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Quadratically constrained quadratic programming (QCQP) appears widely in engineering applications
such as wireless communications and networking and multiuser detection with examples like the
MAXCUT problem and boolean optimization. A general QCQP problem is NP-hard. We propose a
penalty formulation for the QCQP problem based on semidefinite relaxation. Under suitable assumptions
we show that the optimal solutions of the penalty problem are the same as those of the original QCQP
problem if the penalty parameter is sufficiently large. Then, to solve the penalty problem, we present a
proximal point algorithm and an update rule for the penalty parameter. Numerically, we test our algorithm
on two well-studied QCQP problems. The results show that our proposed algorithm is very effective in
finding high-quality solutions.
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1. Introduction

In this paper we consider the following quadratically constrained quadratic programming (QCQP)
problem:

P | T
min x Qux + 2gnx
xeR” 0 &0

st xX1Qx+2glx+¢; =0, i=1,...,m, (1.1)

XTQx+2gx+¢; >0, i=m,+1,....m,
where m is the number of constraints, Q, € S"*" and Q; € S"*" (i = 1,...,m) are real constant n by
n symmetric matrices, g, € R" and g; € R" (i = 1,...,m) are n dimensional real vectors and ¢; € R

(i=1,...,m) are real scalars.

Concerning (1.1) Vavasis (1990) proved that the general QCQP is NP-hard. Bar-On & Grasse (1994)
derived optimality conditions for QCQP. Peng & Yuan (1997) further analyze the conditions when the
number of constraints is two. Wang & Xia (2015) focused on the case that quadratic terms are uniform.
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POSITIVE SEMIDEFINITE PENALTY METHOD 2489

Some special instances possess hidden convexity (see Ben-Tal & Teboulle, 1996; Ye & Zhang, 2003;
Beck & Eldar, 2006; Wu et al., 2007; Ai & Zhang, 2009).

Intuitively, the difficulty of solving (1.1) lies not only in the nonconvexity of the objective but also in
that of the constraints. The feasible region may be nonconvex or even disconnected in some problems.
For example, the boolean quadratic programming (BQP) problem is given by Luo ez al. (2010):

s T
min x Qyx

xeRr "0 (12)
st xp=1, i=1,...,n

The constraint )cl.2 = 1 implies that x; € {1, —1}. In this case the feasible region consists of 2" isolated
points. On the other hand the problem of finding a feasible point of (1.1) may be NP-hard itself. An
example of the latter is the sensor location problem: with V. = {1,...,n}and V, = {n+1,...,n 4+ m}
denoting the positions of sensors and anchors, respectively, E, representing the edges between pairs of
sensors and E, representing the edges between sensors and anchors, let the positions of all the anchors
and the Euclidean distances in E and E, be specified; then the aim is to find the positions of all the
sensors. The sensor location problem can be written as

find x,...,x, € R2
sty —x > =d3,  (i,k) € Ey, (1.3)
la; = xI* = d5, (k) € Eg,

that is, a problem of finding a feasible point with quadratic constraints, which has been shown to be
NP-hard (Saxe, 1979).

1.1 Related works

Algorithms for solving QCQP can in general be divided into two categories, namely, exact and
approximate. In this paper, since we are interested in methods that can quickly find approximate
solutions, we do not discuss exact methods. Readers can find studies on the latter, such as different
branch and bound methods (Bar-On & Grasse, 1994; Dinh & Le Thi, 1998; Raber, 1998; Cartis ef al.,
2015) and Lasserre’s method (Lasserre, 2001).

To overcome the nonconvexity of the feasible region of QCQP, relaxation techniques have been used
in the literature. The reconstruction-linearization technique (RLT) (Sherali, 2007) is for QCQP with
bounded constraints. Without loss of generality we assume that the lower bound of each component of
the variable is 0 and the upper bound is 1. The key point of RLT is to add a matrix variable X € S"*" to
represent T, Using the fact that x > 0 and e — x > 0 we have

X; >0, ij=1,...,n,
Xij_.x.j_xi>_1, i,j=l,...,n,
Xij_xi< s i,j=1,...,l’l.
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2490 R.GU ET AL.

RLT transforms all the quadratic constraints into linear ones and adds all the above constraints. Then
one can obtain a relaxed problem as follows:

: T
min X +2g0x
xeR” XeS" QO &0

S.t. Qi-X+2giTx—|—ci:0, i=1,...,m,

e

Qi-X+2giTx+ci2O, i=m,+1,...,m,

X=>0,
eel —ext —xeTl +X >0,
xel —X >0,

where ‘- is the Frobenius inner product and e is the vector with all elements equal to 1. This relaxed
problem is a linear programming problem, which can be solved in various ways.

Positive semidefinite relaxation (SDR) (Fujie & Kojima, 1997) uses the same approach to relax
QCQP to a convex problem in matrix space. More specifically, SDR relaxes the constraint X = xx’
to X — xxT > 0, where ‘> 0’ means positive semidefinite. Then QCQP is relaxed to a semidefinite

programming problem (SDP)

i X +2gF
er[?l”,l}?eS" QO + o
T .
S.t. Qi-X+2giTx+ci:0, 1.=1,...,me, (14)
Q- X+2¢x+¢ =20, i=m,+1,...,m,

XixT,

T

where X > xx' can be regarded as ( i Ji > 0. SDR has been widely used in practice (Luo et al.,

2010). For some special QCQP the approximation ratio, a standard measure of the quality of the
approximation, has been analyze (Ma et al., 2002; Steingrimsson et al., 2003). In particular for BQP in
(1.2), when Qq > 0 the ratio is 1, which means that the solution of the relaxed problem is that of the
original problem (Luo et al., 2010).

More extended SDR-type relaxations are discussed by Bao et al. (2011). Comparison between RLT
and SDR can be found in Anstreicher (2009). One can also find more studies on approximation methods
in Beck et al. (2010) and Lu et al. (2011).

