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temperature series diffraction data on a dense grid of points. Utilizing the
Keywords: non-negative matrix factorization; continual nature of the data, a fast two-stage algorithm is developed for highly
smoothly varying data; pair distribution func- efficient and accurate NMF. In the first stage, an alternating non-negative least-

tion; interi int thod. . . . . . . .
fon; tterior point metho squares framework is used in combination with the active set method with a

warm-start strategy for the solution of subproblems. In the second stage, an
interior point method is adopted to accelerate the local convergence. The
convergence of the proposed algorithm is proved. The new algorithm is
compared with some existing algorithms in benchmark tests using both real-
world data and synthetic data. The results demonstrate the advantage of the
algorithm in finding high-precision solutions.

1. Introduction

Non-negative matrix factorization (NMF) (Paatero & Tapper,
1994; Lee & Seung, 1999) refers to the factorization of a
matrix approximately into the product of two non-negative
matrices with low rank, M >~ XY. It has become one of the
most popular multi-dimensional data processing tools in
various applications such as signal processing (Buciu, 2008),
biomedical engineering (Sra & Dhillon, 2006), pattern
recognition (Cichocki et al., 2009), computer vision and image
engineering (Buciu, 2008). More recently it has been applied
in the realm of crystallography, for example, to in situ time-
dependent diffraction measurements of synthesis (Liu ef al.,
2021; Thatcher et al, 2022) and spatially resolved electron
diffraction maps (Rakita et al., 2023).

Lee & Seung (1999) initiated the study of NMF and
presented a method. Their method makes all decomposed
components non-negative and achieves nonlinear dimension
reduction at the same time. Developed by Lee & Seung (2001)
for NMF, their multiplicative update rule has been a popular

o7 NN method due to the simplicity of its implementation.
0% ANLS-8PP A commonly used optimization formulation of M >~ XY is
L ~2ESTAGE to use the square of Euclidean distance (SED) as the objective
. Z function, that is,
i min LIXY - M2,
6 XeR™ K yeRkm
00 o s.t. X >0, @
8 Y >0.
‘0-‘50 2 4 6 8 10
cpu time(s) Many studies of NMF based on the above formulation have

focused on the use of different optimization approaches like
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the alternating non-negative least squares (ANLS) (Lin, 2007,
Kim & Park, 2008; Guan et al., 2012; Huang et al., 2015),
coordinate descent methods (Cichocki & Phan, 2009; Li &
Zhang, 2009) and the alternating direction method of multi-
pliers (ADMM) (Hajinezhad et al., 2016). A comprehensive
survey of various NMF models and many existing NMF
algorithms can be found in the work of Wang & Zhang (2012).
The NMF problem has been shown to be nonconvex and NP-
hard (Vavasis, 2009). The algorithms studied in the literature
can only guarantee the finding of a local minimum in general,
rather than a global minimum of the cost function. Although
Arora et al. (2016) presented a polynomial-time algorithm for
constant k, the order of the complexity of the algorithm is too
high to be applied in practice. Nevertheless, in many data
mining applications, solving high-quality local minima is often
desired with little time delay (Wang & Zhang, 2012; Gillis,
2020).

In this study, we are motivated by the application of NMF to
problems involving continually generated smoothly varying
data, which means data sampled progressively from smoothly
varying processes. The data might be stored offline but they
are assumed to have continuous distributions, such as those
obtained from the real-time monitoring of reaction products
in chemistry experiments and materials synthesis (Liu et al.,
2021; Todd et al, 2020). For example, Zhao et al. (2011)
measured X-ray diffraction data during the nucleation and
growth of zeolite-supported Ag nanoparticles through
reduction of Ag-exchanged mordenite (MOR), and then
processed the data with pair distribution function (PDF)
(Egami & Billinge, 2012) measurements. In the data, each
PDF is approximately represented by a vector representation
of n dimensions, which is recorded at m time instances in total.
We should note the key features of these continuously
distributed data: at any fixed time, the PDF is continuous in
the distance variable; meanwhile, at any fixed distance in the
PDF measurement, its value also has continuity in time;
moreover, the spatially distributed data at later times are
generated progressively following the data earlier in time. In
the AgMOR data used by Zhao et al. (2011), the dimensions
were n = 3000 and m = 36, where # is the length of each data
point, and m is the number of measurements. It was antici-
pated that there are three materials present in the reaction,
which means that £ = 3. The focus of our study here is on
smoothly varying data in the particular regime of
n > m > k, with k being very small. This reflects the high
dimensionality of data in an individual measurement
(very large n) for systems with a relatively small number of
components k.

Another difference of this work from the study of NMF in
the field of machine learning is that in the applications
considered above, we focus on high-precision solutions. Due
to the nonconvexity of NMF, the algorithms mentioned above
often converge to a local solution of the problem. Because the
algorithm stops according to the stopping criterion, in general
it does not get an exact local solution. Thus, a high-precision
solution refers to the solution with an extremely small
difference from the exact local solution. It usually has an

extremely small deviation from the KKT (Karush-Kuhn-—
Tucker) optimization constraints and an objective function
value that, when feasible, is barely higher than the objective
function value of the exact local solution.

In the above example, the results obtained by NMF
represent the PDF measurement data of several materials,
which are often used for subsequent atomic structure recon-
struction of materials (Juhas et al., 2006; Jensen et al., 2016; Gu
et al., 2019). In the process of atomic structure reconstruction,
high-precision PDF data are needed, because each peak in the
PDF represents the real atomic distance. Once there are errors
in the data, they will cause difficulties in the subsequent
scientific interpretation. Therefore, in this paper, we focus on
methods to quickly solve for the high-precision solution of
NMF when the data are smoothly varying.

Based on the motivation introduced above, our goal is to
obtain high-precision local solutions for smoothly varying data
with a relatively small scale, that is n < 5000, m < 200 and
k < 10. Based on our observation, ANLS has a fast descent
rate on the objective function at the first few iterations. Due to
the continuity of smoothly varying data, we utilize the active
set method in ANLS, so that the number of changes of the
active set is very small and it takes a very small amount of
CPU time to solve the subproblem. This allows us quickly to
reach the vicinity of the local solution. However, the local
convergence rate of ANLS is only proved to be sublinear in
the nonconvex case (Beck & Tetruashvili, 2013), and in
practice it cannot meet our needs for high-precision solutions.
Therefore, we must use a second stage to accelerate the local
convergence. For this point, we find the interior point method
using Newton’s method to solve the KKT system is a good
choice. Previous researchers have never directly used the
interior point method for (1) because the computational cost
in each iteration is too large; however, in our application, the
dimension of the problem has favorable properties such that
the computational cost in each iteration is O(nm?k*) in our
algorithm design, which is completely acceptable. Thus, we
propose to combine ANLS with the interior point method into
a two-stage algorithm. In the first stage, an active set method is
used for ANLS. In the second stage, a line search interior
point method is adopted to reach a fast local convergence.
It is worth mentioning that this paper is the first to
utilize the second-order interior point method as an NMF
algorithm and to apply it to practical problems. The proposed
two-stage algorithm combines the advantages of the ANLS
and interior point methods for the case of smoothly
varying data.

