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A Physics-Informed Deep Learning Paradigm
for Traffic State and Fundamental
Diagram Estimation
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Abstract— Traffic state estimation (TSE) bifurcates into two
main categories, model-driven and data-driven (e.g., machine
learning, ML) approaches, while each suffers from either defi-
cient physics or small data. To mitigate these limitations, recent
studies introduced hybrid methods, such as physics-informed
deep learning (PIDL), which contains both model-driven and
data-driven components. This paper contributes an improved
paradigm, called physics-informed deep learning with a funda-
mental diagram learner (PIDL + FDL), which integrates ML
terms into the model-driven component to learn a functional
form of a fundamental diagram (FD), i.e., a mapping from
traffic density to flow or velocity. The proposed PIDL + FDL
has the advantages of performing the TSE learning, model
parameter identification, and FD estimation simultaneously. This
paper focuses on highway TSE with observed data from loop
detectors, using traffic density or velocity as traffic variables.
We demonstrate the use of PIDL + FDL to solve popular first-
order and second-order traffic flow models and reconstruct the
FD relation as well as model parameters that are outside the FD
term. We then evaluate the PIDL + FDL-based TSE using the
Next Generation SIMulation (NGSIM) dataset. The experimental
results show the superiority of the PIDL + FDL in terms of
improved estimation accuracy and data efficiency over advanced
baseline TSE methods, and additionally, the capacity to properly
learn the unknown underlying FD relation.

Index Terms— Traffic state estimation, traffic flow models,
fundamental diagram learner, physics-informed deep learning.

I. INTRODUCTION

TRAFFIC state estimation (TSE) refers to the data
mining problem of reconstructing traffic state variables,
including but not limited to flow, density, and speed, on road
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segments using partially observed data from traffic sensors [1].
TSE approaches can be briefly divided into two main cat-
egories: model-driven and data-driven [2]. A model-driven
approach is based on a priori knowledge of traffic dynamics,
usually described by a physical model, e.g., the Lighthill-
Whitham-Richards (LWR) model [3], [4] and Aw-Rascle-
Zhang (ARZ) model [5], [6], to estimate the traffic state using
partial observation. It assumes the model to be representative
of the real-world traffic dynamics such that the unobserved
values can be properly added using the model with small data.
The disadvantage is that existing models, which are provided
by different modelers, may only capture limited dynamics of
the real-world traffic, resulting in low-quality estimation in
the case of inappropriately-chosen models and poor model
calibrations. Paradoxically, sometimes, verifying or calibrating
a model requires a large amount of observed data, undermining
the data efficiency of model-driven approaches.

A data-driven approach is to infer traffic states based on
the dependence learned from historical data using statistical
or machine learning (ML) methods. Approaches of this type
do not use any explicit traffic models or other theoretical
assumptions, and can be treated as a “black box” with no inter-
pretable and deductive insights. The disadvantage is that in
order to maintain a good generalizable inference to long-term
unobserved values, massive and representative historical data
are a prerequisite, leading to high demands on data collection
infrastructure and enormous installation-maintenance costs.

To mitigate the limitations of the above-mentioned TSE
approaches, hybrid TSE methods are introduced, which inte-
grate the traffic knowledge in the form of traffic flow models
to ML models for TSE. The hybrid methods based on the
learning paradigm of physics-informed deep learning (PIDL)
are gaining increasing attentions in recently years, and is the
focus of this paper. PIDL contains both a model-driven com-
ponent (a physics-informed neural network for regularization)
and a data-driven component (a physics-uninformed neural
network for estimation), making possible the integration of
the strengths of both model-driven and data-driven approaches
while overcoming the weaknesses of either.

Despite that the addition of physics could guide the training
of PIDL efficiently, complicated mathematical formulas could
instead make the PIDL difficult to train. There are many
theoretical attempts made to add sophistication (usually in the
form of complicated terms) to the FD relation for an improved
description of the dynamics. To balance the sophistication
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and trainability of encoding physics, this paper explores a
promising direction by approximating the FD relation with
an ML surrogate, instead of hard-encoding an FD equation.
Following this direction, we introduce an improved PIDL
paradigm, called physics-informed deep learning with a fun-
damental diagram learner (PIDL + FDL), which integrates an
ML surrogate (e.g., an NN) into the model-driven component
to represent the fundamental diagram (FD) in the macroscopic
traffic flow models and estimate the FD relation. We focus on
highway TSE with observed data from loop detectors, using
traffic density or velocity as the traffic variables. This paper
makes the following contributions:

o« We propose the PIDL + FDL-based TSE method that
possesses advantages to

- Perform the TSE with improved estimation accuracy:
A proper integration of ML surrogates may avoid directly
encoding the complicated terms in PIDL and trade off
between the sophistication of the model-driven aspect of
PIDL and the training flexibility, making the framework
a better fit to the TSE problem;

- Perform the FD estimation: The PIDL + FDL uses
an ML surrogate to directly learn the underlying FD
relation without any FD output measurements, i.e., the
ML surrogate is purely trained under the physical regu-
larization from PIDL, making it more likely to learn a
suitable relation along with the TSE training. It can also
get around the calibration of parameters inside the FD
equation;

- Perform the model parameter identification: For a
complete traffic model reconstruction, in addition to the
FD estimation, there may exist model parameters outside
the FD term that need to be learned and the proposed
PIDL + FDL can conduct the model parameter identifi-
cation jointly.

o We validate the PIDL + FDL performance with both
numerical experiments and real-world data: To demon-
strate the strengths of the PIDL 4 FDL, we design
the PIDL + FDL architectures for the traffic dynamics
governed by the Greenshields-based LWR model and
Greenshields-based ARZ model, respectively. Addition-
ally, experiments using the real-world data, the Next
Generation SIMulation (NGSIM) dataset, are conducted.
The experimental results show the advantages of PIDL
in terms of estimation accuracy and data efficiency over
baselines and the capacity to properly estimate the FD
relation and model parameters.

