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Gravitational wave science is a pioneering field with rapidly evolving data analysis methodology
currently assimilating and inventing deep learning techniques. The bulk of the sophisticated flagship
searches of the field rely on the time-tested matched filtering principle within their core. In this
paper, we make a key observation on the relationship between the emerging deep learning and the
traditional techniques: matched filtering is formally equivalent to a particular neural network. This
means that a neural network can be constructed analytically to exactly implement matched filtering,
and can be further trained on data or boosted with additional complexity for improved performance.
Moreover, we show that the proposed neural network architecture can outperform matched filtering,
both with or without knowledge of a prior on the parameter distribution. When a prior is given, the
proposed neural network can approach the statistically optimal performance. We also propose and
investigate two different neural network architectures MNet-Shallow and MNet-Deep, both of which
implement matched filtering at initialization and can be trained on data. MNet-Shallow has simpler
structure, while MNet-Deep is more flexible and can deal with a wider range of distributions. Our
theoretical findings are corroborated by experiments using real LIGO data and synthetic injections,
where our proposed methods significantly outperform matched filtering at false positive rates above
5 ⇥ 10−3%. The fundamental equivalence between matched filtering and neural networks allows
us to define a “complexity standard candle” to characterize the relative complexity of the different
approaches to gravitational wave signal searches in a common framework. Additionally it also
provides a glimpse of an intriguing symmetry that could provide clues on interpretability, namely
how neural networks approach the problem of finding signals in overwhelming noise. Finally, our
results suggest new perspectives on the role of deep learning in gravitational wave detection.

I. INTRODUCTION

The discovery of cosmic gravitational waves [1], the
windfall of binary black-hole (BBH) merger detections [2,
3], and the spectacular insights that multimessenger as-
trophysics provided [4, 5] revolutionized how we under-
stand the Universe. This leap was due to multiple factors,
from instrumental advances to computing breakthroughs.
Emerging interferometric gravitational wave detectors,
KAGRA [6], GEO600 [7], Virgo [8], and LIGO [9, 10],
played a critical role as they provided the technology [11–
13] enabling signals to be extracted from ripples in Ein-
stein’s space-time [14, 15]. Of course, as it is not suffi-
cient to have data with faint cosmic signals buried in the
noise, the community had to rely on exquisitely sensitive
data analysis algorithms to extract transient signals from
the noisy data. The bulk of the discoveries were made
by two classes of powerful data analysis approaches, ex-
cess power [16–18] and matched filtering [19–25]. The
flagship matched filtering methods [26–38] reached un-
precedented sophistication and became the workhorse of
the field [2, 3]. Insightful work also exist on the ex-
tent of optimality, role of intrinsic parameters, and effect
of non-Gaussian backgrounds [39–41]. There is more

than historical evidence on their algorithmic power [42],
and they are also considered optimal [22] when search-
ing for chirps of known shape [20, 43–45] embedded in
well-behaved Gaussian noise. Within the optimality and
success lie limitations, as the data is significantly more
complex [46, 47] than Gaussian noise and many cosmic
signals are not as well known as the BBH models that
are being used in searches [48]. Therefore, it is critical
that we both seek data analysis methods beyond the hori-
zon of current techniques and rigorously understand the
place of current techniques in the broader field of possible
methods.

An abundance of prior works has been using deep
learning methods for gravitational wave detection. Con-
volutional neural networks have been shown to be ca-
pable of identifying gravitational waves and their pa-
rameters from binary black holes and binary neutron
stars, with performance approaching the matched filter-
ing search currently used by LIGO, Virgo and KARGA
[8, 10, 49–70]. In addition, these machine learning (ML)
method can also be applied to glitches and noise tran-
sients identification [53, 71–76], signal classification and
parameter estimation [77–81], data denoising [82, 83],
etc. While these works exhibit neural networks that
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could approach the performance of matched filtering,
they are still often applied as or considered “black box”
models. This makes it challenging to evaluate the statis-
tical evidence provided by neural networks, and to incor-
porate that evidence in downstream analyses [84].

This paper is motivated by a critical observation,
which we substantiate below: matched filtering with a
collection of templates is formally equivalent to a par-
ticular neural network, whose architecture and param-
eters are dictated by the templates. This observation
has precedents in the machine learning literature, where
deep neural networks are sometimes viewed as hierarchi-
cal template matching methods, with signal-dependent,
class-specific templates [85–91]. Here, we delineate a sim-
ple and explicit equivalence between matched filtering
and particular neural networks, which can be constructed
analytically from a set of templates. This equivalence lies
in the algorithmic level, and does not depend on specific
problem formulations.

In order to study the potential performance gains of
using neural networks, we formulate the gravitational
wave detection problem abstractly as the detection of a
parametric family of signals. Under this framework, we
show that the analytically constructed networks can also
be used as a principled starting point for learning from
data, yielding signal classifiers with better performance
than their initialization, namely “standing on the shoul-
der of giants”. Such learning can be applied to scenarios
both with or without a prior distribution on the parame-
ters. In particular, when a prior distribution is given, we
show that the learned neural network can (empirically)
approach the statistically optimal performance.

We propose and investigate two different neural net-
work architectures for implementing matched filtering,
respectively MNet-Shallow and MNet-Deep. The for-
mer has simpler structure, while the latter is more flex-
ible and can deal with a wider range of distributions.
These learned classifiers have a number of additional ad-
vantages: they do not require prior knowledge of the
noise distribution, can be adapted to cope with time-
varying noise distributions, and suggest new approaches
to computationally efficient signal detection. We con-
ducted experiments using real LIGO data [92] in order
to demonstrate the feasibility and power of neural net-
works in comparison to matched filtering, where we val-
idate our findings empirically that neural networks via
training can reach better performance. Finally, interpret-
ing matched filtering and neural networks in a common
framework also allows a clear comparison of their com-
putational/storage complexities and statistical strengths,
consequently making deep-learning less of a mystery.

The rest of the paper is organized as follows. Section II
introduces the problem of parametric signal detection as
an abstraction of the gravitational-wave detection prob-
lem, and discusses the two formulations of the objective.
Section III discusses matched filtering as an approach
to solving the parametric detection problem, as well as
its limitations. Section IV illustrates how neural net-

work models can be applied in this problem, in a way
that exactly implements matched filtering at initializa-
tion. Section V discusses the training process of neural
network models, and in particular how it is aligned with
the parametric signal detection problem. In Section VI
we present experimental results on real LIGO data and
synthetic injections. We discuss some further implica-
tions of this work in Section VII, and conclude in Section
VIII.

