to all
i 2 {0, . . . , i0} to conclude

1  ⇢(Li [Mi)
1+� + ⇢(Mi [Ri)

1+�

= ⇢(Li+1)
1+� + (1� ⇢(Li))

1+�

 ⇢(Li+1)
1+� + 1� ⇢(Li),

where we used the fact that � > 0 and (1�⇢(Li)) 2 [0, 1]
to say (1� ⇢(Li))

1+�  1� ⇢(Li). Therefore, for every
i 2 {0, . . . , i0}, ⇢(Li+1)

1+� � ⇢(Li), which implies that
for every i 2 {0, . . . , i0},

1

⇢(Li)


✓

1

⇢(L0)

◆
1

(1+β)i

=

✓

1

�

◆
1

(1+β)i

.(3.12)

Since ⇢(Li0)  1/2 because i0  (m⇢)k, we may
conclude that

2 

✓

1

�

◆
1

(1+β)i0

.(3.13)

In addition, we have

i+1 � i  2s1/p ·
1

⇢(Li)1/p
 2s1/p

✓

1

�

◆
1
p ·

1

(1+β)i

,

(3.14)
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which means, since i0+1 > (m⇢)k, we may upper bound
|tk,�,⇢ � (m⇢)k| by

|tk,�,⇢ � (m⇢)k| 
i0
X

i=0

(i+1 � i)

 2s1/p
i0
X

i=0

(1/�)
1
p ·

1

(1+β)i ,

= 2s1/p
i0
X

i=0

c(1+�)i/p,(3.15)

where we let

c =

✓

1

�

◆
1

(1+β)i0

� 2,

and the inequality follows from (3.13). In order to
upper bound the sum in the right-hand side of (3.15),
let j0 = dlog1+�(p/�)e, and notice that for i > j0,

c(1+�)i/p � c · c(1+�)i�1/p,

which, implies that after i � j0 summands begin to
increase (more than) geometrically with constant 2.
Hence,

i0
X

i=0

c(1+�)i/p  (3 + j0) · c
(1+�)i0/p

 (3 + dlog1+�(p/�)e) ·

✓

1

�

◆1/p

Finally, substituting into (3.15) implies

|tk,�,⇢ � (m⇢)k|
p  s ·

�

6 + 2 · dlog1+�(p/�)e
�p

·
1

�
.

In order to show (3.10), notice that

E
x⇠⇢

⇥

|xk � (m⇢)k|
p · 1

�

tk,1/(4d),⇢  xk  (m⇢)k
 ⇤

=

Z 1/2

1/(4d)

|tk,�,⇢ � (m⇢)k|
pd�

 s ·
�

6 + 2 · dlog1+�(p/�)e
�p

· ln(8d).

Lemma 3.7. Fix ✏,� 2 (0, 1), ⌘ 2 (0, 1/2), and � 2
(0, 1], and

∆ = 6 · dlog1+�(2p/�)e ·

✓

4 ln(8d)

✏ · (1� 2⌘) · (1� �)

◆1/p

.

Let ⇢ be a probability distribution supported on X,
and µ be a probability distribution supported on pairs

in X ⇥ X with `p distance at most 1, and whose
left-marginal is ⇢. Suppose ⇢ satisfies �-projection-
resilient (∆, ⌘)-separation. Then there exist disjoint sets
L,M1,M2, R ⇢

d such that X ✓ L [M1 [M2 [ R,
and the following conditions are satisfied:

1. We have 1/(4d)  ⇢(L)  1/2 and ⇢(R) � 1/10.

2. The sets give a list-decompositions with �-bounded
overlap, i.e.,

⇢(L [M1 [M2)
1+� + ⇢(M1 [M2 [R)1+�  1.

3. Points sampled from µ are split with low probability,
i.e.,

Pr
(x,y)⇠µ

[y 2 R [M2 ^ x 2 L]  ✏⇢(L) and

Pr
(x,y)⇠µ

[y 2 L [M1 ^ x 2 R]  ✏⇢(L).

4. Each of the sets L,M1,M2, R has the form {x :
a  xk  b} for some coordinate k 2 [d] and reals
a, b 2 .

Proof. We proceed by contradiction. Let S ⇢ [d] be
the set of �-good coordinates, for which we know, by
Lemma 3.4, that |S| � �d. For each k 2 S, let

k,� = inf

⇢

t 2 : Pr
x⇠⇢

[xk  t] �
1

4d

�

and

k,+ = sup

⇢

t 2 : Pr
x⇠⇢

[xk � t] �
1

4d

�

,

and consider the subset U ⇢ d where

U =
�

x 2 d : 8k 2 S, xk 2 [k,�,k,+]
 

which satisfies ⇢(U) � 1/2

from a union bound. We now apply Lemma 3.6 to every
k 2 S with the parameter

s =
1

✏ · (1� �) · d
.

Specifically, assume for the sake of contradiction, that
for every k 2 S and ⌧ 2 with ⌧  mk, the set

L =
�

x 2 d : xk  ⌧
 

and ⌧2 =

✓

s

⇢(L)

◆1/p

,

as well as the sets

M1 =
�

x 2 d : ⌧  xk  ⌧ + ⌧2
 

M2 =
�

x 2 d : ⌧ + ⌧2  xk  ⌧ + 2⌧2
 

R =
�

x 2 d : xk � ⌧ + 2⌧
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satisfying 1/(4d)  ⇢(L), have

⇢(L [M1 [M2)
1+� + ⇢(M1 [M2 [R)1+� � 1.

We conclude that every k 2 S satisfies

E
x⇠⇢

[|xk � (m⇢)k|
p · 1 {k,�  xk  (m⇢)k}]



�

6 + 3 · dlog1+�(p/�)e
�p

· ln(8d)

✏ · (1� �) · d



�

6 · dlog1+�(2p/�)e
�p

· ln(8d)

✏ · (1� �) · d
.

Analogously, we apply the same argument to the right
side of (m⇢)k. Assume, for the sake of contradiction,
that for every k 2 S and ⌧ 2 with t � (m⇢)k, the
set L = {x 2 d : xk � ⌧} and ⌧2 = (s/⇢(L))1/p,
as well as M1 = {x 2 d : ⌧ � ⌧2  xk  ⌧},
M2 = {x 2 d : ⌧ � 2⌧2  xk  ⌧ � ⌧2}, and
R = {x 2 d : xk  ⌧ � 2⌧2} satisfying ⇢(L) � 1/(4d)
also has ⇢(L[M1 [M2)

1+� + ⇢(M1 [M2 [R)1+� � 1.
Then every k 2 S satisfies

E
x⇠⇢

[|xk � (m⇢)k|
p · 1{k,+ � xk � (m⇢)k}]



�

6 · dlog1+�(2p/�)e
�p

· ln(8d)

✏ · (1� �) · d
.

