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Abstract

Data with low-dimensional nonlinear structure are ubiquitous in engineering and
scientific problems. We study a model problem with such structure—a binary
classification task that uses a deep fully-connected neural network to classify data
drawn from two disjoint smooth curves on the unit sphere. Aside from mild
regularity conditions, we place no restrictions on the configuration of the curves.
We prove that when (i) the network depth is large relative to certain geometric
properties that set the difficulty of the problem and (ii) the network width and
number of samples are polynomial in the depth, randomly-initialized gradient
descent quickly learns to correctly classify all points on the two curves with high
probability. To our knowledge, this is the first generalization guarantee for deep
networks with nonlinear data that depends only on intrinsic data properties. Our
analysis proceeds by a reduction to dynamics in the neural tangent kernel (NTK)
regime, where the network depth plays the role of a fitting resource in solving
the classification problem. In particular, via fine-grained control of the decay
properties of the NTK, we demonstrate that when the network is sufficiently deep,
the NTK can be locally approximated by a translationally invariant operator on the
manifolds and stably inverted over smooth functions, which guarantees convergence
and generalization.

1 Introduction

In applied machine learning, engineering, and the sciences, we are frequently confronted with
the problem of identifying low-dimensional structure in high-dimensional data. In certain well-
structured data sets, identifying a good low-dimensional model is the principal task: examples include
convolutional sparse models in microscopy [43] and neuroscience [10, 16], and low-rank models
in collaborative filtering [7, 8]. Even more complicated datasets from problems such as image
classification exhibit some form of low-dimensionality: recent experiments estimate the effective
dimension of CIFAR-10 as 26 and the effective dimension of ImageNet as 43 [61]. The variability in
these datasets can be thought of as comprising two parts: a “probabilistic” variability induced by the
distribution of geometries associated with a given class, and a “geometric” variability associated with
physical nuisances such as pose and illumination. The former is challenging to model analytically;
virtually all progress on this issue has come through the introduction of large datasets and high-
capacity learning machines. The latter induces a much cleaner analytical structure: transformations of
a given image lie near a low-dimensional submanifold of the image space (Figure 1). The celebrated
successes of convolutional neural networks in image classification seem to derive from their ability
to simultaneously handle both types of variability. Studying how neural networks compute with
data lying near a low-dimensional manifold is an essential step towards understanding how neural
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networks achieve invariance to continuous transformations of the image domain, and towards the
longer term goal of developing a more comprehensive mathematical understanding of how neural
networks compute with real data. At the same time, in some scientific and engineering problems,
classifying manifold-structured data is the goal—one example is in gravitational wave astronomy [22,
30], where the goal is to distinguish true events from noise, and the events are generated by relatively
simple physical systems with only a few degrees of freedom.
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Figure 1: Low-dimensional structure in image data and the two curves problem. Left: Manifold
structure in natural images arises due to invariance of the label to continuous domain transformations
such as translations and rotations. Right: The two curve problem. We train a neural network to
classify points sampled from a density ⇢ on the submanifolds M+,M� of the unit sphere. We
illustrate the angle injectivity radius ∆ and curvature 1/. These parameters help to control the
difficulty of the problem: problems with smaller separation and larger curvature are more readily
separated with deeper networks.

Motivated by these long term goals, in this paper we study the multiple manifold problem (Figure 1),
a mathematical model problem in which we are presented with a finite set of labeled samples lying
on disjoint low-dimensional submanifolds of a high-dimensional space, and the goal is to correctly
classify every point on each of the submanifolds—a strong form of generalization. The central
mathematical question is how the structure of the data (properties of the manifolds such as dimension,
curvature, and separation) influences the resources (data samples, and network depth and width)
required to guarantee generalization. Our main contribution is the first end-to-end analysis of this
problem for a nontrivial class of manifolds: one-dimensional smooth curves that are non-intersecting,
cusp-free, and without antipodal pairs of points. Subject to these constraints, the curves can be
oriented essentially arbitrarily (say, non-linearly-separably, as in Figure 1), and the hypotheses of
our results depend only on architectural resources and intrinsic geometric properties of the data. To
our knowledge, this is the first generalization result for training a deep nonlinear network to classify
structured data that makes no a-priori assumptions about the representation capacity of the network
or about properties of the network after training.