1.2 Our contribution

In this paper we take a different angle to interpret the SDR. To be more precise we regard SDR as a
penalty function method with the penalty term being zero. By showing that the penalty function is exact
for sufficiently large penalty parameters we argue that it is reasonable to study approaches based on
the penalty formulation with a nonzero penalty term. Accordingly, we propose an algorithm to solve the
penalty problem, together with an update rule for the penalty parameter. Numerical tests are presented to
demonstrate that the proposed algorithm achieves our main target in improving the quality of solutions,
in comparison with SDR, at the expense of possibly longer computational time. Moreover, in a majority
of the testing cases as quantified in the reported data, our algorithm is able to find the global solutions
of the prescribed problems.
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1.3 Organization
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This paper is organized as follows: in Section 2 we propose our new penalty problem and prove that
the penalty is exact. In Section 3 we give our algorithm to solve the penalty problem. In Section 4 we

use numerical tests to illustrate the performance of

our proposed algorithm. Finally, Section 5 contains

a summary of the main contributions of the paper and a perspective on some outstanding challenges.

2. Penalty problem

The QCQP problem (1.1) can be transformed into the following equivalent problem:

T T
i (o) (6 3)
xeR”? X XX go QO

s.t. (1 xTT) . (Ci ng)
X Xxx g O,
1 xT < ng
x xxl g O;

=0, i=1,...,m, 2.1)

=20, i=m,+1,...,m.

We can add a matrix variable Z to the above problem with an additional constraint Z = 0; then the

QCQP problem (1.1) is equivalent to

min ! Xt
xeRizest \x x'+Z) \g
1 xl ¢
St ( xxuz) . (gi
1 X! C;
x xx' +Z g

Z=0.

o

Here, Z can be regarded as X — xx! in Section 1.

Notice that the constraint Z = 0 can be reformulated as two constraints, Z > 0 and Z < 0; then the

above problem is equivalent to

min ! x!
xeR" ZeSt \X xxT +Z

ot 1 xT ' .
o x xxL 4+2Z

Z >0,
Z =<0.

xT

The positive semidefiniteness of Z and of ( ! T
x xx +Z

OgT)
g 0

¢ 0, (2.2)

) are equivalent, as shown in the following lemma.
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2492 R.GU ET AL.

LemmA 2.1 For any real vector x € R" and real symmetric matrix Z € S", Z > 0 is equivalent to
()0
xxx'+Z) —

T .
Proof. The matrix ( )TC+Z) becomes ((1) g) under a congruence transformation. Then by Sylvester’s

law of inertia we have that ( iz) > 0if and only if Z > 0. 0

Now using Lemma 2.1, SDR (1.4) can be viewed as a relaxation of (2.2) by dropping the constraint
Z < 0. We would like to add a penalty term P - Z to the objective function. Here P is a positive definite
matrix to be properly chosen so that the effect of P - Z is to control the sizes of the positive eigenvalues
of Z, if any. For more discussion on the choices of P we refer to Section 3. Thus, the new penalty
formulation of the original problem is given as

. 1 Xt 0 g
. P.7
xeﬁg’l,lZneS” ()C X)CT + Z) (go Q() +
s.t e N i=1 m
o X xx'+2Z 8; e 2.3)
) ] .., m,

1 xT < ng
x xl +7 g O;
Z > 0.

In the special case where P = 0, problem 2.3 becomes SDR.

2.1 Notation

Before we analyze the properties of the penalty problem (2.3) we first define some notation to simplify
the description of the problem.
Let

fx) = xTQox + 2ggx,

T
F::{x ( ) (Cl gl)}O, i:1,...,me,
x xxt g O;
T
Ci &\ > .
(x xx) (gi Qi)/O, i me—|—1,...,m’,

LAt ¢ &l _ -
{(xZ)'Z>O( xxT+Z)'(g,- 0, =0, i=1,...,m,

=

LXZ,P):=fx)+Qy-Z+P-Z
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Then, F and G are related by
F={x]|(x0) e G} (2.4)

Using the above notation we rewrite the QCQP problem (1.1) as

min f(x
in f(x) (2.5)
st. xeF.
We also rewrite the penalty problem (2.3) as
min Z(x,Z,P). (2.6)
x2)eG

One can view .Z as the Lagrangian function corresponding to the constraint Z < 0, with P being the
dual variable.

2.2 Exact penalty

In this subsection, we prove that the penalty problem (2.6) is exact, which means that its optimal solution
is also an optimal solution of QCQP problem (2.5), when all the eigenvalues of P are larger than a certain
constant. These results can be found in Theorems 2.4 and 2.5.

First, we give the following lemma on the relationship between problem (2.6) and P, which reveals
a monotone dependence.

LEMMA 2.2 min Z(x,Z,P)) < min Z(x,Z,P,) <min f(x) VP <X P,.
(x.Z)eG (x.Z)eG xeF

Proof. Due to (2.4), for any P we have

min Z(x,Z,P) < min Z(x,0,P) = min f(x).
(x,2)eG x,0)eG xeF

For any P, < P, we have P, — P; > 0, which implies (P, — P;) - Z > 0 for all Z > 0. Consequently,
P, -Z > P, - Z. Thus we have

LxZ,P) < LXZ,P)) Y Zx>0.

Then

min £(x,Z,Py) < min Z(x,Z,P,),
x,2)eG x,2)eG

which completes our proof. 0
Suppose that x* is a local minimizer of problem (2.5). For simplification we denote each of the
constraints of problem (2.5) by
T T — P
c;i(x) :=x Qx+2gx+c¢;=0, i=1,...,m,

¢;(x) = xTQx +2¢fx+¢; 20, i=m,+1,...,m.
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In the following we demonstrate the exact penalty via Karush—Kuhn—Tucker (KKT) conditions.
In order for a minimum point to satisfy KKT conditions the problem should satisfy some regularity
constraint qualifications. Peterson (1973) reviewed various constraint qualifications and stated their
relationships. We choose the Abadie constraint qualification (ACQ) described below for our use
(Abadie, 1966), which is considered to be pretty mild.

