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Quadratically constrained quadratic programming (QCQP) appears widely in engineering applications

such as wireless communications and networking and multiuser detection with examples like the

MAXCUT problem and boolean optimization. A general QCQP problem is NP-hard. We propose a

penalty formulation for the QCQP problem based on semidefinite relaxation. Under suitable assumptions

we show that the optimal solutions of the penalty problem are the same as those of the original QCQP

problem if the penalty parameter is sufficiently large. Then, to solve the penalty problem, we present a

proximal point algorithm and an update rule for the penalty parameter. Numerically, we test our algorithm

on two well-studied QCQP problems. The results show that our proposed algorithm is very effective in

finding high-quality solutions.

Keywords: quadratically constrained quadratic programming; semidefinite programming; semidefinite

relaxation; penalty function.

1. Introduction

In this paper we consider the following quadratically constrained quadratic programming (QCQP)

problem:

min
x∈Rn

xTQ0x + 2gT
0 x

s.t. xTQix + 2gT
i x + ci = 0, i = 1, . . . , me,

xTQix + 2gT
i x + ci ! 0, i = me + 1, . . . , m,

(1.1)

where m is the number of constraints, Q0 ∈ S
n×n and Qi ∈ S

n×n (i = 1, . . . , m) are real constant n by

n symmetric matrices, g0 ∈ R
n and gi ∈ R

n (i = 1, . . . , m) are n dimensional real vectors and ci ∈ R

(i = 1, . . . , m) are real scalars.

Concerning (1.1) Vavasis (1990) proved that the general QCQP is NP-hard. Bar-On & Grasse (1994)

derived optimality conditions for QCQP. Peng & Yuan (1997) further analyze the conditions when the

number of constraints is two. Wang & Xia (2015) focused on the case that quadratic terms are uniform.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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POSITIVE SEMIDEFINITE PENALTY METHOD 2489

Some special instances possess hidden convexity (see Ben-Tal & Teboulle, 1996; Ye & Zhang, 2003;

Beck & Eldar, 2006; Wu et al., 2007; Ai & Zhang, 2009).

Intuitively, the difficulty of solving (1.1) lies not only in the nonconvexity of the objective but also in

that of the constraints. The feasible region may be nonconvex or even disconnected in some problems.

For example, the boolean quadratic programming (BQP) problem is given by Luo et al. (2010):

min
x∈Rn

xTQ0x

s.t. x2
i = 1, i = 1, . . . , n.

(1.2)

The constraint x2
i = 1 implies that xi ∈ {1, −1}. In this case the feasible region consists of 2n isolated

points. On the other hand the problem of finding a feasible point of (1.1) may be NP-hard itself. An

example of the latter is the sensor location problem: with Vs = {1, . . . , n} and Va = {n + 1, . . . , n + m}

denoting the positions of sensors and anchors, respectively, Ess representing the edges between pairs of

sensors and Esa representing the edges between sensors and anchors, let the positions of all the anchors

and the Euclidean distances in Ess and Esa be specified; then the aim is to find the positions of all the

sensors. The sensor location problem can be written as

find x1, . . . , xn ∈ R
2

s.t. ‖xi − xk‖2 = d2
ik, (i, k) ∈ Ess,

‖ai − xk‖2 = d̄2
ik, (i, k) ∈ Esa,

(1.3)

that is, a problem of finding a feasible point with quadratic constraints, which has been shown to be

NP-hard (Saxe, 1979).

1.1 Related works

Algorithms for solving QCQP can in general be divided into two categories, namely, exact and

approximate. In this paper, since we are interested in methods that can quickly find approximate

solutions, we do not discuss exact methods. Readers can find studies on the latter, such as different

branch and bound methods (Bar-On & Grasse, 1994; Dinh & Le Thi, 1998; Raber, 1998; Cartis et al.,

2015) and Lasserre’s method (Lasserre, 2001).

To overcome the nonconvexity of the feasible region of QCQP, relaxation techniques have been used

in the literature. The reconstruction-linearization technique (RLT) (Sherali, 2007) is for QCQP with

bounded constraints. Without loss of generality we assume that the lower bound of each component of

the variable is 0 and the upper bound is 1. The key point of RLT is to add a matrix variable X ∈ S
n×n to

represent xxT . Using the fact that x ! 0 and e − x ! 0 we have

Xij ! 0, i, j = 1, . . . , n,

Xij − xj − xi ! −1, i, j = 1, . . . , n,

Xij − xi " 0, i, j = 1, . . . , n.
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2490 R. GU ET AL.

RLT transforms all the quadratic constraints into linear ones and adds all the above constraints. Then

one can obtain a relaxed problem as follows:

min
x∈Rn,X∈Sn

Q0 · X + 2gT
0 x

s.t. Qi · X + 2gT
i x + ci = 0, i = 1, . . . , me,

Qi · X + 2gT
i x + ci ! 0, i = me + 1, . . . , m,

X ! 0,

eeT − exT − xeT + X ! 0,

xeT − X ! 0,

where ‘·’ is the Frobenius inner product and e is the vector with all elements equal to 1. This relaxed

problem is a linear programming problem, which can be solved in various ways.

Positive semidefinite relaxation (SDR) (Fujie & Kojima, 1997) uses the same approach to relax

QCQP to a convex problem in matrix space. More specifically, SDR relaxes the constraint X = xxT

to X − xxT & 0, where ‘& 0’ means positive semidefinite. Then QCQP is relaxed to a semidefinite

programming problem (SDP)

min
x∈Rn,X∈Sn

Q0 · X + 2gT
0 x

s.t. Qi · X + 2gT
i x + ci = 0, i = 1, . . . , me,

Qi · X + 2gT
i x + ci ! 0, i = me + 1, . . . , m,

X & xxT,

(1.4)

where X & xxT can be regarded as
(

1 xT

x X

)

& 0. SDR has been widely used in practice (Luo et al.,

2010). For some special QCQP the approximation ratio, a standard measure of the quality of the

approximation, has been analyze (Ma et al., 2002; Steingrimsson et al., 2003). In particular for BQP in

(1.2), when Q0 ! 0 the ratio is 1, which means that the solution of the relaxed problem is that of the

original problem (Luo et al., 2010).

More extended SDR-type relaxations are discussed by Bao et al. (2011). Comparison between RLT

and SDR can be found in Anstreicher (2009). One can also find more studies on approximation methods

in Beck et al. (2010) and Lu et al. (2011).