II. PARAMETRIC SIGNAL DETECTION

The problem of identifying gravitational waves [93] in
a single gravitational-wave detector data stream [94] can
be formulated as follows: we observe detector strain data
x 2 R

n, and wish to determine whether x consists of
astrophysical signal plus noise, or noise alone. We can
model possible astrophysical signals as belonging to a
parametric family

SΓ = {sγ | γ 2 Γ} (1)

where the parameters γ can represent properties of the
objects that generate the gravitational wave, such as
masses, orbits and spins. We assume the signals are nor-
malized to have unit power, namely ksγk

2 = 1 for all
γ. We model noise as a random vector z 2 R

n, which
is assumed to follow distribution ⇢0 and be probabilisti-
cally independent of the signal. In this notation, our goal
becomes one of solving a hypothesis testing problem:

H0 : x = z, (2)

or H1 : x = sγ + z for some γ 2 Γ. (3)

Note that except for special cases, such as when the hy-
pothesis H1 is simple, or when the parameters associated
with H1 satisfy certain monotone conditions, we usually
do not have a uniformly most powerful test [95].
Our broad goal is to identify decision rules � : Rn !

{0, 1} that (i) have good statistical performance and (ii)
can be implemented efficiently. Our approach will start
with analytically defined neural networks, which pre-
cisely replicate matched filtering, and then train these
networks to optimize their statistical performance. We
will give training approaches that are compatible with
two classical frameworks for formalizing the performance
decision rules �: the Neyman-Pearson framework, in
which the parameter γ is a random vector with known
distribution ⌫, and the minimax framework, in which we
control the worst performance over all possible choices of
the parameter γ.

A. Neyman-Pearson Framework

In this setting, one assumes that γ is a random vector
with probability distribution ⌫. With this distribution ⌫,
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we can then view H1 as a simple hypothesis. The false
positive rate (FPR) associated with the rule � is

FPR = Pz [�(z) = 1] (4)

The false negative rate (FNR) at signal sγ is

FNRγ = Pz [� (sγ + z) = 0] . (5)

The overall false negative rate is

FNR =

Z
FNRγ d⌫(γ). (6)

The Neyman-Pearson criterion seeks the optimal tradeoff
between FNR and FPR:

min
�

FNR subject to FPR  ↵, (7)

where ↵ is a user-specified significance level.
There is a classical closed form expression for the opti-

mal test under the Neyman-Pearson criterion: if ⇢0 and
⇢1 are the probability densities of the signal x under hy-
potheses H0 and H1, respectively, then the optimal test
is given by comparing the likelihood ratio

�(x) =
⇢1(x)

⇢0(x)
(8)

to a threshold ⌧ , which depends on the significance level
↵. An illustration of an example problem is shown in
FIG 1.

B. Minimax Framework

When a good prior ⌫ is not available or cannot be
assumed, we can instead seek a decision rule that solves

min WFNR subject to FPR  ↵. (9)

at a given false positive rate, where WFNR is the worst
false negative rate defined as

WFNR = max
γ2Γ

FNRγ . (10)

In contrast to the Neyman-Pearson criterion, there is in
general no simple expression for the minimax optimal
rule � [96]. In the next section, we will review matched
filtering, a simple, popular approach to detection which
is compatible with the minimax framework (albeit sub-
optimal in terms of (9)), in the sense that it does not
require a prior on γ.

III. MATCHED FILTERING FOR

PARAMETRIC DETECTION

Matched filtering is a powerful classical approach to sig-
nal detection, which applies a linear filter which is chosen
to maximize the signal-to-noise ratio (SNR).

0

ρ0

SΓ

ρ1

FIG. 1. An example of the parametric signal detection prob-
lem with signal space SΓ. Densities ρ0 and ρ1 are shown in
red and blue respectively.

A. Optimality for Single Signal Detection

In the simplest possible setting, in which (i) there is
only one target signal s, (ii) the observation x has the
same length as s, and (iii) the noise is uncorrelated (i.e.,
E [zz⇤] = �2I), matched filtering simply computes the
inner product between the target s and the observation:

�(x) = 1 iff hs,xi � ⌧. (11)

When detecting a single signal s in iid Gaussian noise,
this decision rule is optimal in both the Neyman-Pearson
and minimax senses: for example, if z ⇠ N (0,�2I), the
likelihood ratio

�(x) =
⇢0(x� s)

⇢0(x)
= exp

✓
hs,xi � ksk2/2

�2

◆
(12)

is a monotone function of hs,xi, and so matched filtering
implements the (optimal) likelihood ratio test. FIG 2
illustrates this optimality geometrically.

The simplicity and optimality in this setting make
matched filtering a principled choice for signal detection,
and have inspired its application in settings that go far
beyond the scope of this rigorous guarantee. In particu-
lar, the simplest and most practical extension of this rule
to detecting parametric families of signals sγ is subopti-
mal in both the Neyman-Pearson and minimax settings.
Moreover, there are a number of additional factors which
contribute to its suboptimality. These include unknown,
non-Gaussian, and possibly time-varying noise distribu-
tions as well as density and coverage issues in the tem-
plate bank, which for complexity reasons may cover only
a small portion of the phase space [22]. Nevertheless,
we will see how matched filtering can inspire principled
approaches to deriving more flexible decision rules which
can address many of these challenges.
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B. Extensions to Parametric Detection

The simplest extension of the decision rule (11) to para-
metric detection problems, in which there are multiple
potential targets sγ , involves taking the maximum over
the parameter space:

�(x) = 1 iff max
γ2Γ

hsγ ,xi � ⌧. (13)

Here we used the assumption that all templates have unit
norm, namely ksγk

2
2 = 1, 8γ 2 Γ. When this rule (13)

is hard to implement in exact form, it can typically be
approximated by taking samples sγ

1
, . . . , sγ

k
and setting

�(x) = 1 iff max
i=1,...,k

⌦
sγ

i
,x

↵
� ⌧. (14)

When the sampling is sufficiently dense, the sampled
matched filter rule (14) accurately approximates the ideal
matched filter rule (13) [22]. This rule, while simple,
is an important component of many sophisticated data
analysis pipelines, including LIGO, Virgo and KARGA’s
template based searches for compact binary coalescence
signals.
Note that the matched filtering decision rule (13) has

connections to the (generalized) likelihood ratio test,
where H1 is the composite hypothesis sγ 2 SΓ. While
this test has nice statistical properties, it is not guaran-
teed to be the uniformly most powerful test when the
hypotheses are composite. For the rest of this paper, the
term “likelihood ratio test” will be reserved for the test
with a given prior and simple hypotheses, which satisfies
the Neyman-Pearson criterion.
In contrast to the single signal setting, the simple ex-

tensions (13)-(14) of matched filtering to detecting para-
metric families of signals are not optimal: in the Neyman-
Pearson setting, they do not achieve the minimal FNR
for a given FPR, while in the minimax setting, they do
not achieve the minimal WFNR for a given FPR.
The suboptimality of (13)-(14) under Neyman-Pearson

can be observed by noting that the decision statistic
maxγ hsγ ,xi is not a monotone function of the likelihood
ratio, which in iid Gaussian noise for example, takes the
form

�(x) =

Z
exp

✓
hsγ ,xi � ksγk

2/2

�2

◆
d⌫(γ). (15)

FIG 3 and 4 illustrate such suboptimality for a partic-
ular problem configuration in R

2. Note that throughout
our paper, we will slightly abuse the term of receiver
operating characteristic (ROC) curves by plotting FNR
against FPR, instead of the convention of plotting FPR
against the true positive rate TPR ⌘ 1�FNR. This high-
lights the connection to the notion of error rates in ma-
chine learning, and more importantly facilitates demon-
stration of the curves and axis ranges at very low error
rates.

