
AN OPEN SOURCE VIDEO ANALYTICS TOOL FOR ANALYZING LEARNER
NAVIGATION IN IMMERSIVE SIMULATED ENVIRONMENTS

Noah Soriano

College of Information Sciences and Technology
The Pennsylvania State University

E397 Westgate Building
University Park, PA, USA

nfs5267@psu.edu

Ashkan Negahban

School of Graduate Professional Studies
The Pennsylvania State University

30 E Swedesford Rd
Malvern, PA, USA

anegahban@psu.edu

Sabahattin Gokhan Ozden

Information Sciences and Technology
Penn State Abington

Rydal Executive Plaza Building, 317
Abington, PA, USA

sgo7@psu.edu

Omar Ashour

Department of Industrial Engineering
Penn State Behrend
213 AMIC Building

Erie, PA, USA
oma110@psu.edu

ANNSIM’23, May 23-26, 2023, Mohawk College, ON, CANADA; ©2023 Society for Modeling & Simulation International (SCS)

ABSTRACT

In educational research, user-simulation interaction is gaining importance as it provides key insights into
the effectiveness of simulation-based learning and immersive technologies. A common approach to study
user-simulation interaction involves manually analyzing participant interaction in real-time or via video
recordings, which is a tedious process. Surveys/questionnaires are also commonly used but are open to
subjectivity and only provide qualitative data. The tool proposed in this paper, which we call Environmental
Detection for User-Simulation Interaction Measurement (EDUSIM), is a publicly available video analytics
tool that receives screen-recorded video input from participants interacting with a simulated environment
and outputs statistical data related to time spent in pre-defined areas of interest within the simulation model.
The proposed tool utilizes machine learning, namely multi-classification Convolutional Neural Networks,
to provide an efficient, automated process for extracting such navigation data. EDUSIM also implements
a binary classification model to flag imperfect input video data such as video frames that are outside the
specified simulation environment. To assess the efficacy of the tool, we implement a set of immersive
simulation-based learning (ISBL) modules in an undergraduate database course, where learners record their
screens as they interact with a simulation to complete their ISBL assignments. We then use the EDUSIM
tool to analyze the videos collected and compare the tool’s outputs with the expected results obtained by
manually analyzing the videos.

Keywords: Simulation-based learning, human-simulation interaction, machine learning, video analytics,
virtual reality.



Soriano, Negahban, Ozden and Ashour

1 INTRODUCTION

The work presented in this paper is part of an overarching educational research project (summarized in Fig-
ure 1) that aims to develop and assess the effectiveness of Immersive Simulation-Based Learning (ISBL)
modules in STEM education. An ISBL module is a learning activity in the form of problem- or project-based
learning defined around an immersive simulated system. The learning activity is inspired by and resembles
real-world situations that learners may face in a professional setting or future workplace. To complete an
ISBL assignment, students will interact with a three-dimensional simulation model that resembles a real sys-
tem. The simulation serves as the context and enables technology-enhanced Problem-Based Learning (PBL)
and risk-free experiential learning. For example, instead of physically visiting a real-world production facil-
ity, students perform a virtual tour of a simulated facility to collect the data needed for their course project.
In addition to eliminating barriers to on-site visits (say, due to lack of proximity to relevant industries, safety
risks, or schedule conflicts), many of the pedagogical and psychological theories supported by traditional
PBL also apply to ISBL or are augmented due to the integration of PBL with a simulated environment. As
highlighted in the figure, one of the research objectives of our overarching project is to investigate the impact
of learner navigation (movement in a virtual space) in the simulation on learning outcomes in ISBL. This
impact is the main motivation behind developing the tool proposed in this paper since manually collecting
learner-simulation interactions in real-time during the experiments or by having a researcher watch screen
recorded videos would be infeasible due to the reasons discussed in Section 2. This paper pertains to the
highlighted components indicated in Figure 1.