1.2 Our contribution

In this paper we take a different angle to interpret the SDR. To be more precise we regard SDR as a

penalty function method with the penalty term being zero. By showing that the penalty function is exact

for sufficiently large penalty parameters we argue that it is reasonable to study approaches based on

the penalty formulation with a nonzero penalty term. Accordingly, we propose an algorithm to solve the

penalty problem, together with an update rule for the penalty parameter. Numerical tests are presented to

demonstrate that the proposed algorithm achieves our main target in improving the quality of solutions,

in comparison with SDR, at the expense of possibly longer computational time. Moreover, in a majority

of the testing cases as quantified in the reported data, our algorithm is able to find the global solutions

of the prescribed problems.
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POSITIVE SEMIDEFINITE PENALTY METHOD 2491

1.3 Organization

This paper is organized as follows: in Section 2 we propose our new penalty problem and prove that

the penalty is exact. In Section 3 we give our algorithm to solve the penalty problem. In Section 4 we

use numerical tests to illustrate the performance of our proposed algorithm. Finally, Section 5 contains

a summary of the main contributions of the paper and a perspective on some outstanding challenges.

2. Penalty problem

The QCQP problem (1.1) can be transformed into the following equivalent problem:

min
x∈Rn

(

1 xT

x xxT

)

·

(

0 gT
0

g0 Q0

)

s.t.

(

1 xT

x xxT

)

·

(

ci gT
i

gi Qi

)

= 0, i = 1, . . . , me,

(

1 xT

x xxT

)

·

(

ci gT
i

gi Qi

)

! 0, i = me + 1, . . . , m.

(2.1)

We can add a matrix variable Z to the above problem with an additional constraint Z = 0; then the

QCQP problem (1.1) is equivalent to

min
x∈Rn,Z∈Sn

(

1 xT

x xxT + Z

)

·

(

0 gT
0

g0 Q0

)

s.t.

(

1 xT

x xxT + Z

)

·

(

ci gT
i

gi Qi

)

= 0, i = 1, . . . , me,

(

1 xT

x xxT + Z

)

·

(

ci gT
i

gi Qi

)

! 0, i = me + 1, . . . , m,

Z = 0.

Here, Z can be regarded as X − xxT in Section 1.

Notice that the constraint Z = 0 can be reformulated as two constraints, Z & 0 and Z ' 0; then the

above problem is equivalent to

min
x∈Rn,Z∈Sn

(

1 xT

x xxT + Z

)

·

(

0 gT

g Q

)

s.t.

(

1 xT

x xxT + Z

)

·

(

ci gT
i

gi Qi

)

! 0, i = 1, . . . , m,

Z & 0,

Z ' 0.

(2.2)

The positive semidefiniteness of Z and of
(

1 xT

x xxT+Z

)

are equivalent, as shown in the following lemma.
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2492 R. GU ET AL.

Lemma 2.1 For any real vector x ∈ R
n and real symmetric matrix Z ∈ S

n, Z & 0 is equivalent to
(

1 xT

x xxT+Z

)

& 0.

Proof. The matrix
(

1 xT

x xxT+Z

)

becomes
(

1 0

0 Z

)

under a congruence transformation. Then by Sylvester’s

law of inertia we have that
(

1 xT

x xxT+Z

)

& 0 if and only if Z & 0. #

Now using Lemma 2.1, SDR (1.4) can be viewed as a relaxation of (2.2) by dropping the constraint

Z ' 0. We would like to add a penalty term P · Z to the objective function. Here P is a positive definite

matrix to be properly chosen so that the effect of P · Z is to control the sizes of the positive eigenvalues

of Z, if any. For more discussion on the choices of P we refer to Section 3. Thus, the new penalty

formulation of the original problem is given as

min
x∈Rn,Z∈Sn

(

1 xT

x xxT + Z

)

·

(

0 gT
0

g0 Q0

)

+ P · Z

s.t.

(

1 xT

x xxT + Z

)

·

(

ci gT
i

gi Qi

)

= 0, i = 1, . . . , me,

(

1 xT

x xxT + Z

)

·

(

ci gT
i

gi Qi

)

! 0, i = me + 1, . . . , m,

Z & 0.

(2.3)

In the special case where P = 0, problem 2.3 becomes SDR.

2.1 Notation

Before we analyze the properties of the penalty problem (2.3) we first define some notation to simplify

the description of the problem.

Let

f (x) := xTQ0x + 2gT
0 x,

F :=

{

x

∣

∣

∣

∣

(

1 xT

x xxT

)

·

(

ci gT
i

gi Qi

)

! 0, i = 1, . . . , me,

(

1 xT

x xxT

)

·

(

ci gT
i

gi Qi

)

! 0, i = me + 1, . . . , m

}

,

G :=

{

(x, Z)

∣

∣

∣

∣

Z & 0,

(

1 xT

x xxT + Z

)

·

(

ci gT
i

gi Qi

)

= 0, i = 1, . . . , me,

(

1 xT

x xxT + Z

)

·

(

ci gT
i

gi Qi

)

! 0, i = me + 1, . . . , m

}

,

L (x, Z, P) := f (x) + Q0 · Z + P · Z.
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POSITIVE SEMIDEFINITE PENALTY METHOD 2493

Then, F and G are related by

F = {x | (x, 0) ∈ G}. (2.4)

Using the above notation we rewrite the QCQP problem (1.1) as

min
x

f (x)

s.t. x ∈ F.
(2.5)

We also rewrite the penalty problem (2.3) as

min
(x,Z)∈G

L (x, Z, P). (2.6)

One can view L as the Lagrangian function corresponding to the constraint Z ' 0, with P being the

dual variable.

2.2 Exact penalty

In this subsection, we prove that the penalty problem (2.6) is exact, which means that its optimal solution

is also an optimal solution of QCQP problem (2.5), when all the eigenvalues of P are larger than a certain

constant. These results can be found in Theorems 2.4 and 2.5.

First, we give the following lemma on the relationship between problem (2.6) and P, which reveals

a monotone dependence.

Lemma 2.2 min
(x,Z)∈G

L (x, Z, P1) " min
(x,Z)∈G

L (x, Z, P2) " min
x∈F

f (x) ∀ P1 ' P2.

Proof. Due to (2.4), for any P we have

min
(x,Z)∈G

L (x, Z, P) " min
(x,0)∈G

L (x, 0, P) = min
x∈F

f (x).

For any P1 ' P2 we have P2 − P1 & 0, which implies (P2 − P1) · Z ! 0 for all Z & 0. Consequently,

P2 · Z ! P1 · Z. Thus we have

L (x, Z, P1) " L (x, Z, P2) ∀ Z & 0.

Then

min
(x,Z)∈G

L (x, Z, P1) " min
(x,Z)∈G

L (x, Z, P2),

which completes our proof. #

Suppose that x⋆ is a local minimizer of problem (2.5). For simplification we denote each of the

constraints of problem (2.5) by

ci(x) := xTQix + 2gT
i x + ci = 0, i = 1, . . . , me,

ci(x) := xTQix + 2gT
i x + ci ! 0, i = me + 1, . . . , m.
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2494 R. GU ET AL.

In the following we demonstrate the exact penalty via Karush–Kuhn–Tucker (KKT) conditions.

