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for Traffic State and Fundamental
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Abstract— Traffic state estimation (TSE) bifurcates into two
main categories, model-driven and data-driven (e.g., machine
learning, ML) approaches, while each suffers from either defi-
cient physics or small data. To mitigate these limitations, recent
studies introduced hybrid methods, such as physics-informed
deep learning (PIDL), which contains both model-driven and
data-driven components. This paper contributes an improved
paradigm, called physics-informed deep learning with a funda-
mental diagram learner (PIDL + FDL), which integrates ML
terms into the model-driven component to learn a functional
form of a fundamental diagram (FD), i.e., a mapping from
traffic density to flow or velocity. The proposed PIDL + FDL
has the advantages of performing the TSE learning, model
parameter identification, and FD estimation simultaneously. This
paper focuses on highway TSE with observed data from loop
detectors, using traffic density or velocity as traffic variables.
We demonstrate the use of PIDL + FDL to solve popular first-
order and second-order traffic flow models and reconstruct the
FD relation as well as model parameters that are outside the FD
term. We then evaluate the PIDL + FDL-based TSE using the
Next Generation SIMulation (NGSIM) dataset. The experimental
results show the superiority of the PIDL + FDL in terms of
improved estimation accuracy and data efficiency over advanced
baseline TSE methods, and additionally, the capacity to properly
learn the unknown underlying FD relation.

Index Terms— Traffic state estimation, traffic flow models,
fundamental diagram learner, physics-informed deep learning.

I. INTRODUCTION

TTRAFFIC state estimation (TSE) refers to the data

mining problem of reconstructing traffic state variables,

including but not limited to flow, density, and speed, on road
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segments using partially observed data from traffic sensors [1].

TSE approaches can be briefly divided into two main cat-

egories: model-driven and data-driven [2]. A model-driven

approach is based on a priori knowledge of traffic dynamics,

usually described by a physical model, e.g., the Lighthill-

Whitham-Richards (LWR) model [3], [4] and Aw-Rascle-

Zhang (ARZ) model [5], [6], to estimate the traffic state using

partial observation. It assumes the model to be representative

of the real-world traffic dynamics such that the unobserved

values can be properly added using the model with small data.

The disadvantage is that existing models, which are provided

by different modelers, may only capture limited dynamics of

the real-world traffic, resulting in low-quality estimation in

the case of inappropriately-chosen models and poor model

calibrations. Paradoxically, sometimes, verifying or calibrating

a model requires a large amount of observed data, undermining

the data efficiency of model-driven approaches.

A data-driven approach is to infer traffic states based on

the dependence learned from historical data using statistical

or machine learning (ML) methods. Approaches of this type

do not use any explicit traffic models or other theoretical

assumptions, and can be treated as a “black box” with no inter-

pretable and deductive insights. The disadvantage is that in

order to maintain a good generalizable inference to long-term

unobserved values, massive and representative historical data

are a prerequisite, leading to high demands on data collection

infrastructure and enormous installation-maintenance costs.

To mitigate the limitations of the above-mentioned TSE

approaches, hybrid TSE methods are introduced, which inte-

grate the traffic knowledge in the form of traffic flow models

to ML models for TSE. The hybrid methods based on the

learning paradigm of physics-informed deep learning (PIDL)

are gaining increasing attentions in recently years, and is the

focus of this paper. PIDL contains both a model-driven com-

ponent (a physics-informed neural network for regularization)

and a data-driven component (a physics-uninformed neural

network for estimation), making possible the integration of

the strengths of both model-driven and data-driven approaches

while overcoming the weaknesses of either.

Despite that the addition of physics could guide the training

of PIDL efficiently, complicated mathematical formulas could

instead make the PIDL difficult to train. There are many

theoretical attempts made to add sophistication (usually in the

form of complicated terms) to the FD relation for an improved

description of the dynamics. To balance the sophistication
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and trainability of encoding physics, this paper explores a

promising direction by approximating the FD relation with

an ML surrogate, instead of hard-encoding an FD equation.

Following this direction, we introduce an improved PIDL

paradigm, called physics-informed deep learning with a fun-

damental diagram learner (PIDL + FDL), which integrates an

ML surrogate (e.g., an NN) into the model-driven component

to represent the fundamental diagram (FD) in the macroscopic

traffic flow models and estimate the FD relation. We focus on

highway TSE with observed data from loop detectors, using

traffic density or velocity as the traffic variables. This paper

makes the following contributions:

• We propose the PIDL + FDL-based TSE method that

possesses advantages to

- Perform the TSE with improved estimation accuracy:

A proper integration of ML surrogates may avoid directly

encoding the complicated terms in PIDL and trade off

between the sophistication of the model-driven aspect of

PIDL and the training flexibility, making the framework

a better fit to the TSE problem;

- Perform the FD estimation: The PIDL + FDL uses

an ML surrogate to directly learn the underlying FD

relation without any FD output measurements, i.e., the

ML surrogate is purely trained under the physical regu-

larization from PIDL, making it more likely to learn a

suitable relation along with the TSE training. It can also

get around the calibration of parameters inside the FD

equation;

- Perform the model parameter identification: For a

complete traffic model reconstruction, in addition to the

FD estimation, there may exist model parameters outside

the FD term that need to be learned and the proposed

PIDL + FDL can conduct the model parameter identifi-

cation jointly.

• We validate the PIDL + FDL performance with both

numerical experiments and real-world data: To demon-

strate the strengths of the PIDL + FDL, we design

the PIDL + FDL architectures for the traffic dynamics

governed by the Greenshields-based LWR model and

Greenshields-based ARZ model, respectively. Addition-

ally, experiments using the real-world data, the Next

Generation SIMulation (NGSIM) dataset, are conducted.

The experimental results show the advantages of PIDL

in terms of estimation accuracy and data efficiency over

baselines and the capacity to properly estimate the FD

relation and model parameters.