Let the set of sequence feasible directions be defined by (see Sun & Yuan, 2006)

SFD(x) = {d| Hd*) — d. (6} L 0:x+1,d" e FVk}
and the set of linearization feasible directions be defined by

LFD(x) = {d|Vci(x)Td —0,i=1,....m

e’

ch(x)Td >0, c(x)=0,j=m, + 1,...,m}.

The following assumption ensures that a minimum point satisfies KKT conditions.

AssuMPTION 2.3 (ACQ) x* is a local minimizer of problem (2.5), that is,
SFD(x*) = LFD(x*).

We then state our theorems.

THEOREM 2.4 Suppose that x* is a local minimizer of QCQP problem (2.5) and satisfies Assumption
2.3 and the second-order sufficient condition, which means that for any direction d € C := SFD(x*),

d’ (Q0 - Zai*Qi)d > 0, 2.7)

i=1

where o* is the multiplier corresponding to x*. Then there exists P* > 0 such that (x*, 0) is a strict local
minimizer of (2.6) for all P >~ P*.

Proof. Since x* is the local minimizer of problem (2.5), under Assumption 2.3, (x*,a*) satisfies the
following first-order necessary conditions:

VI(x*) — > af Ve (x*) =0,
c;(x) =0, i=1,...,m,

c;(x*) =20, ar>0, i=m,+1,...,m,

m *\
Zi=m3+1 a;c;(x*) = 0.

LetM = Qy—>1", a;Q;. The second-order sufficient condition (2.7) implies that there is a constant
6 > 0, which makes the following inequality satisfied for all d € C:

d"Md > 8||d||. (2.8)
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POSITIVE SEMIDEFINITE PENALTY METHOD 2495

Otherwise, there exists a sequence {d, } such that d,?Mdk/HdkH2 — 0. Let Ezk = d,/||dll; then 21,{M21k —

0 and ||2Zk|| = 1. Since C is a closed set there exists a d € C such that ||d|| = 1 and ZZ,?M:ZI,( = 0. This is
in contradiction with (2.7).

With regard to the QCQP in matrix form (2.2), its primal and dual solution (x,Z,«, S;,S) at x =
x*,Z = Z* = 0 satisfies

Q)— D> 0}Q;—S;+8 =0, §=0, §x>0,

where §7 is the multiplier corresponding to Z > 0 and S$* is the multiplier corresponding to Z < 0.
We consider the following problem:

miZn fO+Qy-Z+S8 - Z+ZNZ|I%
X,

st. ¢;x0)+Q;-2=0, i=1,...,m, 2.9)
¢xX)+Q,-Z2>20, i=m,+1,...,m,

Z > 0.

Here we introduce problem (2.9) as the intermediate tool of this proof. We will prove that (x*,0) is its
strict local minimum by assigning a large number to the coefficient of the quadratic term. Then we will
prove that (x*,0) is a strict local minimum of problem (2.6) by using the fact that the square of the
Frobenius norm is smaller than the linear function in the neighbourhood of 0.

First we need to prove that when o is greater than some constant, (x*,0) is a local strictly minimal
point of problem (2.9).

The Lagrangian function of problem (2.9) is

- o n
L, Z,a,8) i =f(x)+Qy-Z+S-Z+ 71||Z||1% =D ;) +Q;-2) =S, - Z.

i=1
Moreover, its KKT conditions are given by

Vi) — >0, a;Ve;(x) =0,
Qp+S*+0Z—-3" 2,0, — S, =0,
c(x)+0Q,-Z2=0, i=1,...,m,
cxX)+Q,-220, o220, i=m,+1,...,m,
i1 (€0 + Q; - 2) =0,

Z>0, §;>=0, Z-§=0.

If we setx =x*,Z =0, o = a*, S| = 57, the above conditions are satisfied.
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2496 R.GU ET AL.

The second derivatives of .Z (x,Z,a,S;) corresponding to primal variables are

ViZ = Qy— 2 0,

2 —
vx Vec(Z)"? - 0’

2 —
VVec(Z) vec(Z)‘iﬁ - 01]’

where [ is the identity matrix and vec(Z) represents the matrix Z in vector form. Then for any feasible
direction (d, vec(D)) at (x*,0) in problem (2.9) we have

(d, VCC(D))T (V(Zx,vec(Z))(X,vec(Z))"?) (d,vec(D)) = dTMd + 0 ”DHIZV

By the definition of distance and projection from Rockafellar (2015), the distance between d and C
and the projection from d to C are defined as

dist(d, C) = min ||d — y||,
yeC

Po(d) = {d, € C|distd,C) = |d — d,|}.

Here we fix any d| € P-(d), and letd, = d —d,.
If d ¢ C then by Assumption 2.3 there exists some i € {1,...,m,} satisfying Vcl-(x*)Td # 0 or
some i € {m, + 1,...,m} satisfying ¢;(x*) = 0 and Vcl-(x*)Td < 0. Let us denote

I={ie{m,+1,...,m}|c;(x*) =0,Vc,(x*)Td < 0}.

From the error bounds of Hoffman (2003) there exists d € C and a constant @, > 0 such that
max { _max }|Vci(x*)Td|,ma[x—Vci(x*)Td} > a,|ld —d|| > a|d, ||,
S 3 i€

and a, is independent of d. Notice that (d, D) is a feasible direction; then for the above i we have
1Q;1ID]| = Q; - D > —Ve,(*)'d > ay||d, .

Since there are only finitely many different sets / there is a constant a, > 0 depending only on x* and
satisfying

ld, |l < a, D]l (2.10)

The case for d € C is also correct because d, = 0.