0

ρ0

s

ρ1

Optimal & MF

FIG. 2. Optimality of matched filtering in single signal de-
tection.

It is, in a sense, unsurprising that matched filtering is
suboptimal in this setting, since the decision rules (13)-
(14) do not make use of the prior ⌫, while the likelihood
ratio test assumes (and uses) this prior.

However, the matched filtering rule (13)-(14) is also
in general suboptimal in the “prior-free” minimax set-
ting. Consider the scenario in FIG 5 as an example,
where the signal space SΓ ⇢ R

2 consists of only two sig-
nals s1 = [1, 0]T and s2 = [0, 1]T . Comparing the prior-
free matched filtering decision rule �MF with the optimal
decision rule �⇤ under the Neyman-Pearson framework
with uniform prior over the two signals, we see that �MF

is suboptimal under Neyman-Pearson criterion with uni-
form prior. Moreover, from symmetry it follows that for
symmetric decision rules such as �MF and �⇤ the worst
FNR and the overall FNR are equal. This implies that
�MF is also worse than �⇤ under the minimax criterion.

We also note that this suboptimality is, in some sense,
not because we don’t have sufficient templates. In the
example shown in FIG 5, the matched filtering model
already covers the entire signal set which consists of two
signals. Furthermore, we will see in the later discussions
that matched filtering has other structural limitations
when working with non-Gaussian noise distributions.

IV. FROM MATCHED FILTERING TO

NEURAL NETWORKS

Since the matched filtering rule (14) is suboptimal for
parametric detection, we will show that (i) the form of
this rule suggests approaches to learning optimal rules
for parametric detection, and (ii) the resulting classi-
fiers have additional advantages, including greater flex-
ibility and lower computational/storage complexity or
cost. Our approach is driven by the observation: the
matched filtering rule (14) is equivalent to a feedforward
neural network.
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0

ρ0

SΓ

ρ1

MF

Optimal

FIG. 3. Suboptimality of matched filtering under the
Neyman-Pearson framework.
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FIG. 4. Comparison of ROC curves of the optimal classifier
and matched filtering in the 2-dimensional concept as illus-
trated in FIG 3.

0

ρ0

s1

s2

ρ1

MF
Optimal
(Neyman-Pearson
& minimax)

FIG. 5. Suboptimality of matched filtering under the mini-
max framework.

A. Neural Networks: Notation and Basics

A neural network implements a mapping from the sig-
nal space R

n to an output space R
d:

fθ : Rn ! R
d. (16)

Here, θ represents the parameters of the network. Specif-
ically, a fully connected neural network can be written as
a composition of layers, each of which applies an affine
mapping

x 7! Wx+ b (17)

followed by an elementwise activation function �:

fθ(x) = WL�
⇣
WL�1�

⇣
. . .�

⇣
W 1x+ b1

⌘

. . .
⌘
+ bL�1

⌘
+ bL. (18)

With slight abuse of notation, the activation function
� : R ! R acts elementwise when applied to a vector:

�([v1, . . . , vn]
T ) = [�(v1), . . . ,�(vn)]

T . (19)

The intermediate products

α`(x) = �
⇣
W `�

⇣
. . .�

⇣
W 1x+ b1

⌘
· · ·+ b`

⌘⌘
(20)

are sometimes referred to as features [97]. In many situ-
ations, it is useful to “pool” features – this is especially
useful for data with spatial or temporal structure; com-
bining spatially adjacent features in a nonlinear fashion
renders the decision more stable with respect to deforma-
tions of the input [98]. For example, maximum pooling
takes the maximum of adjacent features. In our notation,
we can denote this operation by ⇢` and write

α`(x) = ⇢`�
⇣
W `α`�1(x) + b`

⌘
, (21)

where the concise notation ⇢` suppresses certain details
about which features are combined. For clarity, we sum-
marize this discussion in the following mathematical def-
inition:

Definition 1 (Fully connected neural network). A
fully connected neural network (FCNN) with feature

dimensions n0, . . . , nL, pre-activation dimensions

m1, . . . ,mL, parameters

θ =
⇣
WL 2 R

mL
⇥nL−1

, . . . ,W 1 2 R
m1

⇥n0

,

bL 2 R
mL

, . . . , b1 2 R
m1

⌘
, (22)

activation function � : R ! R (extended to vector
inputs by applying it elementwise), and pooling opera-

tions ⇢` : Rm`
!n`

given by

[⇢`]i(v) = max
j2I`

i

vj , (23)
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with I`1, . . . , I
`

n` being disjoint subsets of [m`], is a map-

ping fθ : Rn ! R
d defined inductively as fθ(x) = ↵L(x)

by setting α0(x) = x, and

α`(x) = ⇢`�(W `α`�1(x) + b`), ` = 1, . . . , L. (24)

When discussing neural networks, it is conventional
to distinguish between the network architecture, which
consists of the choices of feature dimensions n`,m`, acti-
vation function �, and pooling operators ⇢`, and the net-
work parameters θ. Although we have stated a general
definition, in specific architectures, the activation func-
tion � and/or the pooling operators ⇢` can be chosen to
be trivial (�(t) = t and/or ⇢`(v) = v).
Architectures. Neural networks are flexible func-

tion approximators [99]: universal approximation theo-
rems indicate that nonlinear neural networks (with non-
polynomial activation �) can accurately approximate any
continuous function, as long as the network is sufficiently
deep and/or wide [100–102]. There is a growing body
of empirical and theoretical evidence showing that (rela-
tively small) neural networks can learn relatively smooth
functions over low-dimensional submanifolds of Rn with
a complexity that is proportional to the manifold dimen-
sion, which in our problem equals the number of param-
eters in the parameterization γ 7! sγ [103].
Beyond these general considerations, there are scenar-

ios in which the nature of the task dictates specific ar-
chitectural choices. For example, in the field of inverse
problems, neural network architectures can be generated
by interpreting various optimization methods as taking
on the structure in Definition 1 [104]. Our proposals will
have a similar spirit, since they will interpret an exist-
ing method (matched filtering) as a particular instance
of Definition 1.
Finally, a major architectural choice is whether to en-

force additional structure on the matrices W `. When
the input x is a time series, it is natural to structure
the linear maps α 7! Wα to be time-invariant, i.e., to
be convolution operators. To exhibit the equivalence be-
tween matched filtering and neural networks in the sim-
plest possible setting, here we train our networks on in-
jections whose starting time is fixed, and focus on fully
connected neural networks (not enforcing convolutional
structure).
In deployment, the input data is a time series, and as-