The organization of this paper is as follows. Section 2
introduces the first stage of our proposed algorithm, which is
based on the ANLS with an active set method for smoothly
varying data. Section 3 proposes the second stage of the
algorithm, which is a line search interior point method. Its
convergence is also discussed. Section 4 gives the whole
framework of our proposed two-stage algorithm to solve NMF
in smoothly varying data. Section 5 shows the efficiency of our
proposed algorithm by numerical tests. Section 6 concludes
this paper with discussions on some future concerns.
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2. ANLS framework and active set method

We first briefly review the ANLS framework for solving (1). In
ANLS, variables are simply divided into two groups, which are
then updated as outlined in Algorithm 1 (see Fig. 1).

Note that each subproblem can be split into a series of non-
negative least-square problems:

. 2
min  4)1Cx — d3,
s.t. x>0.

@

For C = X, d corresponds to every column of M, while for
C = Y7, d takes every row of M.

Although the original problem in (1) is nonconvex, the
subproblems in Algorithm 1 are convex quadratic problems
whose optimal solutions can be found in polynomial time. In
addition, the convergence of Algorithm 1 to a stationary point
of (1) has been proved (Grippo & Sciandrone, 2000).

On the basis of the ANLS framework, many algorithms for
NMF have been developed, such as the active set method
(Kim & Park, 2008), projection gradient method (Lin, 2007),
projection Newton method (Gong & Zhang, 2012), projection
quasi-Newton method (Kim et al., 2007; Zdunek & Cichocki,
2006), Nesterov’s gradient method (Guan et al., 2012), and the
method combined with Barzilai-Borwein step size (Huang et
al., 2015).

Different from others, the active set method solves the
subproblem (2) exactly. The active set is defined as the set of
indexes whose elements in the solution vector are zero. The
active set method for solving the subproblem aims to find the
correct active set A of the optimal solution x*; then the value
of the inactive set Z of x*, that is, the complement of A, can be
obtained from x% = (CFC;)~'Cld, and thereby x* is solved. In
the process of the active set method, the active set is
constantly modified, and the above formula needs to be
computed repeatedly. Considering that the subproblems need
to solve for all d, and the active sets used in the computation
are sometimes the same, multiple subproblems can be solved
together in order to reduce computational cost. Kim & Park
(2008) introduced an algorithm based on ANLS and the active
set method. The constrained least-square problem in the
matrix form is decomposed into several independent non-
negative least-square problems with multiple right-hand side
vectors. Later, Kim & Park (2011) proposed an active-set-like
algorithm based on the ANLS framework. In their algorithm,

Algorithm 1 Alternating nonnegative least squares (ANLS)
Repeat until stopping criteria are satisfied

min 1| XY - M|%,

XER”XL-,
s.t. X >0.
. 1 2
v, zIXY =M,
s.t. Y >0.
end
Figure 1

Algorithm 1: alternating non-negative least squares (ANLS).

the single least squares are solved by the block principal
pivoting method, and the columns that have a common active
set are grouped together to avoid redundant computation of
Cholesky factorization in solving linear equations.

By noticing the continuity in smoothly varying data, when a
single least-square problem (2) is solved, the same C and
similar d may be used in the subsequent least square, resulting
in similar solutions with likely the same active set. Therefore,
we choose the active set method of Lawson & Hanson (1995)
to solve the least-square problem (2), using the solution and its
active set as the initial guess of the subsequent least square.
This strategy is called the warm-start strategy or continuation
technology, which is widely used in many algorithms and can
reasonably improve the effectiveness (Liu et al., 2016; Gold-
farb & Ma, 2011). We do not need to do any regrouping,
because the right-hand side vectors have been naturally
grouped due to the continuity in the data, and we just need to
solve them one by one sequentially. In fact, the active set of
the solution in the subsequent least square usually has no or
little change. When we solve the first set of equations in the
new least-square subproblem, the Cholesky factorization
performed in the previous step can be utilized to avoid
redundant computation. Numerically, we see that the active
set usually only changes on very few occasions or does not
change at all for the smoothly varying data under considera-
tion. Consequently, the first stage of our algorithm is chosen to
be a combination of the ANLS framework, active set method
and warm-start strategy, which builds upon the framework
given by Algorithm 1, and uses the approximate solution
already obtained previously as the initial value when solving
(2) by the active set method.

3. A line search interior point method for NMF

Interior point methods have proved to be successful for
various nonlinear optimizations and for linear programming.
In this section, we propose a line search interior point method
for solving NMF. Its global convergence and computational
cost are analyzed.

3.1. Algorithm

Given that the linear independence constraint qualification
(LICQ) holds for the NMF problem, the KKT conditions
(Kuhn & Tucker, 1951) for the problem can be written as

(XY —M)YT =R,
XT(XY — M) =S,

(R,X) =0,
($,Y)=0,
X>0,Y>0,R>0,8§>0. 3)

We denote x = vec(XT), y = vec(Y), r = vec(RT), s = vec(S),
where vec transforms a matrix to a vector by expanding it by
columns. Meanwhile, we define the inverse operations
mat(x) = X7, mat(y) = Y, mat(r) = RT, mat(s) = S.
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Applying Newton’s method to the nonlinear system, in the
variables x, y, r, s, we obtain

0, CT -1 Ax
C 0, —1 Ay
Diag(r) Diag(x) Ar
Diag(s) Diag(y) As
r—graX
s —graY

we — Diag(r)x
pe — Diag(s)y
with =0, where graX = vec(Y(XY —M)"), gra¥ =

vec(XT(XY — M)), e is a vector of ones, Diag(x) constructs a
diagonal matrix with the diagonal elements given by x,

Yy?
0, = )
YY?
X'x
0,= )
XTXx
XLY5 XY
C= . .
XYl XYoo
(X1.Y., — M) (X, Y1 — M, )I
+ E E NS

(Xl,:Y:,m - Ml,m)I (X 'Y:,m - Mn,m)l

where X; . is the ith row of X, and Y ; is the jth column of Y.