Figure 1: The overarching educational research project

Based on the above motivation, this paper presents an open-source tool for automated environmental de-
tection in simulated settings to assist researchers and instructors with quantification and statistical analysis
of user navigation within simulated environments. We call the proposed tool "Environmental Detection for
User-Simulation Interaction Measurement" (EDUSIM). The EDUSIM tool runs on a multi-classification
Convolutional Neural Network (CNN), which can recognize areas of interest displayed on screen-recorded
videos of learners’ navigation in the simulation. The tool outputs a data table including time spent at each
area in the simulation, average time over all user videos, and deviations between users’ time allocations
among areas. Due to the inconsistency in user screen recordings, however, not all input videos will contain
a clear view of the simulated environment. To combat this inconsistency problem, the EDUSIM tool also
implements a rudimentary error handling process via a binary classification model that outputs a predicted
flag rating on videos that may contain unrecognizable frames (e.g., user switching to a different program
window).



Soriano, Negahban, Ozden and Ashour

Educational researchers have taken an interest in analyzing the impact of interactions and navigation in
simulated environments on students’ learning within virtual learning environments such as virtual and aug-
mented reality (Nowparvar et al. 2021, Ozden et al. 2020, Nowparvar et al. 2022). However, simulation
software packages generally lack tools for tracking user navigation and interaction within the program, and
most programs do not allow modification to the source code to allow for implementation of tracking data.
To combat this problem, the EDUSIM tool can be applied to a variety of simulation software programs that
lack native tracking functionality by analyzing recorded video data with CNNs.

CNNs are powerful deep learning algorithms most commonly used in visual data analysis. CNNs can
recognize and classify images and provide an efficient statistical analysis method on a larger scale as they
can process data much faster than humans and with high accuracy. Implementing CNNs in the educational
research space is rather cumbersome and requires an extensive background in computer programming and
machine learning theory. The proposed EDUSIM tool provides an easy-to-use implementation of CNNs for
researchers with little to no background in programming. The tool and its future extensions can be useful for
researchers in the field of human simulation interaction for determining user focus in virtual environments,
as well as for educational researchers and instructors to assess the impact of learners’ usage and navigation
within simulation environments on learning outcomes.

The open-source nature of the tool and its ability to receive input from any video data allows it to be modified
such that the functions extend beyond interaction and navigation with simulation models. Extensions of the
tool can be applied in a variety of applications. For example, in the medical field, the tool may be able to
provide information on medical equipment usage by analyzing recordings of student interaction and which
objects of interest they primarily focus on. Such tools may also gauge viewer interest in retail design and
development by providing time spent by each customer at a particular area in the store and examining
visitors’ interest in certain art pieces in modern virtual museums.

This paper is structured to provide an overview of the tool’s functionality and act as a user manual for future
researchers. We begin with a brief literature review on the functionality and performance of common CNN
models as well as a discussion on current methods for assessing user-simulation interaction in educational
settings (Section 2). Next, in Section 3, we discuss the methodologies behind the functionality of the tool
and specific training parameters and provide an explanation of the statistical data in the final outputted table
based on actual user videos. Finally, Section 4 presents the conclusions and potential future extensions.

2 RELATED WORK

In this section, we first present the motivation behind the development of the tool and its importance to the
educational research space, as well as possible applications in the future by referencing common problems
and issues discovered in previous user-simulation interaction research. We then compare of common CNN
models to justify our choice of the CNN used in the proposed EDUSIM tool.

2.1 Current Methods for Assessing User Interaction with Simulated Learning Environments

A comprehensive review of VR applications in higher education was conducted in (Radianti et al. 2020),
where collected papers were analyzed over their overall VR design elements. The findings suggest that
while there is a general interest in studying user interaction with virtual environments, only a small subset
of studies (around 7%) collect and analyze usage and navigation data. A handful utilized manual, physical
observation of the participants among the papers that do so. This way of observation of the participants
can cause a bottleneck during research as logging user information manually is a tedious task and is also
prone to human errors by the observer. The remaining papers that study usage and navigation primarily
used surveys and written user responses, which are known to be biased and subjective (Brimble 2008) and



Soriano, Negahban, Ozden and Ashour

only provide qualitative data. In addition, conclusions drawn solely from open-ended response questions of
user interaction can be incomplete as the full interactive experience is not tracked, recorded, or evaluated.
The limited analysis of user interaction/navigation in virtual/simulated learning environments (despite the
general consensus on its importance) can be attributed to the inefficiency and inadequacy of manual and
traditional data collection and analysis methods. Integrating machine learning solutions will significantly
facilitate data collection and analysis related to user-simulation interaction.

