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This article reports the study of algorithms for non-negative matrix factorization

(NMF) in various applications involving smoothly varying data such as time or

temperature series diffraction data on a dense grid of points. Utilizing the

continual nature of the data, a fast two-stage algorithm is developed for highly

efficient and accurate NMF. In the first stage, an alternating non-negative least-

squares framework is used in combination with the active set method with a

warm-start strategy for the solution of subproblems. In the second stage, an

interior point method is adopted to accelerate the local convergence. The

convergence of the proposed algorithm is proved. The new algorithm is

compared with some existing algorithms in benchmark tests using both real-

world data and synthetic data. The results demonstrate the advantage of the

algorithm in finding high-precision solutions.

1. Introduction

Non-negative matrix factorization (NMF) (Paatero & Tapper,

1994; Lee & Seung, 1999) refers to the factorization of a

matrix approximately into the product of two non-negative

matrices with low rank, M ’ XY . It has become one of the

most popular multi-dimensional data processing tools in

various applications such as signal processing (Buciu, 2008),

biomedical engineering (Sra & Dhillon, 2006), pattern

recognition (Cichocki et al., 2009), computer vision and image

engineering (Buciu, 2008). More recently it has been applied

in the realm of crystallography, for example, to in situ time-

dependent diffraction measurements of synthesis (Liu et al.,

2021; Thatcher et al., 2022) and spatially resolved electron

diffraction maps (Rakita et al., 2023).

Lee & Seung (1999) initiated the study of NMF and

presented a method. Their method makes all decomposed

components non-negative and achieves nonlinear dimension

reduction at the same time. Developed by Lee & Seung (2001)

for NMF, their multiplicative update rule has been a popular

method due to the simplicity of its implementation.

A commonly used optimization formulation of M ’ XY is

to use the square of Euclidean distance (SED) as the objective

function, that is,

min
X2Rn!k;Y2Rk!m

1
2 kXY "Mk2F;

s:t: X # 0;

Y # 0:

ð1Þ

Many studies of NMF based on the above formulation have

focused on the use of different optimization approaches like
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the alternating non-negative least squares (ANLS) (Lin, 2007;

Kim & Park, 2008; Guan et al., 2012; Huang et al., 2015),

coordinate descent methods (Cichocki & Phan, 2009; Li &

Zhang, 2009) and the alternating direction method of multi-

pliers (ADMM) (Hajinezhad et al., 2016). A comprehensive

survey of various NMF models and many existing NMF

algorithms can be found in the work of Wang & Zhang (2012).

The NMF problem has been shown to be nonconvex and NP-

hard (Vavasis, 2009). The algorithms studied in the literature

can only guarantee the finding of a local minimum in general,

rather than a global minimum of the cost function. Although

Arora et al. (2016) presented a polynomial-time algorithm for

constant k, the order of the complexity of the algorithm is too

high to be applied in practice. Nevertheless, in many data

mining applications, solving high-quality local minima is often

desired with little time delay (Wang & Zhang, 2012; Gillis,

2020).

In this study, we are motivated by the application of NMF to

problems involving continually generated smoothly varying

data, which means data sampled progressively from smoothly

varying processes. The data might be stored offline but they

are assumed to have continuous distributions, such as those

obtained from the real-time monitoring of reaction products

in chemistry experiments and materials synthesis (Liu et al.,

2021; Todd et al., 2020). For example, Zhao et al. (2011)

measured X-ray diffraction data during the nucleation and

growth of zeolite-supported Ag nanoparticles through

reduction of Ag-exchanged mordenite (MOR), and then

processed the data with pair distribution function (PDF)

(Egami & Billinge, 2012) measurements. In the data, each

PDF is approximately represented by a vector representation

of n dimensions, which is recorded atm time instances in total.

We should note the key features of these continuously

distributed data: at any fixed time, the PDF is continuous in

the distance variable; meanwhile, at any fixed distance in the

PDF measurement, its value also has continuity in time;

moreover, the spatially distributed data at later times are

generated progressively following the data earlier in time. In

the AgMOR data used by Zhao et al. (2011), the dimensions

were n = 3000 and m = 36, where n is the length of each data

point, and m is the number of measurements. It was antici-

pated that there are three materials present in the reaction,

which means that k = 3. The focus of our study here is on

smoothly varying data in the particular regime of

n & m & k, with k being very small. This reflects the high

dimensionality of data in an individual measurement

(very large n) for systems with a relatively small number of

components k.

Another difference of this work from the study of NMF in

the field of machine learning is that in the applications

considered above, we focus on high-precision solutions. Due

to the nonconvexity of NMF, the algorithms mentioned above

often converge to a local solution of the problem. Because the

algorithm stops according to the stopping criterion, in general

it does not get an exact local solution. Thus, a high-precision

solution refers to the solution with an extremely small

difference from the exact local solution. It usually has an

extremely small deviation from the KKT (Karush–Kuhn–

Tucker) optimization constraints and an objective function

value that, when feasible, is barely higher than the objective

function value of the exact local solution.

In the above example, the results obtained by NMF

represent the PDF measurement data of several materials,

which are often used for subsequent atomic structure recon-

struction of materials (Juhás et al., 2006; Jensen et al., 2016; Gu

et al., 2019). In the process of atomic structure reconstruction,

high-precision PDF data are needed, because each peak in the

PDF represents the real atomic distance. Once there are errors

in the data, they will cause difficulties in the subsequent

scientific interpretation. Therefore, in this paper, we focus on

methods to quickly solve for the high-precision solution of

NMF when the data are smoothly varying.

Based on the motivation introduced above, our goal is to

obtain high-precision local solutions for smoothly varying data

with a relatively small scale, that is n ' 5000, m ' 200 and

k ' 10. Based on our observation, ANLS has a fast descent

rate on the objective function at the first few iterations. Due to

the continuity of smoothly varying data, we utilize the active

set method in ANLS, so that the number of changes of the

active set is very small and it takes a very small amount of

CPU time to solve the subproblem. This allows us quickly to

reach the vicinity of the local solution. However, the local

convergence rate of ANLS is only proved to be sublinear in

the nonconvex case (Beck & Tetruashvili, 2013), and in

practice it cannot meet our needs for high-precision solutions.

Therefore, we must use a second stage to accelerate the local

convergence. For this point, we find the interior point method

using Newton’s method to solve the KKT system is a good

choice. Previous researchers have never directly used the

interior point method for (1) because the computational cost

in each iteration is too large; however, in our application, the

dimension of the problem has favorable properties such that

the computational cost in each iteration is Oðnm2k3Þ in our

algorithm design, which is completely acceptable. Thus, we

propose to combine ANLS with the interior point method into

a two-stage algorithm. In the first stage, an active set method is

used for ANLS. In the second stage, a line search interior

point method is adopted to reach a fast local convergence.