In order for a minimum point to satisfy KKT conditions the problem should satisfy some regularity

constraint qualifications. Peterson (1973) reviewed various constraint qualifications and stated their

relationships. We choose the Abadie constraint qualification (ACQ) described below for our use

(Abadie, 1966), which is considered to be pretty mild.

Let the set of sequence feasible directions be defined by (see Sun & Yuan, 2006)

SFD(x) =
{

d| ∃{dk} → d, {tk} ↓ 0 : x + tkdk ∈ F ∀ k
}

and the set of linearization feasible directions be defined by

LFD(x) =
{

d|∇ci(x)
Td = 0, i = 1, . . . , me,

∇cj(x)
Td ! 0, cj(x) = 0, j = me + 1, . . . , m

}

.

The following assumption ensures that a minimum point satisfies KKT conditions.

Assumption 2.3 (ACQ) x⋆ is a local minimizer of problem (2.5), that is,

SFD(x⋆) = LFD(x⋆).

We then state our theorems.

Theorem 2.4 Suppose that x⋆ is a local minimizer of QCQP problem (2.5) and satisfies Assumption

2.3 and the second-order sufficient condition, which means that for any direction d ∈ C := SFD(x⋆),

dT

(

Q0 −
m

∑

i=1

α⋆
i Qi

)

d > 0, (2.7)

where α⋆ is the multiplier corresponding to x⋆. Then there exists P⋆ & 0 such that (x⋆, 0) is a strict local

minimizer of (2.6) for all P ≻ P⋆.

Proof. Since x⋆ is the local minimizer of problem (2.5), under Assumption 2.3, (x⋆, α⋆) satisfies the

following first-order necessary conditions:

∇f (x⋆) −
∑m

i=1 α⋆
i ∇ci(x

⋆) = 0,

ci(x
⋆) = 0, i = 1, . . . , me,

ci(x
⋆) ! 0, α⋆

i ! 0, i = me + 1, . . . , m,
∑m

i=me+1 αici(x
⋆) = 0.

Let M = Q0−
∑m

i=1 α⋆
i Qi. The second-order sufficient condition (2.7) implies that there is a constant

δ > 0, which makes the following inequality satisfied for all d ∈ C:

dTMd ! δ‖d‖2. (2.8)
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POSITIVE SEMIDEFINITE PENALTY METHOD 2495

Otherwise, there exists a sequence {dk} such that dT
k Mdk/‖dk‖2 → 0. Let d̂k = dk/‖dk‖; then d̂T

k Md̂k →
0 and ‖d̂k‖ = 1. Since C is a closed set there exists a d̄ ∈ C such that ‖d̄‖ = 1 and d̄T

k Md̄k = 0. This is

in contradiction with (2.7).

With regard to the QCQP in matrix form (2.2), its primal and dual solution (x, Z, α, S1, S) at x =

x⋆, Z = Z⋆ = 0 satisfies

Q0 −
∑

α⋆
i Qi − S⋆

1 + S⋆ = 0, S⋆
1 & 0, S⋆ & 0,

where S⋆
1 is the multiplier corresponding to Z & 0 and S⋆ is the multiplier corresponding to Z ' 0.

We consider the following problem:

min
x,Z

f (x) + Q0 · Z + S⋆ · Z + σ1
2

‖Z‖2
F

s.t. ci(x) + Qi · Z = 0, i = 1, . . . , me,

ci(x) + Qi · Z ! 0, i = me + 1, . . . , m,

Z & 0.

(2.9)

Here we introduce problem (2.9) as the intermediate tool of this proof. We will prove that (x⋆, 0) is its

strict local minimum by assigning a large number to the coefficient of the quadratic term. Then we will

prove that (x⋆, 0) is a strict local minimum of problem (2.6) by using the fact that the square of the

Frobenius norm is smaller than the linear function in the neighbourhood of 0.

First we need to prove that when σ1 is greater than some constant, (x⋆, 0) is a local strictly minimal

point of problem (2.9).

The Lagrangian function of problem (2.9) is

L̄ (x, Z, α, S1) := f (x) + Q0 · Z + S⋆ · Z +
σ1

2
‖Z‖2

F −
m

∑

i=1

αi(ci(x) + Qi · Z) − S1 · Z.

Moreover, its KKT conditions are given by

∇f (x) −
∑m

i=1 αi∇ci(x) = 0,

Q0 + S⋆ + σ1Z −
∑m

i=1 αiQi − S1 = 0,

ci(x) + Qi · Z = 0, i = 1, . . . , me,

ci(x) + Qi · Z ! 0, αi ! 0, i = me + 1, . . . , m,
∑m

i=me+1 αi(ci(x) + Qi · Z) = 0,

Z & 0, S1 & 0, Z · S1 = 0.

If we set x = x⋆, Z = 0, α = α⋆, S1 = S⋆
1, the above conditions are satisfied.
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2496 R. GU ET AL.

The second derivatives of L̄ (x, Z, α, S1) corresponding to primal variables are

∇2
xxL̄ = Q0 −

∑

αiQi,

∇2
x vec(Z)

L̄ = 0,

∇2
vec(Z) vec(Z)

L̄ = σ1I,

where I is the identity matrix and vec(Z) represents the matrix Z in vector form. Then for any feasible

direction (d, vec(D)) at (x⋆, 0) in problem (2.9) we have

(d, vec(D))T
(

∇2
(x,vec(Z))(x,vec(Z))L̄

)

(d, vec(D)) = dTMd + σ1‖D‖2
F .

By the definition of distance and projection from Rockafellar (2015), the distance between d and C

and the projection from d to C are defined as

dist(d, C) = min
y∈C

‖d − y‖,

PC(d) =
{

d1 ∈ C | dist(d, C) = ‖d − d1‖
}

.

Here we fix any d1 ∈ PC(d), and let d2 = d − d1.

If d /∈ C then by Assumption 2.3 there exists some i ∈ {1, . . . , me} satisfying ∇ci(x
⋆)Td .= 0 or

some i ∈ {me + 1, . . . , m} satisfying ci(x
⋆) = 0 and ∇ci(x

⋆)Td < 0. Let us denote

I = {i ∈ {me + 1, . . . , m} | ci(x
⋆) = 0, ∇ci(x

⋆)Td < 0}.

From the error bounds of Hoffman (2003) there exists d̃ ∈ C and a constant a1 > 0 such that

max

{

max
i∈{1,...,me}

|∇ci(x
⋆)Td|, max

i∈I
−∇ci(x

⋆)Td

}

! a1‖d − d̃‖ ! a1‖d2‖,

and a1 is independent of d. Notice that (d, D) is a feasible direction; then for the above i we have

‖Qi‖‖D‖ ! Qi · D ! −∇ci(x
⋆)Td ! a1‖d2‖.