€20z Ae|N Gz uo 1senb Aq 86££685/8812/v/ 1L 7/210Me/eulewi/woo dno olwapede//:sdiy woli papeojumoq



POSITIVE SEMIDEFINITE PENALTY METHOD 2497

Then
d"™™Md + o,|D||3 = dIMd, +2dTMd, + diMd, + o,||D|)%
> diMd, — (31ld,|I*> + 28~ 'd} M?d,) + diMd, + o, ||D||%
= (dTMd, — 3|1d,|I?) + d¥ (M — 26~ 'M*)d, + o, ||D||%
> 0
if we choose o) > a3||M — 28~ M?|| .. From (2.8) and (2.10) we know that d” Md + o ||D||% > 0 and
the equality holds if and only if d = 0, D = 0. Hence we obtain that (x*,0) is a strict local minimizer

of problem (2.9). Then there exists a constant §; > 0 such that when max{||x — x*||, | Z||z} < 8, and
(x,Z) € G we have

ﬂw+QmZ+S“Z+%Wﬂ@>ﬂfL

where the equality holds if and only if x = x* and Z = 0.
When P — §* > 0 there is a constant §, > 0 such that for any Z satisfying ||Z]|» < &,,

LzIp < -5 -Z.
2 TEE
So far, only 8, depends on P. One can take
8, < 21 /oy, (2.11)
where A is the smallest eigenvalue of P — S*, because
1ZIF < 1Z1ptr(Z) < 8,tr(Z) < 2h/ote(Z) < (2/0)) (P — S*) - Z.

This statement is used in the proof of the next theorem.
Therefore, when max{||x — x*||, | Z||} < min{d;,6,} and (x,Z) € G,

fO+0Qy-Z+P-Z = fQ)+Qy-Z+5-Z+P—5-Z
> f)+Qy-Z+ S - Z+ FZIF
> f(x"),

where the equality holds if and only if x = x* and Z = 0. This is to say that (x*,0) is a strict local
minimizer of problem (2.6) when P > S*. ]

We note that Theorem 2.4 is focused on local minimizers. Next we discuss the global minimizer in
the following theorem.

THEOREM 2.5 Suppose that x* is a strict global minimizer of the QCQP problem (2.5) and satisfies
Assumption 2.3 and the second-order sufficient condition. Assume that

LS := {x| fx) < mig fx),(x,2Z) € G}

is bounded. Then there exists a P > 0 such that (x*, 0) is a strict global minimizer of (2.6) for all P > P.
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Proof. If there exists a P such that (%, 0) is a global minimizer of

min Z(x,Z, P),
x,2)eG

then for any P > P we obtain the following relationship from Lemma 2.2:

Thus

Z@QBSIM%X@ZHéZ@QHZZ@QH
€

(x.2)

min .Z(x,Z,P) = Z(,0,P).
x,2)eG

Hence (x,0) is a global minimizer of problem (2.6). Since x* is a strict global minimizer of problem

(2.5)

we have x = x*.

If there does not exist any P such that Z = 0 is part of a global minimizer of problem (2.6) then
there are two cases:

1.

For any P> S*+(p(Qp)+e€)I, the global minimizer (X, 2) of problem (2.6) satisfies ||2 lp=06>0,
where p(Q,) is the spectral radius of Q, € is an arbitrary positive constant scalar and / is the
identity matrix.

Since % € LS, % and f(%) are bounded, by letting P = AJ and A — 00, we get

L&, Z,P) =f&) + P+ Q) - Z — +o0.

This is in contradiction with Lemma 2.2.

There exists a sequence {(PF} = §* + (p (Qqy) + €)1, such that 7k — 0, but ZF # 0, where (x*, Z¥)
is a global minimizer of min(x,z) A C WA PKy.

Since x* € LS, {x*} are bounded, there exists a cluster point of {x}, denoted by X. Suppose that
x'* — ¥. Due to the fact that Z% — 0 and the closeness of the set of solutions we have (x,0) € G,
i.e. x € F. Itis known from Lemma 2.2 that

SO +(Qy + PH) - Z% < min f(x), 2.12)

Since (Q, + P*) . Zik > 0 we have

fe) < min f(x).

Taking the limit iy — 400 on both sides we have f(x) < min, g f(x). On the other hand, x € F,
thus f(X) > min . f (x). Therefore, f(X) = min . f(x), which implies that x is a global minimizer
of (2.5); then x = x*. According to Theorem 2.4, for all P > §* + (p(Qy) + €)I, (x*,0) is a
strict local minimizer of problem (2.6). Moreover, as mentioned in the proof of Theorem 2.4, that
is (2.11), we take 6, = (2¢/0,) to ensure that when max{|x — x*||, | Z||z} < min{§;,d,} and
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POSITIVE SEMIDEFINITE PENALTY METHOD 2499

(x,Z) € G, we have
O +Qy-Z+P-Z2=fx),

where the equality holds if and only if x = x* and Z = 0. This is in contradiction with (x’*, Z) —
(x*,0) and (2.12).

In summary, there exists a P such that (x*, 0) is a global minimizer of problem (2.6) when P >~ P. [

3. Algorithm

Compared with the feasible region of QCQP problem (2.5), which may be nonconvex or discontinuous,
the feasible region of our penalty formulation (2.6) is a semipositive definite convex cone, which is
easier to apply to classical optimization algorithms, such as the projection gradient method. However,
an essential difficulty of the problem still remains. Indeed, problem (2.6) remains a nonconvex quadratic
semidefinite programming, which is NP-hard as well.

As discussed in Section 2 the penalty factor P is a positive semidefinite matrix. The choice of P
will be discussed later. When P is given, problem (2.6) can be viewed as a difference of convex (DC)
functions because it can be written as

. 1«7 0 gg T
min . —x P
xeR",ZeSr (X )C)CT + Z) (go QO + P v
1 X' c; gF
.t Pt )=0, i=1,...
¥ (x ol + Z) (&' 0, o 2ee o MMl

[ C; gl.T .
(x XXT + Z) (gl Ql = 09 l me + 17 »m,

Z >0,

and by Lemma 2.1 it is equivalent to

. 0 T
min W . ( 80 —xI'pPx
xeRn WeSn+!1
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As far as the authors know, there is no mature algorithm to solve a nonconvex quadratic positive
semidefinite programming problem. One can use one of the methods for solving DC problems to solve
problem (2.6). There have been many studies devoted to the theory of DC functions in the literature (see,
for example, Hiriart-Urruty, 1985, 1989). For DC algorithms (DCA) one can find references that use the
regularization approach (Ferndndez Cara & Moreno, 1988), the dual approach (Auchmuty, 1989), the
subgradient method (Dinh & Souad, 1986) and the proximal point algorithm (Sun ez al., 2003). Le Thi &
Dinh (2018) offered a nice survey on the 30 years of developments of these theoretical and algorithmic
tools and provide more relevant information about DC and DCA.