It is worth mentioning that this paper is the first to

utilize the second-order interior point method as an NMF

algorithm and to apply it to practical problems. The proposed

two-stage algorithm combines the advantages of the ANLS

and interior point methods for the case of smoothly

varying data.

The organization of this paper is as follows. Section 2

introduces the first stage of our proposed algorithm, which is

based on the ANLS with an active set method for smoothly

varying data. Section 3 proposes the second stage of the

algorithm, which is a line search interior point method. Its

convergence is also discussed. Section 4 gives the whole

framework of our proposed two-stage algorithm to solve NMF

in smoothly varying data. Section 5 shows the efficiency of our

proposed algorithm by numerical tests. Section 6 concludes

this paper with discussions on some future concerns.
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2. ANLS framework and active set method

We first briefly review the ANLS framework for solving (1). In

ANLS, variables are simply divided into two groups, which are

then updated as outlined in Algorithm 1 (see Fig. 1).

Note that each subproblem can be split into a series of non-

negative least-square problems:

min
x

1
2 kCx" dk22;

s:t: x # 0:
ð2Þ

For C ¼ X, d corresponds to every column of M, while for

C ¼ YT, d takes every row of M.

Although the original problem in (1) is nonconvex, the

subproblems in Algorithm 1 are convex quadratic problems

whose optimal solutions can be found in polynomial time. In

addition, the convergence of Algorithm 1 to a stationary point

of (1) has been proved (Grippo & Sciandrone, 2000).

On the basis of the ANLS framework, many algorithms for

NMF have been developed, such as the active set method

(Kim & Park, 2008), projection gradient method (Lin, 2007),

projection Newton method (Gong & Zhang, 2012), projection

quasi-Newton method (Kim et al., 2007; Zdunek & Cichocki,

2006), Nesterov’s gradient method (Guan et al., 2012), and the

method combined with Barzilai–Borwein step size (Huang et

al., 2015).

Different from others, the active set method solves the

subproblem (2) exactly. The active set is defined as the set of

indexes whose elements in the solution vector are zero. The

active set method for solving the subproblem aims to find the

correct active set A of the optimal solution x*; then the value

of the inactive set I of x*, that is, the complement ofA, can be

obtained from x*I ¼ ðCT
ICI Þ

"1
CT

Id, and thereby x
* is solved. In

the process of the active set method, the active set is

constantly modified, and the above formula needs to be

computed repeatedly. Considering that the subproblems need

to solve for all d, and the active sets used in the computation

are sometimes the same, multiple subproblems can be solved

together in order to reduce computational cost. Kim & Park

(2008) introduced an algorithm based on ANLS and the active

set method. The constrained least-square problem in the

matrix form is decomposed into several independent non-

negative least-square problems with multiple right-hand side

vectors. Later, Kim & Park (2011) proposed an active-set-like

algorithm based on the ANLS framework. In their algorithm,

the single least squares are solved by the block principal

pivoting method, and the columns that have a common active

set are grouped together to avoid redundant computation of

Cholesky factorization in solving linear equations.

By noticing the continuity in smoothly varying data, when a

single least-square problem (2) is solved, the same C and

similar d may be used in the subsequent least square, resulting

in similar solutions with likely the same active set. Therefore,

we choose the active set method of Lawson & Hanson (1995)

to solve the least-square problem (2), using the solution and its

active set as the initial guess of the subsequent least square.

This strategy is called the warm-start strategy or continuation

technology, which is widely used in many algorithms and can

reasonably improve the effectiveness (Liu et al., 2016; Gold-

farb & Ma, 2011). We do not need to do any regrouping,

because the right-hand side vectors have been naturally

grouped due to the continuity in the data, and we just need to

solve them one by one sequentially. In fact, the active set of

the solution in the subsequent least square usually has no or

little change. When we solve the first set of equations in the

new least-square subproblem, the Cholesky factorization

performed in the previous step can be utilized to avoid

redundant computation. Numerically, we see that the active

set usually only changes on very few occasions or does not

change at all for the smoothly varying data under considera-

tion. Consequently, the first stage of our algorithm is chosen to

be a combination of the ANLS framework, active set method

and warm-start strategy, which builds upon the framework

given by Algorithm 1, and uses the approximate solution

already obtained previously as the initial value when solving

(2) by the active set method.

3. A line search interior point method for NMF

Interior point methods have proved to be successful for

various nonlinear optimizations and for linear programming.

In this section, we propose a line search interior point method

for solving NMF. Its global convergence and computational

cost are analyzed.

3.1. Algorithm

Given that the linear independence constraint qualification

(LICQ) holds for the NMF problem, the KKT conditions

(Kuhn & Tucker, 1951) for the problem can be written as

ðXY "MÞYT ¼ R;

XTðXY "MÞ ¼ S;

hR;Xi ¼ 0;

hS;Yi ¼ 0;

X # 0;Y # 0;R # 0; S # 0: ð3Þ

We denote x ¼ vecðXTÞ, y ¼ vecðYÞ, r ¼ vecðRTÞ, s ¼ vecðSÞ,

where vec transforms a matrix to a vector by expanding it by

columns. Meanwhile, we define the inverse operations

matðxÞ ¼ XT, matðyÞ ¼ Y , matðrÞ ¼ RT, matðsÞ ¼ S.
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Applying Newton’s method to the nonlinear system, in the

variables x, y, r, s, we obtain

Q1 CT "I

C Q2 "I

DiagðrÞ DiagðxÞ

DiagðsÞ DiagðyÞ

0

B

B

B

@

1

C

C

C

A

!x

!y

!r

!s

0

B

B

B

@

1

C

C

C

A

¼

r" graX

s" graY

!e"DiagðrÞx

!e"DiagðsÞy

0

B

B

B

@

1

C

C

C

A

; ð4Þ

with ! ¼ 0, where graX = vecðYðXY "MÞ
T
Þ, graY =

vecðXTðXY "MÞÞ, e is a vector of ones, DiagðxÞ constructs a

diagonal matrix with the diagonal elements given by x,

Q1 ¼

YYT

.
.

.

YYT

0

B

@

1

C

A
;

Q2 ¼

XTX

.
.

.

XTX

0

B

@

1

C

A
;

C ¼

XT
1;:Y

T
:;1 + + + XT

n;:Y
T
:;1

.

.

.
.
.

.
.
.

.

XT
1;:Y

T
:;m + + + XT

n;:Y
T
:;m

0

B

B

@

1

C

C

A

þ

ðX1;:Y:;1 "M1;1ÞI + + + ðXn;:Y:;1 "Mn;1ÞI

.