The rest of this paper is organized as follows. Section II

briefs related work on TSE and PIDL. Section III formalizes

the PIDL + FDL framework for TSE. Sections IV and V

detail the designs and experiments of PIDL + FDL for

Greenshields-based LWR and Greenshields-based ARZ,

respectively. Section VI evaluates the PIDL + FDL on NGSIM

data over baselines. Section VII concludes our work.

II. RELATED WORK OF TRAFFIC STATE ESTIMATION

Model-driven approaches accomplish their estimation

process relying on traffic flow models, such as the LWR

and Aw-Rascle-Zhang (ARZ) for one-dimensional traffic

flow (link models) and junction models [7] for network

traffic flow (node models). Most estimation approaches in this

category are data assimilation (DA) based, which attempt to

find “the most likely state”, allowing observation to correct

the model’s prediction. Popular examples include the Kalman

filter (KF) and its variants (e.g., extended KF [8]–[10]), which

find the state that maximizes the conditional probability of the

next state given current estimate. Other than KF-like methods,

particle filter (PF) [11] with improved nonlinear represen-

tation, adaptive smoothing filter (ASF) [12] for combining

multiple sensing data, were proposed to improve and extend

different aspects of the TSE process. In addition to DA-based

methods, there have been many studies utilizing microscopic

trajectory models to simulate the state or vehicle trajectories

given some boundary conditions from data [13], [14].

Data-driven approaches estimate traffic states using his-

torical data or streaming data without explicit traffic flow

models. Early studies considered relatively simple statisti-

cal methods, such as heuristic imputation techniques using

empirical statistics of historical data [15] and regression

methods [16], [17]. To handle more complicated traffic data,

ML approaches were involved, including principal component

analysis (PCA) and its variants [18], [19], k-nearest neighbors

(kNN) [20], and probabilistic graphical models (i.e., Bayesian

networks) [21]. Deep learning models, such as long short term

memory (LSTM) and deep embedded models, have recently

been applied for traffic flow prediction [22]–[24].

Each of the two approaches has disadvantages, and it is

promising to develop a framework to integrate physics to

ML. Such a hybrid paradigm has gained increasing interests

recently. Yuan et al. [25] proposed to leverage a hybrid frame-

work, physics regularized Gaussian process [26] for macro-

scopic traffic flow modeling and TSE. The hybrid methods

using the PIDL framework [27], [28] recently becomes an

active field. Huang and Agarwal [29] studied the use of

PIDL to encode the Greenshields-based LWR and validated

it in the loop detector scenarios using SUMO simulated data.

Barreau et al. [30]–[32] studied the probe vehicle sensors and

developed coupled micro-macro models for PIDL to per-

form TSE. Shi et al. [33] extended the PIDL-based TSE to

the second-order ARZ with observed data from both loop

detectors and probe vehicles. Thodi et al. [34] proposed a

kinematic wave based Deep Convolutional Neural Network

(Deep CNN) to estimate high resolution traffic speed dynamics

from sparse probe vehicle trajectories.

As to model reconstruction, which is another feature of

PIDL-based TSE, this paper only assumes a traffic flow con-

servation equation and optionally, a momentum equation for

the velocity field, without specifying any mathematical relation

between traffic quantities. The aforementioned related studies

in [30], [32] directly fit a velocity function using measured

density and velocity from probe vehicles before or during

the PIDL training. In contrast, we focus on a more general

case, where the output of the FD function is unobserved

from sensors, and the end-to-end FD relation is to be learned

directly using ML surrogates under the PIDL framework.

In summary, this paper contributes to the trend of developing

hybrid methods for TSE and model reconstruction, especially
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with both FD estimation and model parameter identification

involved. We believe that using PIDL for TSE and other

transportation-related problems will become a popular topic

in the transportation community.

III. MATHEMATICAL SETTING FOR PIDL + FDL

This section introduces the PIDL + FDL framework in the

context of TSE at a high level.

A. PIDL for TSE

Consider a traffic flow dynamics of a road segment that

is governed by a set of non-linear equations (e.g., partial

differential equations, PDEs):

N (MMM(t, x), QQQ;λλλ) = 000, x ∈ [0, L], t ∈ [0, T ], (1)

where L ∈ R
+, T ∈ R

+. We use bold symbols to denote vec-

tors by default. The operator N contains the governing non-

linear equations of the traffic flow dynamics, while MMM(t, x)

contains the traffic state variables, such as the traffic density

ρ(t, x) and velocity u(t, x). λλλ contains the model parameters.

The model includes intermediate unobserved traffic variables

QQQ that have some hidden relationship with MMM(t, x). Thus,

the dynamics can be represented by

N (MMM, QQQ(MMM);λλλ) = 000, (2)

and MMM stands for MMM(t, x). For general discussion, the values of

QQQ are not assumed to be directly observable, and the relation is

either unknown or deduced based on assumptions which may

be deficient. The TSE problem is to reconstruct the traffic

states MMM at each point (t, x) in a continuous domain from

partial observation of MMM . Accordingly, the continuous spatio-

temporal domain D is a set of points: D = {(t, x)|∀t ∈

[0, T ], x ∈ [0, L]}. We represent this continuous domain in

a discrete manner using grid points G ∈ D that are evenly

deployed throughout the domain. We define the set of grid

points as G = {(t(r), x (r))|r = 1, . . . , Ng}. The total number

of grid points, Ng , controls the fine-grained level of G as a

representation of the continuous domain.