We conclude

E
x⇠⇢

⇥

kΠS(x)�m⇢k
p
p · 1 {x 2 U}

⇤


X

i2S

✓

E
x⇠⇢

[|xk � (m⇢)k|
p · 1{k,�  xk  (m⇢)k}]

+ E
x⇠⇢

[|xk � (m⇢)k|
p · 1{k,+ � xk � (m⇢)k}]

◆


2

✏ · (1� �)
·
�

6 · dlog1+�(p/�)e
�p

· ln(8d).

Therefore, we can define a subset A ⇢ |S| as an `p ball
around m⇢ 2

|S| of diameter

diam
`
|S|
p

(A)

 6 · dlog1+�(2p/�)e

✓

2 ln(8d)

✏ · (1� �) · (1/2� ⌘)

◆1/p

,

which satisfies, by Markov’s inequality applied to p-th
moments of kΠS(x)�m⇢kp · 1{x 2 U},

Pr
x⇠⇢

[ΠS(x) /2 A ^ x 2 U ]  1/2� ⌘,

Since ⇢(U) � 1/2, we have that Prx⇠⇢[ΠS(x) 2 A^x 2
U ] � ⌘. This contradicts the assumption that ⇢ satisfies
�-projection-resilient (∆, ⌘)-separation. Hence, there

exists a coordinate k 2 S, and k-axis-aligned disjoint
subsets L,M1,M2, R ⇢

d satisfying 1/(4d)  ⇢(L) 
1/2 where

⇢(L [M1 [M2)
1+� + ⇢(M1 [M2 [R)1+�  1.

The above inequality proves (2). It also implies ⇢(R) �
1/10 since, otherwise, we would have

1 < (9/10)2 + (1/2)2 

⇢(L [M1 [M2)
1+� + ⇢(M1 [M2 [R)1+�  1,

where we used that �  1 and ⇢(L)  1/2. This proves
(1). Furthermore, recall that k is a �-good coordinate,
so for any C ✓ d, we have

✏s =
1

(1� �) · d
� E

(x,y)⇠µ
[|xk � yk|

p]

� E
(x,y)⇠µ

[|xk � yk|
p · 1{x 2 C}] .

Notice that, by applying Markov’s inequality to the
expectation above with C = L and C = R, we have

Pr
(x,y)⇠µ

[y 2M2 [R ^ x 2 L]

 Pr
(x,y)⇠µ

✓

|xk � yk|
p �

s

⇢(L)

◆

^ (x 2 L)

�

 ✏ · ⇢(L),

Pr
(x,y)⇠µ

[y 2 L [M1 ^ x 2 R]

 Pr
(x,y)⇠µ

✓

|xk � yk|
p �

s

⇢(L)

◆

^ (x 2 R)

�

 E
(x,y)⇠µ

[|xk � yk|
p · 1{x 2 R}] ·

⇢(L)

s

 ✏ · ⇢(L).

The above inequalities prove (3).

4 ANN for `p from Theorem 3.1

For any d 2 , we consider Xd ⇢
d to be a

discretization of points in d that the algorithm will
receive. For example, if the algorithm receives points
in d represented as a sequence of d numbers, each
with b-bit-sized words, then Xd is of size 2bd. We focus
attention on a specific style of data structure which are
DAG-like.

Definition 4.1. For d 2 , A DAG-like data struc-
ture for ANN over Xd is a rooted directed acyclic graph
G = (V,E) where each node v 2 V has an associated
function fv. For each node v 2 V with at least one
child, let N(v) ⇢ V be the out-neighborhood of v, and
let deg(G) = maxv2V |N(v)| denote the maximum out-
degree of any node in V . Let the query-depth, depth(G),
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be the length of the longest path, and width(G) be the
maximum width when G is expressed as a layered graph.
Every node v 2 V contains the description of a func-
tion fv : Xd ! N(v) [ Xd [ {?}. Let r 2 V be the
(unique) root of G; a query q 2 X is executed by begin-
ning at r and walking down the path specified by fv(q)
if fv(q) 2 N(v), outputting fv(q) if fv(q) 2 Xd, or out-
putting ? (to indicate failure) if fv(q) = ?.

We observe that a DAG-like data structure with
efficient encodings (with respect to space and time) of
fv may be stored and traversed efficiently. For our case,
fv will be encoded in O(d) words, and there exists an
efficient algorithm which takes as input the encoding of
a function fv, as well as a point q 2 Xd, and outputs
fv(q) in O(d) time. This results in a data structure
whose space complexity is

Space: width(G) · depth(G) ·O(d),

and whose time complexity is

Time: depth(G) ·O(d).

Theorem 4.1. (ANN for `dp) Fix d 2 , �,↵ 2
(0, 1], and

c = O

 

dlog1+�(p/�)e ·

✓

log2 d

↵1/↵+1 log(1/↵)

◆1/p
!

.

For any n 2 and a dataset P ⇢ Xd of n points, there
exists a DAG-like data structure for (1, c)-ANN over `dp
over the dataset P , such that the data structure is of
width O(dn1+�) and query depth O(dn↵), and succeeds
with probability at least n�↵.

We prove Theorem 4.1 after some necessary lem-
mas, which break deal with the cases when the dataset
satisfies �-projection-resilient (∆, ⌘)-separation, and
when it does not.

Lemma 4.2. (Sufficiency of List-Decompositions with
Definitions 2.2, 2.3, and 2.4) Fix d, ` 2 , monotone
functions f1, f2 : ! , with f1(d) � ` + 2, and
�, ⇠, ✏,↵, ⇣ 2 (0, 1), ⇣  1 � ⇠ and c > 1. Let n 2 ,
such that

1

f2(d) · n↵
+ (1� ⇠)↵ + ⇣↵  1.(4.16)

Consider any dataset P ⇢ Xd of size n, and denote
by ⇢P the empirical distribution of P . Suppose the
following two conditions hold:

1. (Data-dependent list-decompositions) There exists
a distribution H supported on L(⇢P , `,�, ⇠) and a

subset P0 ⇢ P of size |P0| � (1� ⇣)n such that for
any x 2 P0 and y 2 Xd where kx� ykp  1,

Pr
L⇠H

[L splits (x, y)]  ✏.

2. (Inductive assumption) Suppose that for any m 
(1�⇠)n and any dataset in Xd of size m there exists
a DAG-like data structure for (1, c)-ANN over `dp of

width at most f1(d) ·m
1+� and query depth at most

f2(d) ·m
↵ succeeding with probability at least m�%,

where

% =
log
⇣

1
1�✏

⌘

log
⇣

1
1�⇠

⌘ .(4.17)

Then, there exists a DAG-like data structure for (1, c)-
ANN over `dp with the dataset P of width at most

f1(d) · n
1+� and query-depth at most f2(d) · n

↵ which
succeeds with probability at least n�%.