.

.
.
.

.
.
.

.

ðX1;:Y:;m "M1;mÞI + + + ðXn;:Y:;m "Mn;mÞI

0

B

B

@

1

C

C

A

; ð5Þ

where Xi;: is the ith row of X, and Y
:;j is the jth column of Y.

Let ! be strictly positive, then the variables x, y, r and s are

forced to take positive values. The trajectory

ðxð!Þ; yð!Þ; rð!Þ; sð!ÞÞ is called the primal-dual central path.

The variables are updated by

x ¼ xþ "1!x;

y ¼ yþ "1!y;

r ¼ rþ "2!r;

s ¼ sþ "2!s; ð6Þ

where "1 2 ð0;"max
1 -, "2 2 ð0;"max

2 -, and

"max
1 ¼ maxf" 2 ð0; 1- : xþ "!x # ð1" #Þx;

yþ "!y # ð1" #Þyg;

"max
2 ¼ maxf" 2 ð0; 1- : rþ "!r # ð1" #Þr;

sþ "!s # ð1" #Þsg; ð7Þ

with # 2 ð0; 1Þ. The condition (7) is called the fraction to the

boundary rule (Nocedal & Wright, 2006), which is used to

prevent the variables from approaching their lower bounds of

0 too quickly. In this work, we choose # ¼ 0:9.

A predictor or probing strategy (Nocedal & Wright, 2006)

can also be used to determine the parameter !. We calculate a

predictor (affine scaling) direction

ð!xaff;!yaff;!raff;!saffÞ

by setting ! ¼ 0. We probe this direction by letting ð"aff
1 ;"aff

2 Þ

be the longest step lengths that can be taken along the affine

scaling direction before violating the non-negativity condi-

tions ðx; y; r; sÞ # 0. Explicit formulas for these step lengths

are given by (7) with # ¼ 1. We then define !aff to be the value

of complementarity along the (shortened) affine scaling step,

that is,

!aff ¼ ½ðxþ "aff
1 !xÞ

T
ðrþ "aff

2 !rÞ

þ ðyþ "aff
1 !yÞ

T
ðsþ "aff

2 !sÞ-=ðnkþmkÞ; ð8Þ

and a heuristic choice of ! is defined as follows: ! ¼ $! and

$ ¼ min
!aff

ðxTrþ yTsÞ=ðnkþmkÞ

! "3

; 0:99

( )

: ð9Þ

We propose a two-level nested loop algorithm for the

interior point search. In the inner loop, the parameter ! is

fixed. In the outer loop, we gradually reduce ! to 0. We use the

following error function to break the inner loop, which is

based on the perturbed KKT system:

Eðx; y; r; s;!Þ ¼ maxfkððgraX " rÞ
T
; ðgraY " sÞ

T
Þ
T
k;

kððrTDiagðxÞ; sTDiagðyÞÞ " !eTÞ
T
kg: ð10Þ

To guarantee the global convergence of the algorithm, we

apply a line search approach. First, we consider the second

derivation of the interior point method associated with the

barrier problem:

min
X;Y

1

2
kXY "Mk2F " !

X

i;h

logðXi;hÞ " !
X

j;h

logðYh;jÞ:

We use the exact merit function in the same way as the barrier

function, which can be formed by

%ðx; yÞ ¼
1

2
kmatðxÞ

T
matðyÞ "Mk2F

" !
X

logðxiÞ " !
X

logðyjÞ:

In the algorithm, we utilize the Armijo line search to make the

merit function decrease sufficiently.

Considering the convexity of the Hessian, we approximate

Q1 CT

C Q2

! "

by a positive-definite matrix to guarantee the direction

ð!x;!yÞ is always a descent direction of %ðx; yÞ, so that such a

line search can be implemented. Notice that the original NMF

problem is a least-square problem. Thus we can utilize the

Hessian in the traditional Gauss–Newton algorithm. The

Hessian matrix is

Q1
"CCT

"CC Q2

! "
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and it is guaranteed to be positive semi-definite. Here

"CC ¼

XT
1;:Y

T
:;1 + + + XT

n;:Y
T
:;1

.

.

.
.
.

.
.
.

.

XT
1;:Y

T
:;m + + + XT

n;:Y
T
:;m

0

B

@

1

C

A
;

which is the first item of C. For further safeguarding, we add a

diagonal matrix &I to this Hessian, where & is a small positive

constant. Then we obtain the primal-dual direction by solving

Q1 þ &I "CCT "I

"CC Q2 þ &I "I

DiagðrÞ DiagðxÞ

DiagðsÞ DiagðyÞ

0

B

B

B

@

1

C

C

C

A

!x

!y

!r

!s

0

B

B

B

@

1

C

C

C

A

¼

r" graX

s" graY

!e"DiagðrÞx

!e"DiagðsÞy

0

B

B

B

@

1

C

C

C

A

: ð11Þ

By eliminating !r and !s in (11), we have

R1
"CCT

"CC R2

! "

!x

!y

! "

¼ "r%ðx; yÞ; ð12Þ

where

R1 ¼ Q1 þ &I þDiagðxÞ
"1
DiagðrÞ;

R2 ¼ Q2 þ &I þDiagðyÞ
"1
DiagðsÞ;

r%ðx; yÞ ¼ ðgraXT " !ðx"1Þ
T
; graYT " !ðy"1Þ

T
Þ
T
;

and DiagðxÞ
"1
e is simply represented by x"1. We simplify the

above formula by

Bp ¼ "r%ðx; yÞ;

where B represents the coefficient matrix and p represents the

direction ð!xT;!yTÞ
T
. Since B is positive-definite, the inner

product pTr%ðx; yÞ> 0, which means that p is a descent

direction.

To sum up all the approaches above, we present the whole

algorithm of the interior point method in Algorithm 2 (Fig. 2).

It contains two loops. The parameter ! is fixed in the inner

loop. Due to the Armijo line search (13) (Algorithm 2, see Fig.

2) in the inner loop, the stopping criterion of the inner loop

can be satisfied in finite iterations. Further, the parameter !

and '! are reduced gradually, and by the definition of error

function E, the solutions of the two-loop algorithm satisfy the

KKT system (3) within the error 'TOL. In practice, the barrier

stop tolerance can be defined as

'! ¼ !:

The complete convergence theorem and its proof are given in

Theorem 3.1.

Theorem 3.1. Suppose that all the sequences fxlg, fylg, frlg, fslg

generated by Algorithm 2 are bounded. Then Algorithm 2

stops in finite iterations.

Proof. We will consider the inner loop first and show that for a

given !> 0, Eðxl; yl; rl; sl;!Þ ' '! will be satisfied in finite

iterations.