The rest of this paper is organized as follows. Section II
briefs related work on TSE and PIDL. Section III formalizes
the PIDL + FDL framework for TSE. Sections IV and V
detail the designs and experiments of PIDL + FDL for
Greenshields-based LWR and Greenshields-based ARZ,
respectively. Section VI evaluates the PIDL + FDL on NGSIM
data over baselines. Section VII concludes our work.

II. RELATED WORK OF TRAFFIC STATE ESTIMATION

Model-driven approaches accomplish their estimation
process relying on traffic flow models, such as the LWR
and Aw-Rascle-Zhang (ARZ) for one-dimensional traffic
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flow (link models) and junction models [7] for network
traffic flow (node models). Most estimation approaches in this
category are data assimilation (DA) based, which attempt to
find “the most likely state”, allowing observation to correct
the model’s prediction. Popular examples include the Kalman
filter (KF) and its variants (e.g., extended KF [8]-[10]), which
find the state that maximizes the conditional probability of the
next state given current estimate. Other than KF-like methods,
particle filter (PF) [11] with improved nonlinear represen-
tation, adaptive smoothing filter (ASF) [12] for combining
multiple sensing data, were proposed to improve and extend
different aspects of the TSE process. In addition to DA-based
methods, there have been many studies utilizing microscopic
trajectory models to simulate the state or vehicle trajectories
given some boundary conditions from data [13], [14].

Data-driven approaches estimate traffic states using his-
torical data or streaming data without explicit traffic flow
models. Early studies considered relatively simple statisti-
cal methods, such as heuristic imputation techniques using
empirical statistics of historical data [15] and regression
methods [16], [17]. To handle more complicated traffic data,
ML approaches were involved, including principal component
analysis (PCA) and its variants [18], [19], k-nearest neighbors
(kNN) [20], and probabilistic graphical models (i.e., Bayesian
networks) [21]. Deep learning models, such as long short term
memory (LSTM) and deep embedded models, have recently
been applied for traffic flow prediction [22]-[24].

Each of the two approaches has disadvantages, and it is
promising to develop a framework to integrate physics to
ML. Such a hybrid paradigm has gained increasing interests
recently. Yuan et al. [25] proposed to leverage a hybrid frame-
work, physics regularized Gaussian process [26] for macro-
scopic traffic flow modeling and TSE. The hybrid methods
using the PIDL framework [27], [28] recently becomes an
active field. Huang and Agarwal [29] studied the use of
PIDL to encode the Greenshields-based LWR and validated
it in the loop detector scenarios using SUMO simulated data.
Barreau et al. [30]-[32] studied the probe vehicle sensors and
developed coupled micro-macro models for PIDL to per-
form TSE. Shi ef al. [33] extended the PIDL-based TSE to
the second-order ARZ with observed data from both loop
detectors and probe vehicles. Thodi er al. [34] proposed a
kinematic wave based Deep Convolutional Neural Network
(Deep CNN) to estimate high resolution traffic speed dynamics
from sparse probe vehicle trajectories.

As to model reconstruction, which is another feature of
PIDL-based TSE, this paper only assumes a traffic flow con-
servation equation and optionally, a momentum equation for
the velocity field, without specifying any mathematical relation
between traffic quantities. The aforementioned related studies
in [30], [32] directly fit a velocity function using measured
density and velocity from probe vehicles before or during
the PIDL training. In contrast, we focus on a more general
case, where the output of the FD function is unobserved
from sensors, and the end-to-end FD relation is to be learned
directly using ML surrogates under the PIDL framework.
In summary, this paper contributes to the trend of developing
hybrid methods for TSE and model reconstruction, especially
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with both FD estimation and model parameter identification
involved. We believe that using PIDL for TSE and other
transportation-related problems will become a popular topic
in the transportation community.

III. MATHEMATICAL SETTING FOR PIDL + FDL

This section introduces the PIDL + FDL framework in the
context of TSE at a high level.

A. PIDL for TSE

Consider a traffic flow dynamics of a road segment that
is governed by a set of non-linear equations (e.g., partial
differential equations, PDEs):

NM(t,x),Q:4) =0, xel0,L], [0, T], (D)

where L € RT, T € R*. We use bold symbols to denote vec-
tors by default. The operator N contains the governing non-
linear equations of the traffic flow dynamics, while M (¢, x)
contains the traffic state variables, such as the traffic density
p(t,x) and velocity u(¢, x). A contains the model parameters.
The model includes intermediate unobserved traffic variables
Q that have some hidden relationship with M (¢, x). Thus,
the dynamics can be represented by

N(M,QM);2) =0, 2

and M stands for M (¢, x). For general discussion, the values of
Q are not assumed to be directly observable, and the relation is
either unknown or deduced based on assumptions which may
be deficient. The TSE problem is to reconstruct the traffic
states M at each point (f,x) in a continuous domain from
partial observation of M. Accordingly, the continuous spatio-
temporal domain D is a set of points: D = {(¢t,x)|Vt €
[0,T],x € [0, L]}. We represent this continuous domain in
a discrete manner using grid points G € D that are evenly
deployed throughout the domain. We define the set of grid
points as G = {(t"), x)r =1,..., Ng}. The total number
of grid points, N, controls the fine-grained level of G as a
representation of the continuous domain.