Let u be strictly positive, then the variables x, y, r and s are
forced to take positive values. The trajectory
(x(), y(u), r(), s(w)) is called the primal-dual central path.
The variables are updated by

x =x+ o Ax,

y=y+ady,
r=r+a,Ar,
s =5+ a,As, (6)

where o; € (0, af"™], a, € (0, &5**], and

o™ =max{x € (0,1] : x + aAx > (1 — 7)x,
y+aldy = (1 -1y},

o™ =max{a € (0,1] : r+ aAr > (1 — r,
s+ alAs > (1 — 1)s}, (7)

with t € (0, 1). The condition (7) is called the fraction to the
boundary rule (Nocedal & Wright, 2006), which is used to
prevent the variables from approaching their lower bounds of
0 too quickly. In this work, we choose T = 0.9.

A predictor or probing strategy (Nocedal & Wright, 2006)
can also be used to determine the parameter w. We calculate a
predictor (affine scaling) direction

(Axa[[ Aya[[ Ara[[ Asa[[)

by setting u = 0. We probe this direction by letting (e, a3™)
be the longest step lengths that can be taken along the affine
scaling direction before violating the non-negativity condi-
tions (x, y, r, s) > 0. Explicit formulas for these step lengths
are given by (7) with T = 1. We then define 1 to be the value
of complementarity along the (shortened) affine scaling step,
that is,

W = [(x + 2" Ax)T(r + T Ar)
+ (v + i Ay) (s + " As))/(nk + mk),  (8)

and a heuristic choice of u is defined as follows: © = o and

o ot 3
o= mln{ ((xTr )kt mk)) , 0.99}. )

We propose a two-level nested loop algorithm for the
interior point search. In the inner loop, the parameter w is
fixed. In the outer loop, we gradually reduce u to 0. We use the
following error function to break the inner loop, which is
based on the perturbed KKT system:

E(x,y, r,s; ) = max{||((graX —r)", (gra¥ —s5)")"[,
I((r" Diag(x), s"Diag(y)) — pe")" [} (10)

To guarantee the global convergence of the algorithm, we
apply a line search approach. First, we consider the second
derivation of the interior point method associated with the
barrier problem:

1 )
min sy IXY = MG = e ) log(X,y) = 1 ]Zh log(Y},)

We use the exact merit function in the same way as the barrier
function, which can be formed by

Bx. ) = 5 Imat() mat(y) — M

— 1) log(x) = ) log(y)).

In the algorithm, we utilize the Armijo line search to make the
merit function decrease sufficiently.
Considering the convexity of the Hessian, we approximate

(¢ 5)
c 0

by a positive-definite matrix to guarantee the direction
(Ax, Ay) is always a descent direction of ¢(x, y), so that such a
line search can be implemented. Notice that the original NMF
problem is a least-square problem. Thus we can utilize the
Hessian in the traditional Gauss-Newton algorithm. The

HeSSian matrix iS
< C )
C Q2
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and it is guaranteed to be positive semi-definite. Here
XY XY
c=1 = )
which is the first item of C. For further safeguarding, we add a

diagonal matrix pf to this Hessian, where p is a small positive
constant. Then we obtain the primal-dual direction by solving

Q +pl C" —1 Ax
C Q, + pl -1 Ay
Diag(r) Diag(x) Ar
Diag(s) Diag(y) As

r — graX

s —graY

= . 11
we — Diag(r)x (1)

pe — Diag(s)y
By eliminating Ar and As in (11), we have

R, CT\/( Ax
(5 E)(5)-woen

R, = Q, + pI + Diag(x) ' Diag(r),
R, = O, + pl + Diag(y)~'Diag(s),
Vo(x, y) = (graX " — u(x)', gra¥" — (v,

and Diag(x) e is simply represented by x~\. We simplify the
above formula by

where

Bp = —V¢(X, )’),

where B represents the coefficient matrix and p represents the
direction (AxT, AyT)". Since B is positive-definite, the inner
product pTVe(x,y) >0, which means that p is a descent
direction.

To sum up all the approaches above, we present the whole
algorithm of the interior point method in Algorithm 2 (Fig. 2).
It contains two loops. The parameter p is fixed in the inner
loop. Due to the Armijo line search (13) (Algorithm 2, see Fig.
2) in the inner loop, the stopping criterion of the inner loop
can be satisfied in finite iterations. Further, the parameter u
and €, are reduced gradually, and by the definition of error
function E, the solutions of the two-loop algorithm satisfy the
KKT system (3) within the error e1g; . In practice, the barrier
stop tolerance can be defined as

€, = I

The complete convergence theorem and its proof are given in
Theorem 3.1.

Theorem 3.1. Suppose that all the sequences {x,}, {y,}, {r;}, {s;}
generated by Algorithm 2 are bounded. Then Algorithm 2
stops in finite iterations.

Proof. We will consider the inner loop first and show that for a
given u >0, E(x;,y,r,s; 1) < €, will be satisfied in finite
iterations.

Based on the Armijo line search rule (13) (Algorithm 2),
the value of ¢(x,, y;) decreases monotonously. Then we have
that the lower bound of x; and y, is greater than a strictly
positive constant that depends on p. Thus the smallest
eigenvalue of the coefficient matrix of (12) is greater than a
constant greater than 0. Furthermore, using the boundedness
of (x,, y,), we obtain that (Ax;, Ay,) is bounded. According to
the lower bound of x,, y,, the boundedness of (Ax;, Ay,) and
(7), we have

inf o™ > 0. (14)
According to the step size rule (13) (Algorithm 2), we have
@, (Ax], Ay )V(x;, y,) = 0.

We aim to prove

Algorithm 2 A line search interior point method

(Ax], Ay)V(x,y) — 0 (15)

Initialize: Choose xg, Y0, 70,50 > 0, Select an initial barrier parameter > 0, parame-

ters 7,0 € (0,1), and decreasing tolerances ¢, | 0 and eror,. Set | = 0.

Repeat until E(zy,y;, 11, 81;0) < eror
Repeat until E(x;, y;, 11, 515 10) < €4
Compute the primal-dual direction by solving (11).
Compute of** and o5 using (7).
Backtrack step lengths a1 = %a‘fwx,ag = ay'®*

to find the smallest integer ¢ > 0 satisfying

o(x + a1 Az, y + a1 Ay;)
< ¢, y1) + nar(Azf, Ay V(i ).

Compute (z!+1 y+1 71 s1+1) using (6).

next. To prove it by contradiction, we
suppose that

(Ax], Ay )Ve(x,, y) /0. (16)

This means that there exists a subse-
quence 7 and a constant a > 0 such that

—(Ax], AyDVP(x,, y) >a,  (17)

(13) for [ € T. Due to the boundedness of
{(x;, ¥)}ier, there exists a subsequence
T, € T such that {(x;, y))},c7, converges
to (x, y). By (16) and (17), we have

{all }leTl — 0.