Based on the Armijo line search rule (13) (Algorithm 2),

the value of %ðxl; ylÞ decreases monotonously. Then we have

that the lower bound of xl and yk is greater than a strictly

positive constant that depends on !. Thus the smallest

eigenvalue of the coefficient matrix of (12) is greater than a

constant greater than 0. Furthermore, using the boundedness

of ðxl; ylÞ, we obtain that ð!xl;!ylÞ is bounded. According to

the lower bound of xl; yl, the boundedness of ð!xl;!ylÞ and

(7), we have

inf "max
1 > 0: ð14Þ

According to the step size rule (13) (Algorithm 2), we have

"1ð!xTl ;!yTl Þr%ðxl; ylÞ ! 0:

We aim to prove

ð!xTl ;!yTl Þr%ðxl; ylÞ ! 0 ð15Þ

next. To prove it by contradiction, we

suppose that

ð!xTl ;!yTl Þr%ðxl; ylÞ 6! 0: ð16Þ

This means that there exists a subse-

quence T and a constant a> 0 such that

"ð!xTl ;!yTl Þr%ðxl; ylÞ> a; ð17Þ

for l 2 T . Due to the boundedness of

fðxl; ylÞgl2T , there exists a subsequence

T 1 2 T such that fðxl; ylÞgl2T 1
converges

to ð"xx; "yyÞ. By (16) and (17), we have

f"l
1gl2T 1

! 0:

According to (14),

"l
1 < inf "max

1 ;
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when l 2 T 1 is large enough. For simplicity, we redefine the

sequence satisfying the above condition as T 1. From the step

size rule, the condition (13) (Algorithm 2) is violated by

"1 ¼ 2"l
1. We have

ð%ðxl þ 2"l
1!xl; yl þ 2"l

1!ylÞ " %ðxl; ylÞÞ=ð2"
l
1Þ

> (ð!xTl ;!yTl Þr%ðxl; ylÞ: ð18Þ

Taking the limit of the above inequality, we obtain

ð!"xxTl ;!"yyTl Þr%ð"xxl; "yylÞ # (ð!"xxTl ;!"yyTl Þr%ð"xxl; "yylÞ:

Due to 0< (< 1, it follows that ð!"xxTl ;!"yyTl Þr%ð"xxl; "yylÞ # 0. On

the other hand, ð!xTl ;!yTl Þr%ðxl; ylÞ< 0. Therefore,

ð!"xxTl ;!"yyTl Þr%ð"xxl; "yylÞ ¼ 0, which is in contradiction to (16). So

(15) is established.

From (12) and (15), it follows that

r%ðxl; ylÞ ! 0

and

ð!xl;!ylÞ ! 0:

Then, according to (11), we obtain

!rl ! !x"1
l " rl;

!sl ! !y"1
l " sl:

For an arbitrary cluster point ð"xx; "yyÞ, for any )! > 0, there exists

a constant * such that

kðx*; y*Þ " ð"xx; "yyÞk ' )!;

and

k!rl þ rl " !x"1
l k ' )!;

k!sl þ sl " !y"1
l k ' )!;

kð!xl;!ylÞk ' )!;

kr%ðxl; ylÞk ' )!

for all l # *. Due to the boundedness of ðxl; ylÞ, "
l
2 can reach 1

for some l :¼ "ll ' *þ T " 1, where T is a constant. Then it

follows from

kð"xx; "yyÞ " ðx"ll; y"llÞk ' T)!

that

kr"ll " !x"1
"ll
k ' c)!;

ks"ll " !y"1
"ll
k ' c)!;

where c is constant. Therefore, for a given '! > 0, let )! be

sufficiently small; then there exists an l such that

Eðxl; yl; rl; sl;!Þ ' '!.

We denote the sequence satisfying the inner loop stopping

criterion by

fðxl; yl; rl; slÞgl2S:

To prove the theorem by contradiction, we suppose that there

is no point satisfying the outer loop stopping criterion

Eðxl; yl; rl; sl; 0Þ ' 'TOL. Due to the boundedness, there exists

a cluster point of fðxl; yl; rl; slÞgl2S. For any cluster point

ð"xx; "yy; "rr; "ssÞ, we consider the limits on both sides of

Eðxl; yl; rl; sl;!Þl2T 2
' '!;

then we have that

Eð"xx; "yy; "rr; "ss; 0Þ ¼ 0:

Thus Algorithm 2 stops at some l 2 T 2, which is a contra-

diction. Therefore, Algorithm 2 stops in finite iterations. &

3.2. Computation

In general, the computational cost in each iteration of the

interior point method is usually the cubic power of its size,

which is impractical for large-scale problems. However, for the

special NMF problem under consideration here, the amount of

computation can be greatly reduced, so that the proposed

method can be applied to practical problems involving

smoothly varying data. In the following, we analyze the

computational cost of Algorithm 2.

First of all, to compute the gradient in (1), OðnmkÞ flops are

needed.

The main computational cost of Algorithm 2 is computing

the primal-dual direction (11). One can solve (12) to obtain

ð!x;!yÞ first, and then compute ð!r;!sÞ within a low

cost.

We rewrite (12) as

"QQ1
"CCT

"CC "QQ2

! "

!x

!y

! "

¼
b1
b2

! "

: ð19Þ

In order to minimize the computational cost, we first decom-

pose "QQ1. "QQ1 ¼ PTP can be obtained by Cholesky factorization

or eigenvalue decomposition. Since the matrix "QQ1 is composed

of n positive-definite diagonal blocks with the size of k ! k,

one can obtain P and P"1 within Oðnk3Þ flops. Equation (19) is

equivalent to

I P"T "CCT

"CCP"1 "QQ2

! "

P!x

!y

! "

¼
P"Tb1
b2

! "

:

Then we solve !y from

ð "QQ2 " ð "CCP"1Þð "CCP"1Þ
T
Þ!y ¼ b2 " ð "CCP"1ÞðP"Tb1Þ; ð20Þ

and compute !x by

!x ¼ P"1ðP"Tb1 " ð "CCP"1Þ
T
!yÞ:

We need Oðnmk2Þ flops for constructing "CC and Oðnmk3Þ flops

for computing "CCP"1. By considering that each block of "CC is

rank one, we can compute "CCP"1 within Oðnmk2Þ flops. The

dominant computation is the computation of ð "CCP"1Þð "CCP"1Þ
T

which costsOðnm2k3Þ flops. If we consider that each block of "CC

is rank one, it can be reduced toOðnm2k2Þ flops. When solving

(20) by Cholesky factorization, since the size of the coefficient

matrix is mk by mk, the computational cost is Oðm3k3Þ. Other

computations, like computing the right side of (20) and

computing !x, are Oðnmk2Þ flops.