Proof. We build a DAG-like data structure recursively.
Let r be the root, corresponding to the dataset P ⇢ Xd

of size n. We sample L ⇠ H and decompose P into
` + 1 sets P1(L), . . . , P`+1(L) ⇢ P according to (2.2).
For each i 2 [` + 1], we use the inductive assumption
to sample a DAG-like data structure Di for points in
Pi(L); letting vi be the root node of Di, we make vi a
child of r. The query map QL : Xd ! [` + 1] specifies
fr, by mapping a query q 2 Xd to the node vi where
QL(q) = i. In addition, we use the inductive assumption
again in order to sample a DAG-like data structure D0

for the dataset P \ P0 containing at most ⇣n points
(where we use the fact ⇣  1 � ⇠), and let r0 be the
root of D0. For every i 2 [` + 1] and node v in Di,
we modify the function fv so that every input q 2 Xd

where fv(q) = ?, now has fv(q) = r0 (see Figure 1).
For any m 2 , let T (m) denote the maximum

query depth of a data structure built for m-point
datasets, which by assumption is at most f2(d)·m

↵. Let
T0(n) be the maximum query depth of a data structure
for n point datasets satisfying condition 1. Then, for
any L 2 L(⇢P , `,�, ⇠),

T0(n)

 1 + T ((1� ⇠)n) + T (⇣n)

 f2(d)n
↵ (1/(f2(d) · n

↵) + (1� ⇠)↵ + ⇣↵)

 f2(d) · n
↵,

where in the last inequality, we use (4.16). In order
to bound the width of the data structure, let W (m)
be the maximum width of DAG-like data structure for
datasets of sizem, and letW0(n) be the maximum width
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Figure 1: Composition of data structures after one
application of the list-decomposition L ⇠ H to search
through r1, . . . , r`+1, and then search through r0.

of a DAG-like data structure for datasets P of n points
satisfying condition 1. Then, for any L 2 L(⇢P , `,�, ⇠),

W0(n) 

max {W (n · ⇢(R`+1 [M`+1,1 [M`+1,2))

+

`+1
X

i=1

W (n · ⇢(Li [Mi,1 [Mi,2)),W (⇣n)

)

 f1(d) · n
1+� max {1, ⇣↵}  f1(d) · n

1+� ,

where we used the fact that every L 2 L(⇢P , `,�, ⇠)
has �-bounded overlap and the fact that f1(d) � 5d.
Finally, suppose q 2 Xd and x 2 P where kq� xkp  1.
If x 2 P \ P0, then the probability of success is at
least (⇣n)�% � n�%, since the query will (if not already
succeeded), query q on r0, and there, we consider the
event that D0 succeeds. On the other hand, if x 2 P0,
then the data structure succeeds when x and q are not
split by L ⇠ H, and for QL(q) = i, the data structure
Di succeeds. This occurs with probability at least

(1� ✏) · (1� ⇠)�% · n�% � n�%,

by the setting of % in (4.17). This concludes the proof.

Lemma 4.3. (Sufficiency of Failure of �-Projection-
Resilient (∆, ⌘)-Separation) Fix d, Ct 2 , a monotone
function f : ⇥ ! , and �, ⌘,↵, � 2 (0, 1), ∆ 2

�0. Suppose that

(1� �)
Ct + (1� ⌘)

↵  1,(4.18)

and let

c(d) = (∆+ 1) ·

0

@

log d

log
⇣

1
1��

⌘

1

A

1/p

.(4.19)

Figure 2: Composing D1 and D2 for the proof of
Lemma 4.3.

Let n 2 , and consider a dataset P ⇢ Xd of size n, and
denote by ⇢P the empirical distribution of P . Suppose
the following three conditions hold:

1. (⇢P fails �-projection-resilient (∆, ⌘)-separation)
There exists a subset S ⇢ [d] with |S| � �d, as
well as a subset A ⇢ |S| of diam

`
|S|
p

(A)  ∆ such

that

P̃ =

{p 2 P : ΠS(p) 2 A} satisfies |P̃ |

� ⌘n.

2. (Inductive assumption for smaller dimension) Sup-
pose that for any d0  (1� �)d and any dataset of
m  n points, there exists a DAG-like data struc-
ture for (1, c(d0))-ANN over `d0

p that has width at
most f(m, d0) and has query-depth at most m↵ ·
(d0)

Ct , and fails with probability at most �.

3. (Inductive assumption for smaller datasets) Sup-
pose that for any m  (1 � ⌘)n and any dataset
of m points, there exists a DAG-like data structure
for (1, c(d))-ANN over `dp that has width f(m, d),

has query-depth m↵ · dCt , and fails with probability
at most �.

Then, there exists a DAG-like data structure for
(1, c(d))-ANN over `dp with the dataset P of width at

most f(n, d) and query-depth at most n↵ · dCt which
fails with probability at most �.

Proof. [Proof of Theorem 4.1] The proof proceeds by
induction on n, d 2 . We notice that for any d 2 ,
the case n = 1 is trivial, by storing a single point.
Suppose we assume the theorem for all n < n0 by
inductive assumption, and since for d = 1, the theorem
holds trivially by a binary search tree, we consider
d0 2 such that for all d < d0, the theorem statement
is true with n0 and d. Let P ⇢ Xd0

be a dataset of n0
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points. We consider setting:

⌘ =
1

100
, ⇠ =

1

20
, ⇣ = (⇠↵/2)

1/↵

and � = 1� ↵ · ⌘

so that for every n � 1/(2⇠↵)1/↵, we satisfy (4.16), and
for Ct � 1, we satisfy (4.18). Furthermore, we let

✏ =
↵ · ⇣

1000
,

so that

% =
log
⇣

1
1�10✏/⇣

⌘

log
⇣

1
1�⇠

⌘  ↵.

Consider ∆ 2 �0 as set in (3.3), and suppose that the
empirical distribution ⇢P satisfies �-projection-resilient
(∆, ⌘)-separation. Then, we apply Theorem 3.1 to
obtain a distribution H supported on L(⇢P , 4d,�, ⇠) and
a subset P0 ⇢ P be a subset of size at least (1�⇣)n such
that for any x 2 P0 and y 2 Xd0

with kx� ykp  1,

Pr
L⇠H

[L splits (x, y)]  ✏.

We may apply Lemma 4.2, where we notice that the
inductive assumption is satisfied since (1 � ⇠)n  n0.
Thus, we obtain a data structure with the specified
guarantees for P .

On the other hand, suppose P fails to satisfy �-
projection-resilient (∆, ⌘)-separation. Then, we notice
again, that the inductive hypothesis with d < d0 and
n < n0 holds, so that we may apply Lemma 4.3.