According to (14),

Set 1 :=1+1.
end
Compute parameter o using (8) and (9) and update u = op.
end
Figure 2

Algorithm 2: a line search interior point method.

o < inf o™,

Acta Cryst. (2023). A79, 203-216

Ran Gu et al.

207

+ A fast algorithm for non-negative matrix factorization



research papers

when [ € 7 is large enough. For simplicity, we redefine the
sequence satisfying the above condition as 7 ;. From the step
size rule, the condition (13) (Algorithm 2) is violated by
a, = 2a). We have

(Pp(x, + 20511 Axp; y + 20‘11 Ay)) — Plx;, }’1))/(20‘4)

> n(Ax], Ay )V(x,, y)- (18)

Taking the limit of the above inequality, we obtain

(A%, AY)VG(E,, 31) = (A%, AY)VH(E,, 7).

Due to 0 < 17 < 1, it follows that (AX], Ay[)Veé(x;, y;) > 0. On
the other hand, (Ax], Ay))Veé(x,,y,) <0. Therefore,
(AX], AyD)Vé(x;, y,) = 0, which is in contradiction to (16). So
(15) is established.

From (12) and (15), it follows that

V(x;, y) —> 0
and
(Ax;, Ay) — 0.
Then, according to (11), we obtain
Ar,— pxt =,
As, — uy; ' —s,.

For an arbitrary cluster point (¥, y), for any §, > 0, there exists
a constant « such that

IG5, ¥) = @ P < 8y,
and
1Ar +r = pxi 'l < 8,
1A, + 51— iy Il < 8,
I(Ax;, Ay)ll <6,
IVo(x,, y)Il < 6,
for all / > k. Due to the boundedness of (x;, y,), &, can reach 1

for some [ :=1 <k+ T —1, where T is a constant. Then it
follows from

G, y) — Gyl < T6,
that

—1
lrg — px; |l < €6,

lls; — pyi Il < ¢8,,,

where c is constant. Therefore, for a given €, >0, let §, be
sufficiently small; then there exists an [ such that
EQx, yi, 1185 1) < €

We denote the sequence satisfying the inner loop stopping
criterion by

{Ce yis 11y S Yes

To prove the theorem by contradiction, we suppose that there
is no point satisfying the outer loop stopping criterion
E(x;, y;, 11,85 0) < €rop- Due to the boundedness, there exists
a cluster point of {(x;,y,, 7, s)},cs. For any cluster point
(x,y,7,5), we consider the limits on both sides of

E(xp, yi, 1 855 Wher, < €4,
then we have that
E(x,y,r,5,0)=0.

Thus Algorithm 2 stops at some / € 7,, which is a contra-
diction. Therefore, Algorithm 2 stops in finite iterations. O

3.2. Computation

In general, the computational cost in each iteration of the
interior point method is usually the cubic power of its size,
which is impractical for large-scale problems. However, for the
special NMF problem under consideration here, the amount of
computation can be greatly reduced, so that the proposed
method can be applied to practical problems involving
smoothly varying data. In the following, we analyze the
computational cost of Algorithm 2.

First of all, to compute the gradient in (1), O(nmk) flops are
needed.

The main computational cost of Algorithm 2 is computing
the primal-dual direction (11). One can solve (12) to obtain
(Ax, Ay) first, and then compute (Ar, As) within a low
cost.

We rewrite (12) as

0, C"\(Ax\ _ (b
(o)E)-6G) w

In order to minimize the computational cost, we first decom-
pose Q,. O, = P"P can be obtained by Cholesky factorization
or eigenvalue decomposition. Since the matrix Q, is composed
of n positive-definite diagonal blocks with the size of k X k,
one can obtain P and P! within O(nk?) flops. Equation (19) is
equivalent to

( I P_TCT><PAx> _ <PTb1)
cr! 0, Ay ) b, '
Then we solve Ay from
(Q, = (CPTYCP YDAy = by, = (CPTH(PTThy).  (20)
and compute Ax by
Ax =P (P b, — (CPH)T Ay).

We need O(nmk?) flops for constructing C and O(nmk?) flops
for computing CP~'. By considering that each block of C is
rank one, we can compute CP~! within O(nmk?) flops. The
dominant computation is the computation of (CP~')(CP~')"
which costs O(nm?*k®) flops. If we consider that each block of C
is rank one, it can be reduced to O(nm?k?*) flops. When solving
(20) by Cholesky factorization, since the size of the coefficient
matrix is mk by mk, the computational cost is O(m*k?). Other
computations, like computing the right side of (20) and
computing Ax, are O(nmk?) flops.

To sum up, the computation cost of Algorithm 2 in each
iteration is O((n + mk)m?k?). Compared with the computation
of gradient O(nmk), the cost is no more than O(mk?) times.
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Since n > m > k and k is usually very small in our smoothly
varying data, the computational complexity is completely
acceptable.

4. A two-stage algorithm for NMF on smoothly varying
data

In this section, we propose a practical algorithm with fast
convergence for solving NMF in smoothly varying data. It
combines both the ANLS framework with the active set
method and the interior point method proposed in the
previous sections.

In the early stage of the algorithm, we use the ANLS
framework with the active set method. It can reduce the value
of the objective function rapidly. We use the relative step
tolerance, which is a relative lower bound on the size of a step,
meaning

1Cers v) = Goprs yir DI < €sror (X + 11Ge, y)ID,

as the stopping criterion of this stage. If the algorithm attempts
to take a step that is smaller than the step tolerance, the
iterations end.

At the end of the first phase, the algorithm then enters the
second phase of using the interior point method. However, the
solutions from the active set method usually contain elements
with a value zero, which is incompatible with the strict interior
point required by the interior point method. Meanwhile, we
also need to provide the initial dual variables (r,s) to the
interior point method. To address these issues, we first change
the primal variable smaller than p, to p, by

(xv y) = max{(x, y)v 100}1 (21)
where p, is a small positive constant. We can choose
po = 107" max{(x, y)}, (22)
before implementing (21).
Next, we give the initial value of the dual variable by
r = max{|graX|}e,
s = max{|graY|}e. (23)
We set the parameters
T T
_ Xt yTs 24)
mk + nk
and
P = €1oL- (25)

After these preparations, the algorithm enters its second stage
by implementing Algorithm 2. As the Hessian matrix is
approximated in Algorithm 2 by the positive-definite matrix

0, + pl C

C  Q+pl)

in order to further speed up convergence, we can change C
back to C at the right time. A heuristic way to switch to

O, +pl C
c O, +pl

is by monitoring o, which is given in (9). A small o implies that
the predictor step generates a point close to the boundary, and

(26)

@7

Algorithm 3 A fast two-stage algorithm
Initialize: Choose initial X,Y

Stage 1: Implement Algorithm 1 with the active set method and warm start strategy

Update variables by (21), (22) and (23)

Stage 2: Set parameters by (24) and (25), n = 0.5, select the tolerance eror, and let

flag = 0.
Repeat until E(z;,y;, 71, 5;0) < eror
€ = [
Repeat until E(zy, yi, 71, 515 1) < €,
If flag =1,

compute the primal-dual direction by solving (11) with Hessian (27).