PIDL approximates MMM(t, x) using a neural network with

time t and location x as its inputs. This neural network is

called physics-uninformed neural network (PUNN) (or esti-

mation network in our TSE study), which is parameterized

by θ . We denote the approximation of MMM(t, x) from PUNN

as M̂MM(t, x; θ). When N , QQQ and λλλ are known, during the

learning phase of PUNN (i.e., to find the optimal θ for

PUNN), the following equation defines the residual values of

the approximation M̂MM(t, x; θ):

f̂̂f̂f (t, x; θ) := N (M̂MM(t, x; θ), QQQ(M̂MM(t, x; θ));λλλ), (3)

which is designed according to the traffic flow model in

Eq. (2). The calculation of residual f̂̂f̂f (t, x; θ) is done by a

physics-informed neural network (PINN). This network can

compute f̂̂f̂f (t, x; θ) directly using M̂MM(t, x; θ), the output of

PUNN, as its input. When M̂MM(t, x; θ) is closer to the true value

MMM(t, x), the residual f̂̂f̂f will be closer to 000. PINN introduces

no new parameters, and thus, shares the same θ of PUNN.

In most cases, even the model is given, the model parame-

ters λλλ are unknown and can be made as learning variables in

PINN for model parameter identification. The residual f̂ff is

then redefined as

f̂̂f̂f (t, x; θ,λλλ) := N (M̂MM(t, x; θ), QQQ(M̂MM(t, x; θ));λλλ). (4)

This paper assumes unknown model parameters by default.

In PINN, f̂̂f̂f (t, x; θ,λλλ) is calculated by automatic differen-

tiation technique [35], which can be done by the function

tf.gradient in Tensorflow. The activation functions and

the connecting structure of neurons in PINN are designed to

conduct the differential operation in Eq. (4). We would like

to emphasize that, the connecting weights in PINN have fixed

values which are determined by the traffic flow model and

λλλ are encoded as learning variables. Thus, the residual f̂̂f̂f is

parameterized by both θ and λλλ.

The training data for PIDL consist of (1) observation points

O = {(t
(i)
o , x

(i)
o )|i = 1, . . . , No}, (2) target values P =

{MMM(i)|i = 1, . . . , No} (i.e., the true traffic states at the obser-

vation points), and (3) auxiliary points A = {(t
( j )
a , x

( j )
a )| j =

1, . . . , Na}. i and j are the indexes of observation points and

auxiliary points, respectively. One target value is associated

with one observation point, and thus, O and P have the same

indexing system (indexed by i ). This paper uses the term,

observed data, to denote {O, P}. Both O and A are subsets

of the grid points G (i.e., O ∈ G and A ∈ G).

Observation points O are limited to the time and locations

that traffic sensors can visit and record. In contrast, auxiliary

points A have neither measurement requirements nor location

limitations, and the number of A is controllable. A are used

for regularization purposes, and this is why they are called

“auxiliary”. To train a PUNN for TSE, the following loss is

used:

Lossθ,λλλ = α · M SEo + β · M SEa

= α ·
1

No

No∑

i=1

|M̂MM(t(i)o , x (i)
o ; θ) − MMM (i)|2

︸ ︷︷ ︸

data discrepancy

+ β ·
1

Na

Na∑

j=1

| f̂̂f̂f (t
( j )
a , x

( j )
a ; θ,λλλ)|2

︸ ︷︷ ︸

physical discrepancy

. (5)

where α and β are hyperparameters for balancing the con-

tribution to the loss made by data discrepancy and physical

discrepancy, respectively. The data discrepancy is defined as

the mean square error (MSE) between approximation M̂MM on

O and target values P . The physical discrepancy is the MSE

between residual values on A and 000, quantifying the extent to

which the approximation deviates from the traffic model.

Given the training data, we apply neural network training

algorithms to solve (θ∗,λλλ∗) = argminθ,λλλ Lossθ,λλλ. Then,

the λλλ∗-parameterized traffic flow model of Eq. (4) is the most

likely physics that generates the observed data, and the

θ∗-parameterized PUNN can then be used to approximate the

traffic states on G, which are consistent with the reconstructed

traffic flow model in Eq. (2).
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B. PIDL + FDL for TSE

As has been discussed previously, the PIDL-based TSE

methods may perform poorly when informed by a highly

sophisticated traffic flow model. This is because the mod-

els may contain complicated terms that are unfriendly to

differentiation-based learning (e.g., square root operators of

learning variables in the denominator, etc.), making the train-

ing and performance very sensitive to the structural design

of PINN. Many efforts such as variable conversion, decom-

position and factorization need to be made to have the PINN

trainable and the loss to converge. In our framework of Eq.(2),

these “unfriendly” terms can be contained as part of the

hidden relation QQQ. To address the issues of PIDL-based TSE,

we propose to use an ML surrogate Q̂̂Q̂Q to directly represent the

QQQ and learn the relation under the PIDL framework, instead

of hard-encoding a complicated term in PINN.

The advantages of properly introducing an ML surrogate of

QQQ are two-fold: (1) An ML term is usually differentiation-

friendly, giving the PIDL more flexibility to achieve an

improved TSE accuracy. (2) No assumptions are made to the

hidden relation, and it is possible to learn a more suitable Q̂̂Q̂Q

when trained under the physical regularization from PINN.

This paper focuses on one kind of hidden relationships,

the fundamental diagram (FD), and the corresponding learning

paradigm is called PIDL with an FD Learner (PIDL + FDL).

Specifically, the FD Learner, formalized as Q̂̂Q̂Q(M̂̂M̂M; ω), can be

designed as a neural network parameterized by ω to represent

the unknown FD relation, which takes the estimated traffic

variables M̂̂M̂M(t, x; θ) as its input. The residual of Eq.(4) is

redefined as the following

f̂̂f̂f (t, x; θ,ω,λλλ) := N (M̂MM(t, x; θ), Q̂QQ(M̂MM(t, x; θ); ω);λλλ). (6)

The loss function becomes

Lossθ,ω,λλλ = α · M SEo + β · M SEa

= α ·
1

No

No∑

i=1

|M̂MM(t(i)o , x (i)
o ; θ) − MMM (i)|2

+ β ·
1

Na

Na∑

j=1

| f̂̂f̂f (t
( j )
a , x

( j )
a ; θ,ω,λλλ)|2. (7)

Using the training data, we apply neural network training

algorithms to solve (θ∗,ω∗,λλλ∗) = argminθ,ω,λλλ Lossθ,ω,λλλ.