5 Random List Decompositions for `d1(Z)

We now present the random list decompositions for
`d1(Z). The main theorem in this section is stated next,
but we defer the proof until some necessary lemmas
are set in place. We notice that unlike the case of `p
norms, the (r, cr)-ANN problem may not be equivalent,
in terms of complexity, for all r 2 �0, since the metric
space (Z, dZ) does not necessarily scale. For a metric
space (Z, dZ) of diameter R 2 �0, the random list
decompositions for `d1(Z) presented next are especially
tailored to the setting of cr = Θ(dR), corresponding
to the maximum scale in `d1(Z). When cr ⌧ dR, we
will introduce one more ingredient to reduce to the case
where the list decompositions will apply.

Theorem 5.1. Let (Z, dZ) be a finite metric space of
diameter R 2 �0, and d 2 , as well as � � 0,
✏ 2 (0, 1/16), c 2 (0, 1) and set

⌧ =

⇠

log1+�

✓

16 ln |Z|

c2

◆⇡

,m =
128(⌧ + 1)2 ln(1/✏)

c2
,

and⌘ 
1

4|Z|m
.(5.20)

Let n 2 and P ⇢ Zd be any subset of n points, and
denote ⇢P as the empirical probability distribution of P .
Suppose that for any A ⇢ Zd where

diam`1(Z)(A) = sup
x,y2A

d`d1(Z)(x, y)  c · d ·R,

we have |A\ P |  ⌘n. Then, there exists a distribution
H supported on L(⇢P , |Z|m,�, 1/16) such that for any
x, y 2 Zd with

d`d1(Z)(x, y) =
d
X

i=1

dZ(xi, yi) 
1

16
·
c · d ·R

⌧ + 1
(5.21)

we have
Pr
L⇠H

[L splits (x, y)]  2✏.

For the remainder of the section, we fix n, d 2
, and a finite metric space (Z, dZ) of diameter at

most R 2 �0. We will show L exists by analyzing
an algorithm which attempts to construct L. For a
parameter m 2 , consider the procedure BuildList

which takes as input P , a (multi-)set S ⇢ [d] of size
m, as well as additional parameters, and either outputs
a list-decomposition L 2 L(⇢P , |Z|m,�, ⇠) or outputs
fail. (see Figure 5).
Subroutine BuildList(P, S,�, ⇠, ⌧,∆)

Input: A dataset P ⇢ Zd of size n, as well as a
multi-set S ⇢ [d] of size m, and parameters � � 0,
⇠ 2 (0, 1), ⌧ 2 and ∆ 2 �0.
Output: either a list-decomposition
L 2 L(⇢P , |Z|m,�, ⇠), or “fail.”

• Initialize an index j = 1 which increases as we
build L = {(Lj ,Mj,1,Mj,2, Rj)}j . Initialize
P1  P and R0 [Mj�1,0 [Mj�1,2 = Zd, and
proceed as follows until we break out of the
following loop, or we output “fail”:

1. If |Pj |  (1� ⇠)n, break out of the loop.

2. Pick the first point x 2 Pj satisfying

|{y 2 Pj : ΠS(y) = ΠS(x)}| �
|Pj |

|Z|m
.

3. For k = 1, . . . , ⌧ , consider the subsets of Zm

given by

L(k) = Π
�1
S

�

B`m1 (Z) (ΠS(x), k∆)
�

,

M (k)

= Π
�1
S

⇣

B`m1 (Z) (ΠS(x), (k + 1)∆) \ L(k)
⌘

R(k) = Π
�1
S

⇣

Zm \ (M (k) [ L(k))
⌘

.
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4. If there exists k0 2 [⌧ ] such that

⇢Pj
(L(k0) [M (k0))1+�

+ ⇢Pj (M
(k0) [R(k0))1+�

 1, and

⇢Pj
(L(k0))  ⇢Pj

(R(k0))(5.22)

then, we set
Lj = L(k0) \ (Rj�1 [Mj�1,1 [Mj�1,2),
Rj = R(k0) \ (Rj�1 [Mj�1,1 [Mj�1,2) and

Mj,1 =

Π
�1
S

⇣

M (k) \B`m1 (Z)(ΠS(x), (k + 1/2)∆)
⌘

\ (Rj�1 [Mj�1,1 [Mj�1,2),

Mj,2 =

Π
�1
S

⇣

M (k) \Mj,1

⌘

\ (Rj�1 [Mj�1,1 [Mj�1,2).

Increment j, and let
Pj+1 = Pj \Rj [Mj,1 [Mj,2.

5. Otherwise, if there is no k0 2 [⌧ ] satisfying
(5.22), output “fail”.

• If we have not yet output “fail”, then output
L = {(Li,Mi,1,Mi,2, Ri)}i2[j].

Lemma 5.1. Consider m 2 , a multi-set S of [d], and
parameters ⇠ 2 (0, 1), � � 0, ⌧ 2 , and ∆ 2 �0.
Let P ⇢ Zd be any subset of Zd of size n, and let ⇢P be
the empirical probability distribution of P . Suppose that
BuildList(P, S,�, ⇠, ⌧,∆) does not output “fail”, then
it outputs a list-decomposition L 2 L(⇢P , |Z|m,�, ⇠).

Proof. First, we notice that BuildList(P, S,�, ⇠, ⌧,∆)
outputs L when the inner loop terminates due to |Pj | 
(1 � ⇠)n. In particular, until the last iteration of
the loop, the algorithm generates a nested sequence
P = P1 � P2 � · · · � Pj and Li [Mi,1 [Mi,2 [ Ri ⇢
Ri�1 [Mi�1,1 [Mi�1,2. Notice that for all i 2 [j],

⇢P (Li) =
|Pi|

n
· ⇢Pi

(Li) �
|Pi|

n
·
n(1� ⇠)

|Z|m · |Pi|
�

(1� ⇠)

|Z|m
,

which upper bounds j  |Z|m. Note by (5.22),
⇢Pi

(Li)  ⇢Pi
(Ri). The fact that L has �-bounded

overlap follows from (5.22), as well as an induction. In

particular, we have

⇢P (Rj [Mj,1 [Mj,2)
1+� +

j
X

i=1

⇢P (Li [Mi,1 [Mi,2)
1+�

= ⇢P (Rj�1 [Mj�1,1 [Mj�1,2)
1+�

�

⇢Pj
(Rj [Mj,1 [Mj,2)

1+�

+ ⇢Pj
(Lj [Mj,1 [Mj,2)

1+�
�

+

j�1
X

i=1

⇢P (Li [Mi,1 [Mi,2)
1+�

 ⇢P (Rj�1 [Mj�1,1 [Mj�1,2)
1+�

+

j�1
X

i=1

⇢P (Li [Mi,1 [Mi,2)
1+� .