Due to the NP-hardness we try to design an algorithm to find solutions satisfying the first-order
optimality conditions:

m
Qox + 80— Z Oli(Qix + gi) =0,
i=1

xTQix+2giTx+ci+Qi-Z=O, i=1,....m,

e
xTQix+2giTx—I—ci—I—Qi-220, i=m,+1,...,m,

a; =20, i=m,+1,...,m,

a; (\TOx +28Tx+¢;4+Q,-2) =0, i=m,+1,....m, 3.1)
m

(Q()+P_ Zdel) Z:O,
i=1

Z>0.

(QO + P — icxiQi) > 0.
i=1

We propose the entire algorithmic framework in this section, including an algorithm for problems
with the penalty function and an algorithm on the update rules of P.

3.1 Proximal point algorithm

We choose the proximal point algorithm (PPA) proposed by Rockafellar (1976) to solve the penalty
problem (2.6). Sun et al. (2003) extended PPA to solve general DC. The basic properties of PPA
and applications of PPA in machine learning, statistics, data analysis, signal and image processing,
computational economics and finance, engineering design, scheduling and resource allocation and other
areas have been discussed by Parikh & Boyd (2014).

For our problem, to be more specific, we solve the following subproblem in the kth iteration:

@,z = argmin LK +d,Z,P)+d'Pd
deR",ZeS" (3.2)
s.t. (x*+d,2) €G,
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where d"Pd is the proximal term. Then we update
A = ok 4 gk,

In fact, problem (3.2) is a standard positive semidefinite programming problem, which can be
written as

1T )( 0 (Qox"+go)T)
ddd"+7z) \Qpr+gy, Qy+P

min (
deR" ZeSn
T
s.t. (1 fT ) e+ 28t A 00k @ e 0, i=1,...,m,
d dd" +Z Ql.xk +g; Qi ¢
T
(1 ,ﬁw ) ¢; + 22" + 40t (0t + )T >0 i=m,+1 m
d dd' +7 Qixk+gi Ql' ’ e > > M,
Z>0
3.3)
or
. 0 (Qoxk + gO)T)
min w .
deRn WeSn+! (Qoxk +g  Qpt+P
T
0ix" +g; 0,
T
W' Cl+2glxl;+xk Ql-xk (lek+gl)T >0, i:me—i—l,,,,,m,
0ix" +g; 0,
Wi=1
Wi mi1y 1 = X5
W >0,

for easy understanding.
The above problem can be solved in polynomial time by various methods including off-the-shelf
software (for example, SDPT3, Toh et al., 2009, and SDPNAL+, Yang et al., 2015). Its solution
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(d,Z,a,S) satisfies the first-order conditions as follows:

Qo +d) + gy — i o (0;(* +d) +g;) +Pd=0,
i=1

K+ DT,k +d) +2¢8TF +d)+¢;,+0,-Z=0, i=1,....m,
K+ T,k +d) +2¢8Tr +d)+¢;+0,-Z220, i=m,+1,....m

a; 20, i=m,+1,....,m,

o (K +DTQ +d)+ 28] K +d)+¢;+Q;-Z) =0, i=m,+1,....m, (34
<Q0+P— iaiQi) -Z=0,

i=1
Z >0,

(Qo + P — i aiQi) > 0.
i=1

Here, we present one ingredient in our algorithmic framework, which is an algorithm for solving the
penalty problem (2.6). The monotone descent property and convergence analysis of the algorithm are
given in Lemma 3.1 and Theorem 3.2.

Algorithm 3.1 Proximal point algorithm for penalty problem

Step 0: give the initial point x°.
Step 1:  solve problem (3.3) to obtain d.
Step 2:  x*t1 .= xk 4 gk,

Step 3: if the termination criteria is satisfied, stop.
Otherwise, k := k+ 1, go to Step 1.

LEMMA 3.1 Suppose that {x*} and {Z} are generated by Algorithm 3.1; then
L 7 py < 206k, 75 Py — dF PdF. (3.5)
Proof. Since for all kK we have (xk, Zk) € G, thus

Z(xk-l-l’zk—i-l’})) (Z(Xk + dk,Zk+1,P) + (dk)TPdk) _ (dk)TPdk

< LK, ZF, Py — (dF)TPdF.

Here, the inequality holds due to (3.2). O

THEOREM 3.2 Suppose that {d¥}, {x*} and {Z*} are generated by Algorithm 3.1. If the primal and
dual solutions {x*}, {Z¥}, {a*}, {S} of (3.3) are bounded, where S = Qy + P — > | a¥Q,, then {a*}
converges to 0 and any cluster point of {(x*, ZX, o, $X)} is a first-order stationary point of (2.6).
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Proof. From (3.5) we know that

k
LEH 2 Py < 20,20 =Y d P (3.6)
i=1

Due to the boundness assumption we have

00 T
> d"Pd < +oo. (3.7)

i=1

Since P > 0 thus d' — 0.