Since there are only finitely many different sets I there is a constant a2 > 0 depending only on x⋆ and

satisfying

‖d2‖ " a2‖D‖. (2.10)

The case for d ∈ C is also correct because d2 = 0.
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POSITIVE SEMIDEFINITE PENALTY METHOD 2497

Then

dTMd + σ1‖D‖2
F = dT

1 Md1 + 2dT
1 Md2 + dT

2 Md2 + σ1‖D‖2
F

! dT
1 Md1 −

(

δ
2
‖d1‖2 + 2δ−1dT

2 M2d2

)

+ dT
2 Md2 + σ1‖D‖2

F

=
(

dT
1 Md1 − δ

2
‖d1‖2

)

+ dT
2 (M − 2δ−1M2)d2 + σ1‖D‖2

F

> 0

if we choose σ1 > a2
2‖M − 2δ−1M2‖F . From (2.8) and (2.10) we know that dTMd + σ1‖D‖2

F ! 0 and

the equality holds if and only if d = 0, D = 0. Hence we obtain that (x⋆, 0) is a strict local minimizer

of problem (2.9). Then there exists a constant δ1 > 0 such that when max{‖x − x⋆‖, ‖Z‖F} " δ1 and

(x, Z) ∈ G we have

f (x) + Q0 · Z + S⋆ · Z +
σ1

2
‖Z‖2

F ! f (x⋆),

where the equality holds if and only if x = x⋆ and Z = 0.

When P − S⋆ ≻ 0 there is a constant δ2 > 0 such that for any Z satisfying ‖Z‖F " δ2,

σ1

2
‖Z‖2

F " (P − S⋆) · Z.

So far, only δ2 depends on P. One can take

δ2 " 2λ/σ1, (2.11)

where λ is the smallest eigenvalue of P − S⋆, because

‖Z‖2
F " ‖Z‖Ftr(Z) " δ2tr(Z) " (2λ/σ1)tr(Z) " (2/σ1)(P − S⋆) · Z.

This statement is used in the proof of the next theorem.

Therefore, when max{‖x − x⋆‖, ‖Z‖F} " min{δ1, δ2} and (x, Z) ∈ G,

f (x) + Q0 · Z + P · Z = f (x) + Q0 · Z + S⋆ · Z + (P − S⋆) · Z

! f (x) + Q0 · Z + S⋆ · Z + σ1
2

‖Z‖2
F

! f (x⋆),

where the equality holds if and only if x = x⋆ and Z = 0. This is to say that (x⋆, 0) is a strict local

minimizer of problem (2.6) when P ≻ S⋆. #

We note that Theorem 2.4 is focused on local minimizers. Next we discuss the global minimizer in

the following theorem.

Theorem 2.5 Suppose that x⋆ is a strict global minimizer of the QCQP problem (2.5) and satisfies

Assumption 2.3 and the second-order sufficient condition. Assume that

LS :=

{

x
∣

∣ f (x) " min
x∈F

f (x), (x, Z) ∈ G

}

is bounded. Then there exists a P̄ & 0 such that (x⋆, 0) is a strict global minimizer of (2.6) for all P ≻ P̄.

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/im
a

jn
a

/a
rtic

le
/4

1
/4

/2
4

8
8

/5
8

9
3

3
9

8
 b

y
 g

u
e

s
t o

n
 2

5
 M

a
y
 2

0
2

3



2498 R. GU ET AL.

Proof. If there exists a P̄ such that (x̄, 0) is a global minimizer of

min
(x,Z)∈G

L (x, Z, P̄),

then for any P & P̄ we obtain the following relationship from Lemma 2.2:

L (x̄, 0, P̄) " min
(x,Z)∈G

L (x, Z, P) " L (x̄, 0, P) = L (x̄, 0, P̄).

Thus

min
(x,Z)∈G

L (x, Z, P) = L (x̄, 0, P).

Hence (x̄, 0) is a global minimizer of problem (2.6). Since x⋆ is a strict global minimizer of problem

(2.5) we have x̄ = x⋆.

If there does not exist any P such that Z = 0 is part of a global minimizer of problem (2.6) then

there are two cases:

1. For any P̂ & S⋆+(ρ(Q0)+ǫ)I, the global minimizer (x̂, Ẑ) of problem (2.6) satisfies ‖Ẑ‖F ! δ > 0,

where ρ(Q0) is the spectral radius of Q0, ǫ is an arbitrary positive constant scalar and I is the

identity matrix.

Since x̂ ∈ LS, x̂ and f (x̂) are bounded, by letting P̂ = λI and λ → +∞, we get

L (x̂, Ẑ, P̂) = f (x̂) + (P̂ + Q0) · Ẑ → +∞.

This is in contradiction with Lemma 2.2.

2. There exists a sequence {Pk} & S⋆ + (ρ(Q0) + ǫ)I, such that Zk → 0, but Zk .= 0, where (xk, Zk)

is a global minimizer of min(x,Z)∈G L (x, Z, Pk).

Since xk ∈ LS, {xk} are bounded, there exists a cluster point of {xk}, denoted by x̄. Suppose that

xik → x̄. Due to the fact that Zik → 0 and the closeness of the set of solutions we have (x̄, 0) ∈ G,

i.e. x̄ ∈ F. It is known from Lemma 2.2 that

f (xik) + (Q0 + Pik) · Zik " min
x∈F

f (x). (2.12)

Since (Q0 + Pik) · Zik > 0 we have

f (xik) < min
x∈F

f (x).

Taking the limit ik → +∞ on both sides we have f (x̄) " minx∈F f (x). On the other hand, x̄ ∈ F,

thus f (x̄) ! minx∈F f (x). Therefore, f (x̄) = minx∈F f (x), which implies that x̄ is a global minimizer

of (2.5); then x̄ = x⋆. According to Theorem 2.4, for all P & S⋆ + (ρ(Q0) + ǫ)I, (x⋆, 0) is a

strict local minimizer of problem (2.6). Moreover, as mentioned in the proof of Theorem 2.4, that

is (2.11), we take δ2 = (2ǫ/σ1) to ensure that when max{‖x − x⋆‖, ‖Z‖F} " min{δ1, δ2} and
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POSITIVE SEMIDEFINITE PENALTY METHOD 2499

(x, Z) ∈ G, we have

f (x) + Q0 · Z + P · Z ! f (x⋆),

where the equality holds if and only if x = x⋆ and Z = 0. This is in contradiction with (xik , Zik) →
(x⋆, 0) and (2.12).

In summary, there exists a P̄ such that (x⋆, 0) is a global minimizer of problem (2.6) when P ≻ P̄. #

3. Algorithm

Compared with the feasible region of QCQP problem (2.5), which may be nonconvex or discontinuous,

the feasible region of our penalty formulation (2.6) is a semipositive definite convex cone, which is

easier to apply to classical optimization algorithms, such as the projection gradient method. However,

an essential difficulty of the problem still remains. Indeed, problem (2.6) remains a nonconvex quadratic

semidefinite programming, which is NP-hard as well.