As previously discussed, surveys and manual observation are the most common methods for collecting
information on interactions in simulated environments. Here, we mention a sample of these studies. Under-
graduate participants were studied in a VR learning environment and were asked to write a paper on how
the VR environment compared to viewing a standard classroom slideshow (Parong and Mayer 2018). In an-
other research experiment analyzing player presence in computer games, the research team deemed physical
observation of participant interaction too tedious, so they resorted to direct responses from the user (Chung
and Gardner 2012). In an investigation of mixed-reality teaching and learning environments, participant
behavior was recorded using a screen capture tool and then analyzed by the team through manual labeling
of the video data (Plumanns et al. 2016). Our proposed tool automates tedious manual processes to extract
user navigation data.

While the current version of our tool is specifically designed to analyze user navigation in simulated environ-
ments, it has the potential to extend beyond computerized simulation applications where there is also interest
in analyzing usage and navigation. For example, the concept of physical presence in a real-life recording
has been studied (Bermejo Berros and Gil Martínez 2021), where 147 undergraduate students participated
and were tasked with viewing a 360° video of a YouTuber traveling through a city by car. Within the sample
population, one group of students viewed the video through a virtual reality headset, and the other group
watched the video on a computer screen monitor. Instead of utilizing a survey response system to quan-
tify their presence in the recorded environment, the team devised space quadrants in the 360° video and
measured changes in an omnidirectional movement space to identify when the YouTuber moved outside the
focus space on the screen. The researchers manually reviewed all 147 videos and tracked each user’s time
spent looking at each video quadrant space. Using tools such as the one presented in this paper, researchers
can train the machine learning model on these quadrant spaces and output predictions on the amount of time
each user has had these spaces in view, effectively bypassing the need for tedious manual measurements.

In the medical research field, students were recorded treating patients in a hospital and were then tasked
with analyzing their own videos to evaluate their performance via questionnaire response (Brimble 2008).
The responses to these questionnaires were used to evaluate their overall performance on video analysis as
a whole. According to the paper, the traditional data collection procedures are “... time-consuming and
impractical in the early stage of evaluating.” The questionnaires in the research were also determined to be
somewhat biased and ‘forced’, as the students “have felt they had to complete the questionnaires because
they were asked to do so by a lecturer.” This problem could be solved through automated machine learning
tools to provide an unobtrusive evaluation method.

In an experimental design study on rack layout in a retail store, user interest was gauged by manually
observing the intensity of exposure (i.e., how long they are seen) (Mowrey, Parikh, and Gue 2017). The
research team created a 3D virtual simulation of a store. It quantified interest in store design by measuring
the time each user spent interacting with product racks of varying sizes and angles. Through an automated
video analytics tool like the one presented in this paper, a significant amount of time could be saved over
manual user observation to track the time each participant spends looking at a given location.

In summary, the proposed tool provides a solution and a new way to study user navigation in vir-
tual/simulated environments. Machine learning prediction models have little to no application to automate
the observation of full user activity in simulations or virtual reality spaces. Many researchers resort to opin-



Soriano, Negahban, Ozden and Ashour

ionated responses with a survey system as manual observation techniques have proven to be too inefficient
and tedious for data collection tasks. Moreover, important details with a specific environmental focus must
be properly captured via traditional data collection methods. Detailed changes in environment/point of in-
terest transitions by the participant are not logged when survey/questionnaire/essay response is used at the
end of the experiment. Dedicating time to log these changes introduces delays in the data collection process,
especially when the project is scaled up for many participants. The proposed tool in this paper aims to over-
come these problems. Using a combination of CNN algorithms and video processing capabilities, our tool
can automate the data collection and analysis procedure over large-scale user-simulation interaction video
data.

2.2 Common Convolutional Neural Networks (CNNs) for Image Classification

In machine learning applications, image recognition can be tackled in various ways. One of the most com-
mon forms is the use of CNNs. CNN models first take an image and pass a pre-defined convolutional filter
over a subset of pixel ranges, then identifies patterns according to their weight and outputs a prediction.
CNNs can have different parameters and architectures in their convolutional filters. To select an appropriate
CNN for the proposed EDUSIM tool, we analyzed performance metrics among three common CNN models:
VGG-16, GoogLeNet and ResNet-50, and their ability to predict over the ImageNet database (a collection
of over 14 million annotated images).