Lemma 5.2. Let m 2 , a multi-set S of [d], param-
eters ⇠ 2 (0, 1), � � 0, ⌧ 2 , ∆ 2 �0, a subset
P ⇢ Zd of size n. If BuildList(P, S,�, ⇠, ⌧,∆) outputs
“fail”, then there exists a subset P0 ⇢ P of size at least

n(1� ⇠) ·min

⇢

exp

✓

�
m ln |Z|

(1 + �)⌧

◆

,
1

2

�

(5.23)

such that every x, y 2 P0 satisfies
X

i2S

dZ(xi, yi)  2(⌧ + 1) ·∆.(5.24)

Proof. Suppose first that BuildList(P, S,�, ⇠, ⌧) out-
puts “fail” because on the final iteration of the loop, we
violate the second condition of (5.22), i.e., ⇢Pj (L

(k0)) �

⇢Pj
(R(k0)). Notice that this means ⇢Pj

(L(k0)[M (k0)) �

1/2. Thus, let P0 = Pj \
�

L(k0) \M (k0)
�

. Notice that
|P0| � (1 � ⇠)n/2, and therefore we satisfy (5.23). Fi-
nally, by virtue of being a ball in Zm of radius at most
(k0 + 1)∆  (⌧ + 1)∆, satisfies (5.24).

On the other hand, suppose that
BuildList(P, S,�, ⇠, ⌧) outputs “fail” because the
on final iteration of the loop, we violate the first
condition of (5.22) always, i.e., for all k0 2 [⌧ ],
⇢Pj (L

(k0) [ M (k0))1+� + ⇢Pj (M
(k0) [ R(k0))1+� � 1.

Then, since L(k0+1) = L(k0) [ M (k0), and
⇢Pj

(R(k0) [M (k0)) = 1� ⇢Pj
(L(k0)), we have,

1  ⇢Pj (L
(k0+1))1+� +

⇣

1� ⇢Pj (L
(k0))

⌘1+�

) ⇢Pj
(L(k0+1))

� ⇢Pj (L
(k0))

1
(1+β) .

Therefore, ⇢Pj
(L(⌧) [ M (⌧)) � ⇢Pj

(L(1))
1

(1+β)τ , which
implies (5.23). The bound (5.24) is immediate from the
definition of L(⌧) [M (⌧).
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Lemma 5.3. Let m 2 , parameters ⇠, ⌘, c 2 (0, 1),
� � 0, and let ⌧ 2 and ∆ 2 �0 be

⌧ =

⇠

log1+�

✓

16 ln |Z|

c2

◆⇡

,

∆ =
cmR

4(⌧ + 1)
and ⌘ 

1� ⇠

2|Z|m

Let P ⇢ Zd be a subset of n points. Suppose that any
A ⇢ Zd where

diam`d1(Z)(A)  c · d ·R,

must satisfy |P \ A|  ⌘n. Letting Sm be the uniform
distribution over multi-sets S from [d] of size m. Then,

Pr
S⇠Sm

[BuildList(P,S,�, ⇠, ⌧,∆) outputs “fail”]


4

1� ⇠
· exp

✓

�
c2m

16

◆

.

Proof. Consider the following random process:

1. Sample x ⇠ P uniformly, and then sample y ⇠ P
conditioned on d`d1(Z)(x,y) � c · d ·R/2.

2. Sample S ⇠ Sm, which may be equivalently
sampled as i1, . . . , im ⇠ [d] and writing S =
{i1, . . . , im}, output

d`m1 (Z)(ΠS(x),ΠS(y)).

On the one hand, we have

Pr
x,y⇠P
S⇠Sm

⇥

d`m1 (Z)(ΠS(x),ΠS(y))  2(⌧ + 1)∆
⇤

(5.25)

� Pr
S⇠S

[BuildList(P,S,�, ⇠, ⌧) outputs “fail”]
(5.26)

·

✓

(1� ⇠) ·min

⇢

exp

✓

�
m ln |Z|

(1 + �)⌧

◆

,
1

2

�

� ⌘

◆2

.

To justify (5.25), consider the event, when
BuildList(P,S,�, ⇠, ⌧) outputs “fail,” and by
Lemma 5.2, let P0 ⇢ P be the low-diameter sub-
set of sufficiently many points. Consider the event
x ⇠ P0 and that y ⇠ P0 with distance at least c ·d ·R/2
from x. Since |P \B`d1(Z)(x, cdR/2)|  ⌘n, the number

of points in P0 with distance at least cdR/2 from x is
at least |P0|� ⌘n. This shows (5.25).

On the other hand, since 2(⌧ + 1)∆  cmR/4, and
d`m1 (Z)(ΠS(x),ΠS(y)) is a sum of i.i.d random variables
bounded between 0 and R, we may apply McDiarmid’s

inequality to any two points x, y 2 P at distance at least
cdR/2. Specifically, using the fact that 2(⌧ + 1)∆ 
cmR/4, we have

Pr
x,y⇠P
S⇠S⇠[d]

⇥

d`m1 (Z)(ΠS(x),ΠS(y))  2(⌧ + 1)∆
⇤

 exp

✓

�
2(cmR/4)2

mR2

◆

= exp

✓

�
c2 ·m

8

◆

.(5.27)

Combining (5.27) and (5.25), and minding the bounds
on ⌧ and ⌘ finishes the lemma.

Proof. [Proof of Theorem 5.1] We let ∆ = cmR
4(⌧+1) and

⇠ = 1/16, so that we may apply Lemma 5.3, and let H
be the distribution over L(⇢P , |Z|m,�, ⇠) given by letting
L ⇠ H be given by BuildList(P,S,�, ⇠, ⌧,∆) where
S ⇠ Sm conditioned on the procedure not outputting
“fail.” Notice that for these settings of parameters ⇠, c
and m,

Pr
S⇠Sm

[BuildList(P,S,�, ⇠, ⌧,∆) outputs “fail”] 

4

1� ⇠
· exp

✓

�
c2m

16

◆


1

2
.