As discussed in Section 2 the penalty factor P is a positive semidefinite matrix. The choice of P

will be discussed later. When P is given, problem (2.6) can be viewed as a difference of convex (DC)

functions because it can be written as

min
x∈Rn,Z∈Sn

(

1 xT

x xxT + Z

)

·

(

0 gT
0

g0 Q0 + P

)

− xTPx

s.t.

(

1 xT

x xxT + Z

)

·

(

ci gT
i

gi Qi

)

= 0, i = 1, . . . , me,

(

1 xT

x xxT + Z

)

·

(

ci gT
i

gi Qi

)

! 0, i = me + 1, . . . , m,

Z & 0,

and by Lemma 2.1 it is equivalent to

min
x∈Rn,W∈Sn+1

W ·

(

0 gT
0

g0 Q0 + P

)

− xTPx

s.t. W ·

(

ci gT
i

gi Qi

)

= 0, i = 1, . . . , me,

W ·

(

ci gT
i

gi Qi

)

! 0, i = me + 1, . . . , m,

W11 = 1,

W{2,...,n+1} 1 = x,

W & 0.
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2500 R. GU ET AL.

As far as the authors know, there is no mature algorithm to solve a nonconvex quadratic positive

semidefinite programming problem. One can use one of the methods for solving DC problems to solve

problem (2.6). There have been many studies devoted to the theory of DC functions in the literature (see,

for example, Hiriart-Urruty, 1985, 1989). For DC algorithms (DCA) one can find references that use the

regularization approach (Fernández Cara & Moreno, 1988), the dual approach (Auchmuty, 1989), the

subgradient method (Dinh & Souad, 1986) and the proximal point algorithm (Sun et al., 2003). Le Thi &

Dinh (2018) offered a nice survey on the 30 years of developments of these theoretical and algorithmic

tools and provide more relevant information about DC and DCA.

Due to the NP-hardness we try to design an algorithm to find solutions satisfying the first-order

optimality conditions:

Q0x + g0 −
m
∑

i=1

αi(Qix + gi) = 0,

xTQix + 2gT
i x + ci + Qi · Z = 0, i = 1, . . . , me,

xTQix + 2gT
i x + ci + Qi · Z ! 0, i = me + 1, . . . , m,

αi ! 0, i = me + 1, . . . , m,

αi

(

xTQix + 2gT
i x + ci + Qi · Z

)

= 0, i = me + 1, . . . , m,
(

Q0 + P −
m
∑

i=1

αiQi

)

· Z = 0,

Z & 0,
(

Q0 + P −
m
∑

i=1

αiQi

)

& 0.

(3.1)

We propose the entire algorithmic framework in this section, including an algorithm for problems

with the penalty function and an algorithm on the update rules of P.

3.1 Proximal point algorithm

We choose the proximal point algorithm (PPA) proposed by Rockafellar (1976) to solve the penalty

problem (2.6). Sun et al. (2003) extended PPA to solve general DC. The basic properties of PPA

and applications of PPA in machine learning, statistics, data analysis, signal and image processing,

computational economics and finance, engineering design, scheduling and resource allocation and other

areas have been discussed by Parikh & Boyd (2014).

For our problem, to be more specific, we solve the following subproblem in the kth iteration:

(dk, Zk+1) = arg min
d∈Rn,Z∈Sn

L (xk + d, Z, P) + dTPd

s.t. (xk + d, Z) ∈ G,
(3.2)
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POSITIVE SEMIDEFINITE PENALTY METHOD 2501

where dTPd is the proximal term. Then we update

xk+1 = xk + dk.

In fact, problem (3.2) is a standard positive semidefinite programming problem, which can be

written as

min
d∈Rn,Z∈Sn

(

1 dT

d ddT + Z

)

·

(

0 (Q0xk + g0)
T

Q0xk + g0 Q0 + P

)

s.t.

(

1 dT

d ddT + Z

)

·

(

ci + 2gix
k + xkT

Qix
k (Qix

k + gi)
T

Qix
k + gi Qi

)

= 0, i = 1, . . . , me,

(

1 dv

d ddT + Z

)

·

(

ci + 2gix
k + xkT

Qix
k (Qix

k + gi)
T

Qix
k + gi Qi

)

! 0, i = me + 1, . . . , m,

Z & 0

(3.3)

or

min
d∈Rn,W∈Sn+1

W ·

(

0 (Q0xk + g0)
T

Q0xk + g Q0 + P

)

s.t. W ·

(

ci + 2gix
k + xkT

Qix
k (Qix

k + gi)
T

Qix
k + gi Qi

)

= 0, i = 1, . . . , me,

W ·

(

ci + 2gix
k + xkT

Qix
k (Qix

k + gi)
T

Qix
k + gi Qi

)

! 0, i = me + 1, . . . , m,

W11 = 1,

W{2,...,n+1} 1 = xk,

W & 0,

for easy understanding.

The above problem can be solved in polynomial time by various methods including off-the-shelf

software (for example, SDPT3, Toh et al., 2009, and SDPNAL+, Yang et al., 2015). Its solution
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2502 R. GU ET AL.

(d, Z, α, S) satisfies the first-order conditions as follows:

Q0(x
k + d) + g0 −

m
∑

i=1

αi

(

Qi(x
k + d) + gi

)

+ Pd = 0,

(xk + d)TQi(x
k + d) + 2gT

i (xk + d) + ci + Qi · Z = 0, i = 1, . . . , me

(xk + d)TQi(x
k + d) + 2gT

i (xk + d) + ci + Qi · Z ! 0, i = me + 1, . . . , m

αi ! 0, i = me + 1, . . . , m,

αi

(

(xk + d)TQi(x
k + d) + 2gT

i (xk + d) + ci + Qi · Z
)

= 0, i = me + 1, . . . , m,
(

Q0 + P −
m
∑

i=1

αiQi

)

· Z = 0,

Z & 0,
(

Q0 + P −
m
∑

i=1

αiQi

)

& 0.

(3.4)

Here, we present one ingredient in our algorithmic framework, which is an algorithm for solving the

penalty problem (2.6). The monotone descent property and convergence analysis of the algorithm are

given in Lemma 3.1 and Theorem 3.2.

Algorithm 3.1 Proximal point algorithm for penalty problem

Step 0: give the initial point x0.

Step 1: solve problem (3.3) to obtain dk.

Step 2: xk+1 := xk + dk.

Step 3: if the termination criteria is satisfied, stop.

Otherwise, k := k + 1, go to Step 1.

Lemma 3.1 Suppose that {xk} and {Zk} are generated by Algorithm 3.1; then

L (xk+1, Zk+1, P) " L (xk, Zk, P) − dkT
Pdk. (3.5)

Proof. Since for all k we have (xk, Zk) ∈ G, thus

L (xk+1, Zk+1, P) =
(

L (xk + dk, Zk+1, P) + (dk)TPdk
)

− (dk)TPdk

" L (xk, Zk, P) − (dk)TPdk.