VGG-16 is a CNN that is 16 layers deep and widely recognized as the winner of the ImageNet recognition
competition in 2014. It has been used in a wide range of applications, such as medical research, where it
has exhibited ability to identify carcinomas in cytological images and generated predictions with 97.66%
accuracy (Guan et al. 2019). GoogLeNet is a CNN model proposed by Google based on the architecture
of previous winners of the ImageNet recognition competitions (AlexNet and ZF-Net). It has been shown to
have lower error rates compared to VGG-16 by utilizing a combination of convolutional, max pooling, and
inception layers devised by the Google research team based on their previous Inception V3 module. The
GoogLeNet model has been used in experimentation with face recognition applications in which it exhibited
over 91% accuracy (Anand, Shanthi, Nithish, and Lakshman 2020).

ResNet-50 is a convolutional neural network developed by researchers at Microsoft which contains 50 layers
of deep residual neural networks. It won the ImageNet classification competition in 2015 and has shown
considerably higher prediction ratings in common image classification tasks over VGG-16 and GoogLeNet.
As shown by research conducted at Microsoft (He, Zhang, Ren, and Sun 2016), performance in classifi-
cation over the ImageNet dataset was compared among these three CNN models and evaluated over top-n
accuracy (how often a prediction label exists in given top-n classes) as summarized in Table 1. ResNet-50
has shown significantly lower top-1 error rates compared to VGG-16 and lower top-5 error rates compared
to both GoogLeNet and VGG-16. It achieves this by minimizing the training parameter size to 26 million
instead of 138 million in VGG-16. While this is still higher than GoogLeNet’s 7 million parameter size,
ResNet-50 employs global average pooling layers over fully-connected layers. It enhances the training ac-
curacy by averaging feature maps to output nodes rather than flattening features to a single fully connected
layer (Benali Amjoud and Amrouch 2020). Due to its high accuracy, flexibility over a wide range of im-
age classification applications, and reduced parameter size, we have decided to implement the ResNet-50
architecture as the core framework behind our EDUSIM tool.



Soriano, Negahban, Ozden and Ashour

Table 1: Training accuracy comparison over ImageNet dataset (He et al. 2016)

Model Top-1 Error Top-5 Error
VGG-16 28.07 9.33

GoogLeNet - 9.15
ResNet-50 22.85 6.71

3 ENVIRONMENTAL DETECTION FOR USER-SIMULATION INTERACTION
MEASUREMENT (EDUSIM)

The EDUSIM tool is developed in Jupyter Notebook with the Anaconda programming platform and is
available online (Soriano 2022). Installing Anaconda before launching the program is recommended, as it
includes the necessary dependencies. Additionally, the following libraries listed below must to be installed
in order for the tool to run: OpenCV, Pandas, Numpy, Tensorflow/Keras, and Scikit-learn. Figure 2 shows
the graphical user interface (GUI) application wrapper around the tool EDUSIM, allowing the user to run
all the required functions without prior knowledge of Python. For simple predictions of the amount of time
a recognized area is in a frame, this GUI is sufficient for analyzing user-recorded videos in a simulated envi-
ronment, as each process is automated via streamlined buttons. However, modifications to the tool for other
non-simulation applications will require sufficient knowledge of Python programming, video processing,
and CNNs to alter the source code. The following subsections summarize the key components and main
steps to use the proposed EDUSIM tool.

Figure 2: EDUSIM Application GUI.

3.1 Collect Recorded Videos and Label Areas

Figure 3(a) outlines the video data collection and preprocessing steps. The user collects screen recordings
of participant interaction in a simulated environment in 1080p format at 30 frames per second. These screen
recordings contain useful navigation information, including showing how much time each participant spends
looking at areas of interest, which is the primary output in the current version of the EDUSIM tool. The
tool accepts .mp4 video format. However, by changing the file extension name in the glob function of the
Model_train.ipnyb file, the tool can also support other formats, such as .avi video formats. In order to protect
participant privacy, this data can be used for training the learning model and disposed of after completion.