If (Azf, Ay )Vo(a,y) > 0,

flag = 0, compute the primal-dual direction by solving (11).

Else,

compute the primal-dual direction by solving (11).

Compute o*** and a5 using (7).
Backtrack step lengths a; = %a'l“ax

satisfying (13).

, 0 = a5 to find the smallest integer ¢t > 0

Compute (z!+1, ! 1 ¢1+1 sl+1) using (6).

Set [:=1+1.
End

Compute parameter o using (8) and (9) and update u = op.

If 0 <0.01, flag =1, else flag =10
End

Figure 3
Algorithm 3: a fast two-stage algorithm.
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thus it is likely to be close to a local minimum. Therefore,
when

o =0,

we switch to (27), where o, is a user-supplied constant, and we
set o, = 0.01 in our test. The computation of the primal-dual
direction is similar to that using C. The difference is that each
block of C is no longer rank one, and thus the computational
cost is O(nm?k?) flops. Since (27) is not guaranteed to be
positive-definite, the primal-dual direction using (27) may not
be a descent direction. We check the negativity of

(AxlT’ A)’IT)qu(xh y)

in (13) (Algorithm 2) before we implement the line search. If
we fail to obtain a descent direction, we switch to the positive-
definite Hessian (26).

All elements of the above approaches are presented in our
two-stage algorithm, as outlined in Algorithm 3 (Fig. 3).

5. Numerical tests

We test our two-stage algorithm 2-STAGE and compare it
with other ANLS-based methods, including NeNMF (Guan et
al., 2012), QRPBB (Huang et al., 2015), ANLS-BPP (Kim &
Park, 2011) and IBPG-A (Le et al.,, 2020). All the tests are
performed using MATLAB 2020a on a computer with a 64-bit
system and 2.70 GHz CPU. Comparisons are done on both
synthetic data sets and real-world problems.

5.1. Stopping criterion

The KKT conditions of (1) are given in (3). The definition of
the error function E(x, y, r, s; 0) (10) measures the violation of
the KKT conditions. Therefore, we set

E(x,y, 7,5 0) < €roL
to be the stopping criterion, where

€ror. = 1075

10°F ' ' ' ]
.......... NeNMF
- - —QRPBB
~-—-~ ANLS-BPP
ok IBPG-A | ]
107 | QFsee, - © -2-STAGE
| — te, —— e o e
To0h ¢ ]
1
?
-10 | i J
10 é'c; o
o 5 \
10
0 0.2 0.4 0.6
10»15 L L L |
0 2 4 6 8 10
cpu time(s
Figure 4 P ©)

CPU time (s) versus tolerance values on AgMOR data.

The ANLS-based algorithms do not generate the dual vari-
ables r and s. Here we give a reasonable definition that

r = max{graX, 0},
s = max{graY, 0}.

Since all the algorithms compared in this section belong to the
class of feasible methods, the value of the objective function
can also be used to assess the quality of the solution. There-
fore, a stopping criterion can also be given by making the error
between the objective function and the optimal solution less
than le-6. When one of the above two criteria is satisfied, the
algorithm can stop.

In some cases, we also limit the maximum CPU time, in
cases where some algorithms cannot reach the given accuracy.

5.2. Streaming AgMOR PDF data

Zhao et al. (2011) measured the X-ray diffraction data
during the nucleation and growth of zeolite-supported Ag
nanoparticles through reduction of Ag-exchanged mordenite
(MOR), and processed the data with atomic PDF measure-
ments. In the field of chemistry, more and more people use
mathematical tools to analyze their measured data. Chapman
et al. (2015) used principal component analysis (PCA) and
some post-processing to analyze the data given by Zhao et al.
(2011), and obtained three principal components. Since PDF is
a distribution-type function, NMF is intuitively more applic-
able as introduced by Liu ef al. (2021). This is a representative
instance that satisfies our definition of smoothly varying data
and is also the data type we mainly want to apply our algo-
rithm to. Then, we will test the effectiveness of our algorithm
in smoothly varying data for this example.

We simply remove the negativity of the raw data by shifting
each PDF up by the opposite of its original minimum value.
Then we perform the NMF algorithms on the data. The size of

3 T T T T T

ground truth
solution

0 500 1000 1500 2000 2500 3000

Figure 5
Comparison of true solution and approximate solution of AgMOR data
on one component PDF.
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Table 1

Experimental results on AgMOR data.

Algorithm cpu(s):avrg(min,max)
NeNMF 20.00(20.00,20.00)
QRPBB 20.00(20.00,20.00)
ANLS-BPP 20.00(20.00,20.00)
IBPG-A 20.00(20.00,20.00)
2-STAGE 1.03(0.81,1.60)

E:avrg(min,max)

1.64(1.27,1.93)e-2
2.25(0.09,11.63)e-4
1.23(0.05,1.67)e-2
2.13(0.22,3.30)e-3

fravrg(min,max)

5.37246(5.37232,5.37262)e+2
5.37223(5.37205,5.37246)e+2
5.37232(5.37205,5.37246)e+2
5.37232(5.37205,5.37245)e+2

5.04(1.36,9.98)e-7 5.37205(5.37205,5.37205)e+2

the data is n = 3000, m = 36, and in the algorithms k is set to be
3 based on the analysis of Chapman et al. (2015).