Then, in addition to TSE learning and model parameter

identification, the FD estimation is conducted automatically.

The ω∗-parameterized Q̂̂Q̂Q can be used to represent the unknown

hidden fundamental diagram relation. Note that the values of

QQQ are not assumed to be observable, and thus, are not part of

the data (i.e., to directly learn the Q̂̂Q̂Q from data cannot apply).

In some cases, the curve of the learned Q̂̂Q̂Q may present

abnormal shapes on edge conditions. To mitigate this, one

can encode prior knowledge into the loss as an additional

regularization term Reg(Q̂̂Q̂Q) to reshape the FD. As an example,

we can use QQQ to represent the density-flow relation, i.e., the

flux function (one typical kind of FD), mapping the density ρ

to the flow value, which is denoted as a scalar Q(ρ). Existing

theoretical works usually assume Q to be concave with respect

to the traffic density ρ. To impose the concavity property,

we design the following regularization term:

Reg(Q) =

∫ b

a

max(0,
∂2 Q(ρ)

∂ρ2
)dρ, (8)

where the hyperparameters a and b determine the interval of

ρ on which the reshaping takes effects without interfering the

learning on other regions. We propose this design because

most abnormal shapes only occur on edge region and it is not

necessary to regularize over the whole traffic density domain.

We apply Lossθ,ω,λλλ = α · M SEo + β · M SEa + ξ · Reg(Q̂) in

the learning phase and properly reshape the learned FD curves.

IV. PIDL + FDL FOR GREENSHIELDS-BASED LWR

The first numerical example aims to show the capability of

our method to estimate the traffic dynamics governed by the

LWR model with a Greenshields flux function.

Define flow rate Q (a scalar) to be the number of vehicles

passing a specific position on the road per unit time, and traffic

density ρ to be the average number of vehicles per unit length

of the road. The traffic flux Q(ρ) describes Q as a function

of ρ, which is the FD relation of interest in this numerical

example. We treat ρ as the basic traffic state variable to esti-

mate. Greenshields flux [36] is a basic and popular choice of

Q(ρ), which is defined as Q(ρ) = ρumax(1−ρ/ρmax), where

umax and ρmax are maximum velocity and maximum (jam)

density, respectively. This flux function has a quadratic form

with two coefficients umax and ρmax .

The LWR model [3], [4] describes the macroscopic traffic

flow dynamics as ρt + (Q(ρ))x = 0, which is derived from

a conservation law of vehicles. In order to reproduce more

phenomena in observed traffic data, such as delayed driving

behaviors due to drivers’ reaction time, diffusively corrected

LWRs were introduced, by adding a diffusion term, containing

a second-order derivative ρx x . We focus on one version of the

diffusively corrected LWRs: ρt + (Q(ρ))x = ερx x , where ε is

the diffusion coefficient.

In this section, we study the Greenshields-based LWR traffic

flow model of a “ring road”:

ρt + (Q(ρ))x = ερx x , t ∈ [0, 3], x ∈ [0, 1],

Q(ρ) = ρ · umax

(

1 −
ρ

ρmax

)

(F D relation),

ρ(t, 0) = ρ(t, 1) (boundary condi tion 1),

ρx (t, 0) = ρx (t, 1) (boundary condi tion 2), (9)

where ρmax = 1.0, umax = 1.0, and ε = 0.005. ρmax and

umax are usually determined by physical restrictions of the

road and vehicles.

Given the bell-shaped initial 0.1 + 0.8e−( x−0.5
0.2 )2

, x ∈ [0, 1],

we apply the Godunov scheme [37] to solve Eqs. (9) on

960 (time) × 240 (space) grid points G evenly deployed

throughout the [0, 3] × [0, 1] domain. In this case, the total

number of grid points G is Ng = 960 × 240. The numerical

solution is shown in Fig. 2 (see the heat map background).

From the figure, we can visualize the dynamics as follows:

At t = 0, there is a peak density at the center of the

road segment, and this peak evolves to propagate along the
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Fig. 1. PIDL + FDL architecture for first-order traffic dynamics, consisting
of a PUNN for traffic density estimation and a PINN + FD Learner for
calculating the residual Eq. (10). The model parameter ε is held by a variable
node (blue rectangular nodes). All connecting weights are predefined and fixed
in PINN.

direction of x , which is known as the phenomenon of traffic

shockwave. Since this is a ring road, the shockwave reaching

x = 1 continues at x = 0. This numerical solution of

the Greenshields-based LWR model is treated as the ground-

truth traffic density. We will apply a PIDL + FDL-based

approach method to estimate the entire traffic density field

using observed data as well as to estimate the FD relation and

model parameters.

A. PIDL + FDL Architecture Design

The authors’ previous work [33] has shown the capacity of

PIDL to perform both TSE and model parameter identification

when the closed traffic flow model is given. Here we are

only given the knowledge of conservation law and boundary

conditions, i.e., the FD relation is unknown and no direct

observation of Q is available.

We employ a neural network Q̂(·; ω) to estimate the traffic

flow from the traffic density and to represent the FD relation

of interest. Based on Eqs. (9), we define the residual value of

PUNN’s traffic density estimation ρ̂(t, x; θ) as

f̂ (t, x; θ,ω, ε) := ρ̂t (t, x; θ) + (Q̂(ρ̂(t, x; θ); ω))x

− ερ̂x x(t, x; θ). (10)

Note that the model parameter λλλ contains the coefficient

ε only.