Our analysis proceeds in the neural tangent kernel (NTK) regime of training, where the network is
wide enough to guarantee that gradient descent can make large changes in the network output while
making relatively small changes to the network weights. This approach is inspired by the recent work
[57], which reduces the analysis of generalization in the one-dimensional multiple manifold problem
to an auxiliary problem called the certificate problem. Solving the certificate problem amounts
to proving that the target label function lies near the stable range of the NTK. The existence of
certificates (and more generally, the conditions under which practically-trained neural networks can
fit structured data) is open, except for a few very simple geometries which we will review below—in
particular, [57] leaves this question completely open. Our technical contribution is to show that
setting the network depth sufficiently large relative to intrinsic properties of the data guarantees the
existence of a certificate (Theorem 3.1), resolving the one-dimensional case of the multiple manifold
problem for a broad class of curves (Theorem 3.2). This leads in turn to a novel perspective on the
role of the network depth as a fitting resource in the classification problem, which is inaccessible to
shallow networks.
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1.1 Related Work

Deep networks and low dimensional structure. Modern applications of deep neural networks
include numerous examples of low-dimensional manifold structure, including pose and illumination
variations in image classification [1, 5], as well as detection of structured signals such as electrocardio-
grams [14, 20], gravitational waves [22, 30], audio signals [13], and solutions to the diffusion equation
[48]. Conventionally, to compute with such data one might begin by extracting a low-dimensional
representation using nonlinear dimensionality reduction (“manifold learning”) algorithms [2–4, 6, 12,
54, 56]. For supervised tasks, there is also theoretical work on kernel regression over manifolds [9,
11, 19, 51]. These results rely on very general Sobolev embedding theorems, which are not precise
enough to specify the interplay between regularity of the kernel and properties of the data need to
obtain concrete resource tradeoffs in the two curve problem. There is also a literature which studies
the resource requirements associated with approximating functions over low-dimensional manifolds
[15, 29, 38, 44]: a typical result is that for a sufficiently smooth function there exists an approximating
network whose complexity is controlled by intrinsic properties such as the dimension. In contrast,
we seek algorithmic guarantees that prove that we can efficiently train deep neural networks for
tasks with low-dimensional structure. This requires us to grapple with how the geometry of the data
influences the dynamics of optimization methods.

Neural networks and structured data—theory? Spurred by insights in asymptotic infinite width
[23, 24] and non-asymptotic [18, 21] settings, there has been a surge of recent theoretical work
aimed at establishing guarantees for neural network training and generalization [26–28, 34, 37,
40, 49, 55]. Here, our interest is in end-to-end generalization guarantees, which are scarce in the
literature: those that exist pertain to unstructured data with general targets, in the regression setting
[32, 36, 46, 59], and those that involve low-dimensional structure consider only linear structure (i.e.,
spheres) [46]. For less general targets, there exist numerous works that pertain to the teacher-student
setting, where the target is implemented by a neural network of suitable architecture with unstructured
inputs [17, 33, 40, 49, 63]. Although adding this extra structure to the target function allows one to
establish interesting separations in terms of e.g. sample complexity [31, 39, 49, 62] relative to the
preceding analyses, which proceed in the “kernel regime”, we leverage kernel regime techniques in
our present work because they allow us to study the interactions between deep networks and data
with nonlinear low-dimensional structure, which is not possible with existing teacher-student tools.
Relaxing slightly from results with end-to-end guarantees, there exist ‘conditional’ guarantees which
require the existence of an efficient representation of the target mapping in terms of a certain RKHS
associated to the neural network [34, 53, 57, 58]. In contrast, our present work obtains unconditional,
end-to-end generalization guarantees for a nontrivial class of low-dimensional data geometries.

2 Problem Formulation

Notation. We use bold notation x, A for vectors and matrices/operators (respectively). We write

kxkp = (
Pn

i=1|xi|
p)1/p for the `p norm of x, hx,yi =

Pn
i=1 xiyi for the euclidean inner product,

and for a measure space (X,µ), kgkLp
µ
= (

R
X
|g(x)|p dµ(x))1/p denotes the Lp

µ norm of a function

g : X ! R. The unit sphere in R
n is denoted S

n�1, and \(x,y) = cos-1(hx,yi) denotes the angle
between unit vectors. For a kernel K : X⇥X ! R, we write Kµ[g](x) =

R
X
K(x, x0)g(x0) dµ(x0)

for the action of the associated Fredholm integral operator; an omitted subscript denotes Lebesgue
measure. We write PS to denote the orthogonal projection operator onto a (closed) subspace S. Full
notation is provided in Appendix B.