PIDL approximates M (¢, x) using a neural network with
time ¢ and location x as its inputs. This neural network is
called physics-uninformed neural network (PUNN) (or esti-
mation network in our TSE study), which is parameterized
by 6. We denote the approximation of M(z, x) from PUNN
as M(t,x;0). When N, Q and A are known, during the
learning phase of PUNN (i.e., to find the optimal # for
PUNN), the following equation defines the residual values of
the approximation M (¢, x; 0):

Ft,x:0) = NM(1,x;0), QM (t,x;0); ),  (3)

which is designed according to the traffic flow model in
Eq. (2). The calculation of residual f (t,x;60) is done by a
physics-informed neural network (PINN). This network can
compute f@t, x:0) directly using M(t, x; 0), the output of
PUNN, as its input. When M (t, x; 0) is closer to the true value
M(t, x), the residual f will be closer to 0. PINN introduces
no new parameters, and thus, shares the same § of PUNN.
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In most cases, even the model is given, the model parame-
ters 4 are unknown and can be made as learning variables in
PINN for model parameter identification. The residual f is
then redefined as

flt,x;0,2) = N(M(1,x:0), QM (1, x;0)); ). (4)

This paper assumes unknown model parameters by default.

In PINN, f (t,x;0,2) is calculated by automatic differen-
tiation technique [35], which can be done by the function
tf.gradient in Tensorflow. The activation functions and
the connecting structure of neurons in PINN are designed to
conduct the differential operation in Eq. (4). We would like
to emphasize that, the connecting weights in PINN have fixed
values which are determined by the traffic flow model and
A are encoded as learning variables. Thus, the residual f is
parameterized by both 0 and 4.

The training data for PIDL consist of (1) observation points
0 = {(t((,l),x((,l))ﬁ = 1,..., Ny}, (2) target values P =

{M(i)li =1,...,No} (ie., the true traffic states at the obser-
vation points), and (3) auxiliary points A = {(téj),xfl]))lj =
1,...,Ny}. i and j are the indexes of observation points and

auxiliary points, respectively. One target value is associated
with one observation point, and thus, O and P have the same
indexing system (indexed by 7). This paper uses the term,
observed data, to denote {O, P}. Both O and A are subsets
of the grid points G (i.e., O € G and A € G).

Observation points O are limited to the time and locations
that traffic sensors can visit and record. In contrast, auxiliary
points A have neither measurement requirements nor location
limitations, and the number of A is controllable. A are used
for regularization purposes, and this is why they are called
“auxiliary”. To train a PUNN for TSE, the following loss is
used:

Lossp ) =oa-MSE,+ f-MSE,

N,
1 <4 ~ . . )
@ - > M, x$:0) — MO
o

i=1

data discrepancy

N,
1 <4 o o .
+ﬁ'EZ;If(ta(”,xé”;H,l)lz. (5)
j=

physical discrepancy

where a and f are hyperparameters for balancing the con-
tribution to the loss made by data discrepancy and physical
discrepancy, respectively. The data discrepancy is defined as
the mean square error (MSE) between approximation M on
O and target values P. The physical discrepancy is the MSE
between residual values on A and 0, quantifying the extent to
which the approximation deviates from the traffic model.

Given the training data, we apply neural network training
algorithms to solve (0*,4%) = argminy; Lossg ;. Then,
the A*-parameterized traffic flow model of Eq. (4) is the most
likely physics that generates the observed data, and the
6*-parameterized PUNN can then be used to approximate the
traffic states on G, which are consistent with the reconstructed
traffic flow model in Eq. (2).
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B. PIDL + FDL for TSE

As has been discussed previously, the PIDL-based TSE
methods may perform poorly when informed by a highly
sophisticated traffic flow model. This is because the mod-
els may contain complicated terms that are unfriendly to
differentiation-based learning (e.g., square root operators of
learning variables in the denominator, etc.), making the train-
ing and performance very sensitive to the structural design
of PINN. Many efforts such as variable conversion, decom-
position and factorization need to be made to have the PINN
trainable and the loss to converge. In our framework of Eq.(2),
these “unfriendly” terms can be contained as part of the
hidden relation Q. To address the issues of PIDL-based TSE,
we propose to use an ML surrogate Q to directly represent the
Q and learn the relation under the PIDL framework, instead
of hard-encoding a complicated term in PINN.

The advantages of properly introducing an ML surrogate of
Q are two-fold: (1) An ML term is usually differentiation-
friendly, giving the PIDL more flexibility to achieve an
improved TSE accuracy. (2) No assumptions are made to the
hidden relation, and it is possible to learn a more suitable Q
when trained under the physical regularization from PINN.

This paper focuses on one kind of hidden relationships,
the fundamental diagram (FD), and the corresponding learning
paradigm is called PIDL with an FD Learner (PIDL + FDL).
Specifically, the FD Learner, formalized as Q(AAI ; w), can be
designed as a neural network parameterized by w to represent
the unknown FD relation, which takes the estimated traffic
variables M (t,x; 0) as its input. The residual of Eq.(4) is
redefined as the following

ft,x:0,0,4) ;= N(M(1, x; 0), Q(M(t, x; 0); w); A). (6)
The loss function becomes

Lossg.p =0a-MSE,+ f-MSE,

N,
1 <4 ~ .
> M@, x0) - MO
o N0i=1| (157, x,7: 0) |

N,
1 Z OO 2
+ﬁN_a 1|.f(l‘tl > Xa ’99w71)| . (7)
j=

Using the training data, we apply neural network training
algorithms to solve (0%, w*,4*) = argming , ; L0s59,02-
Then, in addition to TSE learning and model parameter
identification, the FD estimation is conducted automatically.
The w*-parameterized Q can be used to represent the unknown
hidden fundamental diagram relation. Note that the values of
Q are not assumed to be observable, and thus, are not part of
the data (i.e., to directly learn the O from data cannot apply).