To sum up, the computation cost of Algorithm 2 in each

iteration isOððnþmkÞm2k2Þ. Compared with the computation

of gradient OðnmkÞ, the cost is no more than Oðmk2Þ times.
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Since n & m & k and k is usually very small in our smoothly

varying data, the computational complexity is completely

acceptable.

4. A two-stage algorithm for NMF on smoothly varying
data

In this section, we propose a practical algorithm with fast

convergence for solving NMF in smoothly varying data. It

combines both the ANLS framework with the active set

method and the interior point method proposed in the

previous sections.

In the early stage of the algorithm, we use the ANLS

framework with the active set method. It can reduce the value

of the objective function rapidly. We use the relative step

tolerance, which is a relative lower bound on the size of a step,

meaning

kðxl; ylÞ " ðxlþ1; ylþ1Þk ' 'STOLð1þ kðxl; ylÞkÞ;

as the stopping criterion of this stage. If the algorithm attempts

to take a step that is smaller than the step tolerance, the

iterations end.

At the end of the first phase, the algorithm then enters the

second phase of using the interior point method. However, the

solutions from the active set method usually contain elements

with a value zero, which is incompatible with the strict interior

point required by the interior point method. Meanwhile, we

also need to provide the initial dual variables ðr; sÞ to the

interior point method. To address these issues, we first change

the primal variable smaller than &0 to &0 by

ðx; yÞ :¼ maxfðx; yÞ; &0g; ð21Þ

where &0 is a small positive constant. We can choose

&0 ¼ 10"6 maxfðx; yÞg; ð22Þ

before implementing (21).

Next, we give the initial value of the dual variable by

r ¼ maxfjgraXjge;

s ¼ maxfjgraYjge: ð23Þ

We set the parameters

! ¼
xTrþ yTs

mkþ nk
ð24Þ

and

& ¼ 'TOL: ð25Þ

After these preparations, the algorithm enters its second stage

by implementing Algorithm 2. As the Hessian matrix is

approximated in Algorithm 2 by the positive-definite matrix

Q1 þ &I "CC
"CC Q2 þ &I

! "

; ð26Þ

in order to further speed up convergence, we can change "CC

back to C at the right time. A heuristic way to switch to

Q1 þ &I C

C Q2 þ &I

! "

ð27Þ

is by monitoring $, which is given in (9). A small $ implies that

the predictor step generates a point close to the boundary, and
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Figure 3
Algorithm 3: a fast two-stage algorithm.



thus it is likely to be close to a local minimum. Therefore,

when

$ ' $c;

we switch to (27), where $c is a user-supplied constant, and we

set $c ¼ 0:01 in our test. The computation of the primal-dual

direction is similar to that using "CC. The difference is that each

block of C is no longer rank one, and thus the computational

cost is Oðnm2k3Þ flops. Since (27) is not guaranteed to be

positive-definite, the primal-dual direction using (27) may not

be a descent direction. We check the negativity of

ð!xTl ;!yTl Þr%ðxl; ylÞ

in (13) (Algorithm 2) before we implement the line search. If

we fail to obtain a descent direction, we switch to the positive-

definite Hessian (26).

All elements of the above approaches are presented in our

two-stage algorithm, as outlined in Algorithm 3 (Fig. 3).

5. Numerical tests

We test our two-stage algorithm 2-STAGE and compare it

with other ANLS-based methods, including NeNMF (Guan et

al., 2012), QRPBB (Huang et al., 2015), ANLS-BPP (Kim &

Park, 2011) and IBPG-A (Le et al., 2020). All the tests are

performed usingMATLAB 2020a on a computer with a 64-bit

system and 2.70 GHz CPU. Comparisons are done on both

synthetic data sets and real-world problems.

5.1. Stopping criterion

The KKT conditions of (1) are given in (3). The definition of

the error function Eðx; y; r; s; 0Þ (10) measures the violation of

the KKT conditions. Therefore, we set

Eðx; y; r; s; 0Þ ' 'TOL

to be the stopping criterion, where

'TOL ¼ 10"6:

The ANLS-based algorithms do not generate the dual vari-

ables r and s. Here we give a reasonable definition that

r ¼ maxfgraX; 0g;

s ¼ maxfgraY; 0g:

Since all the algorithms compared in this section belong to the

class of feasible methods, the value of the objective function

can also be used to assess the quality of the solution. There-

fore, a stopping criterion can also be given by making the error

between the objective function and the optimal solution less

than 1e-6. When one of the above two criteria is satisfied, the

algorithm can stop.

In some cases, we also limit the maximum CPU time, in

cases where some algorithms cannot reach the given accuracy.

5.2. Streaming AgMOR PDF data

Zhao et al. (2011) measured the X-ray diffraction data

during the nucleation and growth of zeolite-supported Ag

nanoparticles through reduction of Ag-exchanged mordenite

(MOR), and processed the data with atomic PDF measure-

ments. In the field of chemistry, more and more people use

mathematical tools to analyze their measured data. Chapman

et al. (2015) used principal component analysis (PCA) and

some post-processing to analyze the data given by Zhao et al.

(2011), and obtained three principal components. Since PDF is

a distribution-type function, NMF is intuitively more applic-

able as introduced by Liu et al. (2021). This is a representative

instance that satisfies our definition of smoothly varying data

and is also the data type we mainly want to apply our algo-

rithm to. Then, we will test the effectiveness of our algorithm

in smoothly varying data for this example.

We simply remove the negativity of the raw data by shifting

each PDF up by the opposite of its original minimum value.

Then we perform the NMF algorithms on the data. The size of
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Figure 4
CPU time (s) versus tolerance values on AgMOR data.

Figure 5
Comparison of true solution and approximate solution of AgMOR data
on one component PDF.



the data is n = 3000,m = 36, and in the algorithms k is set to be

3 based on the analysis of Chapman et al. (2015).

We use the same initial point for each algorithm. The

relationship between the difference between the objective

function f ¼ 1
2 kXY "Mk2F and the optimal value f * with the

CPU time of the five algorithms is shown in Fig. 4. We can see

that in the active set method part of 2-STAGE, the CPU time

of each iteration of the algorithm decreases gradually. This is

because the initial value is random and does not have conti-

nuity. With the gradual continuity of iterative variables, the

active set method combined with the warm-start strategy we

designed begins to play its role. It can be seen that the

performances of NeNMF, ANLS-BPP and our 2-STAGE

algorithm are similar in the early stage, IBPG-A is faster than

them, and the decline of function value for QRPBB is the most

obvious. After the active set method, there is an increase of

error function value in 2-STAGE, because our algorithm

begins to enter the second stage and the variables start to

experience significant fluctuations later, which is caused by the

instability of the early iterations of the interior point method

before becoming stabilized on the central path. After several

iterations, 2-STAGE becomes stable and converges quickly to

meet the termination criterion. For this instance, 2-STAGE

has a linear local convergence rate, while the others are sub-

linear as observed in Fig. 4.