Given the definition of f̂ , the corresponding PIDL + FDL

architecture is shown in Fig. 1. This architecture consists

of a PUNN for traffic density estimation, followed by a

PINN + FD Learner for calculating the residual Eq. (10). The

PUNN parameterized by θ is designed as a fully-connected

feedforward neural network with 8 hidden layers and 20 hid-

den nodes in each hidden layer. Hyperbolic tangent function

(tanh) is used as the activation function for each hidden

neuron in PUNN. In contrast, in PINN, connecting weights

are fixed and the activation function of each node is designed

to conduct specific nonlinear operation for calculating an

intermediate (hidden) value of f̂ . The flow value is calculated

by a separate neural network Q̂(ρ̂; ω) with two hidden layers

and 20 hidden nodes for each. The model parameter ε is held

by a variable node (blue rectangular nodes).

To customize the training of PIDL + FDL to Eqs. (9),

in addition to the training data O, P and A defined in

Section III-A, we need to introduce boundary auxiliary points

Fig. 2. A sparse presentation of the deployment of observation points O at
loop detectors, auxiliary points A randomly selected from G , and boundary
auxiliary points B deployed at the boundaries x = 0 and x = 1 for certain
time points. The heatmap is the numerical solution of Eqs. (9) using the
Godunov scheme. We treat the numerical solution as the ground truth.

B = {(t
(k)
b , 0)|k = 1, . . . , Nb} ∪ {(t

(k)
b , 1)|k = 1, . . . , Nb}, for

learning the two boundary conditions in Eqs. (9).

For experiments of state estimation with both parameter

identification and FD estimation, we design the following loss

Lossθ,ω,ε = α · M SEo + β · M SEa + γ · B1 + η · B2

=
α

No

No∑

i=1

|ρ̂(t(i)o , x (i)
o ; θ) − ρ(i)|2

+
β

Na

Na∑

j=1

| f̂ (t
( j )
a , x

( j )
a ; θ,ω, ε)|2

+
γ

Nb

Nb∑

k=1

|ρ̂(t
(k)
b , 0; θ) − ρ̂(t

(k)
b , 1; θ)|2

+
η

Nb

Nb∑

k=1

|ρ̂x(t
(k)
b , 0; θ) − ρ̂x (t

(k)
b , 1; θ)|2. (11)

B1, scaled by γ , is the MSE between estimations at the two

boundaries x = 0 and x = 1. B2, scaled by η, quantifies the

difference of first order derivatives at the two boundaries.

B. TSE + FDL Using Observation From Loop Detectors

We justify the capacity of PIDL + FDL in Fig. 1 for

estimating the traffic density field using observation from loop

detectors, i.e., only the traffic density at certain locations where

loop detectors are installed can be observed. By default, loop

detectors are evenly located along the road. To be specific,

the grid points at certain locations are used as the observa-

tion points O, and their corresponding densities constitute

the target values P for training. There are Na = 100, 000

auxiliary points in A randomly selected from grid points G.

Nb = 650 out of 960 grid time points (i.e., the time points

on the temporal dimension of G) are randomly selected to

create boundary auxiliary points B . A sparse version of the

deployment of O, A and B in the spatio-temporal domain is

shown in Fig. 2. Each observation point is associated with a

target value in P . Note O, A and B are all subsets of G.

We train the proposed PIDL + FDL on an NVIDIA Titan

RTX GPU with 24 GB memory. By default, we use the 2

relative error on G to quantify the estimation error of the
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Fig. 3. Top: Estimation of the traffic density dynamics ρ̂(t, x; θ∗) on grid
points G in the domain using the trained PUNN. Bottom: Snapshots of
estimated and true traffic density at certain time points.

entire domain:

Err(ρ̂,ρ) =

√
∑Ng

r=1

∣
∣ρ̂(t(r), x (r); θ) − ρ(t(r), x (r))

∣
∣
2

√
∑Ng

r=1

∣
∣ρ(t(r), x (r))

∣
∣
2

. (12)

The reason for choosing the 2 relative error is to normalize

the estimation inaccuracy, mitigating the influence from the

scale of true density values. One remark is that there are some

TSE methods (e.g., non parametric ones) that do not perform

any estimation on the observation points and directly use the

target values there. For these cases, the observation points will

be removed from G before calculating Eq.(12).

We use the Xavier uniform initializer [38] to initialize θ

of PUNN and ω of FD Learner (FDL). This neural network

initialization method takes the number of a layer’s incom-

ing and outgoing network connections into account when

initializing the weights of that layer, which may lead to a

good convergence. The ε is initialized at 0. Then, we train

the PUNN, FDL and ε through the PIDL + FDL architec-

ture using a popular stochastic gradient descent algorithm,

the Adam optimizer [39], for a rough training. A follow-up

fine-grained training is done by the L-BFGS optimizer [40]

for stabilizing the convergence, and the process terminates

until the loss change of two consecutive steps is no larger

than 10−16. This training process converges to a local optimum

θ∗, ω∗ and ε∗ that minimize the loss in Eq. (11).

We would like to clarify that in this paper, the training data

are the observed data from detectors, i.e., the traffic states on

the points at certain locations where loops are equipped.

The results of applying the PIDL + FDL with 4 loops to

the Greenshields-based LWR dynamics is presented in Fig. 3,

where PUNN is parameterized by the optimal θ∗. As shown

in Fig. 3, the estimation ρ̂(t, x; θ∗) is visually the same

as the true dynamics ρ(t, x) in Fig. 2. By looking into

the estimated and true traffic density over x at certain time

points, there is a good agreement between two traffic density

curves. The 2 estimation error Err(ρ̂,ρ) is 1.287 × 10−2.

Empirically, the difference cannot be visually distinguished

when the estimation error is smaller than 6 × 10−2.