Before running the code, the user must select a randomized set of videos to train the model. Model train-
ing requires manually labeling the specific areas in the virtual environment that participants interact with.
For example, the simulation-based learning activity used in our experiments (discussed in subsection 3.4)
involves studying different aspects of a simulated airport terminal, including five areas (check-in, security
checkpoint, departure gate area, etc.) as well as one for the whole airport when all environments are in view.
Each area/environment must be assigned a numerical label starting from a zero-index in the training set in
order to allow the model to read the input as categorical labels. When more than one environment is in view,
the model is trained to recognize the environment that takes up a majority of the space on the center screen.



Soriano, Negahban, Ozden and Ashour

(a) (b)

Figure 3: An overview of the EDUSIM data collection and prediction procedures.

Figure 4: An example of the manual label encoding inputted by the user needed to prepare the training set.

In the Model_train.ipnyb Jupyter notebook file, the code utilizes the Python glob and cv2 libraries to extract
each selected training video into individual frames for model training. When run, the tool automatically
splits these videos into JPEG images and places them in their corresponding folders. Once these frames have
been generated, a comma-separated value table or .csv file is created, containing two columns: Image_ID
and Class. The Image_ID column is automatically generated by the tool, which contains each split video
frame separated by a row, while the Class will be left blank when generated by the tool for the user to fill
in manually. The user must then look through each extracted frame and manually insert the numerical label
corresponding to the area they have previously identified into this column, as shown in Figure 4. Once
the source training table has been filled out, the model can be trained using the included GUI application
wrapper or Jupyter notebook file.

The EDUSIM tool allows the user to train and use a multi-classification CNN for predicting time spent
at areas of interest in a simulated environment. However, screen recordings may include video frames in
which the participant navigates away from the simulation. Such frames can disrupt the overall accuracy
of the multi-classification prediction process as they are not included in the original training set. This
irrelevant data set is a common problem in machine learning research known as open-set recognition in
which the trained model will still output a prediction on unknown frames (e.g., the CNN will still classify
a blank screen as an area of interest). A separate binary classification model is included in the EDUSIM
tool for identifying frames outside the training set to combat this issue. In order to train this model, the
user identifies these ‘open-set’ frames and places them in the frames_binary folder. Next, the frames_binary
data table must be filled out with ‘0’ representing frames within the training set and ‘1’ representing open-
set frames outside of the training input. This filling process will help the tool identify which videos may
generate inaccurate prediction results due to a high percentage of open-set recognition frames (i.e., frames



Soriano, Negahban, Ozden and Ashour

Figure 5: One-hot encoding.

that are unrecognizable to the multi-classification CNN). This identification is done in the tool by outputting
a flag rate value for each video (see subsection 3.4 for additional discussion on a sample output data table
generated by the EDUSIM tool).

3.2 Run Model Training over Labelled Areas

Figure 3(b) shows the training, prediction, and analysis processes automated by the tool. Once the source
files have been properly encoded, both CNNs are trained. The images split in the folder are first converted
to Numpy arrays, allowing the CNN to read the image frames in coordinate space. The Matplotlib library
converts each image into a pixel array before loading into Numpy, which converts the pixels in the image
into numerical values according to the intensity of the RGB color. ResNet CNN takes a 224x224 resolution
image on a three-channel RGB color scale (224x224x3), and the tool automatically converts high-definition
input video frames into this format. Compared to grayscale images, this generates larger weight and param-
eter sizes but enables complex prediction methods with color images. Each layer performs a mathematical
convolution on an RGB image over a grayscale image. For example, consider a simulated environment con-
taining blue and red doors with the same textures but different colors. On a grayscale image, it is difficult to
separate features between these two frames; however, it is much more noticeable when the RGB color scale
is kept.