Here, the inequality holds due to (3.2). #

Theorem 3.2 Suppose that {dk}, {xk} and {Zk} are generated by Algorithm 3.1. If the primal and

dual solutions {xk}, {Zk}, {αk}, {Sk} of (3.3) are bounded, where Sk = Q0 + P −
∑m

i=1 αk
i Qi, then {dk}

converges to 0 and any cluster point of {(xk, Zk, αk, Sk)} is a first-order stationary point of (2.6).
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POSITIVE SEMIDEFINITE PENALTY METHOD 2503

Proof. From (3.5) we know that

L (xk+1, Zk+1, P) " L (x0, Z0, P) −
k

∑

i=1

diTPdi. (3.6)

Due to the boundness assumption we have

∞
∑

i=1

diTPdi < +∞. (3.7)

Since P ≻ 0 thus di → 0.

Our boundedness assumptions imply that {(xk, Zk, αk, Sk)} has at least one cluster point. Let

(x̄, Z̄, ᾱ, S̄) be any one of the cluster points, and subsequence {(xik , Zik , αik , Sik)} → (x̄, Z̄, ᾱ, S̄). Taking

ik → ∞ in (3.4) we find that (x̄, Z̄, ᾱ, S̄) satisfies (3.1). #

3.2 Update of penalty

When solving the problem min(x,Z)∈G L (x, Z, P) we hope that the solution satisfies Z = 0. By putting

Z = 0 in the first-order conditions (3.1) we obtain

Q0x + g0 −
m
∑

i=1

αi(Qix + gi) = 0,

xTQix + 2gT
i x + ci = 0, i = 1, . . . , me,

xTQix + 2gT
i x + ci ! 0, i = me + 1, . . . , m,

αi ! 0, i = me + 1, . . . , m,

αi

(

xTQix + 2gT
i x + ci

)

= 0, i = me + 1, . . . , m,

(

Q0 + P −
m
∑

i=1

αiQi

)

& 0.

(3.8)

In fact, only the final equation of the above conditions contains P. This means that with any given

feasible x and α, (3.8) can be satisfied if P is sufficiently large. We consider a simple example, that is,

min xT

(

6 −3

−3 1

)T

x

s.t. xT

(

1 0

0 0

)

x −
(

1 0
)

x = 0,

xT

(

0 0

0 1

)

x −
(

0 1
)

x = 0.
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2504 R. GU ET AL.

There are four solutions satisfying the first five conditions of (3.8), which are

x(1) =
(

0 0
)T

, α
(1)
1 = 0, α

(1)
2 = 0,

x(2) =
(

1 1
)T

, α
(4)
1 = 6, α

(4)
2 = −4,

x(3) =
(

0 1
)T

, α
(3)
1 = 6, α

(3)
2 = 2,

x(4) =
(

1 0
)T

, α
(2)
1 = 12, α

(2)
2 = 6.

The global minimum is x(1). One may note that if P = 0, then none of the four solutions satisfy the last

condition of (3.8). The last condition of (3.8) is satisfied only by the first solution x(1), α
(1)
1 and α

(1)
2 if

P = I. If P = 2I the last condition of (3.8) is satisfied by the first two solutions. If P = 4I then the

last condition of (3.8) is satisfied by the first three solutions. Moreover, if P = 9I then all four solutions

satisfy (3.8).

We thus can see that, if P = 0, there is no solution satisfying the KKT condition. On the other hand,

if the initially selected P is too large (in the sense of P ≻≻ 0), Algorithm 3.1 might stop, with a high

probability, at a solution that is not the global minimizer. Therefore, we propose to update P iteratively,

rather than directly assigning a fixed and large P initially.

Notice that the penalty problem (2.6) is based on the Lagrangian function of problem (2.2)

corresponding to Z ' 0, where P is its dual variable. The update of P can be obtained from the update

criteria in the Lagrange relaxation method (Guignard, 2003).

We regard the optimal objective value of the penalty problem as a function of P:

z(P) := min
(x,Z)∈G

L (x, Z, P). (3.9)

Let (xk, Zk) be the optimal solution of z(Pk). In fact, Zk is the subgradient of z(P) at Pk.

Hence, we can increase Pk+1 along the Zk direction, that is,

Pk+1 = Pk + µZk. (3.10)

We would like to achieve L (xk+1, Zk+1, Pk+1) = minx∈F f (x), though xk+1, Zk+1 is unknown.

Nevertheless, we may use xk, Zk as an approximation. By the formula of approximation

L (xk, Zk, Pk+1) = min
x∈F

f (x),

we have

µ =

(

min
x∈F

f (x) − L (xk, Zk, Pk)

)

/‖Zk‖2
F .

Here, because minx∈F f (x) is unknown, we thus use its upper bound in the computation. For example,

we can generate a feasible solution x̄k ∈ F from xk and take the upper bound to be f (x̄k). For simple

constraints such as x2
i = 1, when xk

i ! 0, we let x̄k
i = 1, and when xk

i < 0, we let x̄k
i = −1.

For more complicated constraints, if a feasible solution can not be generated from xk, a good strategy

is to add µZk with a constant µ as shown in (3.10) or a fixed scalar multiple of the identity δI to P each

time.
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POSITIVE SEMIDEFINITE PENALTY METHOD 2505

In practice, adding µZk to Pk as in (3.10) usually offers better performance than adding a scalar

multiple of the identity matrix. Moreover, the combination µZk + δI is also a possible choice. We can

design different choices of the scalar for different problems.

We now present the framework of the positive semidefinite penalty method (PSDP) in

Algorithm 3.2.

Algorithm 3.2 PSDP

Step 0: let P0 = 0.

Step 1: compute (xk, Zk) = arg min
(x,Z)∈G

L (x, Z, Pk) by Algorithm 3.1.

Step 2: if the termination criteria are satisfied, stop. Otherwise, update Pk+1 by (3.10), k := k + 1, go

to Step 1.

When performing Step 1 one can use (xk−1, Zk−1) as an initial point if k ! 1. Notice that when

P0 = 0, min(x,Z)∈G L (x, Z, P0) is SDR. Consequently, Algorithm 3.1 converges in one step from any

initial point, which can be derived from KKT (3.4). Therefore, x0 in PSDP is the solution of SDR.

We note that Zk = 0 is one of the termination criteria, which means that Algorithm 3.2 finds a

feasible solution and does not find a better solution in the subsequent penalty updates. Another criterion

is L (xk, Zk, Pk) − minx∈F f (x) > 0 because it implies that Algorithm 3.1 obtains a bad solution

due to Lemma 2.2, and there is no need to implement more updates. In practice, minx∈F f (x) can be

approximated via generated {xk}. The maximum number of penalty updates can also be a criterion as

efficiency of the algorithm is very much affected by the number of updates taken. These termination

criteria are used in our numerical tests. Interestingly, we can see that the number of updates required for

a good solution is often small so that the added computational cost can be under control.