We change the number of loop detectors. For a fixed number

of loop detectors, we use grid search for hyperparameter

tuning by default. Specifically, since Adam optimizer is scale

TABLE I

PERFORMANCE OF PIDL + FDL ON THE LWR DYNAMICS

Fig. 4. The learned FD relation Q̂(ρ; ω∗) based on PIDL + FDL architecture
compared with the true Q(ρ).

invariant, we fix the hyperparameter α to 100 and tune the

other hyperparameters from [1, 10, 50, 100, 150, 200] with

some follow-up fine tuning. The minimal-achievable estima-

tion errors of PIDL + FDL over the numbers of loop detectors

are presented in Table I. From the table, we can see that

the traffic density estimation errors improve as the number of

loop detectors increases. When more than two loop detectors

are used, the model parameters to be learned are able to

converge to the true parameters ε. Specifically, with three

loop detectors, in addition to a good traffic density estimation

error of 3.327 × 10−2, the model parameter converges to

ε∗ = 0.00495, which is very close to the true value 0.005.

The results demonstrate that PIDL + FDL method can han-

dle both TSE and model parameter identification with three

loop detectors for the traffic dynamics of the Greenshields-

based LWR.

The performance of FD estimation based on PIDL + FDL is

presented is Fig. 4. Compared with the true Q(ρ), the proposed

method can reconstruct the exact Greenshields FD when 5 loop

detectors are used. The results are meaningful because neither

any assumptions on the FD relation are made nor the flow

values are observed directly. In addition to traffic density esti-

mation and model parameter identification, the PIDL + FDL

is able to make full use of the conservation law and boundary

conditions to retrieve the density-flow relation automatically.

V. PIDL + FDL FOR GREENSHIELDS-BASED ARZ

The second numerical example aims to show the capacity of

the proposed method to handle the traffic dynamics governed

by the Greenshields-based ARZ, a second-order traffic flow

model with both traffic density ρ and velocity u as the traffic

state variables.
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Fig. 5. a) is the bell-shaped initial ρ and u over x ∈ [0, 1]; b) and c) are
numerical solutions for ρ and u, respectively.

An ARZ model involves both a conservation law of vehicles

and a momentum equation on velocity. Specifically, we study

the following traffic flow dynamics of a “ring road” in

t ∈ [0, 3], x ∈ [0, 1]:

ρt + (ρu)x = 0,

(u + h(ρ))t + u(u + h(ρ))x = (Ueq (ρ) − u)/τ,

h(ρ) = Ueq(0) − Ueq(ρ) (tra f f ic pressure),

Ueq (ρ) = umax(1 − ρ/ρmax) (equilibrium speed),

ρ(t, 0) = ρ(t, 1), u(t, 0) = u(t, 1) (boundary cond.),

(13)

where we set the parameters irregularly as ρmax = 1.13,

umax = 1.02, and τ = 0.02. Ueq is the equilibrium velocity,

h(ρ) defines the traffic pressure and τ denotes the relaxation

time scale. For more explanations of this ARZ setting, we refer

readers to our previous work in [33].

Given the bell-shaped initial of ρ and u as shown in Fig. 5.a,

we apply the Lax–Friedrichs (LF) scheme [41] to solve

Eqs.(13) on grid G with 960 (time) × 240 (space) points

evenly deployed over the [0, 3] × [0, 1] domain. The LF

numerical solutions of both ρ and u over the domain are

shown in Fig. 5 as well. We treat this numerical solution as

the ground-truth to test our PIDL + FDL-based approach for

the ARZ dynamics.

A. PIDL + FDL Architecture Design for ARZ

We employ a neural network Ûeq(·; ω) to estimate the

equilibrium velocity and Ueq(ρ) is the target FD relation in

this numerical example. Based on Eqs. (13), we define the

following residuals

f̂1(t, x; θ) := ρ̂t + (ρ̂û)x ,

f̂2(t, x; θ,ω, τ ) := (û + h(ρ̂))t + û(û + h(ρ̂))x

− (Ûeq(ρ̂; ω) − û)/τ, (14)

where ρ̂ and û are shorthands for ρ̂(t, x; θ) and û(t, x; θ),

respectively outputted from a PUNN. By using the FD surro-

gate Ûeq , the relaxation τ is the only model parameter to be

learned.

Given the definition of ( f̂1, f̂2), the design of PINN +

FDL architecture is shown in Fig. 6. The structures of hidden

layers of the PUNN and FDL are the same with those of

Section IV. For this experiment, we adjust the learning loss

as the following:

Lossθ,ω,τ = M SEo + M SEa + B1

=
1

No

No∑

i=1

α1|ρ̂(t(i)o , x (i)
o ; θ) − ρ(i)|2

Fig. 6. PIDL + FDL architecture for second-order traffic dynamics. The
model parameter τ is held by a variable node (blue rectangular node).

TABLE II

PERFORMANCE OF PIDL + FDL ON THE ARZ DYNAMICS

+ α2|û(t(i)o , x (i)
o ; θ) − u(i)|2

+
1

Na

Na∑

j=1

β1| f̂1(t
( j )
a , x

( j )
a ; θ)|2

+ β2| f̂2(t
( j )
a , x

( j )
a ; θ,ω, τ )|2

+
1

Nb

Nb∑

k=1

(γ1|ρ̂(t
(k)
b , 0; θ) − ρ̂(t

(k)
b , 1; θ)|2

+ γ2|û(t
(k)
b , 0; θ) − û(t

(k)
b , 1; θ)|2). (15)

We solve (θ∗,ω∗, τ ∗) = argminθ,ω,τ Lossθ,ω,τ , and the

results of traffic state estimation and model parameter identi-

fication are presented in Table II. Empirically, the difference

between true and estimated values is visually indistinguishable

when the errors are smaller than 6.00×10−2 and 2.90 × 10−2

for density and velocity, respectively. Performances with

accuracy below these values are considered as “acceptable”.

From Table II, we can observe that the TSE performance of

PIDL + FDL with more than three loops is acceptable.