trophysical signals can occur at any time. In this setting,
the matched filtering rule is applied in a sliding fash-
ion. Similarly, the neural networks proposed here can be
also deployed in a sliding fashion, which effectively con-
verts them to particular convolutional networks. Both
the equivalence between matched filtering and particular
neural networks and the potential advantages of neural
networks carry over to this setting.
Parameters. There are various approaches to choos-

ing the network parameters θ. The dominant approach
is to learn these parameters by optimization on data: one
chooses initial parameters at random (with appropriate
variance to ensure stability), and then iteratively adjusts

them to best fit a given set of “training data”. How-
ever, it is also possible in some scenarios to either (i)
simply choose the weights at random, or (ii) to generate
the weights analytically, either by connecting the net-
work architecture to existing structures/algorithms [104]
or from harmonic analysis considerations [105]. There
are approaches that lie in between purely data-driven
and purely analytical approaches to choosing θ. For ex-
ample, it is possible generate initial weights analytically,
and then tune them on training data. This hybrid ap-
proach achieves excellent performance on a number of
inverse problems in imaging (super-resolution [106], mag-
netic resonance image reconstruction [107] etc.).
In the following sections, we will follow this approach:

we will give two ways of interpreting the matched filter-
ing decision rule (14) as a fully connected neural network,
by making specific (analytical) choices of the architecture
and parameters. These analytically chosen parameters
can then be used as an initialization for learning on data.
We will also see that in addition to this closed-form con-
struction for equivalence, neural network models can be
further trained on data to achieve improved performance.

B. Matched Filtering as a Shallow Neural Network

In the language of the previous section, it is not hard to
express the decision statistic (14) of matched filtering as
a specific fully connected neural network with one layer
(L = 1). Writing

⇢1(z) = max
i

zi, (25)

�(t) = t, (26)

W 1 =

2
6664

s⇤γ
1

s⇤γ
2

...
s⇤γ

k

3
7775 2 R

k⇥n, (27)

b1 = 0, (28)

([108]) we have

max
i

⌦
sγ

i
,x

↵
= ⇢1�

�
W 1x+ b1

�
. (29)

In words, the features produced by this neural network
correspond to the correlations of the input with the tem-
plates sγ

1
, . . . , sγ

k
. FIG 6 illustrates this (simple) archi-

tecture, which we label MNet-Shallow.
Where needed below, we refer to the input-output re-

lationship implemented by this architecture as

fMNet-Shallow,θ(x), (30)

where θ = (W 1, b1) represent the weights and biases.
When these are chosen as in (27)-(28), MNet-Shallow

implements the matched filtering decision rule. We note
that these weights can be constructed analytically based
on the given templates.
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.
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.

sγ1

sγ2

sγ3

sγk

max

input output

FIG. 6. Illustration of MNet-Shallow. Bias terms are omitted
in the illustration. (We note that for more complex networks
arbitrary pooling operations can replace the “max” box.)

By learning the weights W 1 and biases b1 from ex-
amples, we can further adapt this network to imple-
ment a more general family of decision rules, beyond
matched filtering (14) with templates sγ . Nevertheless,
there are limitations to this architecture. Notice that in
MNet-Shallow there is only one layer of affine operations,
and so this architecture does not satisfy the dictates of
the universal approximation theorem [101, 109].
More geometrically, we can notice that the decision

rule associated with MNet-Shallow is a maximum of
affine functions. This means that for any choice of W 0

and b0, the decision boundary is the boundary of a con-
vex set. This property is also true for matched filtering,
which shares exactly the same form. An illustration of
this property is shown in FIG 7.

0

sγ1

sγ2
sγ3

sγ4

FIG. 7. The set of points classified as noise by matched fil-
tering and MNet-Shallow is always a convex set.

How restrictive is this limitation? In the context of
parametric detection, this depends largely on the noise
distribution. If the noise is Gaussian, the optimal deci-
sion boundary is itself the boundary of a convex set:

Proposition 1. Suppose that the noise z ⇠ N (0,�2I).
Then for any significance level ↵, the optimal (Neyman-
Pearson) decision region

{x | �(x)  ⌧} (31)

is a convex subset of Rn, where ⌧ is a constant determined
by the significance level ↵.

Proof. Please see Appendix.

However, for general non-Gaussian distributions, the
optimal decision region is often nonconvex. We illustrate
this result in FIG 8. In fact, this suggests an intrinsic
structural limitation of matched filtering and similar ar-
chitectures. Since in reality the noise distribution is not
perfectly Gaussian, we cannot expect the optimal deci-
sion region to be convex, and hence the matched filtering
structure is unable to approach the performance of the
likelihood ratio test with arbitrary precision, even if any
number of templates (including ones outside the original
signal space) are allowed. In such cases, we can benefit
from using a more flexible architecture, which we now
introduce.

C. Matched Filtering as a Deep Neural Network

We describe an alternative way of expressing tem-
plate matching as a neural network, which leads to
deep, nonlinear architectures that are more flexible than
MNet-Shallow. We label this structure MNet-Deep. In
this architecture, we do not compute the maximum in
a straightforward way using pooling. Instead, we pro-
pose an alternative architecture which is more flexible,
and can approximate a wider class of functions. In par-
ticular, we will no longer be restricted to implementing
decision boundaries that are boundaries of convex sets,
allowing us to handle scenarios with non-Gaussian noise.
An illustration of this MNet-Deep is shown in FIG 9.
Our construction is based on the rectified linear unit

(ReLU) nonlinearity:

�(t) = max(t, 0). (32)

This is arguably the most commonly used nonlinearity
function in modern deep learning.
The matched filtering decision rule takes the maximum

of a family of linear functions
⌦
sγ

i
,x

↵
. Instead of simply

“pooling” these functions as in the previous section, we
implement the maximum operation using compositions
of ReLUs and linear operations. In particular, observe
that the maximum of two numbers can be written as a
linear combination of 3 ReLU units:

max(a, b) = b+�(a� b) = �(b)��(�b)+�(a� b). (33)

The basic idea is to create a hierarchical structure of such
3-ReLU-units, each of which takes a pairwise maximum
of its inputs. Our MNet-Deep construction will perform
convolutions with the templates sγ

i
, followed by this hi-

erarchical structure for computing the maximum.
FIG 10 illustrates this hierarchical structure for the

particular example of four inputs. The network in FIG 10
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FIG. 8. Contours of log likelihood ratio with various noise distributions, and whether the optimal decision regions with
δ = 0 is always convex. Yellow represents larger values and blue represents lower values. From left to right: (1) Gaussian
distribution, convex; (2) Sub-Gaussian distribution ρnoise(x) / exp(�Ckxk3), not necessarily convex; (3) Laplace distribution,
not necessarily convex.
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sγ1

sγ2

sγ3

sγk

input output
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FIG. 9. Illustration of MNet-Deep. Bias terms are omitted
in the illustration. This network structure is obtained by
replacing the max module in matched filtering (as in FIG 6)
with a deep network.