In some cases, the curve of the learned Q may present
abnormal shapes on edge conditions. To mitigate this, one
can encode prior knowledge into the loss as an additional
regularization term Reg(Q) to reshape the FD. As an example,
we can use Q to represent the density-flow relation, i.e., the
flux function (one typical kind of FD), mapping the density p
to the flow value, which is denoted as a scalar Q(p). Existing
theoretical works usually assume Q to be concave with respect
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to the traffic density p. To impose the concavity property,
we design the following regularization term:

220(p)
op?

b
Reg(©) = [ max(0, “2ap. ®)
a
where the hyperparameters ¢ and b determine the interval of
p on which the reshaping takes effects without interfering the
learning on other regions. We propose this design because
most abnormal shapes only occur on edge region and it is not
necessary to regularize over the whole traffic density domain.
We apply Lossg.p i) =0a-MSE, + f-MSE, + &-Reg(Q) in
the learning phase and properly reshape the learned FD curves.

IV. PIDL + FDL FOR GREENSHIELDS-BASED LWR

The first numerical example aims to show the capability of
our method to estimate the traffic dynamics governed by the
LWR model with a Greenshields flux function.

Define flow rate Q (a scalar) to be the number of vehicles
passing a specific position on the road per unit time, and traffic
density p to be the average number of vehicles per unit length
of the road. The traffic flux Q(p) describes Q as a function
of p, which is the FD relation of interest in this numerical
example. We treat p as the basic traffic state variable to esti-
mate. Greenshields flux [36] is a basic and popular choice of
Q(p), which is defined as Q(p) = pumax(1 — p/pmax), Where
Umax and ppq, are maximum velocity and maximum (jam)
density, respectively. This flux function has a quadratic form
with two coefficients U, and ppgx.

The LWR model [3], [4] describes the macroscopic traffic
flow dynamics as p; + (Q(p))x = 0, which is derived from
a conservation law of vehicles. In order to reproduce more
phenomena in observed traffic data, such as delayed driving
behaviors due to drivers’ reaction time, diffusively corrected
LWRs were introduced, by adding a diffusion term, containing
a second-order derivative p,,. We focus on one version of the
diffusively corrected LWRs: p; 4+ (Q(p))x = €pxx, Where € is
the diffusion coefficient.

In this section, we study the Greenshields-based LWR traffic
flow model of a “ring road”:

pr+ (Q(p))x = €Pxx>
0(p) =p -umax(l S ) (FD relation),
Pmax

p(t,0) = p(t,1) (boundary condition 1),
px(t,0) = py(t,1) (boundary condition 2), (9)

where ppuax = 1.0, upmexy = 1.0, and € = 0.005. pqy and
Umayx are usually determined by physical restrictions of the
road and vehicles.

Given the bell-shaped initial 0.1+ 0.8~ 72, x € [0, 1],
we apply the Godunov scheme [37] to solve Egs. (9) on
960 (time) x 240 (space) grid points G evenly deployed
throughout the [0, 3] x [0, 1] domain. In this case, the total
number of grid points G is Ny = 960 x 240. The numerical
solution is shown in Fig. 2 (see the heat map background).
From the figure, we can visualize the dynamics as follows:
At t = 0, there is a peak density at the center of the
road segment, and this peak evolves to propagate along the

1 €[0,3], x €[0,1],
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5 PINN+FD Learner
p/

pt,x;0

FD Learner

0(p; ®)

° N\

(estimation network) /3 :

x

O,

3
) ]

~&P,

Fig. 1. PIDL + FDL architecture for first-order traffic dynamics, consisting
of a PUNN for traffic density estimation and a PINN 4 FD Learner for
calculating the residual Eq. (10). The model parameter € is held by a variable
node (blue rectangular nodes). All connecting weights are predefined and fixed
in PINN.

direction of x, which is known as the phenomenon of traffic
shockwave. Since this is a ring road, the shockwave reaching
x = 1 continues at x = 0. This numerical solution of
the Greenshields-based LWR model is treated as the ground-
truth traffic density. We will apply a PIDL + FDL-based
approach method to estimate the entire traffic density field
using observed data as well as to estimate the FD relation and
model parameters.

A. PIDL + FDL Architecture Design

The authors’ previous work [33] has shown the capacity of
PIDL to perform both TSE and model parameter identification
when the closed traffic flow model is given. Here we are
only given the knowledge of conservation law and boundary
conditions, i.e., the FD relation is unknown and no direct
observation of Q is available.

We employ a neural network Q(o; ) to estimate the traffic
flow from the traffic density and to represent the FD relation
of interest. Based on Egs. (9), we define the residual value of
PUNN’s traffic density estimation p(z, x; 8) as

ft,x:0,0,€) = p(t,x:0) + (O (51, x; 0); ))x

—€pxx(t, x;0). (10)

Note that the model parameter A contains the coefficient
€ only.