2.1 The Two Curve Problem1

A natural model problem for the tasks discussed in Section 1 is the classification of low-dimensional
submanifolds using a neural network. In this work, we study the one-dimensional, two-class case
of this problem, which we refer to as the two curve problem. To fix ideas, let n0 � 3 denote the
ambient dimension, and let M+ and M� be two disjoint smooth regular simple closed curves
taking values in S

n0�1, which represent the two classes (Figure 1). In addition, we require that

1The content of this section follows the presentation of [57]; we reproduce it here for self-containedness. We
omit some nonessential definitions and derivations for concision; see Appendix C.1 for these details.
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the curves lie in a spherical cap of radius ⇡/2: for example, the intersection of the sphere and the
nonnegative orthant {x 2 R

n0 |x � 0}.2 Given N i.i.d. samples {xi}
N
i=1 from a density ⇢ supported

on M = M+ [M�, which is bounded above and below by positive constants ⇢max and ⇢min and
has associated measure µ, as well as their corresponding ±1 labels, we train a feedforward neural
network fθ : Rn0 ! R with ReLU nonlinearities, uniform width n, and depth L (and parameters θ)
by minimizing the empirical mean squared error using randomly-initialized gradient descent. Our
goal is to prove that this procedure yields a separator for the geometry given sufficient resources n, L,
and N—i.e., that sign(fθk

) = 1 on M+ and �1 on M� at some iteration k of gradient descent.

To achieve this, we need an understanding of the progress of gradient descent. Let f? : M ! {±1}
denote the classification function for M+ and M� that generates our labels, write ⇣θ(x) = fθ(x)�
f?(x) for the network’s prediction error, and let θk+1 = θk � (⌧/N)

PN
i=1 ⇣θk

(xi)rθfθk
(xi)

denote the gradient descent parameter sequence, where ⌧ > 0 is the step size and θ0 represents
our Gaussian initialization. Elementary calculus then implies the error dynamics equation ⇣θk+1

=

⇣θk
� (⌧/N)

PN
i=1 Θ

N
k ( · ,xi)⇣θk

(xi) for k = 0, 1, . . . , where ΘN
k : M ⇥ M ! R is a certain

kernel. The precise expression for this kernel is not important for our purposes: what matters is that
(i) making the width n large relative to the depth L guarantees that ΘN

k remains close throughout

training to its ‘initial value’ ΘNTK(x,x0) = hrθfθ0
(x),rθfθ0

(x0)i, the neural tangent kernel; and
(ii) taking the sample size N to be sufficiently large relative to the depth L implies that a nominal
error evolution defined as ⇣k+1 = ⇣k � ⌧ΘNTK

µ [⇣k] with ⇣0 = ⇣θ0
uniformly approximates the actual

error ⇣θk
throughout training. In other words: to prove that gradient descent yields a neural network

classifier that separates the two manifolds, it suffices to overparameterize, sample densely, and show
that the norm of ⇣k decays sufficiently rapidly with k. This constitutes the “NTK regime” approach
to gradient descent dynamics for neural network training [23].

The evolution of ⇣k is relatively straightforward: we have ⇣k+1 = (Id�⌧ΘNTK
µ )k[⇣0], and Θ

NTK
µ is

a positive, compact operator, so there exist an orthonormal basis of L2
µ functions vi and eigenvalues

�1 � �2 � · · · � 0 such that ⇣k+1 =
P1

i=1(1� ⌧�i)
kh⇣0, viiL2

µ
vi. In particular, with bounded step

size ⌧ < ��1
1 , gradient descent leads to rapid decrease of the error if and only if the initial error ⇣0

is well-aligned with the eigenvectors of ΘNTK
µ corresponding to large eigenvalues. Arguing about

this alignment explicitly is a challenging problem in geometry: although closed-form expressions for
the functions vi exist in cases where M and µ are particularly well-structured, no such expression is
available for general nonlinear geometries, even in the one-dimensional case we study here. However,
this alignment can be guaranteed implicitly if one can show there exists a function g : M ! R

of small L2
µ norm such that ΘNTK

µ [g] ⇡ ⇣0—in this situation, most of the energy of ⇣0 must be
concentrated on directions corresponding to large eigenvalues. We call the construction of such a
function the certificate problem [57, Eqn. (2.3)]:

Certificate Problem. Given a two curves problem instance (M, ⇢), find conditions on the architec-
tural hyperparameters (n, L) so that there exists g : M ! R satisfying kΘNTK

µ [g]� ⇣0kL2
µ
. 1/L

and kgkL2
µ
. 1/n, with constants depending on the density ⇢ and logarithmic factors suppressed.

The construction of certificates demands a fine-grained understanding of the integral operator ΘNTK
µ

and its interactions with the geometry M. We therefore proceed by identifying those intrinsic
properties of M that will play a role in our analysis and results.

2.2 Key Geometric Properties

In the NTK regime described in Section 2.1, gradient descent makes rapid progress if there exists
a small certificate g satisfying Θ

NTK
µ [g] ⇡ ⇣0. The NTK is a function of the network width n and

depth L—in particular, we will see that the depth L serves as a fitting resource, enabling the network
to accommodate more complicated geometries. Our main analytical task is to establish relationships
between these architectural resources and the intrinsic geometric properties of the manifolds that
guarantee existence of a certificate.