In addition to the theoretically calculated differences given

by the algorithm, the hidden operation of MATLAB also has

serious effects on the CPU time. It is widely known that

MATLAB optimizes the operation of the whole matrix, but

different from QRPBB and IBPG-A, our active set method

divides the matrix before the operation, which will produce a

lot of additional CPU time. The latter could lead to disad-

vantages for us. The same trouble arises with the interior point

method. As mentioned before, in theory, the dominant

computation is ð "CCP"1Þð "CCP"1Þ
T
with Oðnm2k3Þ flops, but in

reality, the dominant computation is to construct "CCP"1 with a

theoretically estimated Oðnmk3Þ flops, and the actual CPU

time is multiple times of ð "CCP"1Þð "CCP"1Þ
T
. This is because

constructing "CCP"1 cannot be performed through the overall

operation of the matrix in MATLAB. Even if 2-STAGE

suffers losses in the underlying operation of MATLAB, the

superiority of 2-STAGE is still shown in this benchmark of

tests.

Next, we generate ten different random initial points. For

each of them, all algorithms are implemented. The results are

shown in Table 1. Because none of the three algorithms

compared with the 2-STAGE algorithm can meet the stopping

criterion in a short time, we set the maximum running CPU

time as 20 s. Table 1 presents the average, minimum and

maximum CPU time, the KKT violation E and the objective
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Table 2
Experimental results on synthetic smoothly varying data.

Tol. = tolerance. Values in bold are the fastest for that group of data.

Tol. Algorithm cpu(s):avrg(min,max) E:avrg(min,max) f:avrg(min,max)

1e-3 NeNMF 25.41(2.06,60.00) 3.46(1.60,7.03)e-2 2.973909(2.973686,2.975458)
QRPBB 3.05(0.47,13.93) 1.88(0.45,5.31)e-3 2.989887(2.973676,3.007711)
ANLS-BPP 25.34(14.36,40.38) 1.79(1.56,2.01)e-2 2.973691(2.973691,2.973691)
IBPG-A 14.76(1.32,33.16) 2.47(0.14,4.36)e-2 2.973681(2.973663,2.973691)
2-STAGE 1.03(0.70,1.31) 8.71(4,45,17.12)e-1 2.972952(2.972724,2.973229)

1e-4 NeNMF 35.07(3.05,60.00) 1.26(0.30,2.96)e-2 2.973208(2.972791,2.975458)
QRPBB 12.68(0.87,60.00) 1.01(0.06,2.43)e-3 2.975399(2.972790,2.993992)
ANLS-BPP 50.87(38.83,60.00) 4.93(2.98,7.38)e-3 2.972877(2.972791,2.973043)
IBPG-A 25.20(1.55,60.00) 7.31(0.32,14.89)e-3 2.972799(2.972790,2.972876)
2-STAGE 1.04(0.70,1.33) 4.41(0.94,9.41)e-1 2.972724(2.972693,2.972757)

1e-5 NeNMF 39.46(4.04,60.00) 7.45(1.89,29.56)e-3 2.973161(2.972701,2.975458)
QRPBB 22.15(1.68,60.00) 1.51(0.07,0.43)e-4 2.973254(2.972701,2.976984)
ANLS-BPP 60.00(60.00,60.00) 4.00(1.51,7.38)e-3 2.972838(2.972709,2.973043)
IBPG-A 27.25(1.79,60.00) 1.82(0.25,4.31)e-3 2.972732(2.972701,2.972876)
2-STAGE 1.06(0.72,1.36) 7.74(3.54,13.13)e-2 2.972693(2.972692,2.972697)

1e-6 NeNMF 40.68(6.50,60.00) 6.19(0.68,29.56)e-3 2.973158(2.972692,2.975458)
QRPBB 25.35(1.83,60.00) 1.25(0.19,2.69)e-4 2.973245(2.972692,2.976984)
ANLS-BPP 60.00(60.00,60.00) 4.00(1.51,7.38)e-3 2.972838(2.972709,2.973043)
IBPG-A 28.00(2.04,60.00) 6.19(2.49,13.70)e-4 2.972726(2.972692,2.972876)
2-STAGE 1.08(0.74,1.36) 2.70(0.98,8.98)e-2 2.972691(2.972691,2.972691)

Table 1
Experimental results on AgMOR data.

Algorithm cpu(s):avrg(min,max) E:avrg(min,max) f:avrg(min,max)

NeNMF 20.00(20.00,20.00) 1.64(1.27,1.93)e-2 5.37246(5.37232,5.37262)e+2
QRPBB 20.00(20.00,20.00) 2.25(0.09,11.63)e-4 5.37223(5.37205,5.37246)e+2
ANLS-BPP 20.00(20.00,20.00) 1.23(0.05,1.67)e-2 5.37232(5.37205,5.37246)e+2
IBPG-A 20.00(20.00,20.00) 2.13(0.22,3.30)e-3 5.37232(5.37205,5.37245)e+2
2-STAGE 1.03(0.81,1.60) 5.04(1.36,9.98)e-7 5.37205(5.37205,5.37205)e+2



function value of each algorithm. It can be seen that our

algorithm always has the minimum KKT violation and the

minimum objective function value. It has a great advantage in

finding a high-precision solution within a short amount of

time.

In Table 1, the relative differences between the final value

of the objective function obtained by 2-STAGE and those

obtained by the other methods are less than 0.01%. One might

wonder whether this is a truly significant difference for this

application. In fact, the solution contains three PDFs as

components, and one of them is very different from the real

solution. We compare the solution with the function value of

5.37237e+2 solved by QRPBB in Fig. 4 with the true solution

with the function value of 5.37205e+2, as shown in Fig. 5. It is

obvious that many peaks are totally inconsistent with the true

solution. This shows the necessity of solving high-precision

solutions in this application. Therefore, it is of great signifi-

cance to apply 2-STAGE to NMFof the smoothly varying data

considered in our context.

5.3. Synthetic smoothly varying data

We artificially synthesize smoothly varying data to more

comprehensively test the performance of the algorithms. The

data are generated via the formula M ¼ XY , where X is the

concatenation of Gaussian mixture functions and Y is

constructed by trigonometric functions. In detail, each column

of X is the function values of a Gaussian mixture function on

the grids from 0.01 to ub ¼ 0:01n with a separation of 0.01.