Given the definition of £, the corresponding PIDL + FDL
architecture is shown in Fig. 1. This architecture consists
of a PUNN for traffic density estimation, followed by a
PINN + FD Learner for calculating the residual Eq. (10). The
PUNN parameterized by 6 is designed as a fully-connected
feedforward neural network with 8 hidden layers and 20 hid-
den nodes in each hidden layer. Hyperbolic tangent function
(tanh) is used as the activation function for each hidden
neuron in PUNN. In contrast, in PINN, connecting weights
are fixed and the activation function of each node is designed
to conduct specific nonlinear operation for calculating an
intermediate (hidden) value of f . The flow value is calculated
by a separate neural network Q(ﬁ ) with two hidden layers
and 20 hidden nodes for each. The model parameter € is held
by a variable node (blue rectangular nodes).

To customize the training of PIDL + FDL to Egs. (9),
in addition to the training data O, P and A defined in
Section III-A, we need to introduce boundary auxiliary points
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==== Observation points in O where corresponding ground truth density is observed
X An auxiliary point in 4
A A boundary auxiliary point in B
o(t,x)

0.0 0.5 1.0

15 2.0 25 3.0
t

Fig. 2. A sparse presentation of the deployment of observation points O at
loop detectors, auxiliary points A randomly selected from G, and boundary
auxiliary points B deployed at the boundaries x = 0 and x = 1 for certain
time points. The heatmap is the numerical solution of Egs. (9) using the
Godunov scheme. We treat the numerical solution as the ground truth.

=P, 0k =1,..., Ny U, Dk =1,...,
learnlng the two boundary conditions in Eqgs. (9).

For experiments of state estimation with both parameter

identification and FD estimation, we design the following loss

Np}, for

Lossg,we =0 -MSE,+f-MSE,+7y -Bl+1-B2

No
a o .

- 2 1A x50) = p P
0

Ny
Zlf(t(]) (). (9 , €)|

N1

Z

Np
me(qﬁk) 0:0) = pu (g, 1;O)2. (1)

@9,0,0) — P, 1;0)?

B1, scaled by y, is the MSE between estimations at the two
boundaries x = 0 and x = 1. B2, scaled by #, quantifies the
difference of first order derivatives at the two boundaries.

B. TSE + FDL Using Observation From Loop Detectors

We justify the capacity of PIDL + FDL in Fig. 1 for
estimating the traffic density field using observation from loop
detectors, i.e., only the traffic density at certain locations where
loop detectors are installed can be observed. By default, loop
detectors are evenly located along the road. To be specific,
the grid points at certain locations are used as the observa-
tion points O, and their corresponding densities constitute
the target values P for training. There are N, = 100, 000
auxiliary points in A randomly selected from grid points G.
Np = 650 out of 960 grid time points (i.e., the time points
on the temporal dimension of G) are randomly selected to
create boundary auxiliary points B. A sparse version of the
deployment of O, A and B in the spatio-temporal domain is
shown in Fig. 2. Each observation point is associated with a
target value in P. Note O, A and B are all subsets of G.

We train the proposed PIDL + FDL on an NVIDIA Titan
RTX GPU with 24 GB memory. By default, we use the 12
relative error on G to quantify the estimation error of the
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pt,x,0")

X
0.5 0.50
0.25
0.0
0.0 0.5 1.0 15 t 2.0 25 3.0

t=0.078 t=0.234 t=1.0

0.5 1 0.5 1 ' \ 0.5 1
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Fig. 3. Top: Estimation of the traffic density dynamics p (¢, x; *) on grid

points G in the domain using the trained PUNN. Bottom: Snapshots of
estimated and true traffic density at certain time points.
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The reason for choosing the IL? relative error is to normalize
the estimation inaccuracy, mitigating the influence from the
scale of true density values. One remark is that there are some
TSE methods (e.g., non parametric ones) that do not perform
any estimation on the observation points and directly use the
target values there. For these cases, the observation points will
be removed from G before calculating Eq.(12).

We use the Xavier uniform initializer [38] to initialize 6
of PUNN and @ of FD Learner (FDL). This neural network
initialization method takes the number of a layer’s incom-
ing and outgoing network connections into account when
initializing the weights of that layer, which may lead to a
good convergence. The € is initialized at 0. Then, we train
the PUNN, FDL and € through the PIDL + FDL architec-
ture using a popular stochastic gradient descent algorithm,
the Adam optimizer [39], for a rough training. A follow-up
fine-grained training is done by the L-BFGS optimizer [40]
for stabilizing the convergence, and the process terminates
until the loss change of two consecutive steps is no larger
than 10710, This training process converges to a local optimum
0*, w* and €* that minimize the loss in Eq. (11).

We would like to clarify that in this paper, the training data
are the observed data from detectors, i.e., the traffic states on
the points at certain locations where loops are equipped.

The results of applying the PIDL + FDL with 4 loops to
the Greenshields-based LWR dynamics is presented in Fig. 3,
where PUNN is parameterized by the optimal 8*. As shown
in Fig. 3, the estimation p(¢,x; 0*) is visually the same
as the true dynamics p(z,x) in Fig. 2. By looking into
the estimated and true traffic density over x at certain time
points, there is a good agreement between two traffic density
curves. The IL? estimation error Err(p, p) is 1.287 x 1072
Empirically, the difference cannot be visually distinguished
when the estimation error is smaller than 6 x 1072,

We change the number of loop detectors. For a fixed number
of loop detectors, we use grid search for hyperparameter
tuning by default. Specifically, since Adam optimizer is scale

Err(p.p) = - (12
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TABLE I
PERFORMANCE OF PIDL + FDL ON THE LWR DYNAMICS

loops 2 3 4 5
Err(p,p) 0.6021 0.03327  0.01287  0.004646
€* 3.12573  0.00495  0.00506  0.00509

loops stands for the number of loop detectors. €* is the
estimated diffusion coefficient. Note the true ¢ = 0.005.
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Fig. 4. The learned FD relation Q(p; ™) based on PIDL + FDL architecture
compared with the true Q(p).