Once the images have been properly arranged into Numpy arrays, the labels are then converted into a one-hot
encoded format where location variables are pivoted across the columns and assigned a binary value. This
encoding format is then read by the machine learning algorithm. In the context of the EDUSIM training
process, the frames.csv file is one-hot encoded such that the appearance of each location is assigned to a
binary value based on whether it exists at its designated frame (see Figure 5). This information is then
loaded into the Tensorflow Keras framework and preprocessed with Keras’ built-in ImageNet utilities. This
preprocessing allows the CNN model to run convolutions over the pixel arrays and output a valid categorical
prediction. Using scikit-learn, the input Numpy array is split into 70/15/15 train, test, and validation size.
This splitting will allow the model to generalize over the provided video frames, i.e., learn information from
the training set and generate predictions on new, unseen images from the ‘test’ and ‘validation’ split.

Once the preprocessing steps are complete, the image array input is compiled for training. A categorical
cross-entropic loss function is applied due to the multilabel functionality of the prediction environment. A
common problem in machine learning is the introduction of ‘overfitting’ in which the trained model predicts
too closely to its input training images and is unable to generalize and make accurate predictions over unseen
images. This overfitting will result in high prediction accuracy over the train set but very low accuracy in the
validation set (see Figure 6). If this occurs, the number of training epochs (number of complete passes the
model learns over the input) can be lessened or the model training can be stopped early if the user notices
the validation accuracy begins to decrease. After the CNN has been trained, both the multi- and binary
classification models are then saved to the root ‘research’ folder for further use in data analysis.



Soriano, Negahban, Ozden and Ashour

Figure 6: Example of overfitting with 93.16% accuracy on train set but 50% accuracy on validation set.

3.3 Binary Classification of Unknown Video Frames

The general training process for the binary classification model is similar to the multi-classification model.
The EDUSIM tool can predict over environments using these two models together and utilize a flagging
system on videos with poor prediction accuracy due to large amounts of noise (unknown frames).

3.4 Statistical Analysis and Output

The tool outputs data on time spent in each area of interest. Due to variations in the total interaction time,
the tool also provides the percentage of time allocated to each area in the simulation. For example, in our
experiments, some participants spent upwards of 20 minutes interacting with the airport simulation model
while another participant spent 5 minutes of interaction time. This inconsistency of interaction time makes
a direct comparison of time allocations infeasible; however, we can still compare the percentage of time
allocated to different areas among the participants. The tool also computes the average time and percentage
of time spent at each area across all participants (i.e., one average per area). The percentage time averages
are then used to calculate a modified measure of standard deviation for each user given by

stdev =

√
∑

N
i=1(Xi −µi)

N
,

where N denotes the number of areas of interest in the simulated environment, i is the index for the areas
(i = 1,2, ...,N), Xi is the percentage of time the user spent in area i, and µi denotes the "average" percentage
of time each user spends in area i. Figure 7 shows the output statistical data provided by the EDUSIM tool
for our research participants who interacted with an airport simulation in the Simio software as part of a
simulation-based learning activity. In another work, we will use the stdev values and time percentages in
conjunction with other data collected on the student participants to determine correlations between student
learning and their navigation in the simulation model.

As previously described, an input video’s high number of unrecognizable frames can cause inaccurate pre-
dictions due to the open-set recognition problem. Using the trained binary model, we can generate a flag
rate model to determine which videos contain significant amounts of noise in column N. While the predicted
intensity data is left unmodified, these flag rates are included to inform the researcher of possible recording
issues due to video noise and alert them to review possible discrepancies in highly flagged input videos
manually. The idea is similar to how AI-based online proctoring tools work so that the instructor only needs
to review the flagged parts of the recorded video of a student taking a test. Figure 8 provides examples of
recognizable and unrecognizable frames in our experiment with the airport simulation model.

We have validated the tool’s output by manually performing time studies on user videos and comparing the
tool’s predictions with the correct values. This validation was done for all videos regardless of their flag
rate to further validate the performance of the binary classification model and assess the effect of a high flag
rate on the predictions of the multi-classification CNN. Figures 2 and 3 show our comparison with manually
collected data for a sample of low and high-flag-rate videos, respectively.



Soriano, Negahban, Ozden and Ashour

Figure 7: Sample table output. Column A: The list of input user videos. Columns B-F: The amount of time
at each area of interest predicted by the tool measured in seconds. Columns G-K: Percentage of time spent
in the respective area. Column L: Total length of each recorded video. Column M: stdev calculation relative
to all videos in the input dataset. Column N: Calculated flag rate or percentage of open-set (unrecognizable)
frames discovered in the video by the binary classification model. For instance, Video 3 and Video 12 exhibit
high flag rates, indicating a large number of open-set frames.