4. Numerical tests

In this section we report numerical results to demonstrate the performance of our proposed Algorithm

3.2 PSDP in terms of our proposed algorithm PSDP in terms of the quality of solutions. We solve two

kinds of problems, which are binary quadratic programming and binary quadratic equations. In these

tests PSDP is compared with the classic SDR.

4.1 Binary quadratic programming

We consider a binary quadratic programming given by

min
x∈Rn

xTQx + 2gTx

s.t. x2
i − xi = 0, i = 1, . . . , n.

The constraint x2
i − xi = 0 implies xi ∈ {0, 1}. The problem is known to be NP-hard (Garey &

Johnson, 1979). It has many applications such as capital budgeting and financial analysis problems

(Laughunn, 1970; McBride & Yormark, 1980), CAD problems (Krarup & Pruzan, 1978), traffic

message management problems (Gallo et al., 1980), machine scheduling (Alidaee et al., 1994) and

molecular conformation (Phillips & Rosen, 1994).
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In our test Q is a random real symmetric matrix. All the entries of Q are independent identically

distributed with expectation 0 and variance 1. For any xk generated in Algorithm 3.2 we obtain the

feasible solution by a binary thresholding (rounding off to 0 or 1); that is to say that we set

x̄k
i =







1 if xk
i ! 0.5,

0 if xk
i < 0.5.

(4.1)

The operation given in (4.1) of getting x̄k from xk is referred to as the feasibilization or rounding off. Let

f k
min = min

i!k
{ f (x̄i)}.

Then we update P by

Pk+1 = Pk + min

{

f k
min − L (xk, Zk, Pk)

‖Zk‖2
F

,
1

‖Zk‖F

}

Zk.

We set up L (xk, Zk, Pk) − f k
min > 0 and xk ∈ F as the termination criteria. By Lemma 2.2 the global

solution (xk
⋆, Zk

⋆) satisfies L (xk
⋆, Zk

⋆ , Pk)− f k
min " 0, thus the first criterion means that the current penalty

problem is badly solved, and the second implies that (xk, 0) is also the solution when P = Pk+1. If any

one of them happens the algorithm stops.

We first consider a 10-dimensional example, whose g equals 0 and Q equals

































–0.9651 1.5216 3.7664 1.9520 –2.0755 –2.3319 2.2988 2.5061 1.9154 0.0699

1.5216 –0.6166 –2.2228 0.6558 0.3684 –1.8922 0.2258 0.6925 0.2724 1.1700

3.7664 –2.2228 5.3272 0.6296 2.3014 –2.5600 0.9490 –0.5105 1.1118 1.3399

1.9520 0.6558 0.6296 –3.6934 –0.7679 –0.5153 0.7695 1.1351 –0.2931 0.6919

–2.0755 0.3684 2.3014 –0.7679 2.3713 1.0242 0.5173 –2.2794 0.3133 1.2249

–2.3319 –1.8922 –2.5600 –0.5153 1.0242 –2.0113 1.7500 1.2132 –1.1134 –0.9645

2.2988 0.2258 0.9490 0.7695 0.5173 1.7500 0.2394 0.8993 0.0229 –0.4947

2.5061 0.6925 –0.5105 1.1351 –2.2794 1.2132 0.8993 –1.4934 0.1274 –1.9524

1.9154 0.2724 1.1118 –0.2931 0.3133 –1.1134 0.0229 0.1274 4.8513 1.4164

0.0699 1.1700 1.3399 0.6919 1.2249 –0.9645 –0.4947 –1.9524 1.4164 –1.3388

































.

The optimal solution x⋆ is

(

0 1 1 1 0 1 0 0 0 0
)T

.

The solution of SDR is given below, with only four decimal places shown to save space, by

(

0.2504 0.7005 0.3709 0.7968 0.1731 0.9559 0.0002 0.2462 0.0474 0.4757
)T

.

With the feasibilization given by (4.1) the above is transformed into

(

0 1 0 1 0 1 0 0 0 0
)T

,
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Fig. 1. Convergence of a BQP instance.

which is not the global solution. In PSDP the solution of SDR corresponds to the first solution when

P0 = 0. Then we update P1 and obtain x1 =

(

0.1065 0.9441 0.6733 0.9696 0.0552 0.9945 0.0008 0.0299 0.0005 0.0056
)T

,

which is again shown with only four decimal places. With feasibilization, the round-off solution x̄1 is

(

0 1 1 1 0 1 0 0 0 0
)T

,

which is the optimal solution x⋆. When we focus only on the sequence {xk} but not the solutions

obtained by feasibilization (i.e. rounding off via (4.1)), we find that in the subsequent iterations, the

difference between xk and x⋆ drops gradually, then jumps to 1e−6 at the 24th iteration and remains

almost unchanged for the rest of the iterations as shown in Fig. 1. The error tolerance 1e−6 is also

used here to measure the accuracy of solving SDP subproblems. We regard xk as a feasible solution if

‖xk − x̄k‖ " 1e−6. Moreover, the jump in ‖xk − x̄k‖ gives an indication of the exact penalty.

This example illustrates that, rather than directly rounding off an SDR solution, our Algorithm 3.2

can offer a more systematic and effective way to make the solution feasible and get closer to a global

solution.

As additional examples we choose three different n (n = 10, 15, 20) and generate 50 random

examples for each n. For these 150 examples, Fig. 2 reports the numbers of examples in which PSDP

gets terminated within a suitable number of penalty updates. From Fig. 2 we see that PSDP satisfies the

stopping criteria within 51 updates of the penalty parameter for all the examples. In fact, the number of

penalty updates in PSDP can be further reduced if feasibilization is adopted. As shown in the example

stated earlier, the number of penalty updates is 24, but just 1 update is enough for us to obtain the global

solution when we consider rounding off the solutions via (4.1).
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Fig. 2. Number of penalty updates of PSDP for BQP.

Table 1 BQP: PSDP vs. SDR

n f = f OPT f > f OPT

f < f SDR f = f SDR Total f < f SDR f = f SDR Total

10 12 32 44 2 4 6
15 19 26 45 2 3 5
20 24 18 42 6 2 8

The comparison between PSDP and SDP in the tests is shown in Table 1. Here we consider only

the objective values of their solutions due to rounding off, where f represents the objective value of

the solution generated by PSDP, f SDR represents the objective value of the solution generated by SDR

and f OPT represents the optimal objective value. Since we use their solutions obtained by rounding off

we have f OPT " f SDR and f OPT " f . Moreover, SDR is the first step in PSDP; thus, we always have

f " f SDR. In this table we list the numbers of examples associated with the different cases. For instance,

when n = 20, of all the 50 examples, SDR gets 18 optimal solutions, while PSDP solves 42, which is 24

more than SDR. For the remaining 8 examples that PSDP is not able to globally solve, PSDP improves

in 6 of these examples on the basis of SDR and retains the same solutions as SDR in the other 2 cases.