For any x, y 2 Zd satisfying (5.21), the list-
decomposition L = {(Li,Mi,1,Mi,2, Ri)}i2[j] gener-
ated from BuildList(P, S,�, ⇠, ⌧,∆) splits (x, y) only
if d`m1 (Z) (ΠS(x),ΠS(y)) � ∆/2. In particular, consider
i 2 [j], and let Mi,1 and Mi,2 be two shells around a
point z 2 `m1 (Z) of width ∆/2. Then, if x 2 Li and
y 2Mi,2 [Ri,

d`m1 (Z)(ΠS(x),ΠS(y))

�
�

�d`m1 (Z)(ΠS(y), z)� d`m1 (Z)(ΠS(x), z)
�

�

�
∆

2
,

and a similar calculation shows x 2 Ri and y 2 Li[Mi,1

only when d`m1 (Z)(ΠS(x),ΠS(y)) � ∆/2. Since

∆

2
� E

S⇠Sm

⇥

d`m1 (Z)(ΠS(x),ΠS(y))
⇤

=

∆

2
�

m

d
· d`d1(Z)(x, y) �

∆

4
,

and d`m1 (Z)(ΠS(x),ΠS(y)) is a sum of m i.i.d random
variables bounded between 0 and R, we apply McDi-
armid’s inequality to conclude

Pr
S⇠Sm



d`m1 (Z)(ΠS(x),ΠS(y)) �
∆

2

�



exp

✓

�
∆2

8mR2

◆

= exp

✓

�
c2m

128 · (1 + ⌧)2

◆

 ✏,
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for the setting of m. Notice that conditioning of
BuildList(P,S,�, ⇠, ⌧,∆) not outputting “fail” in-
creases the above probability by at most a factor of 2,
which concludes the theorem.

6 ANN for `d1(Z) from Theorem 5.1

6.1 ANN for `d1(Z) in the maximal scale We give
the main theorem for ANN over `d1(Z) at the maximal
scale. In particular, if the finite metric space (Z, dZ) has
diameter R 2 �0, we give a data structure for (r, cr)-
ANN problem over `d1(Z) which achieves approximation
O(log log |Z|) in the case cr = Θ(dR) with query time
|Z|poly(log log |Z|) · no(1) and space O(d log |Z|n1+�).

Theorem 6.1. Fix n, d 2 , a finite metric space
(Z, dZ) of diameter R 2 �0, as well as parameters
�, % � 0 and c0 2 (0, 1). Let

c = 16

✓⇠

log1+�

✓

16 ln |Z|

c20

◆⇡

+ 1

◆

+ 1 and

r =
c0 · d ·R

c� 1
.(6.28)

There exists a data structure for (r, cr)-ANN over
`d1(Z) using space O(d log |Z|n1+�) and query time

|Z|O(c2 ln(1/%)/c20) · log n which succeeds with probability
n�%.

Proof. The data structure proceeds similarly to that
of [18] and recursively builds a randomized decision
tree. We let � 2 (0, 1) be a sufficiently small universal
constant and ✏ = �%, ⇠ = 1/16, ⌧ 2 , m 2 according
to (5.20), ⌘ = 1/(4|Z|m), and

% =
log
⇣

1
1�2✏

⌘

log
⇣

1
1�⇠

⌘ .

We check whether there exists a subset A ⇢ Zd

satisfying

diam`d1(Z)(A)  (c� 1)r.(6.29)

containing at least ⌘n points from P . Suppose that such
a set exists. Then, let x 2 P \ A and P 0 = P \ A. We
store the point x and recursively build a data structure
for the points in P 0. On a query q 2 Zm, we first check
whether d`d1(Z)(q, x)  cr. If this is the case, we return

x. Otherwise, we notice that (6.29) implies that if p 2 P
satisfies d`d1(Z)(p, q)  r, that p /2 A, so that p 2 P 0.

Suppose, on the other hand, that no such A ⇢ Zd

exists. In this case, we apply Theorem 5.1, and obtain
a distribution H supported on L(⇢P , |Z|m,�, 1/16) for
which any two points within distance at most r are split

with probability less than 2✏. We sample L ⇠ H and
use L to decompose the dataset into at most |Z|m parts,
each of which contains less than 15n/16 points. Then,
we recursively build a data structure for points falling
in each non-empty part.

By virtue of L having �-bounded overlap, and the
fact that we recurse only on non-empty parts, an ar-
gument analogous to the width bound of Lemma 4.2
shows that the total space usage of the data structure
is O(d log |Z|n1+�). We notice that on any execution
of a query, the number of nodes where we find a low-
diameter set of ⌘n points is at most O(|Z|m log n) and
processing each one takes O(d) time. Furthermore, on
any execution of a query, the number of nodes which ap-
ply a list decomposition is at most log1/(1�⇠) n, since on
each such application, the number of points considered
decreases by a factor of 1� ⇠, and the total time needed
to process each such application is at most O(m|Z|m),
since these correspond to computing distances to points
in Zm. Thus, the time complexity of one execution
of the data structure is O(m|Z|m log n). For a query
q 2 Zd such that p 2 P satisfies d`d1(Z)(p, q)  r, the
probability of success of the data structure is at least
the probability that we never sample L ⇠ H which splits
(p, q). This probability is at least

(1� 2✏)log1/(1�ξ) n = n�%.

6.2 Densification for `d1(Z)

Definition 6.1. Let (Z, dZ) be a finite metric space
and k 2 . We say the pair (x, y) 2 Zk ⇥ Zk is an
edge of Zk if there exists a unique i 2 [k] where xi 6= yi;
in this case, we say the edge of Zk is in direction i.
Notice that

d`k1 (Z)(x, y) = dZ(xi, yi).

Lemma 6.2. Let (Z, dZ) be a finite metric space whose
distances are between 1 and R 2 �0. For k 2 ,
there exists a finite metric space (Y, dY ) with distances
between 1 and R of size |Y |  |Z|O(R), as well as an
embedding f : Zk ! Y such that every edge of Zk,
(x, y) 2 Zk⇥Zk, satisfies d`k1 (Z)(x, y) = dY (f(x), f(y)).

Furthermore, given x 2 Zk, the embedding f(x) proceeds
by computing intersections of O(R log |Z|) many subsets
of |Z| with the set {x1, . . . , xk}.

The proof of Lemma 6.2 follows from the proba-
bilistic method, where we describe a probability dis-
tribution over finite metric spaces (Y, dY) and embed-
dings f : Zk ! Y and show in Claims 6.3, 6.4, and 6.5,
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that the necessary guarantees are satisfied with non-
zero probability. Consider a parameter m 2 which we
will specify in Claim 6.5 to O(R log |Z|), and consider
the following distribution D over metric spaces (Y, dY ),
whose object set is associated with {0, 1}m, and embed-
dings f : Zk ! Y :

1. Independently sample a collection of m uniform
sets A = (A1, . . . ,Am), where each Aj ⇢ Z.
and let GA = ({0, 1}m, EA,wA) be the weighted
graph (parameterized by A) which includes an edge
(a, b) 2 EA if and only if there exists a unique pair
of distinct points x, y 2 Z such that for all j 2 [m],
aj � bj = |Aj \ {x, y}| mod 2, and if so, assigns
the weight wA(a, b) = dZ(x, y).

2. We let the metric space (YA, dYA
) be the met-

ric completion of the weighted graph GA =
({0, 1}m, EA, wA). In other words, for any two
a, b 2 {0, 1}m, dYA

(a, b) is the sum of the weights in
the shortest path between a and b in GA (if there
exists a path between a and b), or D if a and b are
disconnected.