(a) (b)

Figure 8: (a) is an example of a "clean" frame from Video 4 where the simulation window is in full view
and the tool can provide an accurate prediction of the given area. (b) shows an example of an unrecogniz-
able/noisy frame from Video 12. The “Model Trace" window covers the majority of the simulation program
window and thus outputs inaccurate predictions due to open-set recognition.

4 CONCLUSIONS

We develop a video analytics tool called EDUSIM that analyzes user navigation and time allocation to
different areas within a simulated environment via a multi-classification CNN. The tool is publicly available
online (Soriano 2022). The current version of the tool is being used in a STEM educational research project
to identify the correlation between students’ learning outcomes and navigation in simulation-based learning
environments. The EDUSIM tool accurately predicts known locations in video recordings of user-simulation
interaction as compared to manual stopwatch calculations. The tool also includes a flagging mechanism
based on a binary classification model to assist researchers and instructors in identifying videos that suffer
from recording issues that may negatively affect the prediction accuracy of the multi-classification model.

There are many possibilities for assessing user-simulation interaction. Future extensions of the tool include
quantifying additional measures of navigation and interaction beyond time tracking (e.g., interaction with
specific objects within the simulation). With further development, we plan on allowing the tool to recognize
a variety of applications as well as analyze interactions in popular virtual reality programs such as VRChat
and Mozilla Hubs. Our research team is currently investigating some of these possibilities. Another impor-
tant area for future research is to exploring other potential remedies to deal with the open-set recognition



Soriano, Negahban, Ozden and Ashour

Table 2: Comparison between outputted predictions (in seconds) by the tool and manual stopwatch (rounded
up to nearest integer) of Video 5 which has a 2.90% flag rate. EDUSIM tool exhibits highly accurate
predictions across all areas in the simulation model.

Table 3: Comparison between the tool’s predictions and manual stopwatch time collected for Video 12
which has a 25% flag rate. The multi-classificaion CNN exhibits high degrees of error for all areas due
to the high level of noise in the input video, indicating that specified areas of interest cannot be predicted
accurately in this video recording due to the high flag rate as recognized by the binary classification model.

problem in multi-classification CNNs to eliminate the need for manually reviewing videos with high flag
rates. We hope that this work paves the way for more in-depth analysis of user-simulation interaction in
simulation-based learning environments and other contexts where such interactions are of interest.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant No. 2000599.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation. The preliminary stages of this
work were supported by funds from the Office of the Executive Vice President and Provost at Penn State as
part of the university’s Strategic Seed Grant program on transforming education. We thank Aung Nay Htet
Oo, an undergraduate researcher at Penn State, who assisted in developing the ISBL modules used here.

REFERENCES

Anand, R., T. Shanthi, M. S. Nithish, and S. Lakshman. 2020. “Face Recognition and Classification Using
GoogleNET Architecture”. In Soft Computing for Problem Solving, edited by K. N. Das, J. C. Bansal,
K. Deep, A. K. Nagar, P. Pathipooranam, and R. C. Naidu, pp. 261–269. Singapore, Springer Singapore.

Benali Amjoud, A., and M. Amrouch. 2020. “Convolutional Neural Networks Backbones for Object Detec-
tion”. In Image and Signal Processing, pp. 282–289. Cham, Springer International Publishing.

Bermejo Berros, J., and M. Gil Martínez. 2021, 12. “The relationships between the exploration of virtual
space, its presence and entertainment in virtual reality, 360º and 2D”. Virtual Reality vol. 25, pp. 1–17.

Brimble, M. 2008, 09. “Skills assessment using video analysis in a simulated environment: an evaluation”.
Paediatric Nursing vol. 20, pp. 26–31.

Chung, J., and H. J. Gardner. 2012. “Temporal Presence Variation in Immersive Computer Games”. Inter-
national Journal of Human–Computer Interaction vol. 28 (8), pp. 511–529.

Guan, Q., Y. Wang, B. Ping, D. Li, J. Du, Q. Yu, H. Lu, X. Wan, and J. Xiang. 2019, 08. “Deep convolutional
neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological
images: A pilot study”. Journal of Cancer vol. 10, pp. 4876–4882.