We use the same initial point for each algorithm. The
relationship between the difference between the objective
function f = % I XY — M ||2F and the optimal value f* with the
CPU time of the five algorithms is shown in Fig. 4. We can see
that in the active set method part of 2-STAGE, the CPU time
of each iteration of the algorithm decreases gradually. This is
because the initial value is random and does not have conti-
nuity. With the gradual continuity of iterative variables, the
active set method combined with the warm-start strategy we
designed begins to play its role. It can be seen that the
performances of NeNMF, ANLS-BPP and our 2-STAGE
algorithm are similar in the early stage, IBPG-A is faster than
them, and the decline of function value for QRPBB is the most
obvious. After the active set method, there is an increase of
error function value in 2-STAGE, because our algorithm
begins to enter the second stage and the variables start to
experience significant fluctuations later, which is caused by the
instability of the early iterations of the interior point method
before becoming stabilized on the central path. After several
iterations, 2-STAGE becomes stable and converges quickly to
meet the termination criterion. For this instance, 2-STAGE
has a linear local convergence rate, while the others are sub-
linear as observed in Fig. 4.

Table 2
Experimental results on synthetic smoothly varying data.

Tol. = tolerance. Values in bold are the fastest for that group of data.

In addition to the theoretically calculated differences given
by the algorithm, the hidden operation of MATLARB also has
serious effects on the CPU time. It is widely known that
MATLAB optimizes the operation of the whole matrix, but
different from QRPBB and IBPG-A, our active set method
divides the matrix before the operation, which will produce a
lot of additional CPU time. The latter could lead to disad-
vantages for us. The same trouble arises with the interior point
method. As mentioned before, in theory, the dominant
computation is (CP~)(CP™")" with O(mm2k?) flops, but in
reality, the dominant computation is to construct CP~! with a
theoretically estimated O(nmk®) flops, and the actual CPU
time is multiple times of (CP~')(CP~")". This is because
constructing CP~" cannot be performed through the overall
operation of the matrix in MATLAB. Even if 2-STAGE
suffers losses in the underlying operation of MATLAB, the
superiority of 2-STAGE is still shown in this benchmark of
tests.

Next, we generate ten different random initial points. For
each of them, all algorithms are implemented. The results are
shown in Table 1. Because none of the three algorithms
compared with the 2-STAGE algorithm can meet the stopping
criterion in a short time, we set the maximum running CPU
time as 20s. Table 1 presents the average, minimum and
maximum CPU time, the KKT violation E and the objective

Tol. Algorithm cpu(s):avrg(min,max)
le-3 NeNMF 25.41(2.06,60.00)
QRPBB 3.05(0.47,13.93)
ANLS-BPP 25.34(14.36,40.38)
IBPG-A 14.76(1.32,33.16)
2-STAGE 1.03(0.70,1.31)
le-4 NeNMF 35.07(3.05,60.00)
QRPBB 12.68(0.87,60.00)
ANLS-BPP 50.87(38.83,60.00)
IBPG-A 25.20(1.55,60.00)
2-STAGE 1.04(0.70,1.33)
le-5 NeNMF 39.46(4.04,60.00)
QRPBB 22.15(1.68,60.00)
ANLS-BPP 60.00(60.00,60.00)
IBPG-A 27.25(1.79,60.00)
2-STAGE 1.06(0.72,1.36)
le-6 NeNMF 40.68(6.50,60.00)
QRPBB 25.35(1.83,60.00)
ANLS-BPP 60.00(60.00,60.00)
IBPG-A 28.00(2.04,60.00)
2-STAGE 1.08(0.74,1.36)

E:avrg(min,max)

3.46(1.60,7.03)e-2
1.88(0.45,5.31)e-3
1.79(1.56,2.01)e-2
2.47(0.14,4.36)e-2
8.71(4,45,17.12)e-1
1.26(0.30,2.96)e-2
1.01(0.06.2.43)e-3
4.93(2.98,7.38)e-3
7.31(0.32,14.89)e-3
4.41(0.94,9.41)e-1
7.45(1.89,29.56)e-3
1.51(0.07,0.43)e-4
4.00(1.51,7.38)e-3
1.82(0.25.4.31)e-3
7.74(3.54,13.13)e-2
6.19(0.68,29.56)e-3
1.25(0.19,2.69)e-4
4.00(1.51,7.38)e-3
6.19(2.49,13.70)e-4
2.70(0.98,8.98)e-2

fravrg(min,max)

2.973909(2.973686,2.975458)
2.989887(2.973676,3.007711)
2.973691(2.973691,2.973691)
2.973681(2.973663,2.973691)
2.972952(2.972724,2.973229)
2.973208(2.972791,2.975458)
2.975399(2.972790,2.993992)
2.972877(2.972791,2.973043)
2.972799(2.972790,2.972876)
2.972724(2.972693,2.972757)
2.973161(2.972701,2.975458)
2.973254(2.972701,2.976984)
2.972838(2.972709,2.973043)
2.972732(2.972701,2.972876)
2.972693(2.972692,2.972697)
2.973158(2.972692,2.975458)
2.973245(2.972692,2.976984)
2.972838(2.972709,2.973043)
2.972726(2.972692,2.972876)
2.972691(2.972691,2.972691)
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function value of each algorithm. It can be seen that our
algorithm always has the minimum KKT violation and the
minimum objective function value. It has a great advantage in
finding a high-precision solution within a short amount of
time.

In Table 1, the relative differences between the final value
of the objective function obtained by 2-STAGE and those
obtained by the other methods are less than 0.01%. One might
wonder whether this is a truly significant difference for this
application. In fact, the solution contains three PDFs as
components, and one of them is very different from the real
solution. We compare the solution with the function value of
5.37237e+2 solved by QRPBB in Fig. 4 with the true solution
with the function value of 5.37205e+2, as shown in Fig. 5. It is
obvious that many peaks are totally inconsistent with the true
solution. This shows the necessity of solving high-precision
solutions in this application. Therefore, it is of great signifi-
cance to apply 2-STAGE to NMF of the smoothly varying data
considered in our context.

ll NeNMF
02 = = QRPBB
=—=== ANLS-BPP
0.1 IBPG-A
2-STAGE
0 . . . . ! .
5 10 15 20 25 30
T
{
0.9r
0.8
0.7
0.6
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~, 05
S¥
0.4
0.3
NeNMF
0.2 = = QRPBB
=—==—= ANLS-BPP
0.1 IBPG-A
2-STAGE
0 . . ‘ ! )
5 10 15 20 25 30
. T
Figure 6

5.3. Synthetic smoothly varying data

We artificially synthesize smoothly varying data to more
comprehensively test the performance of the algorithms. The
data are generated via the formula M = XY, where X is the
concatenation of Gaussian mixture functions and Y is
constructed by trigonometric functions. In detail, each column
of X is the function values of a Gaussian mixture function on
the grids from 0.01 to ub = 0.01n with a separation of 0.01.
The number of Gaussian functions is ub, and each is uniformly
distributed between 1 and ub — 1. The standard deviation
satisfies a uniform distribution of 0.2 to 0.4, and the intensity is
a uniform distribution of 0 to 1. Each row of Y contains the
function values of max{A sin(wy + ¢), —0.1} on the y grids
from 7 /m to m with a separation of 7r/m. The frequency w and
the amplitude A are uniformly distributed over 1 to 2, and the
phase @ is uniformly distributed over 0 to 2z. The threshold
—0.1 indicates a noise level. Intuitively, the data generated in
this way are similar to the PDF data we encountered in the
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Performance profile on synthetic smoothly varying data with different tolerances, where the tolerance is le-3 at the top left, 1e-4 at the top right, le-5 at

the bottom left and 1e-6 at the bottom right.
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previous subsection, because X is the sum of Gaussian func-
tions, which has some relationship with PDF (Gu et al., 2019),
and Y is to simulate the weight change of each component.