2The specific value π/2 is immaterial to our arguments: this constraint is only to avoid technical issues
that arise when antipodal points are present in M, so any constant less than π would work just as well. This
choice allows for some extra technical expediency, and connects with natural modeling assumptions (e.g. data
corresponding to image manifolds, with nonnegative pixel intensities).
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Intuitively, one would expect it to be harder to separate curves that are close together or oscillate wildly.
In this section, we formalize these intuitions in terms of the curves’ curvature, and quantities which we

term the angle injectivity radius andV-number, which control the separation between the curves and
their tendency to self-intersect. Given that the curves are regular, we may parameterize the two curves
at unit speed with respect to arc length: for � 2 {±}, we write len(M�) to denote the length of each

curve, and use x�(s) : [0, len(M�)] ! S
n0�1 to represent these parameterizations. We let x

(i)
� (s)

denote the i-th derivative of x� with respect to arc length. Because our parameterization is unit

speed, kx(1)
� (s)k2 = 1 for all x�(s) 2 M. We provide full details regarding this parameterization in

Appendix C.2.

Curvature and Manifold Derivatives. Our curves M� are submanifolds of the sphere Sn0�1. The

curvature of M� at a point x�(s) is the norm kP
xσ(s)?x

(2)
� (s)k2 of the component P

xσ(s)?x
(2)
� (s)

of the second derivative of x�(s) that lies tangent to the sphere S
n0�1 at x�(s). Geometrically, this

measures the extent to which the curve x�(s) deviates from a geodesic (great circle) on the sphere. Our

technical results are phrased in terms of the maximum curvature  = sup�,s{kPxσ(s)?x
(2)
� (s)k2}. In

stating results, we also use ̂ = max{, 2
⇡
} to simplify various dependencies on . When  is large,

M� is highly curved, and we will require a larger network depth L. In addition to the maximum
curvature , our technical arguments require x�(s) to be five times continuously differentiable, and

use bounds Mi = sup�,s{kx
(i)
� (s)k2} on their higher order derivatives.

Angle Injectivity Radius. Another key geometric quantity that determines the hardness of the
problem is the separation between manifolds: the problem is more difficult when M+ and M� are
close together. We measure closeness through the extrinsic distance (angle) \(x,x0) = cos�1 hx,x0i
between x and x0 over the sphere. In contrast, we use dM(x,x0) to denote the intrinsic distance
between x and x0 on M, setting dM(x,x0) = 1 if x and x0 reside on different components M+

and M�. We set

∆ = inf
x,x02M

{\(x,x0) | dM(x,x0) � ⌧1}, (2.1)

where ⌧1 = 1p
20̂

, and call this quantity the angle injectivity radius. In words, the angle injectivity

radius is the minimum angle between two points whose intrinsic distance exceeds ⌧1. The angle
injectivity radius ∆ (i) lower bounds the distance between different components M+ and M�,
and (ii) accounts for the possibility that a component will “loop back,” exhibiting points with large
intrinsic distance but small angle. This phenomenon is important to account for: the certificate
problem is harder when one or both components of M nearly self-intersect. At an intuitive level, this
increases the difficulty of the certificate problem because it introduces nonlocal correlations across
the operator ΘNTK

µ , hurting its conditioning. As we will see in Section 4, increasing depth L makes

ΘNTK better localized; setting L sufficiently large relative to ∆�1 compensates for these correlations.

V-number The conditioning of ΘNTK
µ depends not only on how near M comes to intersecting

itself, which is captured by ∆, but also on the number of times that M can “loop back” to a particular
point. If M “loops back” many times, ΘNTK

µ can be highly correlated, leading to a hard certificate

problem. TheV-number (verbally, “clover number”) reflects the number of near self-intersections:

V(M) = sup
x2M

⇢
NM

✓
{x0 | dM(x,x0) � ⌧1,\(x,x

0)  ⌧2},
1p

1 + 2

◆�
(2.2)

with ⌧2 = 19
20

p
20̂

. The set {x0 | dM(x,x0) � ⌧1,\(x,x
0)  ⌧2} is the union of looping pieces,

namely points that are close to x in extrinsic distance but far in intrinsic distance. NM(T, �) is the
cardinality of a minimal � covering of T ⇢ M in the intrinsic distance on the manifold, serving as a

way to count the number of disjoint looping pieces. TheV-number accounts for the maximal volume
of the curve where the angle injectivity radius ∆ is active. It will generally be large if the manifolds

nearly intersect multiple times, as illustrated in Fig. 2. TheV-number is typically small, but can be
large when the data are generated in a way that induces certain near symmetries, as in the right panel
of Fig. 2.
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Figure 2: TheV-number—theory and practice. Left: We generate a parametric family of space