Our boundedness assumptions imply that {(xk,Zk,ak,Sk)} has at least one cluster point. Let
(x, Z.a, S‘) be any one of the cluster points, and subsequence {(xik | Zik gl Sik )} — (x, Z.a, S‘). Taking
iy — oo in (3.4) we find that (x, Z, &, S) satisfies (3.1). O

3.2 Update of penalty

When solving the problem min, 7). Z(x,Z, P) we hope that the solution satisfies Z = 0. By putting
Z = 0 in the first-order conditions (3.1) we obtain

m

Opx + 8o — Z a;(Qix+g) =0,

i=1

xTQix+2g;.rx—I—ci:0, i=1,...,m,

e

XTQx+2gx+¢; >0, i=m,+1,....m,
(3.8)

a; =20, i=m,+1,...,m,

a; (xTQix—|—2ngx—I—cl~) =0, i=m,+1,....,m,
m
i=1

In fact, only the final equation of the above conditions contains P. This means that with any given
feasible x and «, (3.8) can be satisfied if P is sufficiently large. We consider a simple example, that is,

min xT 6 —3 !
N\ 5 X
10
s.t. xT(O 0)x—(1 0)x=0,

xT(g ?)x—(O 1)x=0.
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There are four solutions satisfying the first five conditions of (3.8), which are

(00)7. o =0, olf =0,
(1) e =6 ol =4
@=(0 1), aP =6 oY =2
(10)

,a? =12, oY =6

The global minimum is x(!). One may note that if P = 0, then none of the four solutions satisfy the last
condition of (3.8). The last condition of (3.8) is satisfied only by the first solution x, ail) and oeél) if
P = 1. If P = 2 the last condition of (3.8) is satisfied by the first two solutions. If P = 4/ then the
last condition of (3.8) is satisfied by the first three solutions. Moreover, if P = 91 then all four solutions
satisfy (3.8).

We thus can see that, if P = 0, there is no solution satisfying the KKT condition. On the other hand,
if the initially selected P is too large (in the sense of P >> (), Algorithm 3.1 might stop, with a high
probability, at a solution that is not the global minimizer. Therefore, we propose to update P iteratively,
rather than directly assigning a fixed and large P initially.

Notice that the penalty problem (2.6) is based on the Lagrangian function of problem (2.2)
corresponding to Z < 0, where P is its dual variable. The update of P can be obtained from the update
criteria in the Lagrange relaxation method (Guignard, 2003).

We regard the optimal objective value of the penalty problem as a function of P:

z(P) := min Z(,Z,P). 3.9)
x,2)eG

Let (x*, Z%) be the optimal solution of z(P%). In fact, Z* is the subgradient of z(P) at Pk,
Hence, we can increase pk+1 along the zk direction, that is,

P = pr g 7k, (3.10)

We would like to achieve .Z(x**!, ZK+1 PA1y — min . f(x), though x**!, Z+1 is unknown.
Nevertheless, we may use xX, Z¥ as an approximation. By the formula of approximation

LK, 7k Py = mi? f(x),

we have
n= (mi}gf(X) — $<xk,zk,Pk>) /NZHIF.

Here, because min, f(x) is unknown, we thus use its upper bound in the computation. For example,
we can generate a feasible solution x* € F from x* and take the upper bound to be f(x*). For simple
constraints such as xi2 =1, when xf.‘ > 0, we let )_cf = 1, and when xf < 0, we let Sci.‘ = —1.

For more complicated constraints, if a feasible solution can not be generated from x¥, a good strategy
is to add ZF with a constant u as shown in (3.10) or a fixed scalar multiple of the identity 8/ to P each
time.
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In practice, adding 1Z* to P* as in (3.10) usually offers better performance than adding a scalar
multiple of the identity matrix. Moreover, the combination 1Z* + 81 is also a possible choice. We can
design different choices of the scalar for different problems.

We now present the framework of the positive semidefinite penalty method (PSDP) in
Algorithm 3.2.

Algorithm 3.2 PSDP

Step 0: let PO = 0.

Step 1: compute (x*, Z¥) = arg min .Z(x, Z, PX) by Algorithm 3.1.
x,2)eG

Step 2: if the termination criteria are satisfied, stop. Otherwise, update P**! by (3.10), k := k+ 1, go
to Step 1.

When performing Step 1 one can use (x*~!,Z%~1) as an initial point if k& > 1. Notice that when
P’ = 0, min, 5 .;-Z(x,Z, P’) is SDR. Consequently, Algorithm 3.1 converges in one step from any
initial point, which can be derived from KKT (3.4). Therefore, 1Y in PSDP is the solution of SDR.

We note that Z¥ = 0 is one of the termination criteria, which means that Algorithm 3.2 finds a
feasible solution and does not find a better solution in the subsequent penalty updates. Another criterion
is .2k, zk, Pry — min, . f(x) > 0 because it implies that Algorithm 3.1 obtains a bad solution
due to Lemma 2.2, and there is no need to implement more updates. In practice, min . f(x) can be
approximated via generated {x*}. The maximum number of penalty updates can also be a criterion as
efficiency of the algorithm is very much affected by the number of updates taken. These termination
criteria are used in our numerical tests. Interestingly, we can see that the number of updates required for
a good solution is often small so that the added computational cost can be under control.

4. Numerical tests

In this section we report numerical results to demonstrate the performance of our proposed Algorithm
3.2 PSDP in terms of our proposed algorithm PSDP in terms of the quality of solutions. We solve two
kinds of problems, which are binary quadratic programming and binary quadratic equations. In these
tests PSDP is compared with the classic SDR.

4.1 Binary quadratic programming

We consider a binary quadratic programming given by

min xTQx + 2g7x
xeR”
S.t. xiz—xi =0, i=1,...,n.

The constraint xi2 —x; = 0 implies x; € {0, 1}. The problem is known to be NP-hard (Garey &
Johnson, 1979). It has many applications such as capital budgeting and financial analysis problems
(Laughunn, 1970; McBride & Yormark, 1980), CAD problems (Krarup & Pruzan, 1978), traffic
message management problems (Gallo ef al., 1980), machine scheduling (Alidaee e al., 1994) and
molecular conformation (Phillips & Rosen, 1994).
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In our test Q is a random real symmetric matrix. All the entries of Q are independent identically
distributed with expectation 0 and variance 1. For any x* generated in Algorithm 3.2 we obtain the
feasible solution by a binary thresholding (rounding off to O or 1); that is to say that we set

1 if xXF>05,
X = (4.1)
1
0 if X <05.