He, K., X. Zhang, S. Ren, and J. Sun. 2016. “Deep Residual Learning for Image Recognition”. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.



Soriano, Negahban, Ozden and Ashour

Mowrey, C. H., P. J. Parikh, and K. R. Gue. 2017. “The impact of rack layout on visual experience in a retail
store”. INFOR: Information Systems and Operational Research vol. 57 (1), pp. 75–98.

Nowparvar, M., O. Ashour, S. Ozden, and A. Negahban. 2022. “An Assessment of Simulation-Based Learn-
ing Modules in an Undergraduate Engineering Economy Course”.

Nowparvar, M., X. Chen, O. Ashour, S. Ozden, and A. Negahban. 2021. “Combining Immersive Tech-
nologies and Problem-based Learning in Engineering Education: Bibliometric Analysis and Literature
Review”. In Proceedings of the 2021 ASEE Annual Conference.

Ozden, S., O. Ashour, and A. Negahban. 2020. “Novel Simulation-Based Learning Modules for Teaching
Database Concepts”. In Proceedings of the 2020 ASEE Annual Conference.

Parong, J., and R. Mayer. 2018, 01. “Learning Science in Immersive Virtual Reality”. Journal of Educational
Psychology vol. 110.

Plumanns, L., T. Sommer, K. Schuster, A. Richert, and S. Jeschke. 2016. Investigating Mixed-Reality Teach-
ing and Learning Environments for Future Demands: The Trainers’ Perspective, pp. 393–405. Cham,
Springer International Publishing.

Radianti, J., T. A. Majchrzak, J. Fromm, and I. Wohlgenannt. 2020. “A systematic review of immersive vir-
tual reality applications for higher education: Design elements, lessons learned, and research agenda”.
Computers & Education vol. 147, pp. 103778.

Noah Soriano 2022, March. “Environmental Detection for User-Simulation Interaction Measurement
(EDUSIM)”. https://doi.org/10.5281/zenodo.6394885.

AUTHOR BIOGRAPHIES

NOAH SORIANO is a graduate research assistant and an M.S. student in the College of IST at The Penn-
sylvania State University. He earned his B.S. in Computational Data Science from Penn State. His re-
search interests include machine learning design and application to computer vision. His e-mail address is
nfs5267@psu.edu..

ASHKAN NEGAHBAN is an Associate Professor of Engineering Management at the School of Graduate
Professional Studies at The Pennsylvania State University (USA). He received his Ph.D. and master’s de-
grees from Auburn University (USA) and his BS from University of Tehran (all in Industrial and Systems
Engineering). His research involves stochastic simulation methods, primarily agent-based and discrete-
event simulation. He also conducts research related to novel simulation-based learning environments in
STEM education. His email and web addresses are anegahban@psu.edu and http://ashkannegahban.com.

SABAHATTIN GOKHAN OZDEN is an assistant professor of Information Sciences and Technology at
Penn State Abington. He received B.S. degree in Software Engineering with a double major in Industrial
Systems Engineering from Izmir University of Economics in 2009. He received his Master of Industrial and
Systems Engineering and a Ph.D. degree in Industrial and Systems Engineering from Auburn University in
2012 and 2017, respectively. His research interests are warehousing, optimization, and information systems.
He can be reached at gokhan@psu.edu and http://gokhanozden.com.

OMAR ASHOUR is an Associate Professor of Industrial Engineering at Pennsylvania State University, The
Behrend College. He received his B.S. and M.S. degrees in Industrial Engineering from Jordan University
of Science and Technology (JUST) in 2005 and 2007, respectively. He received his M.Eng. and a Ph.D.
degree in Industrial Engineering and Operations Research from The Pennsylvania State University (PSU)
in 2010 and 2012, respectively. Dr. Ashour’s research areas include data-driven decision-making, modeling
and simulation, data analytics, immersive technologies, process improvement and engineering education .

https://doi.org/10.5281/zenodo.6394885
mailto://nfs5267@psu.edu.
mailto://anegahban@psu.edu
http://ashkannegahban.com
mailto://gokhan@psu.edu
http://gokhanozden.com