can be expressed as a ReLU network, with sparse weight
matrices W ` (` = 0, 1, 2) for the layers respectively:

W 0 =

2
4
0 1
0 �1
1 �1

3
5 , W 2 =

⇥
1 �1 1

⇤
, (34)

W 1 = W 0 ⌦W 2 =

2
4
0 0 0 1 �1 1
0 0 0 �1 1 �1
1 �1 1 �1 1 �1

3
5 . (35)

Generalizing this construction, we obtain a network that
takes the maximum of k numbers, using dlog2 ke+1 lay-
ers.
While the example above delineates a precise form of

the ReLU network, this approach can in fact be made
flexible. To ensure that the network output is indeed
the maximum of the k inputs, we must ensure that at
each layer, each feature participates in at least one of

x1

x2

x3

x4

max(x1, x2)

max(x3, x4)

max(x1, . . . , x4)

input

output

FIG. 10. Illustration of implementing max with a ReLU net-
work. The dashed boxes in the middle are not actual nodes in
the network, but “imaginary” nodes to facilitate construction.

the pairwise max operations. This means that at layer
`, we must have at least k/2` features. However, we are
free to add more intermediate features, with additional
(redundant) max operations. This does not change the
output of the network, but it affords additional flexibility
when we attempt to train the network on data. In par-
ticular, this allows the construction of arbitrarily wide or
deep ReLU networks, and can therefore approximate any
regular continuous function [101, 109].
There is also a degree of freedom in choosing which

features participate in each pairwise maximum operation,
which could be chosen in various ways. In our implemen-
tation we use the following way to pair up the nodes in
layer l for pairwise maximum operations that get to layer
l + 1. Assume layer l contains 2p nodes. First pair up
the nodes with consecutive indices, namely pair up node
2i � 1 with node 2i for i = 1, . . . , p. This ensures that
each node is covered by at least one maximum operation.
After that, for each leftover node in layer l + 1, we es-
tablish the corresponding pair in layer l by choosing the
nodes at random in layer l. In the following, we label this
network MNet-Deep. We emphasize for clarity that the
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nodes between consecutive layers are fully connected in
the neural network; however, the weights not associated
with pairwise maximum operations are all initialized to
zero. Below, where needed we refer to the decision rule
associated with this network as

fMNet�Deep,θ(x), (36)

where θ represent the collection of all weights and biases.
The above discussion again gives a recipe for choosing
these weights analytically such that the decision rule for
MNet-Deep coincides with the matched filtering rule.
In contrast to MNet-Shallow, MNet-Deep is a more

flexible architecture. In particular, this architecture sat-
isfies the dictates of the universal approximation theo-
rem. Geometrically, it is not restricted to convex deci-
sion regions, which makes it capable of achieving optimal
decision boundaries even when the noise is heavy-tailed
or has other non-ideal properties.

D. Equivalence of Matched Filtering and Neural

Networks

We have demonstrated by construction the following
claim:

Given any collection of templates
sγ

1
, . . . , sγ

k
(for any k � 1), one can

analytically determine weights θs, θd such
that

fMNet-Shallow,θs
(x) = max

i=1...k

⌦
sγ

i
,x

↵
(37)

fMNet-Deep,θd
(x) = max

i=1...k

⌦
sγ

i
,x

↵
(38)

for all x 2 R
n.

We emphasize the complete generality of this claim: it
holds for any number and choice of templates. More-
over, it does not depend on training: the networks can
be constructed analytically to implement the matched fil-
tering rule. Nevertheless, we will see in the next section
that they can be further adapted based on observed data
to strictly outperform matched filtering, in terms of the
Neyman-Pearson criterion.
The equivalence between matched filtering and partic-

ular neural networks has an additional conceptual ad-
vantage: it allows for a clear comparison of the resource
complexity of different search methods, in terms of stor-
age and computation. This is valuable because different
methods may cut out very different tradeoffs between
complexity and accuracy/performance. Neural network
implementations of matched filtering can be viewed as
“complexity standard candles” against which the perfor-
mance of more sophisticated networks can be measured.
In particular, the complexity of a neural network model
may be quantified by the total number of nodes (neu-
rons) in the network, which approximately characterizes

the number of elementary operations performed for eval-
uating an input instance [110, 111]. We will look for the
most appropriate measure of complexity for this problem,
and provide detailed analysis in future studies.

V. TRAINING TO APPROACH STATISTICAL

OPTIMALITY

In the previous section, we gave two ways of analyt-
ically constructing neural networks that reproduce the
matched filtering decision rule, and hence exhibit exactly
the same performance as matched filtering. The major
advantage of this interpretation of matched filtering is
that the resulting model can be further trained on sam-
ple data to improve its statistical performance or adapt
it to handle non-Gaussian noise distributions, or in other
words “standing on the shoulder of giants”. In a typi-
cal neural network training problem, we have access to
labelled samples

(x1, y1), . . . , (xN , yN ), (39)

each of which consists of an observation xi 2 R
n and a

corresponding label yi 2 {0, 1}, which indicates whether
xi contains a noisy signal (yi = 1) or noise only (yi =
0). To date, we have only a moderate number of con-
firmed gravitational wave detections, and hence have far
more negative examples than positive examples. We ad-
dress this issue by generating our positive training exam-
ples by injecting synthetic waveforms into (real) LIGO
noise strains. Below, we describe two different training
schemes, motivated by the Neyman-Pearson and mini-
max criteria, which leverage this data to perform training
of the neural networks.
Training for Neyman-Pearson. In this setting, we

assume that the prior ⌫ is known, and generate positive
examples by first sampling γi ⇠ ⌫, and setting xi =
sγ

i
+ zi, where zi is observed LIGO noise strain. We

solve the following optimization problem:

min
θ

RN (fθ) :=
1

N

NX

i=1

`
⇣
fθ(xi), yi

⌘
. (40)

Here, the loss function `(ŷ, y) measures the misfit be-
tween the predicted label ŷ and the true label y. Typical
choices include the square loss (ŷ � y)2 and the logistic
loss

y log(fsigmoid(ŷ)) + (1� y) log(1� fsigmoid(ŷ)). (41)

where fsigmoid(·) denotes the logistic/sigmoid function:

fsigmoid(x) =
1

1 + exp(�x)
(42)

Is this training strategy compatible with the Neyman-
Pearson criterion? The following proposition answers
this question in the affirmative. Consider the following
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setup: training data (xi, yi) are generated independently
at random, by setting yi = 1 with probability p 2 (0, 1)
and choosing xi = sγ

i
+ zi when yi = 1 and xi = zi

when yi = 0, with γi ⇠ ⌫, and zi ⇠ ⇢noise. Let

R1(f) = E(x,y)`(f(x), y). (43)

This represents the large-sample limit ofRN : asN ! 1,
RN (f) ! R1(f). The following proposition shows that
the population risk R1 is minimized by (a monotone
function of) the likelihood ratio �:

Proposition 2. Suppose that for any y = 0, 1, the loss
`(by, y) is a strictly convex differentiable function of by that
is minimized at by = y. [112] Then the unique optimal
solution f? to the (functional) optimization problem

min
f

R1(f) (44)

is a strictly increasing function of the likelihood ratio �:

f?(x) = g(�(x)), (45)

where g is a strictly increasing function that depends on
`.