The FDL results are shown in Fig. 7. As can be observed,

the FDL performance improves as the number of loop detec-

tors increases, and the proposed method with 4 loops and

above is able to correctly learn the Greenshields FD relation.

VI. PIDL + FDL-BASED TSE ON NGSIM DATA

This section evaluates the PIDL + FDL-based TSE method

using real-world traffic data, the Next Generation SIMula-

tion (NGSIM) dataset,1 and compares its performance to

baselines.

A. NGSIM Dataset

NGSIM dataset contains real-world vehicle trajectories on

several road scenarios. We focus on a segment of the US

1www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
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Fig. 7. The learned FD relation Ûeq (ρ; ω∗) based on PIDL + FDL
architecture, compared with the ground-truth. To make the presentation

consistent to Fig. 4, ρ · Ûeq (ρ; ω∗) and ρ · Ueq are drawn.

Fig. 8. Visualization of the traffic states on US 101 highway.

Highway 101 (US 101), monitored by a camera mounted on

top of a high building on June 15, 2005. The locations and

actions of each vehicle in the monitored region for a total of

around 680 meters and 2,770 seconds were converted from

camera videos. This dataset has gained a great attention in

many traffic flow studies [42].

We select the data from all the mainline lanes of the US

101 highway segment to calculate the average traffic density

for approximately every 30 meters over a 1.5 seconds period.

After preprocessing to remove the time when there are non-

monitored vehicles running on the road (at the beginning and

end of the video), there are 21 and 1770 valid cells on the

spatial and temporal dimensions, respectively. We treat the

center of each cell as a grid point. Fig. 8 shows the spatio-

temporal field of traffic density ρ(t, x) and velocity u(t, x) in

the dataset. From the figure, we can observe that shockwaves

backpropagate along the highway.

For TSE experiments in this section, loop detectors are

used to provide observed data with a recording frequency

of 1.5 seconds. By default, they are evenly installed on the

highway segment. We assume that the loop detectors are able

to record the density and average velocity of cells on certain

locations

B. TSE Methods for Real Data

We first introduce the PIDL + FDL-based methods for

the real-world TSE problem, and then, describe advanced

baselines to compare with.

Fig. 9. The structure design of LWR-PIDL + FDL method for NGSIM data.

1) LWR-PIDL + FDL: This method is based on the

PIDL + FDL encoded with the first-order LWR, using the

structure in Fig. 1 except for two modifications: 1) no assump-

tions on diffusion effects are made and the traffic flow becomes

ρt + (Q(ρ))x = 0, which is commonly-used in literature [42];

and 2) the estimation of velocity is calculated using an addi-

tional calculation node û = Q̂(ρ̂; ω)/ρ̂. Specifically, the mod-

ified structure of this TSE method is presented in Fig. 9.

We select 80% of the grid G as the auxiliary points A. The

loss in Eq. (11) (with the MSE on velocity estimation added

and the boundary conditions removed) is used for training the

PUNN and FDL using the observed data from loop detectors

(i.e., both observation points O and corresponding target state

values P). After tuning the hyperparameters with grid search,

we present the minimal-achievable estimation errors. The same

for other baselines by default. Because the real data could be

noisy, leading to abnormal learned FD curves, the reshaping

regularization term in Eq. (8) is applied.

2) ARZ-PIDL + FDL: This method is based on the

PIDL + FDL encoded with the second-order ARZ, using the

structure in Fig. 6. The Eq. (15) (with boundary conditions

removed) is applied as the loss function. Other experimental

setups are the same with those of the LWR-PIDL + FDL

method.

3) Two-Dimensional Data Interpolation (Interp2): The two-

dimensional linear interpolation method is used as a baseline,

which interpolates the traffic states using the neighboring

observed data in a linear manner.

4) Adaptive Smoothing (AS) Method: This method estimates

the traffic state of a cell using the sum of all the observed data

weighted by some smoothing kernel filters. We implement a

generalized AS method proposed in [12] with the parameters

suggested in [43] for the AS model.

5) Long Short Term Memory (LSTM) Based Method: This

baseline method employs the LSTM architecture, which is

customized from the LSTM-based TSE proposed by [23]. This

model can be applied to our problem by leveraging the spatial

dependency, i.e., to use the information of previous cells to

estimate the traffic density and velocity of the next cell along

the spatial dimension.

Other baselines include the Pure Neural Network (NN)

and the Extended Kalman Filter (EKF) as well as the

advanced PIDL-based TSE methods: LWR-based PIDL

(LWR-PIDL) and ARZ-based PIDL (ARZ-PIDL). For more

descriptions regarding these four baselines, we refer the read-

ers to the authors’ previous work in [33].
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Fig. 10. TSE performance of PIDL + FDL-based methods and baselines.

C. Results and Discussion

We apply PIDL + FDL-based, and baseline methods to

TSE on the NGSIM dataset with different numbers of loop

detectors. The results are presented in Fig. 10.

From Fig. 10, we can observe that the PIDL-related methods

generally perform better than the model-driven and data-

driven TSE baselines. The EKF/Interp2/AS methods achieve

better errors than the NN/LSTM methods when the number

of loop detectors are small, while the NN/LSTM methods’

performance catches up when more loops are available.

The results are reasonable. The EKF is a model-driven

approach, making sufficient use of the traffic flow model to

appropriately estimate unobserved values when limited data

are available. However, the model cannot fully capture the

complicated traffic dynamics in the real world, and as a result,

the EKF’s performance flattens out. The Interp2 is a non-

parametric data-driven method interpolating the unobserved

fields using neighboring observation in a linear manner. The

AS method incorporates the characteristic velocities of infor-

mation propagation in free and congested traffic, by skewing

the principal axes of the smoothing kernel. The Interp2 and AS

methods have a relatively low complexity which can prevent

over-fitting when the data is small. However, they may not

effectively handle subtle state changes in the unobserved area

due to the linearly-extrapolating nature or filtering nature,

respectively. The PIDL-based method’s errors are generally

below the baselines, because it can make efficient use of both

the traffic flow model and observed data. The ARZ-PIDL

method is informed by a more advanced second-order traffic

model and its performance is superior to that of LWR-PIDL.