invariant, we fix the hyperparameter o to 100 and tune the
other hyperparameters from [1, 10, 50, 100, 150, 200] with
some follow-up fine tuning. The minimal-achievable estima-
tion errors of PIDL + FDL over the numbers of loop detectors
are presented in Table I. From the table, we can see that
the traffic density estimation errors improve as the number of
loop detectors increases. When more than two loop detectors
are used, the model parameters to be learned are able to
converge to the true parameters €. Specifically, with three
loop detectors, in addition to a good traffic density estimation
error of 3.327 x 1072, the model parameter converges to
€* = 0.00495, which is very close to the true value 0.005.
The results demonstrate that PIDL. + FDL method can han-
dle both TSE and model parameter identification with three
loop detectors for the traffic dynamics of the Greenshields-
based LWR.

The performance of FD estimation based on PIDL + FDL is
presented is Fig. 4. Compared with the true Q(p), the proposed
method can reconstruct the exact Greenshields FD when 5 loop
detectors are used. The results are meaningful because neither
any assumptions on the FD relation are made nor the flow
values are observed directly. In addition to traffic density esti-
mation and model parameter identification, the PIDL 4 FDL
is able to make full use of the conservation law and boundary
conditions to retrieve the density-flow relation automatically.

V. PIDL + FDL FOR GREENSHIELDS-BASED ARZ

The second numerical example aims to show the capacity of
the proposed method to handle the traffic dynamics governed
by the Greenshields-based ARZ, a second-order traffic flow
model with both traffic density p and velocity u as the traffic
state variables.
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Fig. 5. a) is the bell-shaped initial p and u over x € [0, 1]; b) and c) are

numerical solutions for p and u, respectively.

An ARZ model involves both a conservation law of vehicles
and a momentum equation on velocity. Specifically, we study
the following traffic flow dynamics of a “ring road” in
t €]0,3], x € [0,1]:

pr+ (pu)x =0,

(+ h(p))s + 1t + h(p))s = (Ueg (p) — )/,

h(p) = Ueg () — Ueg(p) (traffic pressure),

Ueq(p) = tmax(1 — p/pmax) (equilibrium speed),

p(t,0)=p(t, 1), u(t,0)=u(t,1) (boundary cond.),
(13)

where we set the parameters irregularly as pyqc = 1.13,
Umax = 1.02, and 7 = 0.02. U, is the equilibrium velocity,
h(p) defines the traffic pressure and 7 denotes the relaxation
time scale. For more explanations of this ARZ setting, we refer
readers to our previous work in [33].

Given the bell-shaped initial of p and u as shown in Fig. 5.a,
we apply the Lax—Friedrichs (LF) scheme [41] to solve
Eqgs.(13) on grid G with 960 (time) x 240 (space) points
evenly deployed over the [0,3] x [0, 1] domain. The LF
numerical solutions of both p and u over the domain are
shown in Fig. 5 as well. We treat this numerical solution as
the ground-truth to test our PIDL + FDL-based approach for
the ARZ dynamics.

A. PIDL + FDL Architecture Design for ARZ

We employ a neural network Ueq (; w) to estimate the
equilibrium velocity and U, (p) is the target FD relation in
this numerical example. Based on Egs. (13), we define the
following residuals

 N6x30) = pe+ (pi)y,
Lt x;0,0,7) = (@ +h(p)) + a(@ + h(p))x
- (Ueq (p; w) —i)/z, (14)
where p and # are shorthands for p(z, x; 0) and (¢, x; 0),
respectively outputted from a PUNN. By using the FD surro-
gate Ueq, the relaxation 7 is the only model parameter to be
learned.

Given the definition of ( fl, fz), the design of PINN +
FDL architecture is shown in Fig. 6. The structures of hidden
layers of the PUNN and FDL are the same with those of
Section IV. For this experiment, we adjust the learning loss
as the following:

Lossg,,c = MSE, + MSE, + B1

N,
Qe .
= — > alp, xP:0) - p??
2 i=1
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Fig. 6. PIDL + FDL architecture for second-order traffic dynamics. The
model parameter 7 is held by a variable node (blue rectangular node).

TABLE 11
PERFORMANCE OF PIDL + FDL ON THE ARZ DYNAMICS

loops 2 3 4 5
Err(p, p) 0.5111 0.2249 0.04871 0.05243
Err(a,u) 0.1586 0.05914 0.01402 0.01389

T* 0.02276  0.018994  0.019654  0.021619

loops stands for the number of loop detectors. 7* is the
estimated relaxation time. Note the true 7 = 0.02.

+ i), x; 0) —u?P?
N,
1 a R . .
+ o A 0P
a .
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We solve (0%, w*,t*) = argming , , L0ssg,e,c, and the
results of traffic state estimation and model parameter identi-
fication are presented in Table II. Empirically, the difference
between true and estimated values is visually indistinguishable
when the errors are smaller than 6.00 x 1072 and 2.90 x 1072
for density and velocity, respectively. Performances with
accuracy below these values are considered as “acceptable”.
From Table II, we can observe that the TSE performance of
PIDL + FDL with more than three loops is acceptable.

The FDL results are shown in Fig. 7. As can be observed,
the FDL performance improves as the number of loop detec-
tors increases, and the proposed method with 4 loops and
above is able to correctly learn the Greenshields FD relation.

5)

VI. PIDL + FDL-BASED TSE ON NGSIM DATA

This section evaluates the PIDL + FDL-based TSE method
using real-world traffic data, the Next Generation SIMula-
tion (NGSIM) dataset,! and compares its performance to
baselines.