The operation given in (4.1) of getting x* from x* is referred to as the feasibilization or rounding off. Let
k : i
fmin = l;l'élll;l{f(xl)}

Then we update P by

k k pk
Pk+1 — Pk +mln fmin _g(‘xk’z ’P ) 1 k
I1Z* )12 I1Z¥|

We set up . (xX, Zk, PF) — frlflin > 0 and x* € F as the termination criteria. By Lemma 2.2 the global
solution (xX, ZX) satisfies £ (xX, ZK, P*) — ftlflin < 0, thus the first criterion means that the current penalty
problem is badly solved, and the second implies that (x, 0) is also the solution when P = P**!_If any
one of them happens the algorithm stops.

We first consider a 10-dimensional example, whose g equals 0 and Q equals

-0.9651 1.5216 3.7664 1.9520 -2.0755 -2.3319 2.2988 2.5061 1.9154 0.0699
1.5216 -0.6166 -2.2228 0.6558 0.3684 -1.8922 0.2258 0.6925 0.2724 1.1700
3.7664 -2.2228 5.3272 0.6296 2.3014 -2.5600 0.9490 -0.5105 1.1118 1.3399
1.9520 0.6558 0.6296 -3.6934 -0.7679 -0.5153 0.7695 1.1351 -0.2931 0.6919

-2.0755 03684 2.3014 -0.7679 2.3713 1.0242 0.5173 -2.2794 0.3133 1.2249

—2.3319 -1.8922 -2.5600 -0.5153 1.0242 -2.0113 1.7500 1.2132 -1.1134 -0.9645
2.2988 0.2258 0.9490 0.7695 0.5173 1.7500 0.2394 0.8993 0.0229 -0.4947
25061 0.6925 -0.5105 1.1351 -2.2794 1.2132 0.8993 -1.4934 0.1274 -1.9524
1.9154 0.2724 1.1118 -0.2931 0.3133 -1.1134 0.0229 0.1274 4.8513 1.4164

\ 0.0699 1.1700 1.3399 0.6919 1.2249 -0.9645 -0.4947 -1.9524 1.4164 -1.3388

The optimal solution x* is

(0111010000)",

The solution of SDR is given below, with only four decimal places shown to save space, by

(0.2504 0.7005 0.3709 0.7968 0.1731 0.9559 0.0002 0.2462 0.0474 0.4757 )T.

With the feasibilization given by (4.1) the above is transformed into

(0101010000)",
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102 : : .
*******
100 _O******%***%*%%%**%%%**%* ]
%o K+
oOoOOO o Ix-xl,
©%0 « IIPI
%o F
1072 | 0000000, i
104+ ]
1070 | 000000000 .
108 : - :
0 10 20 30 40

iteration

FiG. 1. Convergence of a BQP instance.

which is not the global solution. In PSDP the solution of SDR corresponds to the first solution when
PY = 0. Then we update P' and obtain x! =

(0.1065 0.9441 0.6733 0.9696 0.0552 0.9945 0.0008 0.0299 0.0005 0.0056 )T,

which is again shown with only four decimal places. With feasibilization, the round-off solution x' is

(0111010000)",

which is the optimal solution x*. When we focus only on the sequence {x*} but not the solutions
obtained by feasibilization (i.e. rounding off via (4.1)), we find that in the subsequent iterations, the
difference between x* and x* drops gradually, then jumps to le—6 at the 24th iteration and remains
almost unchanged for the rest of the iterations as shown in Fig. 1. The error tolerance le—6 is also
used here to measure the accuracy of solving SDP subproblems. We regard x* as a feasible solution if
lxk — XK|| < le—6. Moreover, the jump in [l — XK gives an indication of the exact penalty.

This example illustrates that, rather than directly rounding off an SDR solution, our Algorithm 3.2
can offer a more systematic and effective way to make the solution feasible and get closer to a global
solution.

As additional examples we choose three different n (n = 10, 15,20) and generate 50 random
examples for each n. For these 150 examples, Fig. 2 reports the numbers of examples in which PSDP
gets terminated within a suitable number of penalty updates. From Fig. 2 we see that PSDP satisfies the
stopping criteria within 51 updates of the penalty parameter for all the examples. In fact, the number of
penalty updates in PSDP can be further reduced if feasibilization is adopted. As shown in the example
stated earlier, the number of penalty updates is 24, but just 1 update is enough for us to obtain the global
solution when we consider rounding off the solutions via (4.1).
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150

-
o
o

number of examples

a
o

0 1 1 1 1 1
0 10 20 30 40 50 60

number of P updates

FiG. 2. Number of penalty updates of PSDP for BQP.

TABLE 1  BQP: PSDP vs. SDR

n f :fOPT f > fOPT

[ <fSPR f=r5PR Total [ <fSPR f=5PR Total
10 12 32 44 2 4 6
15 19 26 45 2 3 5
20 24 18 42 6 2 8

The comparison between PSDP and SDP in the tests is shown in Table 1. Here we consider only
the objective values of their solutions due to rounding off, where f represents the objective value of
the solution generated by PSDP, fSPR represents the objective value of the solution generated by SDR
and fOPT represents the optimal objective value. Since we use their solutions obtained by rounding off
we have fOP T < fSDR and f OPT f- Moreover, SDR is the first step in PSDP; thus, we always have
f < fSPR In this table we list the numbers of examples associated with the different cases. For instance,
when n = 20, of all the 50 examples, SDR gets 18 optimal solutions, while PSDP solves 42, which is 24
more than SDR. For the remaining 8 examples that PSDP is not able to globally solve, PSDP improves
in 6 of these examples on the basis of SDR and retains the same solutions as SDR in the other 2 cases.
We see from the Table 1 that, with the gradual increase of n, PSDP maintains the ability to find global
solutions.