curves with fixed maximum curvature and length, but decreasingV-number, by reflecting ‘petals’
of a clover about a circumscribing square. We set M+ to be a fixed circle with large radius that
crosses the center of the configurations, then rescale and project the entire geometry onto the sphere
to create a two curve problem instance. In the insets, we show a two-dimensional projection of
each of the blue M� curves as well as a base point x 2 M+ at the center (also highlighed in the
three-dimensional plots). The intersection of M� with the neighborhood of x denoted in orange

represents the set whose covering number gives theV-number of the configuration (see (2.2)). Top
right: We numerically generate a certificate for each of the four geometries at left and plot its norm as

a function ofV-number. The trend demonstrates that increasingV-number correlates with increasing
classification difficulty, measured through the certificate problem: this is in line with the intuition we
have discussed. Bottom right: t-SNE projection of MNIST images (top: a “four” digit; bottom: a
“one” digit) subject to rotations. Due to the approximate symmetry of the one digit under rotation

by an angle ⇡, the projection appears to nearly intersect itself. This may lead to a higherV-number
compared to the embedding of the less-symmetric four digit. For experimental details for all panels,
see Appendix A.

3 Main Results

Our main theorem establishes a set of sufficient resource requirements for the certificate problem
under the class of geometries we consider here—by the reductions detailed in Section 2.1, this implies
that gradient descent rapidly separates the two classes given a neural network of sufficient depth
and width. First, we note a convenient aspect of the certificate problem, which is its amenability
to approximate solutions: that is, if we have a kernel Θ that approximates ΘNTK in the sense that
kΘµ �Θ

NTK
µ kL2

µ!L2
µ
. n/L, and a function ⇣ such that k⇣ � ⇣0kL2

µ
. 1/L, then by the triangle

inequality and the Schwarz inequality, it suffices to solve the equation Θµ[g] ⇡ ⇣ instead. In our

arguments, we will exploit the fact that the random kernel ΘNTK concentrates well for wide networks
with n & L, choosing Θ as

Θ(x,x0) = (n/2)

L�1X

`=0

L�1Y

`0=`

⇣
1� (1/⇡)'[`0](\(x,x0)

⌘
, (3.1)

where '(t) = cos-1((1 � t/⇡) cos t + (1/⇡) sin t) and '[`0] denotes `0-fold composition of '; as
well as the fact that for wide networks with n & L5, depth ‘smooths out’ the initial error ⇣0,
choosing ⇣ as the piecewise-constant function ⇣(x) = �f?(x) +

R
M

fθ0
(x0) dµ(x0). We reproduce
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high-probability concentration guarantees from the literature that justify these approximations in
Appendix G.

Theorem 3.1 (Approximate Certificates for Curves). Let M be two disjoint smooth, regular, simple
closed curves, satisfying \(x,x0)  ⇡/2 for all x,x0 2 M. There exist absolute constants
C,C 0, C 00, C 000 and a polynomial P = poly(M3,M4,M5, len(M),∆�1) of degree at most 36, with
degree at most 12 in (M3,M4,M5, len(M)) and degree at most 24 in ∆�1, such that when

L � max

(
exp(C 0 len(M)̂),

⇣
∆

p
1 + 2

⌘�C00V(M)

, C 000̂10, P, ⇢12max

)
,

there exists a certificate g with kgkL2
µ


Ck⇣kL2
µ

⇢minn logL such that kΘµ[g]� ⇣kL2
µ
 k⇣kL1

L .

Theorem 3.1 is our main technical contribution: it provides a sufficient condition on the network
depth L to resolve the approximate certificate problem for the class of geometries we consider, with
the required resources depending only on the geometric properties we introduce in Section 2.2. Given
the connection between certificates and gradient descent, Theorem 3.1 demonstrates that deeper
networks fit more complex geometries, which shows that the network depth plays the role of a fitting
resource in classifying the two curves. We provide a numerical corroboration of the interaction
between the network depth, the geometry, and the size of the certificate in Figure 3. For any family of

geometries with boundedV-number, Theorem 3.1 implies a polynomial dependence of the depth
on the angle injectivity radius ∆, whereas we are unable to avoid an exponential dependence of the
depth on the curvature . Nevertheless, these dependences may seem overly pessimistic in light of
the existence of ‘easy’ two curve problem instances—say, linearly-separable classes, each of which
is a highly nonlinear manifold—for which one would expect gradient descent to succeed without
needing an unduly large depth. In fact, such geometries will not admit a small certificate norm in
general unless the depth is sufficiently large: intuitively, this is a consequence of the operator Θµ