Proof. Please see Appendix.

This result can be interpreted as saying: “a sufficiently
flexible classifier, trained on a sufficiently large dataset
will produce the optimal decision rule.” Hence, training
to minimize the empirical risk RN (fθ) is compatible with
the Neyman-Pearson criterion.
While this is a promising observation, we should keep

in mind a number of remaining issues: How much data is
required? What are effective approaches to minimizing
the empirical risk RN? In the next section we investigate
these questions experimentally.
Training for Minimax. In this setting, we do not as-

sume any prior, and aim to minimize the worst false neg-
ative rate using the formulation in (9). We convert the
constrained problem (9) to an equivalent unconstrained
problem,

min
�

max
γ2Γ

FNRγ + c · FPR, (46)

where c is a constant that depends on ↵. For tractabil-
ity, we will fix c at a constant value to obtain a concrete
optimization objective, and here we fix c = 1. In actual
deployment where a target significance level ↵ is speci-
fied, we can also choose c at the level that corresponds
to the specified ↵. Also, we sample the parameter space
Γ at points {γi}

N
i=1. Since FPR does not depend on γ,

it can be moved inside the maximization. Therefore, the
minimax optimization problem can be transformed into

min
�

max
i=1,...,N

�
FNRγ

i
+ FPR

�
. (47)

This suggests a natural approach to training under the
minimax criterion using first-order optimization meth-
ods. At each iteration, we estimate FPR and FNRγ

i
for

each i = 1, . . . , N , and choose i⇤ with the highest FNRγ
i
.

We then aim to reduce FNRγ
i
+ FPR, which can be es-

timated by using a sample dataset {(xi, yi)}
N
i=1 as

1

N

NX

i=1

1
h
fθ(xi) 6= yi

i
, (48)

where in the dataset all xi with corresponding yi = 1 are
generated specifically with signal parameter γi∗

, and half
of data pairs in the dataset have yi = 0. Finally, it is cus-
tomary in optimization to replace the non-differentiable
0-1 loss with a smooth loss function `, and hence we get
the following risk minimization objective:

1

N

NX

i=1

`
⇣
fθ(xi), yi

⌘
. (49)

This expression is similar to (40), but the difference is
that all positive data in the dataset here are associated
with signal parameters γi∗

.

VI. SIMULATIONS AND EXPERIMENTS

A. Data Generation

Data-driven methods such as neural networks typically
require a large amount of data for training. The ques-
tion of data sufficiency is especially acute in gravitational
wave astronomy: we have only a moderate number of
confirmed detections to date. We address this issue by
generating our positive training examples by injecting
synthetic waveforms into LIGO noise strains [92], which
we elaborate below.
For LIGO noise data, we use the L1 strain from LIGO

O2 run between August 1 and August 25, 2017, with
ANALYSIS READY segments only. The announced con-
fident detections GW170809, GW170814, GW170817,
GW170818 and GW170823 are removed from the strain,
such that the data is at least 300 seconds away from
these events. We used a total of 338 frame files each of
4096 seconds long, namely a total of 384.57 hours. The
strain data is downsampled from the original 4096Hz to
2048Hz for processing efficiency. The downsampled L1
strain data is divided into segments of length 0.6 second,
with each successive segment overlapping 50% of the pre-
vious segment.
We generate synthetic gravitational wave signals us-

ing PyCBC [26–32], with the following parameters. Ap-
proximant: IMRPhenomD. Mass range: 40 to 50 MJ,
uniformly distributed. Spin: 0. Sampling rate: 2048Hz.
Low frequency cutoff: 30Hz. Coalescence phase: 0. Po-
larization: plus [113]. With this specified mass range, at
least 99.5% of the energy of the signal lies in an interval
of length 0.3 second after preprocessing. We note that
although the templates are not chosen uniformly in ac-
tual LIGO deployment [42, 43, 114–116], we make this
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choice here due to simplicity, and also the fact that the
large number of templates make up for the possibly sub-
optimal choice of templates.

The above data is used to generate training and test
datasets of positive and negative labelled data as follows.
We divide the collection of downsampled strain segments
randomly into training and test sets, ensuring that no
training segment overlaps a test segment. Within the
training and test sets, we generate both positive and neg-
ative examples. The negative examples contain only the
strain data. For the positive examples, we inject wave-
forms into the noise segments by aligning the peak of
the waveforms at the 90% location of the center 0.3s,
namely at the location of 0.42s within the entire segment
of 0.6s. This choice was made as it safely covers the in-
jected waveforms. The amplitude of the injection is set
such that after filtering and whitening (to be described
below), the resulting signal-to-noise ratio (SNR) is con-
stant. For the experiment, the size of the training and
test datasets are respectively 2.62 million and 2 million
segments.

We preprocess all training and test data, by apply-
ing an FIR bandpass filter with cutoff frequencies 30Hz
and 400Hz, whitening using a power spectral density es-
timated from the L1 strain data, and finally truncating
to keep only the center 0.3 second (614 samples).

B. Matched Filtering Configuration

We first need to determine the necessary number of
templates to use in matched filtering, given the space of
parameters. We set 10, 100, 1000 and 10000 as the can-
didate numbers of templates. For each candidate num-
ber, we independently repeat the following process 30
times: randomly choose the specified number of pairs
of parameters uniformly from [40, 50] ⇥ [40, 50], gener-
ate waveforms according to these parameters, preprocess
(bandpass, whiten and truncate) as described above, and
then normalize to equal power. This produces the tem-
plates for a matched filtering model. We evaluate the
model on the test dataset to obtain an ROC curve. For
each candidate number of templates and for each value of
FPR, we take the lowest FNR outcome among the 30 in-
dependent runs. This is used to approximately represent
the best performance achievable with a given number of
templates.

The result is shown in FIG 11. We see that the best
performance of matched filtering in this setting starts to
saturate at approximately 1000 templates, and the best
performance with 1000 templates is almost identical to
the that with 10000 templates. Therefore, we choose the
best performance of matched filtering with 10000 tem-
plates, namely the bright blue curve, as the performance
curve of the matched filtering method in this setting,
against which we will be comparing our neural network
method.
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FIG. 11. The best performance of matched filtering with given
number of templates across 30 independent runs. The perfor-
mance starts to saturate above 1000 templates.