The PIDL + FDL-based methods can generally achieve

the best estimation accuracy and data efficiency over the

above TSE baselines. The results demonstrate that the proper

integration of the NN-based FD surrogate to the PIDL can give

the learning framework more flexibility to achieve an improved

TSE accuracy. One interesting phenomenon is that the

PIDL + FDL with the first-order LWR (LWR-PIDL + FDL)

can beat the one with a more sophisticated second-order ARZ

model (ARZ-PIDL + FDL). This observation supports our dis-

cussion that sophisticated traffic models may not always lead

to a better TSE performance, because the model may contain

complicated terms that makes the TSE performance sensitive

Fig. 11. Comparison of the FD curves estimated by the PIDL + FDL-based
TSE methods and PIDL-based TSE methods. For consistent visualization,
the learned Ûeq (ρ̂; ω) is converted to ρ̂Ûeq (ρ̂; ω) to represent the estimated
flow.

to the PINN structural design, and thus, the model becomes

difficult to train. Compared to the ARZ-PIDL + FDL,

the LWR-PIDL + FDL can balance the trade-off between the

sophisticated level of PINN and the training flexibility more

properly, making it a better fit to the NGSIM scenario.

D. Discussions on Fundamental Diagram Estimation

The PIDL + FDL-based methods can further learn the

hidden fundamental diagram (FD) relation. We compare the

FD curves learned via the PIDL + FDL-based methods and

PIDL-based methods in the density-flow space when small

number of loops are available. The results are presented

in Fig. 11 where each dark blue dot is a density-flow data

point in the NGSIM dataset. Note, the flow values are not

part of the observed data during the training phase.

For the PIDL-based methods, the closed form of the flux

function and velocity function are given and the parameters in

the PINN component are learned along with the TSE training,

and thus, the shape of the FD curves are predefined. The

corresponding FD curves with the learned model parameters

are indexed as “3” in Fig. 11. For consistent visualization, the

learned Ûeq(ρ̂; ω) is converted to ρ̂Ûeq(ρ̂; ω) to represent

the estimated flow. The LWR-PIDL method is encoded with

the 3-parameter-based flux, and the ARZ-PIDL is with the

Greenshields function for the equilibrium velocity. The for-

mer has a proper shape defined by the given mathematical

formula, but due to the complicated nature of the PINN

for the 3-parameter flux and the noisy quality of the data,

the learned FD curves do not fit the density-flow points to
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a satisfactory extent. The latter has a predefined quadratic

shape and can capture the density-flow characteristics to a

limited level.

For the PIDL + FDL-based methods, using the standard

training loss in Eq.(7), the learned FD shapes (indexed as

“1” in Fig. 11) fit the NGSIM density-flow points well

over the domain where the observed traffic state data are

distributed, i.e., around ρ ∈ [0, 0.5]. However, the FD curves

tend to curl up in the large-density domain, where the data

are sparse. To address this abnormal shape, we apply the

regularization term in Eq. (8) for reshaping and impose the

prior knowledge of concavity over a narrowed interval of

ρ ∈ [0.6, 0.7]. To this end, we set the hyperparameters in

Eq. (8) to a = 0.6 and b = 0.7. The corresponding learned

FD curves using the reshaping regularization term are indexed

as “2” in the figures, and they can properly capture the density-

flow characteristics to a satisfactory level. Because of using the

FD Learner, the LWR-PIDL + FDL contains no model para-

meters, and the conservation law plus the Q̂(ρ; ω∗) constitutes

the LWR model reconstructed by the LWR-PIDL + FDL. The

ARZ-PIDL + FDL contains one model parameter, i.e., the

relaxation time τ . The learning with data from 3, 6 and

8 loops converges to τ ∗ = [23.36, 25.99, 27.66], which is

reasonably close to τ = [27.6, 28.8, 30.5] directly fitted from

data. The conservation law, the momentum of velocity with

model parameter τ ∗, and the learned Ûeq(ρ; ω∗) constitute

the ARZ model reconstructed by the ARZ-PIDL + FDL.

The experimental results demonstrate that the proposed

PIDL + FDL-based TSE method (with the regularization for

reshaping) is able to efficiently conduct high-quality TSE,

model parameter identification and fundamental diagram esti-

mation at the same time with relatively small amounts of

observed data.

VII. CONCLUSION

We introduced the PIDL + FDL framework to the TSE

problem on highways using loop detector data and demonstrate

the significant benefits of the integration of an ML surrogate

into the model-driven component in PIDL. This framework

can be used to handle traffic state estimation, model parameter

identification, and fundamental diagram estimation simulta-

neously. The experiments on real highway data show that

PIDL + FDL-based approaches can outperform baselines in

terms of estimation accuracy and data efficiency as well as the

estimation of FD.

The limitations and potential future works of this paper

are as follows: (1) Similar to most deep learning methods,

hyperparameter tuning is an issue of PIDL-based TSE, and

tuning such a large number of hyperparameters based on

approaches like cross-validation is too complicated for real-

world application, and the model basically has to be tuned for

each scenario (spatial resolution, temporal resolution, spatial

grid size, temporal grid size, observation error, etc), which

limits its applicability to real-world problems; (2) PIDL is

known to have issues with noisy data, and how the high

noise and corruption in the real traffic data undermine the

performance of PIDL-based TSE needs further investigations;

(3) It is worthy of considering more ML surrogate components

to represent other unobserved traffic quantities in the traffic

flow model, such as h(ρ) and Ueq(ρ−u)/τ , and study to what

extent the addition of surrogates affects the performance.
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