In QPLIB (Furini et al., 2019) we find a total of 23 BQP instances. For each of the instances, we
show the first 11 rounding-off solutions of PSDP in Table 2. The first solution of PSDP is the same as
SDR, and the other 10 are from 10 penalty updates. In the table, instance numbers are the same as those
in QPLIB. “Vars’ is the number of variables and ‘Opt’ stands for the optimal objective value. The last
11 columns are the objective values of the solutions after rounding off. Since the 23 instances are all
maximization problems, the larger the objective value that one gets, the better the solution is.
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Table 2 shows that PSDP can improve the SDR solution with only one or two penalty updates.
Moreover, with only a few updates, the quality of the solution can be greatly improved, and even optimal
solution can be achieved. Therefore, it can be claimed that the number of P updates can be set to a small
number to reduce the calculation cost, yet a good solution can still be obtained.

4.2  Binary quadratic equations

We consider the following equations:

xTQix—i—cl-:O, i=1,...,m,
2

; J—

4.2)

x;—x; =0, i=1,...,n.

Similar to BQP this is also a problem of binary variables. It does not have an objective function but with
more general quadratic constraints. Again, it is NP-hard to find feasible solutions (Chermakani, 2012).

The binary quadratic equation (BQE) problem has applications, for example, in the unassigned
distance geometry problem. Determining the atomic positions in a nano-structure is one of the great
challenges in material science and engineering (Gu et al., 2019; Billinge & Levin, 2007). Unlike the
assigned distance geometry problem (1.3), the assignment of each distance is not given, such as in the
atomic pair distribution function data (Warren, 1969; Egami & Billinge, 2012). Here, we are concerned
with a two-dimensional periodic structure reconstruction problem. Suppose that the whole structure is
generated by repeating a unit cell which is a rectangle with a given size. Moreover, in the unit cell,
all the atoms appear at its integral lattice points. The defects of materials will make minor changes to
regular patterns, such as the disappearance of existing atoms or the production of new atoms. Our goal
is to determine the existence of an atom on each integer lattice point in the unit cell based on a given
distance list. Since distance is invariant under orthogonal transformation, this problem has infinitely
many solutions. Here we aim to find one of the solutions.

We take an example of a unit cell with size 3 by 3. We label the positions in this cell from
1to9as

<N B~ =
oo L 1N
O O\ W

The corresponding distance matrix D is

—

— Gt e - -
S == i
Gmm e -
ST EEEE
- e S e
—e S bem
o= =

e
= i m e -

~

where D;; represents the distance between the two atoms at the ith and jth positions with consideration

of periodicity. Based on the elements of D we decompose D = A + «/EAZ + 3A5, where every element
of A|,A,, A5 is either O or 1. Actually, what we observe are the total numbers of their different distances.
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If a distance exists, the atoms at both of its two ends must exist. Using this fact we regard x as a 0-1
vector, so the equations can be written as

T

X 'Ax =b,,

o7 (4.3)
X A3x:b3,

F—x;=0, i=1,...,9.
Due to the equality of all positions we can assume that x; = 1 when there exists at least one distance.

This reduces the number of variables.
We consider the unit cell

1
1
1

oSO =

1
1
0

This leads to by = 16, b, = 14, b; = 6 in (4.3). Since there is no prescribed objective function in this
problem we take the minimization of x” Ex as the objective in SDR, where E is a matrix of all 1s. The
solution of SDR is

(1.0000 0.6271 0.6271 0.6271 0.6229 0.6229 0.6271 0.6229 0.6229 )T.

One may do the rounding off to get

(111100100)7,
which is not the solution of (4.3). In our Algorithm 3.2 we update P by
phtl — pk o 7k

Then we have x! =

(1.00 1.00 1.00 1.00 025 0.25 1.00 0.25 0.25)"

and x> =
(111101100)",

where x2 is the solution of (4.3).

We have tested more problems of sizes 3 by 3, 4 by 4 and 5 by 5. In the 4 by 4 case, besides 0-1
constraints, there are 6 quadratic equations. The same is true also in the 5 by 5 case. In Table 3 we use
‘tolnum’ to represent the total number of runs, ‘PSDP’ the number of cases solved by PSDP and ‘SDR’
the number of cases solved by SDR. We can see that SDR is not able to solve this kind of BQE problem
in general. PSDP can solve all 3 by 3 problems within 3 penalty updates and 4 by 4 problems within
7 penalty updates. For 5 by 5 examples it can solve 12056 cases within 201 penalty updates. The ratio
of success is 94%. Figure 3 reports the numbers of examples that PSDP can successfully solve within a
prescribed number of penalty updates. It shows that PSDP can solve 10897 examples within 40 penalty
updates, which represents 85% of all examples.
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TABLE 3 BQE: PSDP vs. SDR

Size tolnum PSDP SDR
3by3 11 11 2
4 by 4 306 306 1
Sby5 12807 12056 3

12000

10000

8000

6000

number of examples

4000

2000 b

0 50 100 150 200
number of P updates

FIG. 3. Number of penalty updates of PSDP for BQE with size of 5 by 5.

5. Conclusions

In this paper we considered the problem of solving QCQP. We proposed a penalty formulation for QCQP.
We studied theoretical exactness of the proposed penalty problem and its equivalence to QCQP. For
this penalty formulation, we proposed a proximal point algorithm and combined it with a Lagrangian
relaxation-type penalty update. Our numerical test contained two kinds of QCQP, such as BQP and
BQE, both of which are popular examples. It showed the effectiveness of the proposed PSDP algorithm
in finding global solutions.

We also viewed the SDR from a different angle, which is that SDR can be regarded as a penalty
function method with the penalty term being zero. Therefore, our penalty function method provides a
way to improve infeasible solutions from SDR. As we can see from our numerical tests, after several
penalty updates, PSDP can obtain a global solution. Moreover, one can sometimes get a better solution
than SDR through only one update.

Meanwhile, let us note that algorithms for solving the penalty problem deserve further investigation.
Due to the difficulty of solving a nonconvex SDP, the computational cost of our algorithm is still high.
It is thus desirable to develop robust and efficient algorithms for the penalty problem. Incorporating
penalty updates into the inner iteration may also be interesting to explore as well.
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