A. NGSIM Dataset

NGSIM dataset contains real-world vehicle trajectories on
several road scenarios. We focus on a segment of the US

Lywww.fhwa.dot. gov/publications/research/operations/07030/index.cfm
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Fig. 7. The learned FD relation l?ai (p; ®*) based on PIDL + FDL
architecture, compared with the ground-truth. To make the presentation
consistent to Fig. 4, p - Ueq (p: @*) and p - Upq are drawn.
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Fig. 8. Visualization of the traffic states on US 101 highway.

Highway 101 (US 101), monitored by a camera mounted on
top of a high building on June 15, 2005. The locations and
actions of each vehicle in the monitored region for a total of
around 680 meters and 2,770 seconds were converted from
camera videos. This dataset has gained a great attention in
many traffic flow studies [42].

We select the data from all the mainline lanes of the US
101 highway segment to calculate the average traffic density
for approximately every 30 meters over a 1.5 seconds period.
After preprocessing to remove the time when there are non-
monitored vehicles running on the road (at the beginning and
end of the video), there are 21 and 1770 valid cells on the
spatial and temporal dimensions, respectively. We treat the
center of each cell as a grid point. Fig. 8 shows the spatio-
temporal field of traffic density p (¢, x) and velocity u(z, x) in
the dataset. From the figure, we can observe that shockwaves
backpropagate along the highway.

For TSE experiments in this section, loop detectors are
used to provide observed data with a recording frequency
of 1.5 seconds. By default, they are evenly installed on the
highway segment. We assume that the loop detectors are able
to record the density and average velocity of cells on certain
locations

B. TSE Methods for Real Data

We first introduce the PIDL 4 FDL-based methods for
the real-world TSE problem, and then, describe advanced
baselines to compare with.
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Fig. 9. The structure design of LWR-PIDL + FDL method for NGSIM data.

1) LWR-PIDL + FDL: This method is based on the
PIDL + FDL encoded with the first-order LWR, using the
structure in Fig. 1 except for two modifications: 1) no assump-
tions on diffusion effects are made and the traffic flow becomes
pr +(Q(p))x = 0, which is commonly-used in literature [42];
and 2) the estimation of velocity is calculated using an addi-
tional calculation node &i = Q(p; w)/p. Specifically, the mod-
ified structure of this TSE method is presented in Fig. 9.
We select 80% of the grid G as the auxiliary points A. The
loss in Eq. (11) (with the MSE on velocity estimation added
and the boundary conditions removed) is used for training the
PUNN and FDL using the observed data from loop detectors
(i.e., both observation points O and corresponding target state
values P). After tuning the hyperparameters with grid search,
we present the minimal-achievable estimation errors. The same
for other baselines by default. Because the real data could be
noisy, leading to abnormal learned FD curves, the reshaping
regularization term in Eq. (8) is applied.

2) ARZ-PIDL + FDL: This method is based on the
PIDL + FDL encoded with the second-order ARZ, using the
structure in Fig. 6. The Eq. (15) (with boundary conditions
removed) is applied as the loss function. Other experimental
setups are the same with those of the LWR-PIDL + FDL
method.

3) Two-Dimensional Data Interpolation (Interp2): The two-
dimensional linear interpolation method is used as a baseline,
which interpolates the traffic states using the neighboring
observed data in a linear manner.

4) Adaptive Smoothing (AS) Method: This method estimates
the traffic state of a cell using the sum of all the observed data
weighted by some smoothing kernel filters. We implement a
generalized AS method proposed in [12] with the parameters
suggested in [43] for the AS model.

5) Long Short Term Memory (LSTM) Based Method: This
baseline method employs the LSTM architecture, which is
customized from the LSTM-based TSE proposed by [23]. This
model can be applied to our problem by leveraging the spatial
dependency, i.e., to use the information of previous cells to
estimate the traffic density and velocity of the next cell along
the spatial dimension.

Other baselines include the Pure Neural Network (NN)
and the Extended Kalman Filter (EKF) as well as the
advanced PIDL-based TSE methods: LWR-based PIDL
(LWR-PIDL) and ARZ-based PIDL (ARZ-PIDL). For more
descriptions regarding these four baselines, we refer the read-
ers to the authors’ previous work in [33].
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Fig. 10. TSE performance of PIDL + FDL-based methods and baselines.

C. Results and Discussion

We apply PIDL + FDL-based, and baseline methods to
TSE on the NGSIM dataset with different numbers of loop
detectors. The results are presented in Fig. 10.

From Fig. 10, we can observe that the PIDL-related methods
generally perform better than the model-driven and data-
driven TSE baselines. The EKF/Interp2/AS methods achieve
better errors than the NN/LSTM methods when the number
of loop detectors are small, while the NN/LSTM methods’
performance catches up when more loops are available.

The results are reasonable. The EKF is a model-driven
approach, making sufficient use of the traffic flow model to
appropriately estimate unobserved values when limited data
are available. However, the model cannot fully capture the
complicated traffic dynamics in the real world, and as a result,
the EKF’s performance flattens out. The Interp2 is a non-
parametric data-driven method interpolating the unobserved
fields using neighboring observation in a linear manner. The
AS method incorporates the characteristic velocities of infor-
mation propagation in free and congested traffic, by skewing
the principal axes of the smoothing kernel. The Interp2 and AS
methods have a relatively low complexity which can prevent
over-fitting when the data is small. However, they may not
effectively handle subtle state changes in the unobserved area
due to the linearly-extrapolating nature or filtering nature,
respectively. The PIDL-based method’s errors are generally
below the baselines, because it can make efficient use of both
the traffic flow model and observed data. The ARZ-PIDL
method is informed by a more advanced second-order traffic
model and its performance is superior to that of LWR-PIDL.