being ill-conditioned for such geometries.3
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Figure 3: The effect of geometry and depth on the certificate. Left: The certificate g computed
numerically from the kernel Θ for depth L = 50 (defined in (3.1)) and the geometry from Figure 1
with a uniform density, graphed over the manifolds. Control of the norm of the certificate implies
rapid progress of gradient descent, as reflected in Theorem 3.2. Comparing to Section 1, we note that
the certificate has large magnitude near the point of minimum distance between the two curves—this
is suggestive of the way the geometry sets the difficulty of the fitting problem. Right: To visualize
the certificate norm more precisely, we graph the log-magnitude of the certificate for kernels Θ of
varying depth L, viewing them through the arc-length parameterizations x� for the curves (left: M+;
right: M�). At a coarse scale, the maximum magnitude decreases as the depth increases; at a finer
scale, curvature-associated defects are ‘smoothed out’. This indicates the role of depth as a fitting
resource. See Appendix A for further experimental details.

The proof of Theorem 3.1 is novel, both in the context of kernel regression on manifolds and in
the context of NTK-regime neural network training. We detail the key intuitions for the proof in

3Again, the equivalence between the difficulty of the certificate problem and the progress of gradient descent
on decreasing the error is a consequence of our analysis proceeding in the kernel regime with the square
loss—using alternate techniques to analyze the dynamics can allow one to prove that neural networks continue
to fit such ‘easy’ classification problems efficiently (e.g. [34]).
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Section 4. As suggested above, applying Theorem 3.1 to construct a certificate is straightforward:
given a suitable setting of L for a two curve problem instance, we obtain an approximate certificate g
via Theorem 3.1. Then with the triangle inequality and the Schwarz inequality, we can bound

kΘNTK
µ [g]� ⇣0kL2

µ
 kΘNTK

µ �ΘµkL2
µ!L2

µ
kgkL2

µ
+ k⇣0 � ⇣kL2

µ
+ kΘµ[g]� ⇣kL2

µ
,

and leveraging suitable probabilistic control (see Appendix G) of the approximation errors in the
previous expression, as well as on k⇣kL2

µ
, then yields bounds for the certificate problem. Applying the

reductions from gradient descent dynamics in the NTK regime to certificates discussed in Section 2.1,
we then obtain an end-to-end guarantee for the two curve problem.

Theorem 3.2 (Generalization). Let M be two disjoint smooth, regular, simple closed curves, satisfy-
ing \(x,x0)  ⇡/2 for all x,x0 2 M. For any 0 < �  1/e, choose L so that

L � Kmax

8
<
:

1
�
∆
p
1 + 2

�CV(M)
, Cµ log

9( 1
�
) log24(Cµn0 log(

1
�
)), eC

0 max{len(M)̂,log(̂)}, P

9
=
;

n = K 0L99 log9(1/�) log18(Ln0)

N � L10,

and fix ⌧ > 0 such that C00

nL2  ⌧  c
nL . Then with probability at least 1 � �, the parameters

obtained at iteration bL39/44/(n⌧)c of gradient descent on the finite sample loss yield a classifier
that separates the two manifolds.

The constants c, C,C 0, C 00,K,K 0 > 0 are absolute, and Cµ equals to
max{⇢19

min,⇢
�19

min
}(1+⇢max)

12

(min {µ(M+),µ(M�)})11/2
is a

constant only depends on µ. P is a polynomial poly{M3,M4,M5, len(M),∆�1} of degree at most
36, with degree at most 12 when viewed as a polynomial in M3,M4,M5 and len(M), and of degree
at most 24 as a polynomial in ∆�1.

Theorem 3.2 represents the first end-to-end guarantee for training a deep neural network to classify
a nontrivial class of low-dimensional nonlinear manifolds. We call attention to the fact that the hy-
potheses of Theorem 3.2 are completely self-contained, making reference only to intrinsic properties
of the data and the architectural hyperparameters of the neural network (as well as poly(log n0)),
and that the result is algorithmic, as it applies to training the network via constant-stepping gradient
descent on the empirical square loss and guarantees generalization within L2 iterations. Furthermore,
Theorem 3.2 can be readily extended to the more general setting of regression on curves, given that
we have focused on training with the square loss.