The problem size in this synthetic test is fixed as
(n = 3000, m = 36, k = 3), which is the same as for the
AgMOR PDF data we used in the last subsection. Table 2
shows the results of a randomly generated instance with ten
initial points. The tolerances in the stopping criterion are set as
le-3, le-4, 1le-5 and le-6. At the tolerance level of le-3,
NeNMF reaches the maximum time of 60s. In terms of
average time, 2-STAGE is the best. When the tolerance
reaches le-4, all algorithms except 2-STAGE reach 60 s in a
subset of instances. We can see that 2-STAGE can reach the
tolerance from le-3 to le-6 in a very short amount of CPU
time, thanks to its fast local convergence rate.

Next, 100 randomly generated problems are tested for each
tolerance level. The performance profile is shown in Fig. 6.
ps(T) means the proportion of problems in which the algorithm
can stop within a certain CPU time in each problem, with the
number being 7 times the smallest CPU time in such a problem

- - —-QRPBB
ANLS-BPP
IBPG-A

- © -2-STAGE

cpu time(s)

- © -2-STAGE

cpu time(s)
Figure 7

among all algorithms in the test. In the case of 1e-3, 2-STAGE
is similar to IBPG-A in the low 7 range (t < 2), but for a large
T range, the curve of 2-STAGE is above other algorithms,
which means that 2-STAGE is more efficient and robust than
the other algorithms. With the reduction of tolerance, that is,
to solve the solution with higher precision, the advantage of
2-STAGE shown in Fig. 6 becomes more obvious.

5.4. Synthetic non-smoothly varying data

Theoretically, the 2-STAGE approach in finding high-
precision solutions gains its advantage from the second stage
interior point method and special data size. In this subsection,
we artificially synthesize some random data for testing the
theoretical predictions. These tests no longer use smoothly
varying data, but the dimension of the data remains
n>>m> k.

We construct a set of artificial data by the following rule.
First, we determine the problem size (n,m, k). Then, we
generate a random matrix X whose size is n X k, and each

- - -~QRPBB

~-=-~ ANLS-BPP
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- © —2-STAGE

5
cpu time(s)
¢ ' | ] I
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Experimental tests on synthetic data with different size, where (n, m, k) is (2000, 100, 3) at the top left, (2000, 200, 3) at the top right, (4000, 100, 3) at the

bottom left and (2000, 100, 6) at the bottom right.
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Table 3

Experimental results on synthetic non-smoothly varying data.

Values in bold are the fastest for that group of data.

Size(n,m.k) Algorithm cpu(s):avrg(min,max)
(2000,100,3) NeNMF 2.02(1.70,2.49)
QRPBB 0.98(0.76,1.24)
ANLS-BPP 1.96(1.63,2.49)
IBPG-A 1.00(0.88,1.22)
2-STAGE 0.69(0.57,0.79)
(2000,100,6) NeNMF 20.74(13.32,28.35)
QRPBB 11.75(8.51,17.68)
ANLS-BPP 17.40(13.08,21.77)
IBPG-A 6.63(4.97,8.37)
2-STAGE 4.38(3.21,6.37)
(2000,200,3) NeNMF 5.92(3.97,11.64)
QRPBB 6.62(3.19,9.22)
ANLS-BPP 8.55(4.93,17.01)
IBPG-A 8.81(4.41,12.97)
2-STAGE 1.78(1.35,3.34)
(2000,200,6) NeNMF 15.02(12.47,22.12)
QRPBB 12.15(9.06,15.64)
ANLS-BPP 15.65(10.79,22.72)
IBPG-A 8.74(5.58,11.01)
2-STAGE 8.55(7.02,11.13)
(4000,100,3) NeNMF 6.62(5.12,8.19)
QRPBB 3.53(3.27,3.89)
ANLS-BPP 6.36(5.55,6.82)
IBPG-A 3.17(2.95,3.36)
2-STAGE 1.47(1.27,1.80)
(4000,100,6) NeNMF 22.32(15.98,29.65)
QRPBB 13.74(9.85,20.91)
ANLS-BPP 15.56(11.47,19.96)
IBPG-A 6.34(5.18,8.00)
2-STAGE 7.72(6.12,10.58)
(4000,200,3) NeNMF 12.84(11.06,14.71)
QRPBB 6.19(4.93,7.01)
ANLS-BPP 12.04(10.27,13.35)
IBPG-A 7.95(6.02,9.19)
2-STAGE 3.03(2.73,3.48)
(4000,200,6) NeNMF 22.39(18.36,24.59)
QRPBB 14.95(10.12,17.59)
ANLS-BPP 22.27(20.48,23.80)
IBPG-A 10.16(7.39,12.49)
2-STAGE 17.37(16.47,19.61)

E:avrg(min,max)

2.56(2.26,2.93)e-3
1.72(0.02,6.05)e-4
2.57(2.33,2.87)e-3
5.99(5.29,6.89)e-4

3.97(0.47,15.94)e-3
5.72(3.72,10.13)e-4
9.11(5.17,15.86)e-5

7.76(5.82,8.72)e-4
2.42(1.94,3.05)e-4

9.80(3.30,27.70)e-3

1.23(1.09,1.71)e-3
2.38(0.40,5.81)e-5
1.24(1.08,1.75)e-3
3.46(2.92,4.06)e-4
3.78(0.31,8.51)e-3
8.14(5.95,9.58)e-4

5.38(3.79,12.54)e-5
9.73(7.56,10.48)e-4

3.54(3.18,3.82)e-4
1.90(0.31,5.32)e-2
1.98(1.85,2.08)e-3
6.94(1.66,1.23)e-5
1.96(1.832.11)e-3
3.36(3.08,3.63)e-4

6.14(0.74,19.00)e-3

1.25(0.84,1.42)e-3
8.66(1.44,1.96)e-5
1.38(1.11,1.59)e-3
3.19(2.75,4.41)e-4
2.54(0.47,5.77)e-2
2.10(1.92,2.29)e-3