The PIDL + FDL-based methods can generally achieve
the best estimation accuracy and data efficiency over the
above TSE baselines. The results demonstrate that the proper
integration of the NN-based FD surrogate to the PIDL can give
the learning framework more flexibility to achieve an improved
TSE accuracy. One interesting phenomenon is that the
PIDL + FDL with the first-order LWR (LWR-PIDL + FDL)
can beat the one with a more sophisticated second-order ARZ
model (ARZ-PIDL + FDL). This observation supports our dis-
cussion that sophisticated traffic models may not always lead
to a better TSE performance, because the model may contain
complicated terms that makes the TSE performance sensitive
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Fig. 11. Comparison of the FD curves estimated by the PIDL + FDL-based
TSE method§ and PIDL-based TSE me}hods. For consistent visualization,
the learned Uy (p; ) is converted to pU,q (p; ) to represent the estimated
flow.

to the PINN structural design, and thus, the model becomes
difficult to train. Compared to the ARZ-PIDL + FDL,
the LWR-PIDL + FDL can balance the trade-off between the
sophisticated level of PINN and the training flexibility more
properly, making it a better fit to the NGSIM scenario.

D. Discussions on Fundamental Diagram Estimation

The PIDL + FDL-based methods can further learn the
hidden fundamental diagram (FD) relation. We compare the
FD curves learned via the PIDL + FDL-based methods and
PIDL-based methods in the density-flow space when small
number of loops are available. The results are presented
in Fig. 11 where each dark blue dot is a density-flow data
point in the NGSIM dataset. Note, the flow values are not
part of the observed data during the training phase.

For the PIDL-based methods, the closed form of the flux
function and velocity function are given and the parameters in
the PINN component are learned along with the TSE training,
and thus, the shape of the FD curves are predefined. The
corresponding FD curves with the learned model parameters
are indexed as “3” in Fig. 11. For consistent visualization, the
learned Ueq(ﬁ;w) is converted to pAlA]eq(pA;w) to represent
the estimated flow. The LWR-PIDL method is encoded with
the 3-parameter-based flux, and the ARZ-PIDL is with the
Greenshields function for the equilibrium velocity. The for-
mer has a proper shape defined by the given mathematical
formula, but due to the complicated nature of the PINN
for the 3-parameter flux and the noisy quality of the data,
the learned FD curves do not fit the density-flow points to
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a satisfactory extent. The latter has a predefined quadratic
shape and can capture the density-flow characteristics to a
limited level.

For the PIDL + FDL-based methods, using the standard
training loss in Eq.(7), the learned FD shapes (indexed as
“1” in Fig. 11) fit the NGSIM density-flow points well
over the domain where the observed traffic state data are
distributed, i.e., around p € [0, 0.5]. However, the FD curves
tend to curl up in the large-density domain, where the data
are sparse. To address this abnormal shape, we apply the
regularization term in Eq. (8) for reshaping and impose the
prior knowledge of concavity over a narrowed interval of
p € [0.6,0.7]. To this end, we set the hyperparameters in
Eq. (8) to a = 0.6 and b = 0.7. The corresponding learned
FD curves using the reshaping regularization term are indexed
as “2” in the figures, and they can properly capture the density-
flow characteristics to a satisfactory level. Because of using the
FD Learner, the LWR-PIDL + FDL contains no model para-
meters, and the conservation law plus the Q(p; ™) constitutes
the LWR model reconstructed by the LWR-PIDL + FDL. The
ARZ-PIDL + FDL contains one model parameter, i.e., the
relaxation time 7. The learning with data from 3, 6 and
8 loops converges to t* = [23.36,25.99,27.66], which is
reasonably close to 7 = [27.6, 28.8, 30.5] directly fitted from
data. The conservation law, the momentum of velocity with
model parameter 7*, and the learned l}m (p; @*) constitute
the ARZ model reconstructed by the ARZ-PIDL + FDL.

The experimental results demonstrate that the proposed
PIDL + FDL-based TSE method (with the regularization for
reshaping) is able to efficiently conduct high-quality TSE,
model parameter identification and fundamental diagram esti-
mation at the same time with relatively small amounts of
observed data.

VII. CONCLUSION

We introduced the PIDL + FDL framework to the TSE
problem on highways using loop detector data and demonstrate
the significant benefits of the integration of an ML surrogate
into the model-driven component in PIDL. This framework
can be used to handle traffic state estimation, model parameter
identification, and fundamental diagram estimation simulta-
neously. The experiments on real highway data show that
PIDL + FDL-based approaches can outperform baselines in
terms of estimation accuracy and data efficiency as well as the
estimation of FD.

The limitations and potential future works of this paper
are as follows: (1) Similar to most deep learning methods,
hyperparameter tuning is an issue of PIDL-based TSE, and
tuning such a large number of hyperparameters based on
approaches like cross-validation is too complicated for real-
world application, and the model basically has to be tuned for
each scenario (spatial resolution, temporal resolution, spatial
grid size, temporal grid size, observation error, etc), which
limits its applicability to real-world problems; (2) PIDL is
known to have issues with noisy data, and how the high
noise and corruption in the real traffic data undermine the
performance of PIDL-based TSE needs further investigations;
(3) It is worthy of considering more ML surrogate components
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to represent other unobserved traffic quantities in the traffic
flow model, such as i (p) and Uey(p —u)/7, and study to what
extent the addition of surrogates affects the performance.
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