3. We consider the gA : Z⇤ ! {0, 1}m, defined by
letting, for each z = (z1, . . . , z`) 2 Z` and j 2 [m]

gA(z)j =
X̀

i=1

|Aj \ {zi}| mod 2.

The embedding fA : Zk ! {0, 1}m is given by the
restriction of g to Zk.

4. We output the metric space (YA, dYA
) and the

embedding fA : Zk ! YA.

Claim 6.3. Consider a fixed collection A =
(A1, . . . , Am) for which every 1  `  2(R � 1) and
every z 2 Z` where some zi 2 Z appears an odd number
of times satisfies gA(z) 6= 0. Then, for any edge of Zk,
(x, y) 2 Zk ⇥ Zk, dYA

(fA(x), fA(y)) � d`k1 (Z)(x, y).

Proof. We first show that dYA
(fA(x), fA(y)) �

d`k1 (Z)(x, y). Let (x, y) 2 Zk ⇥ Zk be an edge of

Zk in direction i, such that letting a = fA(x) and
b = fA(y), there is a lowest-weight path in GA be-
tween a and b which we denote c = (c1, c2, . . . , cr) 2
({0, 1}m)r where c1 = a and cr = b. For each t 2
[r � 1], let (x(t), y(t)) 2 Z ⇥ Z denote the unique dis-
tinct pair satisfying (ct)j � (ct+1)j = |Aj \ {x(t), y(t)}|
mod 2, and notice that the total weight of the path is
P

t2[r�1] wA(x
(t), y(t)), and that since c is the lowest-

weight path, the weight is exactly dYA
(fA(x), fA(y)).

Suppose first that r � R, since the weight of every edge
(ct, ct+1) is at least 1, the path would have weight at

least R � d`k1 (Z)(x, y). Hence, we may assume r < R.
Consider the point p 2 Z⇤ iteratively defined as follows:

• Initially, we let p1 = (yi, xi) 2 Z2.

• For t 2 [1, r � 1], consider the edge (ct, ct+1) 2
{0, 1}m⇥{0, 1}m, and let pt+1 be the concatenation
of pt and (x(t), y(t)).

• We let p = pr 2 Z2r.

We claim that for all j 2 [m], we gA(p)j = 0. The
reason is that

gA(p)j = |Aj \ {xi, yi}|

(6.30)

+

r�1
X

t=1

|Aj \ {x(t), y(t)}| mod 2,

= |Aj \ {xi, yi}|+
r�1
X

t=1

(ct)j � (ct+1)j mod 2,(6.31)

by definition of (x(t), y(t)), and since the sum in the
right-hand side of (6.31) telescopes, gA(p)j = |Aj \
{xi, yi}| + (c1)j + (cr)j mod 2. Notice that c1 and cr
are exactly gA(x) and gA(y), respectively, so we may
re-write

gA(p) = |Aj \ {xi, yi}|

+ (gA(x))j + (gA(y))j mod 2

= |Aj \ {xi, yi}|

+
k
X

i0=1

(|Aj \ {xi0}|+ |Aj \ {yi0}|) mod 2,

and the above sum is 0 since xi0 = yi0 for all i 6= i0.
Since r < R, p 2 Z` for some `  2(R � 1) and since
gA(p) = 0, we must have every pi 2 Z appears an
even number of times. As a result, the collection of
edges {(x(t), y(t))}t2[r�1] ⇢

�

Z
2

�

can be partitioned into
a disjoint collection of cycles and a path from xi to yi.

9

Therefore,

dYA
(fA(x), fA(y))

=
X

t2[r�1]

dZ(x
(t), y(t)) �

X

t2[r�1]
form path xi 7! yi

dZ(x
(t), y(t))

� dZ(xi, yi).

9Here, we view the path and cycles as a subset of the complete
graph on Z.
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Claim 6.4. Consider a fixed collection A =
(A1, . . . , Am) for which every 1  `  4 and ev-
ery z 2 Z` where some zi 2 Z appears an odd number
of times satisfies gA(z) 6= 0. Then, for any edge of Zk,
(x, y) 2 Zk ⇥ Zk, dYA

(fA(x), fA(y))  d`k1 (Z)(x, y).

Proof. In order to show dYA
(fA(x), fA(y))  dZ(xi, yi),

we first notice that the distinct pair xi, yi 2 Z satisfies
(fA(x))j � (fA(y))j = |Aj \ {xi, yi}| mod 2 for every
j 2 [m]. Thus, the only reason we would fail to satisfy
the claim is if the pair xi, yi 2 Z was not unique. For the
sake of contradiction, suppose that there was another
distinct pair u, v 2 Z where (fA(x))j � (fA(y))j =
|Aj \ {u, v}| mod 2 for all j 2 [m], then, the string
(xi, yi, u, v) 2 Z4, satisfies that every j 2 [m],

|Aj \ {xi, yi}| mod 2

= (fA(x))j � (fA(y))j = |Aj \ {u, v}| mod 2

=) 0 = |Aj \ {u}|+ |Aj \ {v}|

+ |Aj \ {xi}|+ |Aj \ {yi}| mod 2

which implies that gA(xi, yi, u, v) = 0, but some element
appears an odd number of times since the distinct pairs
xi, yi and u, v are different; a contradiction.

Claim 6.5. There exists a large constant C > 0 such
that for m = C · R log2(|Z|), with high probability over
the draw of the collection A = (A1, . . . ,Am), every
1  `  max{2(R � 1), 4} and every z 2 Z` for
which some zi appears an odd number of times satisfies
gA(z) 6= 0.

Proof. Consider a fixed 1  `  max{2(D � 1), 4} and
let z 2 Z` which appears an odd number of times. Then,
we have

Pr
A⇢Z

"

1 =
X̀

i=1

|A \ {zi}| mod 2

#

�
1

4
.

For some u 2 Z, let Iu ⇢ [`] be all indices where zi = u,
and suppose that |Iu| is odd. Then, u 2 A occurs with
probability 1/2, and once this happens,

P

i2Iu
|A\{zi}|

mod 2 = 1. Therefore,
P`

i=1 |A \ {zi}| = 0 only
when

P

i/2Iu
|A \ {zi}| mod 2 = 1, which occurs with

probability at most 1/2. Since we repeat it m times,
the probability that gA(z) = 0 is at most (3/4)m. By
the setting of m, we may take a union bound over all
1  `  max{2(R � 1), 4} and z 2 Z` for which an
element appears an odd number of times.

Lemma 6.6. Let (Z, dZ) be any finite metric space
whose distances are between 1 and R 2 �0, d 2 ,
and r, ⌧ � 1, and let

k =
d

2 · r · ⌧ ·R
.