9.62(6.74,14.00)e-5

2.05(1.92.2.27)e-3
4.74(4.39,5.45)e-4

8.07(1.94,24.68)e-3

1.23(1.00,1.41)e-3
2.04(0.17,3.98)e-4
1.58(1.35,1.90)e-3
476(4.41,526)e-4
1.26(0.41,4.52)e-2

fravrg(min,max)

9.57337(9.57337.9.57337)e+2
9.57337(9.57337,9.57337)e+2
9.57337(9.57337,9.57337)e+2
9.57337(9.57337,9.57337)e+2
9.57337(9.57337.9.57337)e+2
9.38620(9.38620,9.38620)e+2
9.38620(9.38620,9.38620)e+2
9.38620(9.38620,9.38620)c+2
9.38620(9.38620,9.38620)e+2
9.38620(9.38620,9.38620)e-+2
1.95720(1.95720,1.95720)e+3
1.95720(1.95720,1.95720)e+3
1.95720(1.95720,1.95720)e+3
1.95720(1.95720,1.95720)e+3
1.95720(1.95720,1.95720)e+3
1.94330(1.94330,1.94330)e+3
1.94330(1.94330,1.94330)e+3
1.94330(1.94330,1.94330)e+3
1.94330(1.94330,1.94330)e+3
1.94330(1.94330,1.94330)e+3
1.91702(1.91702,1.91702)e+3
1.91702(1.91702,1.91702)e+3
1.91702(1.91702,1.91702)e+3
1.91702(1.91702,1.91702)e+3
1.91702(1.91702,1.91702)e+3
1.87715(1.87715,1.87715)e+3
1.87715(1.87715,1.87715)e+3
1.87715(1.87715,1.87715)e+3
1.87715(1.87715,1.87715)e+3
1.87715(1.87715,1.87715)e+3
3.91802(3.91802,3.91802)e+3
3.91802(3.91802,3.91802)e+3
3.91802(3.91802,3.91802)¢+3
3.91802(3.91802,3.91802)e+3
3.91802(3.91802,3.91802)e+3
3.87687(3.87687,3.87687)e+3
3.87687(3.87687,3.87687)c+3
3.87687(3.87687,3.87687)e+3
3.87687(3.87687,3.87687)e+3
3.87687(3.87687,3.87687)e+3

element is uniformly distributed from 0 to 1. In the same way,
we generate a random matrix Y whose size is k x m. Next, we
compute M = XY and add Gaussian noise, with expectation 0
and standard deviation 0.1, to each element of M. Finally, we
change the negative elements in M to zeros.

The differences between the objective function and the
optimal value of the five algorithms are plotted against the
CPU time in Fig. 7. Due to the non-continuity of the randomly
generated matrix, the active set method in the first stage
cannot fully realize the benefits brought by its warm-start
strategy; thus its speed is not as fast as that of the other
algorithms.

One can observe from Fig. 7 that the local convergence
rates of all algorithms appear to be linear. It can be easily seen
that the convergence speed of 2-STAGE in the later second
stage is the fastest since the slope is significantly steeper than
the others. This means that to get higher-precision solutions, it
is more appropriate to choose 2-STAGE.

From the comparison between 2-STAGE and other algo-
rithms in Fig. 7, the influence of any changes with m and n on

the local convergence speed is small. The influence of k is
relatively large, and the increase of k is not favorable to
2-STAGE.

More results are shown in Table 3, where n is set to 2000 or
4000, m is set to 100 or 200, k is set to 3 or 6, tolerance is 1e-6,
and each instance has ten initial points. It can be seen from the
table that the final objective function f of all algorithms in each
instance is equal, while the KKT error E does not meet the
specified requirements. Therefore, they all stop because they
meet the termination criterion of the objective function.
Interestingly, in the tests, QRPBB usually has a smaller E,
while E of 2-STAGE is usually large because at the beginning
of the second stage, the initial value of the dual variable is far
from the optimal solution. In the iterative process, the primal
variable reaches the optimal faster than the dual variable.
Therefore, E is still large when the objective function
decreases to the termination criterion. However, we know that
the interior point method has a fast local convergence rate,
and E can achieve the accuracy of other algorithms in only one
or two iterations.
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Now we compare the CPU time of these algorithms in Table
3. QRPBB, IBPG-A and 2-STAGE generally take less time
than NeNMF and ANLS-BPP. When k = 3, the performance of
2-STAGE stands out: the CPU time is always the shortest, and
the relative gap is large compared with other algorithms.
However, when k = 6, the CPU time increment of 2-STAGE is
higher than that of other algorithms. Although the CPU time
of 2-STAGE is still the lowest in the two instances when n =
2000, the trend no longer holds and is reversed by IBPG-A
when n = 4000. In particular, when n = 4000 and m = 200,
2-STAGE only ranks third. This also confirms that 2-STAGE is
greatly affected by the problem size, especially k.

Generally speaking, the performance of 2-STAGE in
getting a high-precision solution truly stands out, when k is
small and the size of the problem satisfies n > m > k. From
the current test examples with the specially chosen problem
size, the local convergence of 2-STAGE is the fastest, which
shows that 2-STAGE is the strongest in the pursuit of solution
precision.

6. Conclusions

In this paper, we focused on solutions to the NMF for
smoothly varying data. We presented a fast two-stage algo-
rithm, where the first stage is the ANLS framework with the
active set method which benefits from the continuity of
smoothly varying data, and the second stage is a line search
interior point method which benefits from n > m > k. In
addition, we have proved the global convergence of the
proposed line search interior point method. The first stage
reduces the value of the objective function rapidly, and the
second stage converges to a local solution quickly due to the
property of Newton-type direction. We tested the proposed
algorithm on several real and synthetic data sets, and observed
that, compared with other algorithms, our algorithm is more
effective in solving high-precision local solutions.

The active set method in the first stage does not reach the
expected speed, even if it is tested on continuous data. We
think that this may be caused by the limitations of the
underlying code implementation in MATLAB. On the other
hand, we find that the transition part between the two stages
may induce instability. This is because the solution of the
active set method cannot be directly used as the initial guess of
the interior point method, and its changes have an impact on
stability. At present, the parameters used to generate starting
points are selected carefully to avoid the instability. In the
future, we will work to find a more stable transition technique.

Considering that, in addition to the basic NMF model, there
are other variants of NMF, such as constrained NMFs and
structured NMFs, our algorithm has the potential to be
applicable to more problems through suitable extension. This
will be further investigated in the future.
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