The number of Gaussian functions is ub, and each is uniformly

distributed between 1 and ub" 1. The standard deviation

satisfies a uniform distribution of 0.2 to 0.4, and the intensity is

a uniform distribution of 0 to 1. Each row of Y contains the

function values of maxfA sinð!yþ ’Þ;"0:1g on the y grids

from +=m to + with a separation of +=m. The frequency ! and

the amplitude A are uniformly distributed over 1 to 2, and the

phase ’ is uniformly distributed over 0 to 2+. The threshold

"0.1 indicates a noise level. Intuitively, the data generated in

this way are similar to the PDF data we encountered in the
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Figure 6
Performance profile on synthetic smoothly varying data with different tolerances, where the tolerance is 1e-3 at the top left, 1e-4 at the top right, 1e-5 at
the bottom left and 1e-6 at the bottom right.



previous subsection, because X is the sum of Gaussian func-

tions, which has some relationship with PDF (Gu et al., 2019),

and Y is to simulate the weight change of each component.

The problem size in this synthetic test is fixed as

ðn ¼ 3000;m ¼ 36; k ¼ 3Þ, which is the same as for the

AgMOR PDF data we used in the last subsection. Table 2

shows the results of a randomly generated instance with ten

initial points. The tolerances in the stopping criterion are set as

1e-3, 1e-4, 1e-5 and 1e-6. At the tolerance level of 1e-3,

NeNMF reaches the maximum time of 60 s. In terms of

average time, 2-STAGE is the best. When the tolerance

reaches 1e-4, all algorithms except 2-STAGE reach 60 s in a

subset of instances. We can see that 2-STAGE can reach the

tolerance from 1e-3 to 1e-6 in a very short amount of CPU

time, thanks to its fast local convergence rate.

Next, 100 randomly generated problems are tested for each

tolerance level. The performance profile is shown in Fig. 6.

&sð#Þmeans the proportion of problems in which the algorithm

can stop within a certain CPU time in each problem, with the

number being # times the smallest CPU time in such a problem

among all algorithms in the test. In the case of 1e-3, 2-STAGE

is similar to IBPG-A in the low # range (# ' 2), but for a large

# range, the curve of 2-STAGE is above other algorithms,

which means that 2-STAGE is more efficient and robust than

the other algorithms. With the reduction of tolerance, that is,

to solve the solution with higher precision, the advantage of

2-STAGE shown in Fig. 6 becomes more obvious.

5.4. Synthetic non-smoothly varying data

Theoretically, the 2-STAGE approach in finding high-

precision solutions gains its advantage from the second stage

interior point method and special data size. In this subsection,

we artificially synthesize some random data for testing the

theoretical predictions. These tests no longer use smoothly

varying data, but the dimension of the data remains

n & m & k.

We construct a set of artificial data by the following rule.

First, we determine the problem size ðn;m; kÞ. Then, we

generate a random matrix X whose size is n! k, and each
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Figure 7
Experimental tests on synthetic data with different size, where ðn;m; kÞ is (2000, 100, 3) at the top left, (2000, 200, 3) at the top right, (4000, 100, 3) at the
bottom left and (2000, 100, 6) at the bottom right.



element is uniformly distributed from 0 to 1. In the same way,

we generate a random matrix Y whose size is k!m. Next, we

computeM ¼ XY and add Gaussian noise, with expectation 0

and standard deviation 0.1, to each element of M. Finally, we

change the negative elements in M to zeros.

The differences between the objective function and the

optimal value of the five algorithms are plotted against the

CPU time in Fig. 7. Due to the non-continuity of the randomly

generated matrix, the active set method in the first stage

cannot fully realize the benefits brought by its warm-start

strategy; thus its speed is not as fast as that of the other

algorithms.

One can observe from Fig. 7 that the local convergence

rates of all algorithms appear to be linear. It can be easily seen

that the convergence speed of 2-STAGE in the later second

stage is the fastest since the slope is significantly steeper than

the others. This means that to get higher-precision solutions, it

is more appropriate to choose 2-STAGE.

From the comparison between 2-STAGE and other algo-

rithms in Fig. 7, the influence of any changes with m and n on

the local convergence speed is small. The influence of k is

relatively large, and the increase of k is not favorable to

2-STAGE.

More results are shown in Table 3, where n is set to 2000 or

4000, m is set to 100 or 200, k is set to 3 or 6, tolerance is 1e-6,

and each instance has ten initial points. It can be seen from the

table that the final objective function f of all algorithms in each

instance is equal, while the KKT error E does not meet the

specified requirements. Therefore, they all stop because they

meet the termination criterion of the objective function.

Interestingly, in the tests, QRPBB usually has a smaller E,

while E of 2-STAGE is usually large because at the beginning

of the second stage, the initial value of the dual variable is far

from the optimal solution. In the iterative process, the primal

variable reaches the optimal faster than the dual variable.

Therefore, E is still large when the objective function

decreases to the termination criterion. However, we know that

the interior point method has a fast local convergence rate,

and E can achieve the accuracy of other algorithms in only one

or two iterations.
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Table 3
Experimental results on synthetic non-smoothly varying data.

Values in bold are the fastest for that group of data.

Size(n,m,k) Algorithm cpu(s):avrg(min,max) E:avrg(min,max) f:avrg(min,max)

(2000,100,3) NeNMF 2.02(1.70,2.49) 2.56(2.26,2.93)e-3 9.57337(9.57337,9.57337)e+2
QRPBB 0.98(0.76,1.24) 1.72(0.02,6.05)e-4 9.57337(9.57337,9.57337)e+2
ANLS-BPP 1.96(1.63,2.49) 2.57(2.33,2.87)e-3 9.57337(9.57337,9.57337)e+2
IBPG-A 1.00(0.88,1.22) 5.99(5.29,6.89)e-4 9.57337(9.57337,9.57337)e+2
2-STAGE 0.69(0.57,0.79) 3.97(0.47,15.94)e-3 9.57337(9.57337,9.57337)e+2

(2000,100,6) NeNMF 20.74(13.32,28.35) 5.72(3.72,10.13)e-4 9.38620(9.38620,9.38620)e+2
QRPBB 11.75(8.51,17.68) 9.11(5.17,15.86)e-5 9.38620(9.38620,9.38620)e+2
ANLS-BPP 17.40(13.08,21.77) 7.76(5.82,8.72)e-4 9.38620(9.38620,9.38620)e+2
IBPG-A 6.63(4.97,8.37) 2.42(1.94,3.05)e-4 9.38620(9.38620,9.38620)e+2
2-STAGE 4.38(3.21,6.37) 9.80(3.30,27.70)e-3 9.38620(9.38620,9.38620)e+2