C. Neural Network Configuration

To initialize the templates of the neural network mod-
els for both MNet-Shallow and MNet-Deep, we generate
1000 random waveforms from a uniform distribution over
the same parameter range, subject to the same prepro-
cessing and normalization process as done in matched
filtering.
For the MNet-Deep architecture, in addition to the 1000

initialized templates, we also need to specify the number
of layers and the feature dimension of each layer. In the
experiment we choose L = 17 and

(n1, n2, . . . , nL) = (1000, 1800, 1200, 720, 480, 300, 180,

120, 90, 60, 36, 24, 18, 12, 6, 3, 1).

Here these feature dimensions nl are chosen arbitrarily
so long as they satisfy n2 � 3

2n1, n` � 1
2nl�1 for all

3  `  L� 1, nL�1 = 3, nL = 1, and that n2, . . . , nL�2

are all divisible by 6 (which facilitates construction using
our proposed initialization scheme).
For minimax training, in order to search the parameter

space for the worst performance, we sample the param-
eter space [40, 50] ⇥ [40, 50] of (m1,m2) using a square
grid sampler with interval 0.5. After discarding equiva-
lent samples due to the symmetry between m1 and m2,
there are in total 231 samples in the parameter space.
For the optimization parameters of the neural network,

we train the network using logistic loss, the Adam opti-
mizer [117], and a constant learning rate of 10�5.

D. Simulation Results

Performance under minimax. In this experiment
we perform injections such that SNR is 5, and only for the
MNet-Shallow model. While this SNR value is smaller
than the range of meaningful observed events, we choose
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this value for the simplicity of exposition and reduction
of training time, since the training procedure for min-
imax criterion is rather computationally heavy. Simi-
lar results should hold at higher SNR values. FIG 12
plots the ROC curves for both matched filtering and
MNet-Shallow trained for minimax, measured in terms
of both worst performance and the average performance
over a uniform prior. We see that the trained neural net-
work achieves better performance than matched filtering
under minimax, while achieving approximately identical
performance as matched filtering under Neyman-Pearson
with a uniform prior. This is not surprising since the
training process is designed to only optimize for the min-
imax criterion, and not the Neyman-Pearson criterion
with uniform prior.
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FIG. 12. ROC curves of the trained shallow neural network
and matched filtering. The solid curves correspond to the
vertical axis on the left, and the dotted curves correspond
to the vertical axis on the right. For both models we show
both the worst (minimax) performance and the average per-
formance under Neyman-Pearson (NP) setting with a uniform
prior. The neural network with minimax training outperforms
matched filtering in terms of the minimax criterion. The per-
formance of the two models under NP is similar, which is
reasonable since our optimization for the neural network was
aimed for the minimax criterion only.

Performance under a uniform prior. In this
experiment we perform injections such that SNR is
9. Figure 13 plots the ROC curves for both formula-
tions MNet-Shallow and MNet-Deep trained for Neyman-
Pearson, as well as that of matched filtering. As ex-
pected, the neural network models strictly improves over
matched filtering. Moreover, the MNet-Deep architecture
has a slight performance advantage over MNet-Shallow.
The performance improvement of the trained models over
matched filtering is especially remarkable with low FNR
values, which is arguably the more important scenario
for gravitational wave detection, since we can hardly af-
ford to miss actual astrophysical events which are quite
scarce.

VII. DISCUSSION

Our experiments demonstrate the potential of neural
networks to outperform matched filtering, especially at
low false negative rates. The flexibility of neural networks
also enables this architecture to implement more general
variations of matched filtering, such as with weights or
aggregation functions different from the maximum. Neu-
ral networks have additional potential advantages: deep
networks can adapt to unknown and/or non-Gaussian
noise distributions. In addition, architectural ideas in
deep networks such as pooling help to convey invariances
that may be helpful in detecting some “unknown un-
knowns” that lie outside of the span of a pre-specified
family of templates. This should be investigated in the
future.
The proposed architectures can be adapted to time-

varying noise distributions, by pre-training on very large
collections of (synthetic) Gaussian noise and then adapt-
ing the pre-trained network using a smaller number of on-
line examples. This kind of pre-training may also be help-
ful in deploying our methods across larger mass ranges,
which require more training data.
We note that it is, in some sense, unsurprising that

deep networks can exhibit advantages over matched fil-
tering, since the former can be made arbitrarily com-
plex, and can approximate essentially arbitrary func-
tions. An important direction for future work is to study
architectures that not only approach optimal statistical
performance, but exhibit good complexity-performance
tradeoffs. There are a number of concrete directions
for achieving this – in particular, the weight matrices
learned by our Neyman-Pearson networks exhibit par-
ticular types of low-dimensional (low-rank and sparse)
structure, which can be leveraged to reduce complex-
ity. Interpreting matched filtering as a particular neural
network facilitates the study of complexity-performance
tradeoffs, since it allows these distinct methods to be
studied in a unified framework. Another avenue for com-
plexity reduction is to define and train very large (over-
parameterized) networks and then prune them to pro-
duce much smaller subnetworks with good performance.
MNet-Deep is particularly promising in this regard, since
this construction yields networks of arbitrary depth.
One future possibility of the approach is to go beyond

the fixed template banks that constrain the limited set of
parameters taken into account. For example, to limit the
size of the template bank, BH spins that are misaligned
from the orbital angular momentum are not widely used
yet. Also, due to the lack of available template banks,
some astrophysically feasible scenarios receive relatively
little attention, including eccentric binary merger tem-
plate banks where every new template requires a com-
putationally very expensive general-relativity simulation.
Therefore generalized matched filtering needs to be in-
vestigated in this context, to measure its performance on
signal classes that current templates don’t cover. Ad-
ditionally, training it with a sample of eccentric wave-
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FIG. 13. ROC curves of the trained MNet-Shallow and MNet-Deep models compared with matched filtering. Left and right
panels plot the same curves, but have different axis ranges to better show the contrast between the curves.

forms could enable the detection of other eccentric BBHs
even with properties not covered by the limited simula-
tion used for training. Exploring these scenarios are very
important experiments for the future.
Another desirable goal is to allow matched filtering al-

gorithms to run ”coherently”, treating the GW detectors
worldwide as a single detector and analyzing data from
multiple GW detectors together as a single data stream.
The main difficulty is that the sky direction of the cosmic
source is unknown, therefore there are many unknown
time shifts among the detectors’ data. Searching a large
number of different combinations can be cost prohibitive
with current approaches. It is important to experimen-
tally investigate the ML extensions to matched filtering
to measure the increased sensitivity due to the coherent
framework.
Furthermore, experiments on the natural generaliza-

tion of the approach where one does not aim to find the
best matching waveform, but instead aims to estimate
the parameters of the BBH system are needed. For exam-
ple, instead of having the maximum reported, one could
report the probability distribution over parameters. The
difficulty here is that searches usually have much fewer
parameters than what is used for parameter estimation.
The performance of the ML framework in parameter es-
timation should be quantified in the future, even if it
comes at the price of precision and is therefore only used
as a first estimate.