There exists a finite metric space (Y, dY ) whose dis-
tances are between 1 and R, and with |Y |  |Z|O(R),
as well as

d1 = O(⌧2R4 · d log |Z|).

and a distribution over embeddings F : `d1(Z)! `d1
1 (Y ),

computable in poly(d, ⌧, R, |Z|) time and space such
that the following holds. For every a, b 2 Zd where
d`d1(Z)(a, b) 2 [r, ⌧r],

d
`
d1
1 (Y )

(F(a),F(b))

d1
�

1

4
·
k

d
· d`d1(Z)(a, b).(6.32)

and for every a, b 2 Zd with d`d1(Z)(a, b)  r,

E
F

"

d
`
d1
1 (Y )

(F(a),F(b))

d1

#

 4 ·
k

d
· d`d1(Z)(a, b).(6.33)

Proof. We take the metric space (Y, dY ) as well as the
embedding f : Zk ! Y obtained from Lemma 6.2. Con-
sider the following randomized procedure of building an
embedding:

1. We sample I = (i(1), . . . , i(d1)) uniformly from all

multi-sets of k indices, where i(t) = (i
(t)
1 , . . . , i

(t)
k )

and i
(t)
j 2 [d].

2. We let FI : Z
d ! Y d1 be the map given by

concatenating Fi(1) , . . . , Fi(t) : Z
k ! Y , where

Fi(t)(a) = f(a
i
(t)
1
, . . . , a

i
(t)
k

) 2 Y.

In order to see that the required time and space for the
embedding FI is poly(d, ⌧, R, |Z|), notice that in order
to compute the value of FI(a), we need to evaluate f on
d1 many k-tuples of indices in [d], and each evaluation
of f simply checks intersections against d1 sets in |Z|.
Therefore, by the parameter settings of d1 and k, the
encoding of FI , as well as the time necessary to compute
FI(a) is at most poly(d, ⌧, R, |Z|).

We consider a fixed pair a, b 2 Zd and notice that

E
I

"

d
`
d1
1 (Y )

(FI(a), FI(b))

d1

#

= E
i
[dY (Fi(a), Fi(b))] = µ(a, b).(6.34)

where i = (i1, . . . , ik) is a k-tuple of random in-
dices ij ⇠ [d]. Furthermore, the random variable
d
`
d1
1 (Y )

(FI(a), FI(b)) in the expectation on the right-

hand side of (6.34) is a sum of independent random
variables, each taking values between 1 and R. We show
that if d`d1(Z)(a, b) 2 [r, ⌧r], then we have

µ(a, b) �
1

2
·
k

d
· d`d1(Z)(a, b).
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If we have established this fact, we have, by McDi-
armid’s inequality

Pr
I

"

d
`
d1
1 (Z)

(FI(a), FI(b))

d1


µ(a, b)

2

#

 exp

✓

�
µ(a, b)2d1

2R2

◆

 exp

✓

�
d1

32 · ⌧2 ·R4

◆

so that setting d1 = 128⌧2R4d · log |Z| and taking
a union bound over at most |Z|2d pairs of points
a, b 2 Zd with d`d1(Z)(a, b) 2 [r, ⌧r], we have that with

probability at least 1/2 over the draw of I, (6.32) holds.
Therefore, if we considered sampling F according to the
distribution over I conditioned on (6.32) holding, we
have that for every a, b 2 Zd,

E
F

"

d
`
d1
1 (Y )

(F(a),F(b))

d1

#

 2µ(a, b),

because distances are always non-negative. It remains
to upper and lower bound µ(a, b), which we do next.

Consider the indicator random variable X of the
event defined over the randomness in a draw of i =
(i1, . . . , ik) that there exists at most one index j 2 [k]
where aij 6= bij . In this case, the pair (ai1 , . . . , aik) and
(bi1 , . . . , bik) form an edge of Zk in direction ij , and by
Lemma 6.2,

dY (Fi(a), Fi(b)) = dZ(aij , bij ).(6.35)

Notice that conditioned on there being a unique index
j 2 [k] where aij 6= bij , the index ij is uniformly
distributed over indices i 2 [d] where ai 6= bi. Whenever
X occurs, either aij = bij and (6.35) is 0, or there exists
a unique j 2 [k] where aij 6= bij , and (6.35) is non-zero.
Letting � be the probability, over the draw of i, that
X = 1,

� ·
k

d
· d`d1(Z)(a, b)  µ(a, b)


k

d
· d`d1(Z)(a, b) + (1� �)R,

Letting N = |{i 2 [d] : ai 6= bi}|, we have

1� � 

✓

k

2

◆✓

N

d

◆2



✓

k

2

◆

 

d`d1(Z)(a, b)

d

!2

,

since each coordinate where ai 6= bi contributes at least
1 to d`d1(Z)(a, b). Consider first the case d`d1(Z)(a, b) 2

[r, ⌧r], and notice that

µ �

✓

1�

✓

k

2

◆

·
r2⌧2

d2

◆

·
k

d
· d`d1(Z)(a, b)

�
1

2
·
k

d
· d`d1(Z)(a, b).

On the other hand, for every a, b 2 Zd with
d`d1(Z)(a, b)  r we have

µ(a, b) 
k

d
· d`d1(Z)(a, b)

✓

1 +
k

2
·
r

d
·R

◆

 2 ·
k

d
· d`d1(Z)(a, b).

6.3 ANN for `d1(Z) in all scales

Lemma 6.7. Fix n, d 2 and a finite metric space
(Z, dZ) whose distances are between 1 and R, as well
as parameters r 2 �0 and ✏ 2 (0, 1/2). There exists
a distribution H supported on functions f : Zd ! [n2]
computable in time and space poly(d, |Z|) such that for
any dataset P ⇢ Zd of size n, the following holds. Let
q 2 Zd be any point, and suppose there exists p 2 P
where d`d1(Z)(p, q)  r, then with probability at least

n�✏/2 over the choice of f ⇠ H,

• f(p) = f(q), and

• Whenever p0 2 P satisfy f(p0) = f(q), then
d`d1(Z)(q, p

0)  O(r log |Z|/✏).

Theorem 6.2. Fix n, d 2 , a finite metric space
(Z, dZ) of whose distances are between 1 and R 2 �0,
as well as parameters �, % � 0, ✏ 2 (0, 1/2), and r � 1.
Let

c = O

✓⇠

log1+�

✓

R log |Z|

✏

◆⇡

+ 1

◆

.(6.36)

There exists a data structure for (r, cr)-ANN over
`d1(Z) using space poly(d,R, |Z|) · n1+� and query time
poly(d,R) · |Z|poly(R,log |Z|/✏) ln(1/%) · log n which succeeds
with probability n�%�✏/4.
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