(2000,200,3) NeNMF 5.92(3.97,11.64) 1.23(1.09,1.71)e-3 1.95720(1.95720,1.95720)e+3
QRPBB 6.62(3.19,9.22) 2.38(0.40,5.81)e-5 1.95720(1.95720,1.95720)e+3
ANLS-BPP 8.55(4.93,17.01) 1.24(1.08,1.75)e-3 1.95720(1.95720,1.95720)e+3
IBPG-A 8.81(4.41,12.97) 3.46(2.92,4.06)e-4 1.95720(1.95720,1.95720)e+3
2-STAGE 1.78(1.35,3.34) 3.78(0.31,8.51)e-3 1.95720(1.95720,1.95720)e+3

(2000,200,6) NeNMF 15.02(12.47,22.12) 8.14(5.95,9.58)e-4 1.94330(1.94330,1.94330)e+3
QRPBB 12.15(9.06,15.64) 5.38(3.79,12.54)e-5 1.94330(1.94330,1.94330)e+3
ANLS-BPP 15.65(10.79,22.72) 9.73(7.56,10.48)e-4 1.94330(1.94330,1.94330)e+3
IBPG-A 8.74(5.58,11.01) 3.54(3.18,3.82)e-4 1.94330(1.94330,1.94330)e+3
2-STAGE 8.55(7.02,11.13) 1.90(0.31,5.32)e-2 1.94330(1.94330,1.94330)e+3

(4000,100,3) NeNMF 6.62(5.12,8.19) 1.98(1.85,2.08)e-3 1.91702(1.91702,1.91702)e+3
QRPBB 3.53(3.27,3.89) 6.94(1.66,1.23)e-5 1.91702(1.91702,1.91702)e+3
ANLS-BPP 6.36(5.55,6.82) 1.96(1.83,2.11)e-3 1.91702(1.91702,1.91702)e+3
IBPG-A 3.17(2.95,3.36) 3.36(3.08,3.63)e-4 1.91702(1.91702,1.91702)e+3
2-STAGE 1.47(1.27,1.80) 6.14(0.74,19.00)e-3 1.91702(1.91702,1.91702)e+3

(4000,100,6) NeNMF 22.32(15.98,29.65) 1.25(0.84,1.42)e-3 1.87715(1.87715,1.87715)e+3
QRPBB 13.74(9.85,20.91) 8.66(1.44,1.96)e-5 1.87715(1.87715,1.87715)e+3
ANLS-BPP 15.56(11.47,19.96) 1.38(1.11,1.59)e-3 1.87715(1.87715,1.87715)e+3
IBPG-A 6.34(5.18,8.00) 3.19(2.75,4.41)e-4 1.87715(1.87715,1.87715)e+3
2-STAGE 7.72(6.12,10.58) 2.54(0.47,5.77)e-2 1.87715(1.87715,1.87715)e+3

(4000,200,3) NeNMF 12.84(11.06,14.71) 2.10(1.92,2.29)e-3 3.91802(3.91802,3.91802)e+3
QRPBB 6.19(4.93,7.01) 9.62(6.74,14.00)e-5 3.91802(3.91802,3.91802)e+3
ANLS-BPP 12.04(10.27,13.35) 2.05(1.92,2.27)e-3 3.91802(3.91802,3.91802)e+3
IBPG-A 7.95(6.02,9.19) 4.74(4.39,5.45)e-4 3.91802(3.91802,3.91802)e+3
2-STAGE 3.03(2.73,3.48) 8.07(1.94,24.68)e-3 3.91802(3.91802,3.91802)e+3

(4000,200,6) NeNMF 22.39(18.36,24.59) 1.23(1.00,1.41)e-3 3.87687(3.87687,3.87687)e+3
QRPBB 14.95(10.12,17.59) 2.04(0.17,3.98)e-4 3.87687(3.87687,3.87687)e+3
ANLS-BPP 22.27(20.48,23.80) 1.58(1.35,1.90)e-3 3.87687(3.87687,3.87687)e+3
IBPG-A 10.16(7.39,12.49) 4.76(4.41,5.26)e-4 3.87687(3.87687,3.87687)e+3
2-STAGE 17.37(16.47,19.61) 1.26(0.41,4.52)e-2 3.87687(3.87687,3.87687)e+3



Now we compare the CPU time of these algorithms in Table

3. QRPBB, IBPG-A and 2-STAGE generally take less time

than NeNMFand ANLS-BPP. When k = 3, the performance of

2-STAGE stands out: the CPU time is always the shortest, and

the relative gap is large compared with other algorithms.

However, when k = 6, the CPU time increment of 2-STAGE is

higher than that of other algorithms. Although the CPU time

of 2-STAGE is still the lowest in the two instances when n =

2000, the trend no longer holds and is reversed by IBPG-A

when n = 4000. In particular, when n = 4000 and m = 200,

2-STAGE only ranks third. This also confirms that 2-STAGE is

greatly affected by the problem size, especially k.

Generally speaking, the performance of 2-STAGE in

getting a high-precision solution truly stands out, when k is

small and the size of the problem satisfies n & m & k. From

the current test examples with the specially chosen problem

size, the local convergence of 2-STAGE is the fastest, which

shows that 2-STAGE is the strongest in the pursuit of solution

precision.

6. Conclusions

In this paper, we focused on solutions to the NMF for

smoothly varying data. We presented a fast two-stage algo-

rithm, where the first stage is the ANLS framework with the

active set method which benefits from the continuity of

smoothly varying data, and the second stage is a line search

interior point method which benefits from n & m & k. In

addition, we have proved the global convergence of the

proposed line search interior point method. The first stage

reduces the value of the objective function rapidly, and the

second stage converges to a local solution quickly due to the

property of Newton-type direction. We tested the proposed

algorithm on several real and synthetic data sets, and observed

that, compared with other algorithms, our algorithm is more

effective in solving high-precision local solutions.

The active set method in the first stage does not reach the

expected speed, even if it is tested on continuous data. We

think that this may be caused by the limitations of the

underlying code implementation in MATLAB. On the other

hand, we find that the transition part between the two stages

may induce instability. This is because the solution of the

active set method cannot be directly used as the initial guess of

the interior point method, and its changes have an impact on

stability. At present, the parameters used to generate starting

points are selected carefully to avoid the instability. In the

future, we will work to find a more stable transition technique.

Considering that, in addition to the basic NMF model, there

are other variants of NMF, such as constrained NMFs and

structured NMFs, our algorithm has the potential to be

applicable to more problems through suitable extension. This

will be further investigated in the future.
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