VIII. CONCLUSION

In this paper, we highlighted the idea that matched fil-
tering currently applied by LIGO is formally equivalent
to a particular neural network, which can be defined ana-
lytically in closed form. We also modeled the LIGO grav-
itational wave search as the parametric signal detection
problem, and illustrated the suboptimality of matched
filtering regardless of whether a prior distribution on the

parameter space is given. On the other hand, we pro-
posed neural network architectures MNet-Shallow and
MNet-Deep, which are initialized to implement matched
filtering exactly, and then trained on data for improved
performance. In particular, we showed that when the
prior distribution is known, the training process is aligned
with the statistically optimal decision rule. Between the
two proposed architectures, the former more closely re-
sembles the architecture of matched filtering, while the
latter has a more flexible architecture capable of deal-
ing with a wider range of distributions. We conducted
experiments using LIGO strain data from O2 and syn-
thetic waveform injections, and showed that our trained
network can achieve uniformly better performance than
matched filtering both with or without a known prior,
especially in scenarios where false negative rate is low.
Through this work, we seek to bridge the gap between

data-driven methods such as deep learning and those de-
tection methods currently in use in LIGO, and explore
the possibility of incorporating them into the gravita-
tional wave search of LIGO, as well as broader areas of
scientific discovery. In the future work, we aim to explore
the potentials of efficiency gains of neural networks over
matched filtering, and also establish an end-to-end guar-
antee for the performance of the proposed framework.
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F. Garufi, G. Gemme, E. Genin, A. Gennai, A. Ghosh,
B. Giacomazzo, M. Gosselin, R. Gouaty, A. Grado,
M. Granata, G. Greco, G. Grignani, A. Grimaldi, S. J.
Grimm, P. Gruning, G. M. Guidi, G. Guixé, Y. Guo,
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N. Khetan, G. Koekoek, S. Koley, A. Królak, A. Ku-
tynia, D. Laghi, A. Lamberts, I. La Rosa, A. Lartaux-
Vollard, C. Lazzaro, P. Leaci, N. Leroy, N. Letendre,
F. Linde, M. Llorens-Monteagudo, A. Longo, M. Loren-
zini, V. Loriette, G. Losurdo, D. Lumaca, A. Macquet,
E. Majorana, I. Maksimovic, N. Man, V. Mangano,
M. Mantovani, M. Mapelli, F. Marchesoni, F. Mar-
ion, A. Marquina, S. Marsat, F. Martelli, V. Mar-
tinez, A. Masserot, S. Mastrogiovanni, E. Mejuto Villa,
L. Mereni, M. Merzougui, R. Metzdorff, A. Miani,
C. Michel, L. Milano, A. Miller, E. Milotti, O. Minaz-
zoli, Y. Minenkov, M. Montani, F. Morawski, B. Mours,
F. Muciaccia, A. Nagar, I. Nardecchia, L. Naticchioni,
J. Neilson, G. Nelemans, C. Nguyen, D. Nichols,
S. Nissanke, F. Nocera, G. Oganesyan, C. Olivetto,
G. Pagano, G. Pagliaroli, C. Palomba, P. T. H. Pang,
F. Pannarale, F. Paoletti, A. Paoli, D. Pascucci,
A. Pasqualetti, R. Passaquieti, D. Passuello, B. Patri-
celli, A. Perego, M. Pegoraro, C. Périgois, A. Perreca,
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Appendix A: Proofs of Key Technical Claims

1. Proof of Proposition 1

Combining the definitions of the likelihood ratio �(x)
and the probability densities ⇢0(x) and ⇢1(x), we have

�(x) =

R
⇢noise(x� sγ) d⌫(γ)

⇢noise(x)
(A1)

=

Z
⇢noise(x� sγ)

⇢noise(x)
d⌫(γ). (A2)

When the noise is Gaussian N (0,�2I), the integrand
equals

⇢noise(x� sγ)

⇢noise(x)
= exp

✓
hx, sγi � ksγk

2/2

�2

◆
, (A3)

which is a convex function of x. Hence after integrating
over γ, the resulting function �(x) is still a convex func-
tion of x. The optimal decision region is a sublevel set
of �(x), and is hence a convex set.

2. Proof of Proposition 2

Assume the training data is drawn iid from some dis-
tribution on (x, y) 2 R

n ⇥ {0, 1}. In this setting, the
previous defined densities p0(x) and p1(x) can be ex-
pressed as p0(x) = p(x|y = 0) and p1(x) = p(x|y = 1).
If the predictor function is f : Rn ! R, then the risk is

R(f) = E(x,y)[`(f(x), y)] (A4)

= P[y = 0] · E
x|y=0[`(f(x), 0)] +

P[y = 1] · E
x|y=1[`(f(x), 1)] (A5)

= P[y = 0]

Z

Rn

`(f(x), 0)p0(x)dx +

P[y = 1]

Z

Rn

`(f(x), 1)p1(x)dx (A6)

=

Z

Rn

⇣
(1� c)`(f(x), 0)p0(x)+

c`(f(x), 1)p1(x)
⌘
dx, (A7)

where c := P[y = 1] 2 (0, 1) is an exogenous constant
that only depends on the data distribution. The function
that minimizes the above risk is

f?(x) = argmin
ŷ

(1� c)`(ŷ, 0)p0(x)+ c`(ŷ, 1)p1(x) (A8)

for all x 2 R
n, or equivalently

f?(x) = argmin
ŷ

`(ŷ, 0) +
c�(x)

1� c
`(ŷ, 1). (A9)

Therefore, the optimal predicted value at a point is the
solution to an optimization problem that only depends
on the likelihood ratio �(x).

Take an arbitrary fixed x. From the assumption that
`(ŷ, y) is strictly convex and minimized at ŷ = y, it fol-

lows that `(ŷ, 0) + c�(x)
1�c

`(ŷ, 1) is strictly convex in ŷ,

strictly decreasing on (�1, 0] and strictly increasing on
[1,1). Hence for any x the risk minimization problem of
equation (A9) has a unique solution in [0, 1]. The opti-
mal solution can be found from the first-order-condition
(FOC). Noticing that ŷ cannot be 0 or 1 under the FOC,
we can rewrite the FOC as

`0(ŷ, 0)

�`0(ŷ, 1)
=

c�(x)

1� c
. (A10)

From the assumption of strong convexity, we know that
on the interval (0, 1) we have `0(ŷ, 0) > 0 and `0(ŷ, 1) < 0,
where in `0 the derivative is taken with respect to the first
argument. Hence the left-hand-side of (A10) is strictly
increasing in ŷ.

This concludes that the optimal decision function
f?(x) is strictly increasing in �(x).