4 Proof Sketch

In this section, we provide an overview of the key elements of the proof of Theorem 3.1, where
we show that the equation Θµ[g] ⇡ ⇣ admits a solution g (the certificate) of small norm. To solve
the certificate problem for M, we require a fine-grained understanding of the kernel Θ. The most

natural approach is to formally set g =
P1

i=1 �
�1
i h⇣, viiL2

µ
vi using the eigendecomposition of Θµ

(just as constructed in Section 2.1 for ΘNTK
µ ), and then argue that this formal expression converges

by studying the rate of decay of �i and the alignment of ⇣ with eigenvectors of Θµ; this is the
standard approach in the literature [46, 53]. However, as discussed in Section 2.1, the nonlinear
structure of M makes obtaining a full diagonalization for Θµ intractable, and simple asymptotic
characterizations of its spectrum are insufficient to prove that the solution g has small norm. Our
approach will therefore be more direct: we will study the ‘spatial’ properties of the kernel Θ itself, in
particular its rate of decay away from x = x0, and thereby use the network depth L as a resource
to reduce the study of the operator Θµ to a simpler, localized operator whose invertibility can be
proved using harmonic analysis. We will then use differentiability properties of Θ to transfer the
solution obtained by inverting this auxiliary operator back to the operator Θµ. We refer readers to
Appendix E for the full proof.

We simplify the proceedings using two basic reductions. First, with a small amount of auxiliary argu-
mentation, we can reduce from the study of the operator-with-density Θµ to the density-free operator

8



Θ. Second, the kernel Θ(x,x0) is a function of the angle \(x,x0), and hence is rotationally invariant.
This kernel is maximized at \(x,x0) = 0 and decreases monotonically as the angle increases,
reaching its minimum value at \(x,x0) = ⇡. If we subtract this minimum value, it should not affect
our ability to fit functions, and we obtain a rotationally invariant kernel Θ�(x,x0) =  �(\(x,x0))
that is concentrated around angle 0. In the following, we focus on certificate construction for the
kernel Θ�. Both simplifications are justified in Appendix E.3.

4.1 The Importance of Depth: Localization of the Neural Tangent Kernel

The first problem one encounters when attempting to directly establish (a property like) invertibility of
the operator Θ� is its action across connected components of M: the operator Θ� acts by integrating
against functions defined on M = M+ [M�, and although it is intuitive that most of its image’s
values on each component will be due to integration of the input over the same component, there will
always be some ‘cross-talk’ corresponding to integration over the opposite component that interferes
with our ability to apply harmonic analysis tools. To work around this basic issue (as well as others
we will see below), our argument proceeds via a localization approach: we will exploit the fact that
as the depth L increases, the kernel Θ� sharpens and concentrates around its value at x = x0, to the
extent that we can neglect its action across components of M and even pass to the analysis of an
auxiliary localized operator. This reduction is enabled by new sharp estimates for the decay of the
angle function  � that we establish in Appendix F.3. Moreover, the perspective of using the network
depth as a resource to localize the kernel Θ� and exploiting this to solve the classification problem
appears to be new: this localization is typically presented as a deficiency in the literature (e.g. [47]).

At a more formal level, when the network is deep enough compared to geometric properties of
the curves, for each point x, the majority of the mass of the kernel Θ�(x,x0) is taken within
a small neighborhood dM(x,x0)  r of x. When dM(x,x0) is small relative to , we have
dM(x,x0) ⇡ \(x,x0). This allows us to approximate the local component by the following
invariant operator:

cM [f ](x�(s)) =

Z s+r

s0=s�r

 �(|s� s0|)f(x�(s
0))ds0. (4.1)

This approximation has two main benefits: (i) the operator cM is defined by intrinsic distance s0 � s,
and (ii) it is highly localized. In fact, (4.1) takes the form of a convolution over the arc length

parameter s. This implies that cM diagonalizes in the Fourier basis, giving an explicit characterization

of its eigenvalues and eigenvectors. Moreover, because cM is localized, the eigenvalues corresponding

to slowly oscillating Fourier basis functions are large, and cM is stably invertible over such functions.
Both of these benefits can be seen as consequences of depth: depth leads to localization, which

facilitates approximation by cM , and renders that approximation invertible over low-frequency
functions. In our proofs, we will work with a subspace S spanned by low-frequency basis functions
that are nearly constant over a length 2r interval (this subspace ends up having dimension proportional
to 1/r; see Appendix C.3 for a formal definition), and use Fourier arguments to prove invertibility of
cM over S (see Lemma E.6).

4.2 Stable Inversion over Smooth Functions

Our remaining task is to leverage the invertibility of cM over S to argue that Θ is also invertible. In

doing so, we need to account for the residual Θ� cM . We accomplish this directly, using a Neumann

series argument: when setting r . L�1/2 and the dimension of the subspace S proportional to

1/r, the minimum eigenvalue of cM over S exceeds the norm of the residual operator Θ� � cM
(Lemma E.2). This argument leverages a decomposition of the domain into “near”, “far” and
“winding” pieces, whose contribution to Θ

� is controlled using the curvature, angle injectivity radius

andV-number (Lemma E.8, Lemma E.9, Lemma E.10). This guarantees the strict invertibility of
Θ

� over the subspace S, and yields a unique solution gS to the restricted equation PSΘ
�[gS ] = ⇣

(Theorem E.1).