We see from the Table 1 that, with the gradual increase of n, PSDP maintains the ability to find global

solutions.

In QPLIB (Furini et al., 2019) we find a total of 23 BQP instances. For each of the instances, we

show the first 11 rounding-off solutions of PSDP in Table 2. The first solution of PSDP is the same as

SDR, and the other 10 are from 10 penalty updates. In the table, instance numbers are the same as those

in QPLIB. ‘Vars’ is the number of variables and ‘Opt’ stands for the optimal objective value. The last

11 columns are the objective values of the solutions after rounding off. Since the 23 instances are all

maximization problems, the larger the objective value that one gets, the better the solution is.
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Table 2 shows that PSDP can improve the SDR solution with only one or two penalty updates.

Moreover, with only a few updates, the quality of the solution can be greatly improved, and even optimal

solution can be achieved. Therefore, it can be claimed that the number of P updates can be set to a small

number to reduce the calculation cost, yet a good solution can still be obtained.

4.2 Binary quadratic equations

We consider the following equations:

xTQix + ci = 0, i = 1, . . . , m,

x2
i − xi = 0, i = 1, . . . , n.

(4.2)

Similar to BQP this is also a problem of binary variables. It does not have an objective function but with

more general quadratic constraints. Again, it is NP-hard to find feasible solutions (Chermakani, 2012).

The binary quadratic equation (BQE) problem has applications, for example, in the unassigned

distance geometry problem. Determining the atomic positions in a nano-structure is one of the great

challenges in material science and engineering (Gu et al., 2019; Billinge & Levin, 2007). Unlike the

assigned distance geometry problem (1.3), the assignment of each distance is not given, such as in the

atomic pair distribution function data (Warren, 1969; Egami & Billinge, 2012). Here, we are concerned

with a two-dimensional periodic structure reconstruction problem. Suppose that the whole structure is

generated by repeating a unit cell which is a rectangle with a given size. Moreover, in the unit cell,

all the atoms appear at its integral lattice points. The defects of materials will make minor changes to

regular patterns, such as the disappearance of existing atoms or the production of new atoms. Our goal

is to determine the existence of an atom on each integer lattice point in the unit cell based on a given

distance list. Since distance is invariant under orthogonal transformation, this problem has infinitely

many solutions. Here we aim to find one of the solutions.

We take an example of a unit cell with size 3 by 3. We label the positions in this cell from

1 to 9 as




1 2 3

4 5 6

7 8 9



 .

The corresponding distance matrix D is































3 1 1 1
√

2
√

2 1
√

2
√

2

1 3 1
√

2 1
√

2
√

2 1
√

2

1 1 3
√

2
√

2 1
√

2
√

2 1

1
√

2
√

2 3 1 1 1
√

2
√

2√
2 1

√
2 1 3 1

√
2 1

√
2√

2
√

2 1 1 1 3
√

2
√

2 1

1
√

2
√

2 1
√

2
√

2 3 1 1√
2 1

√
2

√
2 1

√
2 1 3 1√

2
√

2 1
√

2
√

2 1 1 1 3































,

where Dij represents the distance between the two atoms at the ith and jth positions with consideration

of periodicity. Based on the elements of D we decompose D = A1 +
√

2A2 + 3A3, where every element

of A1, A2, A3 is either 0 or 1. Actually, what we observe are the total numbers of their different distances.
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If a distance exists, the atoms at both of its two ends must exist. Using this fact we regard x as a 0–1

vector, so the equations can be written as

xTA1x = b1,

xTA2x = b2,

xTA3x = b3,

x2
i − xi = 0, i = 1, . . . , 9.

(4.3)

Due to the equality of all positions we can assume that x1 = 1 when there exists at least one distance.

This reduces the number of variables.

We consider the unit cell




1 1 1

1 0 1

1 0 0



 .

This leads to b1 = 16, b2 = 14, b3 = 6 in (4.3). Since there is no prescribed objective function in this

problem we take the minimization of xTEx as the objective in SDR, where E is a matrix of all 1s. The

solution of SDR is

(

1.0000 0.6271 0.6271 0.6271 0.6229 0.6229 0.6271 0.6229 0.6229
)T

.

One may do the rounding off to get

(

1 1 1 1 0 0 1 0 0
)T

,

which is not the solution of (4.3). In our Algorithm 3.2 we update P by

Pk+1 = Pk + Zk.

Then we have x1 =

(

1.00 1.00 1.00 1.00 0.25 0.25 1.00 0.25 0.25
)T

and x2 =
(

1 1 1 1 0 1 1 0 0
)T

,

where x2 is the solution of (4.3).

We have tested more problems of sizes 3 by 3, 4 by 4 and 5 by 5. In the 4 by 4 case, besides 0–1

constraints, there are 6 quadratic equations. The same is true also in the 5 by 5 case. In Table 3 we use

‘tolnum’ to represent the total number of runs, ‘PSDP’ the number of cases solved by PSDP and ‘SDR’

the number of cases solved by SDR. We can see that SDR is not able to solve this kind of BQE problem

in general. PSDP can solve all 3 by 3 problems within 3 penalty updates and 4 by 4 problems within

7 penalty updates. For 5 by 5 examples it can solve 12056 cases within 201 penalty updates. The ratio

of success is 94%. Figure 3 reports the numbers of examples that PSDP can successfully solve within a

prescribed number of penalty updates. It shows that PSDP can solve 10897 examples within 40 penalty

updates, which represents 85% of all examples.
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Table 3 BQE: PSDP vs. SDR

Size tolnum PSDP SDR

3 by 3 11 11 2
4 by 4 306 306 1
5 by 5 12807 12056 3

Fig. 3. Number of penalty updates of PSDP for BQE with size of 5 by 5.

5. Conclusions

In this paper we considered the problem of solving QCQP. We proposed a penalty formulation for QCQP.

We studied theoretical exactness of the proposed penalty problem and its equivalence to QCQP. For

this penalty formulation, we proposed a proximal point algorithm and combined it with a Lagrangian

relaxation-type penalty update. Our numerical test contained two kinds of QCQP, such as BQP and

BQE, both of which are popular examples. It showed the effectiveness of the proposed PSDP algorithm

in finding global solutions.

We also viewed the SDR from a different angle, which is that SDR can be regarded as a penalty

function method with the penalty term being zero. Therefore, our penalty function method provides a

way to improve infeasible solutions from SDR. As we can see from our numerical tests, after several

penalty updates, PSDP can obtain a global solution. Moreover, one can sometimes get a better solution

than SDR through only one update.

Meanwhile, let us note that algorithms for solving the penalty problem deserve further investigation.

Due to the difficulty of solving a nonconvex SDP, the computational cost of our algorithm is still high.

It is thus desirable to develop robust and efficient algorithms for the penalty problem. Incorporating

penalty updates into the inner iteration may also be interesting to explore as well.
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