This does not yet solve the certificate problem, which demands near solutions to the unrestricted
equation Θ

�[g] = ⇣ . To complete the argument, we set g = gS and use harmonic analysis considera-
tions to show that Θ�[g] is very close to S. The subspace S contains functions that do not oscillate
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rapidly, and hence whose derivatives are small relative to their norm (Lemma E.23). We prove that
Θ

�[g] is close to S by controlling the first three derivatives of Θ�[g], which introduces dependencies
on M1, · · · ,M5 in the final statement of our results (Lemma E.27). In controlling these derivatives,
we leverage the assumption that sup

x,x02M \(x,x0)  ⇡/2 to avoid issues that arise at antipodal
points—we believe the removal of this constraint is purely technical, given our sharp characterization
of the decay of  � and its derivatives. Finally, we move from Θ

� back to Θ by combining near
solutions to Θ

�[g] = ⇣ and Θ
�[g1] = 1, and iterating the construction to reduce the approximation

error to an acceptable level (Appendix E.3).

5 Discussion

A role for depth. In the setting of fitting functions on the sphere S
n0�1 in the NTK regime with

unstructured (e.g., uniformly random) data, it is well-known that there is very little marginal benefit
to using a deeper network: for example, [32, 46, 59] show that the risk lower bound for RKHS
methods is nearly met by kernel regression with a 2-layer network’s NTK in an asymptotic (n0 ! 1)
setting, and results for fitting degree-1 functions in the nonasymptotic setting [52] are suggestive of a
similar phenomenon. In a similar vein, fitting in the NTK regime with a deeper network does not
change the kernel’s RKHS [41, 42, 45], and in a certain “infinite-depth” limit, the corresponding
NTK for networks with ReLU activations, as we consider here, is a spike, guaranteeing that it fails
to generalize [47, 50]. Our results are certainly not in contradiction to these facts—we consider a
setting where the data are highly structured, and our proofs only show that an appropriate choice
of the depth relative to this structure is sufficient to guarantee generalization, not necessary—but
they nonetheless highlight an important role for the network depth in the NTK regime that has not
been explored in the existing literature. In particular, the localization phenomenon exhibited by
the deep NTK is completely inaccessible by fixed-depth networks, and simultaneously essential
to our arguments to proving Theorem 3.2, as we have described in Section 4. It is an interesting
open problem to determine whether there exist low-dimensional geometries that cannot be efficiently
separated without a deep NTK, or whether the essential sufficiency of the depth-two NTK persists.

Closing the gap to real networks and data. Theorem 3.2 represents an initial step towards
understanding the interaction between neural networks and data with low-dimensional structure,
and identifying network resource requirements sufficient to guarantee generalization. There are
several important avenues for future work. First, although the resource requirements in Theorem 3.1,
and by extension Theorem 3.2, reflect only intrinsic properties of the data, the rates are far from
optimal—improvements here will demand a more refined harmonic analysis argument beyond the
localization approach we take in Section 4.1. A more fundamental advance would consist of extending
the analysis to the setting of a model for image data, such as cartoon articulation manifolds, and the
NTK of a convolutional neural network with architectural settings that impose translation invariance
[25, 35]—recent results show asymptotic statistical efficiency guarantees with the NTK of a simple
convolutional architecture, but only in the context of generic data [60]. The approach to certificate
construction we develop in Theorem 3.1 will be of use in establishing guarantees analogous to
Theorem 3.2 here, as our approach does not require an explicit diagonalization of the NTK.

In addition, extending our certificate construction approach to smooth manifolds of dimension larger
than one is a natural next step. We believe our localization argument generalizes to this setting: as our
bounds for the kernel  are sharp with respect to depth and independent of the manifold dimension,
one could seek to prove guarantees analogous to Theorem 3.1 with a similar subspace-restriction
argument for sufficiently regular manifolds, such as manifolds diffeomorphic to spheres, where the
geometric parameters of Section 2.2 have natural extensions. Such a generalization would incur at
best an exponential dependence of the network on the manifold dimension for localization in high
dimensions.

More broadly, the localization phenomena at the core of our argument appear to be relevant beyond
the regime in which the hypotheses of Theorem 3.2 hold: we provide a preliminary numerical
experiment to this end in Appendix A.3. Training fully-connected networks with gradient descent on
a simple manifold classification task, low training error appears to be easily achievable only when the
decay scale of the kernel is small relative to the inter-manifold distance even at moderate depth and
width, and this decay scale is controlled by the depth of the network.
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